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Tackling Climate Change: Comparing studio approaches 

in Sheffield and Cape Town 

Ranald Lawrence and Kevin Fellingham 

 

Sheffield and Cape Town 

The urgency of climate change, and the collective responsibility it entails, requires a greater 

understanding of cultural approaches to environmental change and its interaction with diverse social 

contexts. This requires an extension of our understanding of climate change from the scientific to the 

socio-cultural realm. Cultural understanding implies investigation that extends to the human scale, 

revealing challenges that are often overlooked at a national or intergovernmental level. 

The Worldwide Universities Network ‘Transcultural Understanding of Designing with Climate 

Change’ project undertaken at the Universities of Sheffield and Cape Town sought to examine how 

climate change is approached as a design input in different cultural contexts. An exchange of 

academic staff from both institutions permitted comparison of work addressing local responses to 

climate change undertaken by design-research studios in each university. The research explored the 

extent to which approaches to resilience are interchangeable, or need to be grounded in local 

conditions. 

The research began from the starting point that conventional design solutions vary between 

cultures according to local conditions (Anderson 1984). However, climate change presents a common 

global challenge, and this implies that systematic design approaches may be necessary to overcome 

the often arbitrary nature of local solutions, in order to successfully address the multifaceted nature of 

the problem in our ever-more interconnected world. On the other hand, participative design processes 

are required to address the needs of a range of demographic groups and societies with different values 

and resources, which need to be reconciled to local conditions. The former approach runs the danger 

of ignoring realities on the ground, while the participatory model, in foregrounding the resolution of 

local conflict, may fail to address the global nature of climate change. Education therefore plays a 

pivotal role in reconciling these two models of design, acting as a filter through which systematic 

approaches can be tested against the limiting empirical conditions of a given locality. 

The Sheffield studio’s work focuses on adaptative strategies that mitigate against the consequences 

of climate change, informed by evaluation of existing case studies, dynamic simulation modelling of 

student projects, and assessment of future climate scenarios. Sheffield represents a cultural context 

where there is a popular political will to devote time and resources to mitigating climate change, and 

various codes set out minimum standards for response. The Cape Town studio, in contrast, focuses on 

a context of rapid urbanisation, skills shortages, and a low tax base, where the state is unable to 

provide basic services such as electricity and water to many citizens. A lack of reliable data about 



 

 

energy consumption means that environmental decision-making is often intuitive; while the 

peculiarities of the unequally developed economic and political context requires a more nuanced 

approach to engagement with communities regarding the need for adaptation. 

This chapter will first examine climate change in South Africa, and how the pedagogical approach 

at the University of Cape Town builds upon a history of addressing social and spatial apartheid. This 

is contrasted with Sheffield, where a more technical approach to design pre-construction is supported 

by the latest technology and software, but problems with the performance of completed buildings are 

easily overlooked in a context where many of the consequences of climate change have yet to be 

experienced, and remain relatively abstract. 

 

The impact of climate change in South Africa 

Temperatures in Cape Town reached 42°C in March 2015 – the highest since records began. 

Wildfires ignited in Table Mountain National Park burned through 15,000 acres of land. The summer 

fires are part of the natural process of the regeneration cycle of the native fynbos which covers the 

Cape peninsula – this fire was the worst seen in decades, but the City Fire Service and local 

volunteers limited the damage to only 13 properties. At one stage, with flames licking the edge of the 

farm, the historical collection of furniture at the oldest wine estate in South Africa, Groot Constantia, 

was removed for safe-keeping. This is one of the latest and amongst the most acute examples of a 

changing climate and the still heavily tourist and agriculture-reliant economy of the Western Cape 

coming into conflict, but there are other longer-term examples of systematic conflict.  

According to the 2014 statistics, the wine industry in South Africa directly or indirectly employs 

some 300,000 people in the Western Cape, contributing R36.1 billion (£2 billion) to the GDP of the 

region (the contribution of the industry to GDP has increased by 10% per annum for over a decade) 

(Wines of South Africa 2014). However, wine cellars need to be maintained at a long-term average 

temperature of 13°C. Gradual seasonal changes in temperature are acceptable, but rapid diurnal 

fluctuations damage wine irrevocably. Currently, daily mean temperatures fluctuate between 11.9°C 

in July and 20.4°C in January and February, with average highs of 26.5°C.  

It is not only the seasonal fires that threaten wine production. Rolling blackouts, euphemistically 

referred to as ‘load shedding’, are increasing in frequency, interrupting the flow of mechanically 

chilled air that is essential to the maturing process of wine. In the 1990s the South African 

Government prohibited the state electricity provider Eskom from investing in new power 

infrastructure in an effort to deregulate the industry; however no private investors came forward to 

build new power plants. Rolling blackouts were introduced in 2007 as demand outstripped supply for 

the first time. The blackouts are phased so as not to disproportionately affect any one residential area, 

however the impact on industry adversely impacts the lowest paid. In 2008, multiple trips across the 

power network forced production to cease in major gold and platinum mines across the country 



 

 

(McGreal 2008). Banks and other services industries are also forced to stop work. Despite 

construction of new power stations, the re-commissioning of mothballed coal power plants, and the 

introduction of diesel-powered generation at peak times, power cuts have persisted. In November 

2014, Eksom could only provide 24GW of electricity, 4GW short of demand and a full 22GW short 

of a stated operational capacity of 46GW (England 2014). This shortfall was blamed on shortages of 

diesel, water reserves in hydroelectric facilities, and unplanned maintenance. Depending on the 

severity of the rolling blackouts, the economic cost in terms of lost productivity is estimated at R20-

80 billion (£1.1 to £4.5 billion) per month (Lipton 2015). 

Typically power outages hit in the late afternoons at the hottest times of the year, and it is in the 

major centres of employment that the economic cost is really telling. There is an urgent need to 

rethink the electricity dependent model of office provision for the financial service industry in the 

centre of cities like Cape Town and Johannesburg.  

 

Energy use of buildings in South Africa 

As post-occupancy data for energy consumption in South Africa is not routinely collected or 

published, research into energy performance of individual buildings is highly speculative. What is 

certain is that the total energy consumption of the South African building stock is increasing rapidly, 

currently accounting for 31% of electricity consumption and 28% of carbon emissions in the country, 

with emissions from commercial buildings projected to rise from around 30MT of CO2 per annum to 

over 70MT in 2050, or over 50MT assuming ambitious efficiency savings (Milford & UNEP 

Sustainable Buildings and Climate Initiative 2009). 

While the construction of new buildings will have a big impact, more often than not it is concrete 

framed buildings from the 1960s, 70s and 80s that are refurbished and expanded to supply demand for 

office space in the city. The most intensive part of this process in terms of energy consumption is the 

replacement of the skin with new glass and panel based façade systems with ‘improved’ thermal 

performance. In reality this means higher standards of insulation and increased airtightness, both of 

which can contribute to greater demand on air conditioning systems in summer.  

 

Teaching environmental design at the University of Cape Town 

Energy consumption is therefore an issue which students are encouraged to address at the School 

of Architecture at the University of Cape Town. The school takes a cohort of around 85 students at 

undergraduate level and 40 at Masters level each year. Masters students develop ‘thesis projects’ that 

are similar in resolution to what would be expected of Part 2 students in the UK. The school lacks the 

more advanced technological resources that are available in Sheffield (e.g. environmental modelling 

software), but the studio based teaching approach is similar. Students discuss their projects in a group 

setting with their tutors, contributing to the review of their peers. 



 

 

The direct way in which Cape Town students are encouraged to address the architectural 

consequences of environmental change builds upon a reputation of addressing seemingly 

insurmountable social problems e.g. income disparity broadly divided along racial lines. Projects 

often tackle complex sites in the Cape Flats, dealing with informal settlements, transport interchanges 

and other places of economic exchange, as well as service provision for the urban poor. There is no 

room for overly idealistic thinking. Many years of experience has led to a critical pedagogical 

approach to engagement with disenfranchised communities, where the emphasis is on ensuring that 

unrealised projects do not cause further disengagement with and distrust of planning professionals and 

local government, but instead that future architects and planning professionals are equipped with as 

complete a knowledge as possible of the challenges that these communities face, so that students are 

better prepared to practice with confidence in their future professional careers. 

Louwrens Botha’s thesis project examined the motorway buffer zones between Cape Town and 

Somerset West – devised in the apartheid era as racial dividers – and the potential regenerative 

inhabitation of the spaces around them, in order to knit the urban fabric and society back together 

(Fig. 8.1). By mapping different existing demographics and land uses (residential, agriculture, water, 

infrastructure etc.) the project identified connections that could be made in the short term, taking 

advantage of flyovers and bridges to knit communities back together, while also envisaging new 

forms of transport in the longer term that might replace the concrete fortifications of the twentieth-

century highways. The provocation is that while a resilient design philosophy may imply thinking 

about structures that can survive intergenerational change, some spatial structures are so rooted in the 

conditions of the past that they can reinforce spatial and social exclusion. In this context, 

infrastructure that might otherwise be viewed from a neutral engineering perspective may need to be 

actively destroyed before regeneration can happen. 

 

[INSERT Figure 8.1 HERE] 

 

In contrast, Sophie Zimmermann’s project to re-use Christiaan Barnard Memorial Hospital 

explored the potential of refurbishing existing buildings to increase residential diversity and reduce 

energy consumption in the city (Fig. 8.2). It took inspiration from a generation of thermally massive 

concrete buildings constructed in the 1960’s and 70s, which reflect a more intuitive architectural 

design response to climate (designed according to rules of thumb such as sun paths, prior to the 

development of sophisticated energy modeling) that may be more resilient to warmer temperatures 

and unreliable power generation in years ahead. If internal temperatures can be maintained at close to 

comfort levels for prolonged periods without space heating or cooling systems, limited power 

resources or backup systems can be focused on supplying essential I.T. and other systems needed to 

maintain operations (essential in a hospital but also desirable in other sectors to reduce economic 

disruption).  



 

 

This kind of student-led research into pressing environmental issues is necessarily reactive – there 

is a lack of reliable data about energy consumption of buildings in use and projections of future 

energy supplies and climate are hampered by large political uncertainties. Students’ work is a reaction 

to problems as they arise, in contrast to Sheffield, where a wealth of information means that students 

can speculatively address potential problems and propose solutions that are implementable before 

lasting damage is sustained. 

 

[INSERT Figure 8.2 HERE] 

 

Teaching environmental design at the University of Sheffield 

At Sheffield, students are actively engaged in the gathering of data that can better inform how we 

think about designing buildings that can be used more efficiently in future. For example, in 2015 

Hannah Towler’s third year dissertation project investigated whether improved awareness of energy 

consumption on the part of building occupants can encourage them to ‘load-match’ energy demand to 

production, by utilising energy-hungry household appliances such as washing machines and cookers 

when there is spare generating capacity. The case study, LILAC, was a 21 unit community housing 

development in Leeds with a sizable photovoltaic installation, but the research also explored the 

constraints imposed by occupancy patterns, peak loads, and public misconceptions about energy use 

on a much wider, national, scale (Fig. 8.3). 

 

[INSERT Figure 8.3 HERE] 

 

Fifth year Alex Johnstone’s research explored the environmental performance of the Alfred Denny 

building at the University of Sheffield, constructed in the 1960s. His thesis investigated the embodied 

carbon content of the existing superstructure of the building, representative of similar concrete frame 

buildings from the period, and explored potential refurbishment options (including the impact on 

operational energy consumption and carbon emissions) (Fig. 8.4). Alex’s research concluded that the 

structure can be re-used in an energy efficient manner, a conclusion with serious implications for the 

demolition of similar buildings across the UK, where it has been demonstrated that new non-domestic 

buildings often consume up to five times as much energy as they are designed to (de Wilde 2014). 

 

[INSERT Figure 8.4 HERE] 

 

Comparison 

The availability of data and improved technology allows students at Sheffield to simulate and 

quantify the performance of their work in a manner that is not possible in Cape Town. Students can 



 

 

model design solutions using dynamic simulation software packages such as IESve, and numerically 

quantify predetermined design objectives for environmental performance.  

However there are dangers in an over-reliance on technology to teach environmental design. It is a 

relatively straightforward task for an architecture student to model his or her project and simulate low 

energy, even carbon neutral, performance. The modeling process is biased towards the application of 

active environmental solutions relying on operational system efficiencies rather than passive or free-

running design strategies, the benefits of which – due to their dynamic daily and seasonal variation – 

are much more difficult to quantify. Analysis is usually conducted on a completed design with ‘black-

box’ computation employed to assess performance over a notional period of time. However, if the 

inputs to the software are not fully understood, they can be easily manipulated to simulate unrealistic 

performance scenarios. A common example is occupancy patterns – it is often assumed that an office 

building will only be inhabited between e.g. 8am and 6pm, but the presence of cleaners and caretakers 

will require environmental systems such as lighting to be on 24 hours a day. This may lead to a to a 

profound skills deficit, with students lacking the basic skills necessary to critique and develop their 

work in an iterative manner as they design. The design process becomes instead a ‘stab in the dark’, 

as the post-rationalised analysis of a simulation model does not inform the design strategy. Similarly, 

a focus on technological solutions overlooks the social and political dimensions of adaptation that will 

be required given the future warming scenarios we face. 

In Cape Town, graduating students are in high demand in local practice, where they are actively 

engaged in developing alternatives to the energy-intensive air-conditioned mode of living in this 

climate. House KW by Kevin Fellingham Architects is a refurbished Cape Dutch house in the Bo-

Kaap area of the city, which has been transformed into a modern live-work unit reinterpreting its 

historic use with studio and office left and right of the main entrance, and living and dining spaces to 

the rear. This project was used a case study for students to engage with the design of passive 

environmental solutions for local urban microclimates. A small internal courtyard is shared with the 

neighbouring property to naturally cool the interior through passive downdraught ventilation, while 

the bedrooms reach up the roof to access a terrace overlooking Table Mountain. This creates a natural 

air path for the purging of warm air from the inside, supplanting the need for air conditioning (Fig. 

8.5). The property is currently being monitored to record outdoor and internal temperatures and to 

quantify the thermal effects of the natural ventilation strategies that have been adopted.  

 

[INSERT Figure 8.5 HERE] 

 

At an urban scale, urbanisation and resource depletion will present more challenges to the already 

creaking infrastructure of the Cape Town in years ahead, including increased pollution and shortages 

of clean water as well as electricity. Design solutions at the building scale, learning from the 

vernacular traditions of the past, may be the most appropriate way to develop an architecture more 



 

 

resilient to both the natural and manmade challenges of the future. Technology can breed dependence, 

and eventually lead to a loss of tacit knowledge.  

In a Western context, a dependence on technology, together with new modes of production such as 

BIM, has gone hand in hand with the division of the construction industry into ever more discreet 

specialisms that make it more and more difficult to challenge orthodox working practices, and prevent 

the collaboration that makes low-tech cross-disciplinary solutions possible. Students at the University 

of Cape Town – less reliant on technology – are re-building their understanding of vernacular 

techniques, and modifying these skills to help the process of adaptation to an uncertain future.  

 

Conclusion 

The latest available data from 2007 suggests that electricity use within cities in South Africa 

accounts for 44% of total consumption across the country, an increase from 41% in 2004 (Sustainable 

Energy Africa 2012). In 2006, Cape Town as an urban area was responsible for emissions totalling 27 

million tCO2e, compared with 47 million tCO2e in London (Kennedy et al. 2009). South Africa is 

still in a process of urbanisation and, due to its dependence on electricity predominantly generated by 

coal, it is the twelfth largest emitter of greenhouse gases in the world. In this context, deepening 

understanding of the root causes of poor energy performance at a building scale is vital. 

In comparison, electricity generation by coal has reduced by 74% in the UK over the past decade 

(Evans 2017). As a result, the consequences of increased electricity use by environmental systems in 

UK buildings may seem less significant. However, there is a real and present danger that the benefits 

brought by decarbonisation of the National Grid could be undone by design solutions unfit for our 

warming climate. 

It is therefore important that architects of the future learn to proactively engage with the 

consequences of climate change in different contexts. Research-led teaching provides opportunities 

for students to contribute to the development of built environment policy. Students can test their 

newly developed specialist expertise through engagement with policy ‘influencers’ at both 

institutional and governmental levels, as well as in practice. There is much to learn from the transfer 

of expertise and knowledge between countries like the UK and South Africa, both in terms of 

technical understanding of energy performance of occupied buildings, but also of the need to make 

the most efficient use of existing buildings and infrastructure that can be adapted to meet future 

requirements.  

Cultural differences, impacting on building design and pedagogical approaches, have led to the 

development of diverse tactics for adaptation to climate change, ranging from the reactive to the 

speculative – each with implications for the other as well as across diverse contexts. This requires 

recognition that environmental design is about more than solving perceived short-term problems, but 

about developing resilience to climate change that can make a real and long lasting contribution in 

different social and economic contexts.   



 

 

The work undertaken in Sheffield and Cape Town teach us that different cultural conditions give 

rise to different approaches. Speculation in the absence of local knowledge leads to design approaches 

that are often arbitrary, failing to address problems that call for a more reactionary approach, but on 

the other hand, speculative propositions forearmed with the benefits of local knowledge can unlock 

design solutions that address previously insurmountable problems across cultural boundaries. 

The key is to learn from each other. 
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