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ABSTRACT: Waste fibrous biomass (flax) has been processed using non-woven textile 

techniques to produce a fibrous fabric material. The biomass fabric was then processed to 

produce activated carbons which retained their structure and flexibility.  The carbons produced 

in a range of process conditions possessed a range of different surface areas and porosities. The 

activated carbons produced by chemical activation at different temperatures had high surface 

areas, ranging from 126 m2 g-1 for the activated carbon produced at 450 ºC to 1177 m2 g-1 

produced at 800 °C activation temperature. At increased hold times at 800 °C the surface areas 

increased further, for example reaching 1656 m2 g-1 at 2 h hold time. The activated carbons 

were found to be very microporous, containing very small micropores.  The produced activated 

carbons were then investigated in terms of the removal of sulphur dioxide in a bench scale 

continuous flow reactor.  The SO2 adsorption results showed that for the waste biomass fibre 

carbons, uptake of SO2 from the gas stream was found to be dependent on the degree of 

activation. As the micropore volume and surface area of the samples increased, the SO2 

adsorption capacity also increased, observing a linear relationship. The adsorption of SO2 by 

the waste derived activated carbons was significantly higher when compared to commercially 

obtained activated carbons. This appeared to be related to the pore size distribution of the 

samples, with the waste biomass activated carbons possessing a greater number of ultra-

micropores than the commercial samples. Increase in the temperature of the activated carbon 

bed led to a marked decrease in the adsorption of SO2. Uptake of SO2 was also shown to be 

dependent on the concentration of the SO2 inlet feed gas, where higher SO2 concentrations led 

to enhanced uptake. The advantages of using textile processing techniques to produce a non-

woven fabric activated carbon enabling different forms to be produced related to the end-use 

application has great potential for resource recovery. 

 

Keywords: Biomass; Waste; Activated carbon; Sulphur dioxide; Resource efficiency; 
Environment 
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1. Introduction 

 

There is considerable current concern over the emissions of pollutants to the atmosphere from 

industrial processes. Sulphur dioxide emissions are of particular concern since it has a 

detrimental effects on human health and the environment and there are strict regulatory controls 

of emissions of SO2 from industrial processes (Xu et al, 2016). For example, the European 

Industrial Emissions Directive (EC, 2010) covers SO2 emissions (and other emissions) from a 

range of large plants including coal fired power plant, cement kilns, steel industry, waste 

incinerators etc. The most common methods for control of sulphur dioxide involve 

desulphurisation with reactants such as lime or limestone, or wet-scrubbing with alkalis such 

as calcium hydroxide or sodium hydroxide (Karatepe, 2000; Sun et al., 2016). However, there 

is growing interest in the use of activated carbon for control of SO2 due to advantages which 

include high operational flexibility and lower maintenance costs (Karatepe, 2000; Xu et al, 

2016). 

Activated carbons are high surface area, high porosity materials with a high surface 

activity and mechanical strength which are widely used in industrial applications (Yahya et al., 

2015). Biomass waste in the form of agricultural waste materials have been extensively 

investigated as precursors for the production of activated carbons (Yahya et al, 2015, Koseoglu 

and Akmil-Basar, 2015; Ioannidou and Zabaniotou, 2007). For example, cotton stalks (Nahil 

and Williams, 2012) date stones (Al -Rahbi et al, 2016), coconut shell (Hu and Srinivasan, 

1999) palm shell (Daud et al, 2000) rice bran (Suzuki et al, 2007), corn cobs (El-Hendawy et 

al., 2001) rice husks (Yalcin and Sevine, 2000) etc.  

The adsorptive properties of such waste derived activated carbons have been utilised as 

pollution control materials for control of polluting gases. For example, Al-Rahbi et al (2016) 

used waste biomass in the form of date stones to produce activated carbons for the low 
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temperature (50 °C) control of NOx. They reported that the biomass derived activated carbon 

had similar removal efficiencies for NOx as for commercially available activated carbons and 

that the micropore structure of the carbon significantly influences removal efficiency. Porosity 

classification of activated carbons have been defined by the International Union of Pure and 

Applied Chemistry (IUPAC) as micropores (pore size <2 nm) mesopores, (2-50 nm) and 

mesopores (>50 nm) (Yahya et al, 2015). Very small micropores have also been defined as 

ultra-micropores with pore size < 0.5 nm.  Lee et al (2002) prepared activated carbons via the 

chemical activation of coconut shells and investigated their use for the removal of SO2 in a 

fixed bed reactor. They reported that the adsorption of SO2 was influenced by the alkali used 

in the chemical activation (KOH) through chemical adsorption. Katada et al (2003) investigated 

the removal of sulphur dioxide using activated carbons produced from several waste biomass, 

including waste urban wood and coconut shells in a fixed bed reactor at low temperature (45 

°C). They reported high removal efficiencies for some of the biomass derived activated carbons 

(>90%) which they attributed to the pore structure, surface chemistry and 

hydrophobic/hydrophilic properties of the carbons. Guo and Lua (2003) also used a fixed bed 

reactor system to study the adsorption of sulphur dioxide in nitrogen onto activated carbons 

produced from waste biomass in the form of oil-palm shells. They reported that the uptake of 

the sulphur dioxide was dependent on the operating conditions of the reactor (particularly SO2 

flow rate), the textural characteristics (particle size and porosity) of the carbon and the surface 

chemistry of the activated carbon.  

Activated carbons are produced using either physical activation or chemical activation 

(Yahya et al, 2015). Physical activation is a two-stage process, firstly involving pyrolysis of 

the biomass agricultural waste material (typically at ~ 500 °C) in an inert atmosphere which 

produces a char.  The char is then activated via partial oxidation with air, steam or carbon 

dioxide to produce the activated carbon (typically at ~700-900 °C). Chemical activation 
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involves impregnation of either the biomass precursor or the pyrolysis char with the chemical 

activating agent (typically used are KOH, NaOH, HNO3. H3PO4, ZnCl2) followed by activation 

in an inert atmosphere at temperatures which can range from 300 – 800 °C.  The chemicals 

acting as dehydrating agents and oxidants to aid pore development in the carbon.  A final stage 

involves washing of the product activated carbon to remove the residual activating chemicals.  

For particular control of sulphur dioxide, activated carbon in the form of activated 

carbon fibres have been shown to be effective for control of SO2 from flue gases (Mochida et 

al, 2000; Mangun et al, 2001; Daley et al., 1997; Davini 2003; Gaur et al, 2006).  For example, 

Magnun et al (2001) used activated carbon fibres with different surface areas (730 – 1890 m2 

g -1) prepared from a woven phenolic fibre and steam/CO2 activation for the adsorption of SO2 

at 120 °C. They reported that SO2 adsorption was influenced by pore size and the basicity of 

the carbon surface groups, but there was less influence of surface area. Davini (2003) used 

activated carbon fibres produced from polyacrylonitrile fibres and CO2 activation for control 

of SO2 from a simulated mixture of flue gases at a temperature between 100 and 160 °C. 

Surface chemistry, i.e. the presence of nitrogen groups from the acrylonitrile precursor were 

found to influence the amount of SO2 adsorbed.  Commercially produced activated carbon fibre 

is produced via a synthetic process. For example, the raw material such as acrylonitrile or coal 

tar pitch is polymerised and spun to produce fibres which are then oxidised and activated to 

produce the activated carbon fibre (Mochida et al, 2000). It has been reported that such 

synthetically activated carbon fibres have superior adsorption ability compared to granular 

activated carbons. This has been ascribed to the micropores in the carbon fibres which open 

directly onto the surface of the carbon rather than being located within mesopores or 

transitional pores (Mochida et al, 2000). In addition, the small size of the fibres facilitates 

gas/liquid to solid interaction (Gaur et al, 2006). However, synthetically produced activated 

carbon fibres are more expensive (Mochida et al, 2000). Therefore the production of activated 
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carbon fibres from fibrous biomass waste which have good adsorptive properties for pollutants 

would be of significant economic potential.  

A particular type of biomass waste is fibrous biomass which has also been investigated 

for the production of activated carbons (Dizbay-Onat et al, 2017; Shamsuddin et al, 2016; 

Hwang et al, 2015; Zhao et al. 2015).  The fibrous nature of the biomass waste material has 

been utilised in our previous work to produce a non-woven textile fabric matting which is then 

processed to produce activated carbon that retains its original fabric matting structure after 

activation (Illingworth et al, 2012; Williams and Reed, 2003; 2004).  The process has the 

potential for the fibrous biomass to be produced via textile technology into a variety of pre-

formed shapes. Thereby the activated carbon fabric matting can be used directly in various end-

use applications, rather than the need for further processing such as granulation of the carbon, 

cartridge packing or attachment to a support.  

There are few studies reporting on the use of activated carbon fibrous material produced 

from biomass fibrous waste material and none related to the adsorption of SO2 using processed 

activated carbon fabric matting. In this paper we report on the production of activated carbon 

fabric matting using physical and chemical activation for the adsorption of SO2. Different 

process conditions for the production of the activated carbon matting have been used and their 

influence on SO2 adsorption investigated. The adsorption results are compared with that 

obtained using commercially available activated carbons.  

  

2. Materials and methods 

 

2.1 Materials 
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The precursor biomass material used for the production of the non-woven biomass fabric was 

a low-grade flax fibre obtained from British Fibres Limited, UK. The raw flax was prepared 

using a ‘scutching’ process which separates the woody flax stems from the surface of the fibres 

producing the raw material for the experiments which consisted of long flax fibres, shorter 

coarse fibres and surface woody material. The produced flax fibre was then processed into a 

non-woven fabric material. The process involved aligning the fibres into parallel arrays using 

rotating cylinders covered with small wires. The position of the wires can be modified during 

the process to alter the direction in which the fibres are laid, thereby providing a greater cross 

directional strength within the fabric. The flax material was produced at a uniform thickness of 

8mm.  The fabric was then subjected to needle-punch bonding, whereby, barbed needles are 

punched through the fabric, hooking and tangling the fibres together, enhancing the strength 

and stability of the non-woven fabric. Finally, the material was rolled between two heated 

cylinders where the heat and pressure causes the fibres to fuse, further adding to the structural 

stability of the non-woven fabric. Figure 1 shows a photograph of the non-woven fibrous flax 

fabric material. 

For comparison of the effectiveness of the produced activated carbons in relation to 

their effectiveness for SO2 adsorption, three commercial activated carbons were used for 

comparison. These were an activated carbon fibre from the Osaka Gas Company, Japan), a 

granular lignite carbon from BDH Ltd., UK, and a powdered carbon (Darco) obtained from 

Sigma Aldrich Ltd.  

 

2.2. Production of activated carbons 

 

The production of activated carbon involved mainly chemical activation through pyrolysis of 

the flax biomass material followed by chemical impregnation of the char and activation at 
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temperatures between 450 °C and 800 ºC.  In addition, samples of activated carbon were 

prepared by physical activation, involving production of the pyrolysis char followed by 

activation in carbon dioxide. The pyrolysis of the non-woven flax fabric material was carried 

out in a bench scale static-bed batch reactor, the details of which have been reported in our 

earlier work (Illingworth et al., 2012). The reactor was constructed of stainless steel (length 

200mm, internal diameter 65mm) which enabled the pyrolysis of up to 60 grams of biomass 

material. The reactor was heated by an electrically heated vertical furnace (length 300 mm, 

internal diameter 75mm). Nitrogen was sued as the purge gas to maintain pyrolysis conditions.  

The samples of biomass non-woven material were heated at a heating rate of 2 oC min-1 to the 

final pyrolysis temperature of 800 ºC and held at that temperature for 60 mins.  

Chemical activation of the pyrolysis chars was the method used to produce the activated 

carbons. The product non-woven flax char material derived from pyrolysis was dried overnight 

at 110oC and 1.00g quantities were then thoroughly mixed with 50ml of deionised water 

containing potassium hydroxide as the activating chemical. The ratio of mass of KOH to mass 

of char was 4:1. The mixture was then evaporated to dryness at 80oC before drying at 110oC 

for 24 hours. The impregnated chars were then heated at 5oC min-1 to the activation 

temperatures of either 450 ºC, 650 °C or 800 ºC without any hold time under a nitrogen flow 

using the same reactor used for pyrolysis. In addition, hold times at 800 °C were also increased 

to 1 and 2h. After the activation procedure, the carbons were washed with water to remove the 

residual KOH until the wash water attained a pH of 7 to 7.5. The product activated carbons 

were finally dried at 110oC for 24 hours. A typical non-woven fibrous activated carbon fabric 

material produced by pyrolysis followed by activation using KOH is shown in Figure 2. 

Examination of the activated carbon produced by chemical activation by scanning electron 

microscopy (Figure 3) also showed the fibrous nature and fibre shape and structure of the 

original flax biomass waste had been retained after the chemical activation procedure. 
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In addition, physical activation of the flax pyrolysis chars was carried out to produce 

activated carbons to compare with the activated carbons produced via chemical activation. The 

pyrolysis chars produced from the non-woven flax material were heated at 5 °C min-1 to a final 

temperature of 825 ºC under a nitrogen flow using the same reactor used for pyrolysis. The 

nitrogen flow was then switched to CO2 which acted as the activation gas. Carbon dioxide 

activation was carried out at 825 °C for 6 h.  

 

2.3. Characterisation of surface area and porosity of activated carbons 

 

The surface area and porosities of the product activated carbons was determined using a 

Quantachrome Autosorb 1-C Instrument. All chars were outgassed prior to analysis and 

nitrogen adsorption isotherms were determined over a range of relative pressures from 1x10-6 

to 0.995 and desorption isotherms were measured down to a partial pressure of 0.10. The 

surface area of the activated carbons was calculated using the BET procedure and the total 

micropore volume using the Dubinin-Radushkevitch (DR) equation (DR-N2). The Dudbinin-

Radushkevitch equation was used to provide an assessment of the volume of very small ultra-

micropores (DR-CO2) (pore size <0.7nm) from adsorption isotherms of CO2 produced at 273K 

over the relative pressure range 1x10-6 to 0.03. Micropore size distributions were constructed 

using the Density Functional Theory (DFT) software supplied by Quantachrome Ltd.  

 

2.4. Sulphur Dioxide Adsorption System 

 

The SO2 adsorption experiments using the product activated carbons and the commercially 

obtained activated carbons were investigated using a continuous flow reactor (Figure 4). The 

reactor was constructed of stainless steel (120 mm length, 20 mm diameter) and was heated 
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externally by an electrical furnace. A standard SO2 gas mixture was purchased from BOC 

Gases Ltd. UK and contained 5000 ppm SO2 balanced by nitrogen. The gas could be mixed 

with additional nitrogen to produce different concentrations of SO2 for the adsorption 

experiments. The flow of gases was measured by calibrated rotameters. To ensure efficient 

mixing of the gases prior to the sample bed, the top half of the reactor unit was packed with 

stainless steel grommets. 

A sample (250 mg) of the activated carbon was mixed with 5.00g of sand in a removable 

sample holder to give a bed depth of ~15 mm and was dried at 120 ºC for 2 hours prior to the 

SO2 adsorption experiments. This dispersed bed configuration was used to minimise pressure 

drop differences (Li et al. (2002)). Initial experiments showed that the adsorption of SO2 on 

the sand was insignificant. The sample bed of activated carbon was fixed in position by fine 

wire gauze and glass fibre filters to prevent channelling of the gas flow through the bed. For 

all breakthrough experiments, time zero was defined as the time taken for the outlet SO2 

concentration to equal the inlet concentration with the sample bed containing only sand. The 

SO2 laden gas was then passed through the carbon bed and the outlet concentration was 

measured on-line using an Analytical Development Company Ltd, UK infrared SO2 gas 

analyser (ppmv). In all cases, the gas flow rate was maintained at 300ml min-1 which was the 

minimum flow accepted by the on-line analyser. The adsorption was performed until the bed 

reached saturation, i.e. the outlet concentration becoming equal to the inlet concentration.  

Following the experiments, breakthrough curves could then be plotted and the total 

amount of SO2 adsorbed calculated. The mass of SO2 passing through the sample bed between 

each measurement period (1 minute) can be calculated according to equations 1 - 3: 

                  

                                   QSO2 = (VSO2 / 100) x Q                                                        (1) 

 

where:  QSO2 = flow of SO2 through sample bed (l min-1) 
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              VSO2 = vol% of SO2 in feed gas 

              Q =  total flow of gas through sample bed (l min-1) 

 

then                   MSO2 =  (Q SO2/24.04) x RMMSO2                                                  (2) 

 

where: MSO2 = mass of SO2 passing through sample bed (g min-1) 

            RMMSO2 = relative molecular mass of SO2 (64g mol-1) 

 

therefore, the mass of SO2 adsorbed over each measurement period may be defined as: 

 

 

                           ASO2 = MSO2 x     1-  C/C0(t) +  C/C0(t+1)                                        (3) 

                                                                      2 

 

where:  ASO2 = mass of SO2 adsorbed over 1 minute measurement period (g) 

            C/C0(t)= ratio of outlet concentration/inlet concentration of SO2 at time t 

            C/C0(t+1) = ratio of outlet concentration/inlet concentration at time t + 1 minute 

 

The total mass of SO2 adsorbed during a breakthrough experiment can then be calculated as 

follows: 

                            ATOT =  (∑ASO2) x 1/WC                                                              (4) 

 

where:   ATOT = total mass of SO2 adsorbed (g gC-1) 

              WC  =  mass of carbon sample in fixed bed (g) 

    

3. RESULTS AND DISCUSSION 

 

3.1 Surface area and porosity characteristics of the activated carbons 

 

Density Functional Theory (DFT) software was used to determine the micropore size 

distributions of the produced activated carbons and the commercially obtained carbons.  Figure 
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5 shows the DFT-N2 and DFT-CO2 for the produced carbons and Figure 6 for the commercially 

obtained carbons respectively. For the produced carbons (Figure 5), there is considerable pore 

development during the activation process compared to the pyrolysis char.  In particular the 

micropores of <7 Å and ultra-micropores of <4 Å show significant increase as the activation 

temperature was increased.  It is also noteworthy that for longer time duration at 800 °C 

activation temperature of 1 h and 2 h, the carbons show the presence of larger pores of >7 Å 

suggesting degradation of pore walls and pore widening. Figure 6 shows the DFT micropore 

size distributions of the commercially obtained carbons.  The results suggest that the 

commercially obtained activated carbons have a lower pore size distribution below 7 Å, and 

significantly less of the ultra-micropores of <4 Å. 

Table 1 shows the surface area and porosity characteristics of the intermediate pyrolysis 

char and activated carbons produced in this work and the commercially obtained activated 

carbons.  The char produced from pyrolysis of the non-woven flax fabric material had a 

relatively low surface area of 30 m2 g-1 and low microporosity.  The influence of chemical 

activation showed an improvement in surface area and development of microporosity in the 

product activated carbons. The influence of chemical activation at 450 ºC activation 

temperature was modest, but at higher temperatures the development of surface area and 

porosity became very marked, such that at 800 ºC and no hold time the surface area reached 

1177 m2 g-1 and micropore volume (DR-N2) reached 0.451 cm3 g-1. It is also noteworthy that 

the yield of the activated carbon product was 83 wt.% at 800 ºC activation temperature and no 

hold time. Increasing the hold time at 800 °C produced very high surface area activated carbon, 

at 1564 m2 g1 and 1 h hold time and 1656 m2 g-1 at 2 h hold time and also increased micropore 

volumes, however, activated carbon yields decreased to 67 wt.% and 57 wt.% respectively. 

The activated carbon produced via physical activation had much lower surface area and lower 

micropore volume and lower yield compared with the chemically activated carbons.  Table 1 



12 
 

also shows the properties of the commercially obtained activated carbons, notable is the high 

surface area of the activated carbon fibres (1715 m2 g-1) and high microporosity (0.633 cm3 g-

1 pore volume). 

 

3.2. SO2 adsorption by the activated carbons 

 

Figure 7 shows the SO2 breakthrough curves and Figure 8 shows the cumulative SO2 adsorption 

profiles for the pyrolysis char and the activated carbons produced by chemical and physical 

activation of the flax non-woven fabric material.  Also shown are the SO2 breakthrough curves 

and cumulative SO2 adsorption profiles for the commercially obtained activated carbons.  Not 

tested was the chemically activated carbon at 2 h hold time at 800 ºC as the surface area and 

porosity characteristics were similar to the activated carbon produced at 1 h hold time. The SO2 

adsorption tests were carried out at a reaction temperature of 25 °C and with an SO2 

concentration of 2500ppm, balanced by nitrogen.  

The commercially obtained activated carbons showed similar overall adsorptive 

capacities for SO2 even though there were large differences in the BET surface area and 

micropore volume. However, the characteristics of the microporosity as determined by CO2 

adsorption at 273K were similar for the three commercial activated carbons. This seems to 

suggest, at the low partial pressures of SO2 employed, that the adsorption was taking place 

primarily in the ultra-micropores.  Although the adsorption capacity was similar, the rate at 

which equilibrium was obtained varied considerably. Figure 8 shows that activated carbon fibre 

and powder samples showed the most rapid adsorption, and that saturation of the carbon 

adsorption bed was reached in 13 and 16 minutes respectively. The granular activated carbon 

showed the slowest rate of adsorption where equilibrium was reached at 23 minutes. This is 

most probably related to the slower rates of diffusion of the SO2 to the adsorption sites away 
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from the surface of the carbon granules. The smaller dimensions of the activated carbon fibre 

(15-20µm) and powder (ca. 100µm) would allow more efficient access to the adsorption sites. 

Lua and Guo (2001) examined the effect of particle size on the uptake of SO2 with physically 

activated carbons obtained from oil-palm stones. They found that an increase in particle size 

(from 1.0-2.0mm to 2.8-4.0mm) had no effect on the total amount of SO2 adsorbed but the time 

taken to reach saturation increased from ~40 to ~80 minutes. It was concluded that the larger 

the particle size the longer would be the time required for the SO2 molecules to diffuse into the 

pore sites.  

Figures 7 and 8 also show the SO2 breakthrough curves and the cumulative SO2 

adsorption profiles for the pyrolysis char and also the activated carbons prepared by chemical 

activation with KOH, and the physically activated carbon.  The pyrolysis char exhibited a 

significant SO2 adsorption capacity, representing ~70% of the total adsorption of the 

commercial activated carbons. The isotherms of carbon dioxide at 273K allow a more accurate 

assessment of the ultra-micropores (DR-CO2). The critical molecular dimensions of N2 and 

CO2 gases are similar, however the CO2 molecule has far greater kinetic energy at 273K than 

N2 at 77K, thus facilitating entry to very fine pores of molecular dimensions. The uptake of 

CO2 by the pyrolysis char as evidenced by the DR-CO2 data of Table 1 suggests that although 

inaccessible to N2 at 77K, the flax pyrolysis char shows considerable uptake of CO2 at 273K 

indicating the presence of ultra-micropores. These very small micropores would be more 

accessible to SO2 at the temperatures used in this study as the dimensions of the two molecules 

are quite similar (3.90Å for CO2, 4.29Å for SO2 (Harrison, 1977) as shown in Figure 7.  

Figures 7 and 8 show that for the series of chemically activated carbons produced from 

the biomass waste flax, non-woven fabric there was a data trend of increasing SO2 adsorption 

as the degree of activation in terms of the activation temperature and hold time at the activation 

temperature was increased.  That is, the activated carbon produced by chemical activation with 
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KOH at 800 °C and with a hold time of 1 h produced the highest uptake of SO2.  The chemically 

activated carbon produced at 450 °C had a similar adsorption capacity to the pyrolysis char but 

showed more rapid uptake in the initial stages of the experiment, suggesting a slight widening 

of porosity during the activation process allowing increased access to the adsorption sites. As 

the activation temperature was raised to 650 ºC and further to 800 ºC, a large increase in SO2 

adsorption was observed coinciding with a substantial increase in the micropore volume as 

shown by the DR-N2 micropore volume data of Table 1. The increase in capacity was less 

marked for the 800 °C (1hr) activated carbon sample despite a significant increase in the wider 

micropore volume (DR-N2). However, the very small micropore volume (DR-CO2) showed 

only a slight increase, again indicating that the adsorption is taking place mainly in the ultra-

micropores. The time taken to establish equilibrium (Figure 8) for the chemically activated 

carbons was generally longer than for the commercially obtained activated carbon powder and 

fibre samples. However, the overall adsorption capacity for SO2 was much higher for the waste 

derived flax non-woven activated carbon fabric samples. The flax non-woven fabric activated 

carbon produced by physical activation showed similar SO2 adsorption to the 650 °C KOH 

chemically activated carbon sample, both of which had similar values for the very small 

micropore volume (DR-CO2).  

The relationship between the BET surface area and uptake of SO2 (from Figure 8) is 

shown in Figure 9. When all of the activated carbon samples investigated are plotted, there was 

little relationship between the surface area and the SO2 capacity of the samples. However, when 

considering only the KOH chemically activated series of biomass waste derived activated 

carbons, a good correlation was observed. It is suggested that this is due to the fibrous nature 

of the chemically activated carbons and the high proportion of the very small ultra-micropores 

present in these activated carbons, which make up a substantial proportion of the surface area.  
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Figure 10 shows the relationship between SO2 adsorption capacity and the micropore 

volume for all of the activated carbon samples examined. There appears to be very little 

correlation between the SO2 uptake (from Figure 8) of the samples and the micropore volume 

as determined by N2 adsorption (DR-N2). In contrast, an improved correlation was observed 

between the SO2 uptake and the micropore volume measured by CO2 adsorption (DR-CO2). 

This correlation was improved considerably when the commercially obtained activated carbon 

samples were omitted from the data, with an r2 value above 0.99. This suggests a linear 

relationship between the ultra-micropore volume as assessed by CO2 adsorption, and the SO2 

adsorption capacity. 

A further factor which would influence uptake of SO2 of the chemically activated 

carbons is the surface chemistry of the carbons. Activation with an alkali activating agent in 

the form of KOH would lead to an increase in the basicity of the carbon surface (Xu et al. 

2016). The alkaline surface properties would enhance the adsorption of the acidic gas SO2. Xu 

et al. (2016), have also noted that char produced from pyrolysis of biomass is quite alkaline 

with pH values >8, suggesting that the high activity of the flax non-woven biomass pyrolysis 

char for SO2 adsorption shown in this work may also be due to the alkaline properties of the 

char. In addition, the presence of surface oxygen in the form of oxygen-containing functional 

groups would enhance SO2 uptake (Li et al, 2001, Karatepe et al, 2008).  

The adsorption capacities of the non-woven fabric material produced from the flax 

biomass waste are similar to other reported data.  For example, Guo and Lua (2002) examined 

SO2 adsorption (2000 ppm in nitrogen) on oil palm-shell based activated carbons activated 

under various conditions. For a given surface area, KOH activated palm-shell chars produced 

higher SO2 capacities than physically activated carbons from the same precursor. Uptake of 

SO2 by the KOH activated carbons ranged from ~30 ņ 70 mg SO2/gC as the surface area was 

increased from 350-1400 m2 g-1, with a linear trend observed. The authors suggested that the 
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enhanced uptake of SO2 by the KOH activated carbons was due to the presence of sub-

micropores that were accessible to SO2 at room temperature.  

The particular characteristics of the non-woven fabric activated carbon material would 

also enhance SO2 uptake, because of the fibrous nature of the activated carbon. Because of the 

micron-sized (typically 5 – 20 µm) fibres (Figure 3), the particle size mass transfer resistance 

is almost negligible (Gaur et al, 2006) 

 

3.3. Influence of process parameters on SO2 adsorption by the activated 

carbons 

 

The influence of activated carbon temperature and SO2 gas concentration in the inlet gases on 

adsorption of SO2 by the biomass waste derived activated carbons was investigated. The 

influence of temperature was investigated using the activated carbon produced at 800 ºC using 

chemical activation with KOH at reactor temperatures of 25 °C, 40 ºC and 100 °C.  The SO2 

breakthrough curves and the cumulative SO2 adsorption profiles for the activated carbon in 

relation to temperature are shown in Figure 11 and Figure 12 respectively.  The results show 

clearly that there is a marked reduction in the SO2 breakthrough time period as the temperature 

of the reactor was increased, similarly the adsorption capacity of the carbon was rapidly 

reduced as the temperature was increased to 100 ºC. Karatepe et al, (2008) also showed that 

increasing the activated carbon adsorption temperature from 25 °C to 50 ºC resulted in a 

significant decrease in the adsorption of SO2 for activated carbon produced from lignite. They 

suggested that the reduction was due to the fact that during the adsorption process, the 

molecules of SO2 lose their kinetic energy resulting in an exothermic process.  Therefore, 

increasing the adsorption temperature produces lower SO2 adsorption. 
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The effect of varying the inlet gas concentration of SO2 on the adsorption capacity of 

the activated carbon produced at the activation temperature of 800 ºC using chemical activation 

with KOH was investigated. Breakthrough experiments were carried out with SO2 

concentrations of 750, 2500 and 5000ppm in the inlet feed gas. The breakthrough curves and 

cumulative SO adsorption results are shown in Figures 13 and 14 respectively. For all samples, 

the uptake of SO2 increased significantly as the concentration in the feed was increased and 

more rapid breakthrough was also observed. Similar trends were observed by Lua and Guo 

(2001) as they varied the SO2 inlet gas concentration from 500 to 2000 ppm for activated 

carbons produced from oil-palm stones. Karatepe et al. (2008) also showed that higher 

concentrations of SO2 inlet gas led to higher adsorption of SO2 onto activated carbon produced 

from lignite.  

Overall the research has shown that activated carbons in the form of a non-woven fabric 

material can be produced from biomass fibrous waste. The production of activated carbons in 

the form of textiles, cloths or composites offers materials that are much easier to handle when 

compared with loose fibre or powder forms. Non-woven fabrics are strong, adsorbent and 

stretchable and can be produced at significantly lower cost than woven textiles. For this study, 

the material was produced at a uniform thickness of 8mm, although the thickness and weights 

of the non-woven fibrous biomass waste can be adjusted to particular requirements. The 

research reported here has also shown that the product activated carbon retains the original 

structure of the precursor raw fabric material.  Therefore, the fibrous flax waste biomass could 

be processed using the described textile techniques to produce a precursor fabric material which 

could be formed to produce a wide variety of dimensions and shapes, related to the end-use 

application of the activated carbon. Activated carbon was produced by a chemical activation 

process using KOH under different process conditions and compared with the properties and 

adsorption capacity of physically activated carbon.  Chemical activation has some advantages 
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over physical activation in that higher surface areas are produced (Yahya et al, 2015). For 

example, the product activated carbon had very high surface areas of up to 1656 m2 g-1 and 

where shown to possess a high proportion of very small micropores.  The microporous nature 

of the activated carbons, coupled with their high surface area made for effective adsorption of 

SO2 under the test conditions used in this study. The adsorption of SO2 from the waste derived 

activated carbons was found to be similar and in some cases significantly better than the results 

obtained with commercially obtained activated carbons. The process of producing activated 

carbons that can manipulated and formed into different shapes, sizes and thickness to suit 

different waste flue gas (or waste water) cleaning applications has great potential.  In addition, 

commercial activated carbons are produced from precursors such as wood, but also include 

non-renewable fossil fuel sources such as coal, peat and lignite (Yahya et al. 2015).  In the 

particular case of activated carbon fibres, these are mainly produced from viscose-cellulose, 

petroleum pitch fibre and polyacrylonitrile resin fibre (Li et al, 2015). Using a biomass based 

waste material such as the agricultural fibrous waste flax would represent a more sustainable 

feedstock but also produces a high quality activated carbon product from a waste as an 

exemplar of resource recovery.  

Whilst an activated carbon produced from waste material for control of a pollutant is 

environmentally attractive, the activated carbon becomes saturated and loses efficiency for SO2 

capture and therefore the management of the used activated carbon which contains the trapped 

SO2, mainly as H2SO4, (Zhang et al. 2012) would be an issue. Therefore, an integrated pollution 

prevention and control approach would require consideration of the regeneration or disposal of 

the used activated carbon. Salvador et al. (2015a; 2015b) have recently undertaken an extensive 

review of the regeneration processes used for used activated carbons.  The main methods of 

regeneration include thermal processes (Salvador et al, 2015a) and chemical, microbiological 

and vacuum processes (Salvador et al. 2015b). The regeneration process ideally removes the 
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pollutant whilst maintaining the porous structure of the activated carbon for subsequent re-use. 

For the regeneration of SO2-saturated activated carbon, the common methods for regeneration 

are water scrubbing or thermal treatment. However, water scrubbing requires large amounts of 

water and thermal methods require energy input and also consumes some of the carbon (Zhang 

et al. 2012).  Eventually the adsorption efficiency of the activated would become lowered after 

several regenerations due to damage to the pore structure of the activated carbon and therefore 

disposal becomes the treatment option.  However, the SO2 could be removed from the activated 

carbon and would thereby produce a bio-char material which could be used as a soil enhancer 

which improves soil retention of nutrients and agrochemicals for plant and crop utilization 

(Windeatt et al, 2014). More nutrients stay in the soil instead of leaching into groundwater and 

causing pollution. The bio-chars are added to soil to hold the carbon from the original biomass 

in the soil and therefore act as a carbon sequestration process. 

 

4. Conclusions 

 

Fibrous waste flax biomass has been processed using textile techniques to produce a non-

woven fabric material.  The non-woven fabric was activated using pyrolysis-chemical 

activation with KOH at various temperatures to produce an activated carbon which were 

examined for their surface area and porosity characteristics. The characteristics of the carbons 

were compared with a physically activated waste flax biomass prepared activated carbon and 

with three commercially obtained activated carbons.  The waste derived activated carbons 

showed increased surface area and microporosity as the severity of the activation procedure 

was increased.  For example, the activated carbon produce at an activation temperature of 450 

°C had a surface area of 126 m2 g1 and a micropore volume (DR-N2) of 0.05 cm3 g-1. However 

at 800 ºC activation temperature, the surface area was markedly increased to 1177 m2 g-1. 
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Increasing the hold time to 2 h at 800 ºC produced a carbon with a high surface area of 1656 

m2 g-1 and a high degree of micropores, at 0.639 cm3 g-1 pore volume (DR-N2).  

The product waste derived non-woven fabric activated carbons were examined in 

relation to their ability to adsorb SO2 from a continuous gas flow.  The high surface area and 

microporous nature of the waste derived activated carbons was crucial in allowing the carbons 

to adsorb large amounts of SO2. The micropores (<2 nm) included a high proportion of very 

small micropores allowing the small SO2 molecule of dimension 0.429 nm to easily enter the 

pores of the activated carbon. There was a good correlation between the uptake of SO2 and 

surface area for the series of activated carbons produced by KOH chemical activation. In 

relation to the microporosity, there was a good correlation between the microporosity and SO2 

uptake for the chemically activated waste derived activated carbons using N2 adsorption data 

(DR-N2) However, for the small micropores determined using CO2 adsorption (DR-CO2) 

which measures the smaller micropores, there was a very good correlation between the ultra-

micropores and SO2 uptake with an r2 value above 0.99. This suggests a linear relationship 

between the very small micropore volume as assessed by CO2 adsorption, and the SO2 

adsorption capacity (CO has a molecular size of 0.39 nm compared to SO2 at 0.429 nm.  The 

SO2 adsorption performance of the waste derived activated carbons was compared with three 

commercially obtained activated carbons.  For the activated carbons produced at 800 ºC with 

KOH chemical activation, the SO uptake was greater compared to the commercially activated 

carbons, attributed to the large proportion of ultra-micropores. Increasing the reactor 

temperature to 100 °C resulted in a marked decrease in the uptake of SO2 by the activated 

carbons.  Also, higher SO2 concentrations in the inlet gas produced an increase in the amount 

of SO2 adsorbed.  

The process of producing activated carbons from a fibrous waste biomass have been 

demonstrated, particularly since the fibrous biomass can be processed into non-woven fabric 
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material which retains its structure and flexibility after activation. Therefore manipulation of 

the process can produce an activated carbon of differing structure, thickness and form directly 

related to the requirements of the end-use application. The product activated carbons produced 

by chemical activation using KOH have been shown to have high surface area with ultra-

micropores which are effective for SO2 adsorption. 
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Figure Captions 

 
Figure 1. The non-woven fibrous flax fabric material 
 
Figure 2. Non-woven fibrous activated carbon fabric material produced by chemical activation 
via pyrolysis followed by activation using KOH. 
 
Figure 3. Scanning electron microscope image of the activated carbon after chemical activation  
 
Figure 4. Schematic diagram of the fixed-bed sulphur dioxide adsorption system. 
 
Figure 5. DFT-N2 (a) and DFT-CO2 (b) micropore distribution of the produced activated 
carbons. 
 
Figure 6. DFT-N2 (a) and DFT-CO2 (b) micropore distribution of the commercially activated 
carbons. 
 
Figure 7: SO2 breakthrough profiles in relation to char and activated carbons produced from 
flax non-woven activated carbon fabric and commercially obtained activated carbons. 
 
Figure 8. Cumulative SO2 adsorption in relation to char and activated carbons produced from 
flax non-woven activated carbon fabric and commercially obtained activated carbons. 
 
Figure 9. Relationship between SO2 adsorption and BET surface area. 
 
Figure 10. Relationship between SO2 adsorption and micropore volume with nitrogen 
adsorption (DR-N2) and carbon dioxide adsorption (DR-CO2) (** represents DR-CO2 for the 
KOH chemically activated non-woven fabric activated carbons only). 
 
Figure 11. SO2 breakthrough profiles in relation to the KOH activated carbons produced at 
800 °C from flax non-woven activated carbon fabric in relation to reactor temperature of 25 
°C, 40 °C and 100 °C. 
 
Figure 12. Cumulative SO2 adsorption in relation to the KOH activated carbons produced at 
800 °C from flax non-woven activated carbon fabric in relation to reactor temperature of 25 
°C, 40 °C and 100 °C. 
 
Figure 13. SO2 breakthrough profiles in relation to the KOH activated carbons produced at 
800 °C from flax non-woven activated carbon fabric in relation to inlet SO2 concentrations of 
750 ppm, 2500 ppm and 5000 ppm. 
 
Figure 14. Cumulative SO2 adsorption in relation to the KOH activated carbons produced at 
800 °C from flax non-woven activated carbon fabric in relation to inlet SO2 concentrations of 
750 ppm, 2500 ppm and 5000 ppm. 
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Figure 1. The non-woven fibrous flax fabric material 
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Figure 2. Non-woven fibrous activated carbon fabric material produced by chemical activation 

via pyrolysis followed by activation using KOH. 
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Figure 3. Scanning electron microscope image of the activated carbon after chemical activation  
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Figure 4. Schematic diagram of the fixed-bed sulphur dioxide adsorption system 
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(a) 

 

(b) 

 

Figure 5. DFT-N2 (a) and DFT-CO2 (b) micropore distribution of the produced activated 

carbons. 
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(a) 

 

(b) 

 

Figure 6. DFT-N2 (a) and DFT-CO2 (b) micropore distribution of the commercially activated 

carbons. 
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          Figure 7: SO2 breakthrough profiles in relation to char and activated carbons produced 

from flax non-woven activated carbon fabric and commercially obtained activated carbons. 
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       Figure 8. Cumulative SO2 adsorption in relation to char and activated carbons produced 

from flax non-woven activated carbon fabric and commercially obtained activated carbons. 
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Figure 9. Relationship between SO2 adsorption and BET surface area 
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Figure 10. Relationship between SO2 adsorption and micropore volume with nitrogen 

adsorption (DR-N2) and carbon dioxide adsorption (DR-CO2) (** represents DR-CO2 for the 

KOH chemically activated non-woven fabric activated carbons only). 
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Figure 11. SO2 breakthrough profiles in relation to the KOH activated carbons produced at 

800 °C from flax non-woven activated carbon fabric in relation to reactor temperature of 25 

°C, 40 °C and 100 °C. 
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Figure 12. Cumulative SO2 adsorption in relation to the KOH activated carbons produced at 

800 °C from flax non-woven activated carbon fabric in relation to reactor temperature of 25 

°C, 40 °C and 100 °C. 
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Figure 13. SO2 breakthrough profiles in relation to the KOH activated carbons produced at 

800 °C from flax non-woven activated carbon fabric in relation to inlet SO2 concentrations of 

750 ppm, 2500 ppm and 5000 ppm. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time [mins]

C
/C

o

Powder

K650

K800
750 ppm SO2

2500 ppm SO2

5000 ppm SO2



39 
 

 

 

 

 

Figure 14. Cumulative SO2 adsorption in relation to the KOH activated carbons produced at 

800 °C from flax non-woven activated carbon fabric in relation to inlet SO2 concentrations of 

750 ppm, 2500 ppm and 5000 ppm. 
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Table 1. Properties of the activated carbons 

Carbon 
Designation 

Preparation Surface area 
(m2 g-1) 

Micropore Volume 
DR-N2 

(cm3 g-1) 

Micropore Volume 
DR-CO2 

(cm3 g-1) 

Yield 
(wt.%) 

Char  No activation; 

Untreated pyrolysis char, 800 °C 

30 0.012 0.151 - 

450C Chemical activation;  

KOH, at 450 °C, 0 h hold 

126 0.050 0.170 98 

650C Chemical activation; 

KOH, at 650 °C, 0 h hold 

807 0.309 0.332 94 

800C Chemical activation 

KOH, at 800 °C, 0 h hold 

1177 0.451 0.422 83 

800C 1 hr Chemical activation; 

KOH, 800 °C, 1 h hold 

1564 0.604 0.458 67 

800C 2 hr Chemical activation; 

KOH, 800 °C, 1 2 hold 

1656 0.639 0.464 57 

Phys 6hr Physical activation; 

CO2, 825 °C, 6 hr hold 

867 0.337 0.281 40 

Powder Commercial activated carbon powder 1105 0.418 0.314 - 

Granular Commercial activated carbon granular 1154 0.426 0.303 - 

ACF15 Commercial activated carbon fibre 1715 0.633 0.328 - 

 


