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Abstract  

Immune response to melanoma improves survival in untreated patients and predicts 

response to immune checkpoint blockade. Here, we report genetic and environmental 

predictors of the immune response to primary cutaneous melanoma in a large cohort. 

Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration 

and categorize tumors into immune subgroups, which were then investigated for association 

with biological pathways, clinico-pathological factors and copy number variation. Three 

subgroups, with “Low”, “Intermediate” and “High” immune signals were identified and 

replicated in metastatic tumors. Genes in the Low Immune Subgroup were enriched in cell 

cycle and metabolic pathways and, in the High Immune Subgroup, in interferon and NF-țB 

signaling. We identified high MYC expression partially driven by amplification, HLA-B down-

regulation and deletion of IFN-Ȗ and NF-țB pathway genes as regulators of immune 

suppression. Furthermore, we show that cigarette smoking (a globally detrimental 

environmental factor) modulates immunity, reducing survival primarily in patients with a 

strong immune response. 

 

Introduction 

The presence of tumor infiltrating lymphocytes (TILs) predicts better outcomes from primary 

melanoma [1][2] and therapeutic benefit from checkpoint blockade is more likely if tumors 

are PD-L1 positive [3] in response to T cell infiltration. Data have been published suggesting 

that higher mutational load is predictive of response to immunotherapy, and some studies 

with small numbers of patients have reported gene expression signatures with some 

predictive value [4][5]. However, the crucial need remains to identify the biological processes 

underlying “cold” unresponsive tumors. Bioinformatic analysis of large-scale “omic” datasets 

such as The Cancer Genome Atlas (TCGA) increasingly contribute to our understanding of 

tumor immunology [6][7] but the tumors are highly selected/biased, at advanced stage and 

with limited clinical metadata. In this report, we have used transcriptomic data generated 

from 703 of the 2184 participants in a population-based primary melanoma cohort (the 

Leeds Melanoma Cohort, LMC) [8][9] to explore the drivers of immune responses/failure at 

diagnosis, with the aim, ultimately, of improving adjuvant therapeutic choices. 

 

In a previous report, we applied an approach to inferring the tumour immune 

microenvironment described by Bindea et al. [10] and identified 6 immunologically different 

tumour subgroups [11]. The immunome compendium used in that study contained genes 

specific to 24 immune cells [11]. In the current study, we utilized a refined version of the 

immunome compendium derived from a more extensive literature screening and covering 31 

immune cell subtypes as published by Angelova et al. [12]. We defined transcriptomic 
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scores  for these immune cells and used them to classify tumors with unsupervised methods 

to identify immunologically different subgroups. The classification was based on the immune 

cell scores generated from the expression of genes attributed to each cell subtype rather 

than on individual genes as we reported in our previous study [11]. We postulated that 

reducing the number of dimensions prior to classification analysis could identify tumor 

groupings with a clearer difference in survival, facilitating subsequent in depth biological and 

epidemiological characterization, directed towards the identification of candidates for 

therapeutic targets.  

 

There is evidence that environmental factors may modify immune responses to tumors [13]. 

We have previously reported that smoking was associated with microscopic tumor ulceration 

and vitamin D was protective [9] and here we demonstrate the effect of smoking as a 

modifier of outcome within each immune subgroup. 

 

Methods 

The Leeds Melanoma Cohort transcriptomic data 

The transcriptomic data from 703 tumors were generated and pre-processed as previously 

reported using the Illumina DASL whole genome array [14][15][11]. These data are 

accessible for the purposes of melanoma research from the European Genome-Phenome 

Archive with the accession number EGAS00001002922. All survival analyses used 

melanoma specific survival (MSS). The median follow-up for 703 samples at the time the 

data set was fixed, was 7.5 years. Detailed information about the cohort is provided in 

Supplementary Methods. The participants gave informed consent and the study received 

ethical approval (MREC 1/03/57 and PIAG3-09(d)/2003). 

 

 

Immune cell scoring 

Angelova et al. generated a list of genes identified as specific to certain immune cells in the 

blood [12] (the compendium of immune genes). These 1,980 genes were identified from 

reports of 36 studies comprised of 813 microarrays generated from 30 purified immune cell 

subtypes (activated and memory B cells, activated CD4+ and CD8+ cells, central memory 

CD4+ and CD8+, cytotoxic cells, dendritic cells (DC), effector memory CD4+ and CD8+, 

eosinophils, immature B cells, macrophages, mast cells, monocytes, natural killer cells (NK), 

natural killer 56 bright, 56 dim and natural killer T, neutrophils, T cells, T follicular helper 

(TFH), T gamma delta (TGD), T helper 1 (Th), 2, 17, T regulatory cells (Treg), immature, 

plasmacytoid and memory dendritic cells (iDC, pDC, mDC)), as well as genes for myeloid-

derived suppressor cells (MDSCs), resulting altogether in 31 subtypes.  
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From the initial list of genes, we removed those also strongly expressed (in the top 25%) in a 

melanocyte cell line (GSE4570) and in melanoma cell lines, MEWO and SK-MEL28 (in-

house data). In a second step, we removed cell subsets for which more than 90% of genes 

were eliminated (in the previous step) or if there was insufficient published evidence for the 

remaining genes to be considered representative of those cell types. We expected that 

expression of the majority of genes specific to a particular cell type would be positively 

correlated within the cell type, as this was the basis of gene selection in the Angelova et al. 

study. However, in our dataset this was not always the case, so in a third step of filtering, we 

removed genes negatively correlating with the majority within each cell subset to reduce the 

risk of noise due to technical factors. After applying the filters described above, we devised a 

score for each immune cell type, calculated as the mean of expression values of all genes 

attributed to that cell, after z-score normalization of the log2 transformed gene expression 

data as described before [11]. The scores were calculated in the LMC primary melanomas 

and in the TCGA metastatic melanomas. The reciprocal correlations of genes within each 

immune cell score were compared between these two datasets. 

 

Clustering of LMC tumors  

We applied consensus cluster analysis [16] within the R package ConsensusClusterPlus 

[17] to classify primary melanomas of LMC based on their immune cell scores. This 

approach generates a varying number of clusters (to a fixed maximum number, K) using 

resampling of the data. It is widely used to find stable sample subgroups in high-dimensional 

data as a better alternative to the standard one-off clustering, which might be affected by 

random variation. Additionally, consensus clustering offers useful metrics (see below) to 

indicate the optimal number of clusters, unavailable in standard clustering. K-means was 

chosen as the clustering algorithm with maximum K=12, Euclidean distance, 5000 

repetitions, 80% genes and tumor resampling. Examination of the consensus cluster 

matrices, the cumulative density function (CDF) and delta CDF (the change in the area 

under the CDF curve) allowed definition of the optimal number of tumor clusters [16].  

Clustering replication in TCGA 

We downloaded RNAseq gene expression and survival data for The Cancer Genome Atlas 

(TCGA) metastatic melanoma data (http://www.cbioportal.org/data_sets.jsp) (339 samples 

downloaded in 2016). We hypothesized that the immune subgroups observed in the 

primaries would be recapitulated in metastatic melanomas, and to test this hypothesis we 

calculated cluster centroids (vector of cell score means within clusters) in the LMC dataset 

and utilized them to classify TCGA metastatic melanomas using the nearest centroid 

method, as described elsewhere [15]. Briefly, immune cell scores were calculated in the 



 5 

TCGA data in a similar manner as in the LMC and each TCGA tumor was assigned to one of 

the new clusters, with which it had the strongest Spearman correlation. 

 

Overrepresentation analysis (ORA) and networks 

To test the whole transcriptome differences between the immune subgroups in the LMC, the 

Kruskal-Wallis test was used for 3 groups, the Mann Whitney U test was used for 2 groups 

and Bonferroni correction was applied for multiple testing correction (0.05/29354=1.7x10-6, 

the number of probes tested was 29354). To visualize the expression of significantly 

differentially expressed genes (DEGs) (excluding the compendium of immune genes) among 

immune subgroups, these DEGs were hierarchically clustered and a heatmap plotted. 

Reactome FiViz [18] and Centiscape [19] in Cytoscape [20] were utilized to analyse the 

protein-protein interaction (PPI) network and infer pathways enriched in the DEGs 

characterizing each immune subgroup. The networks were created based on existing 

protein-protein interaction networks built in Reactome FiViz, which covers over 50% of 

human proteins. From the network, pathway enrichment was calculated at FDR <0.001. In 

order to identify the most influential (hub) genes in the networks, the “betweenness” metric 

(indicating a key role in communication between proteins) was used as a centrality measure 

in Centiscape [19]. Graphical adjustments for network visualization were made in Gephi 

software [21]. The Spearman rank correlation was used to evaluate the correlation between 

the expression of a hub gene and the whole transcriptome patient-derived primary 

melanoma cell line cultures. 

 

Primary melanoma cell lines validation experiment 

As previously described, primary melanoma cells were isolated from surplus surgical 

specimens of consenting patients (approved by the local IRB [EK.647/800]) at the University 

of Zurich, and maintained by the University Research Priority Program in Translational 

Cancer Research at the University of Zurich Hospital [22]. Details are provided in 

Supplementary Methods.  

 

Immunohistochemistry (IHC) validation 

The most influential genes identified in our analyses were further examined by IHC staining 

of sections of available primary tumors from the LMC, to assess the protein-level and gene 

expression correlations. The Mann Whitney U test was used to compare the mRNA level 

and the IHC scores. The nuclear staining scores in tumor cells and in TILs were compared 

using the Fisher’s exact test. The correlation of continuous scoring was tested using 

Spearman rank’s correlation. The details of scoring are described in the supplementary 

methods.   
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Analysis of CNA among the immune subgroups  

We extracted copy number profiles in the genomic regions spanning the hub genes from the 

network analysis and compared them between immune subgroups and with gene 

expression and patient survival. Next-Generation Sequencing (NGS)-derived copy number 

alteration (CNA) profiles were available from 276 tumor samples among the 703 

transcriptomic-profiled. To evaluate the full extent of the role of structural variation, we 

expanded the gene list to other genes of the same family or the same pathway as the hub 

genes (plus NF-B and its regulators, and IFN- signaling genes). The association between 

CNAs and gene expression was tested using Fisher’s exact test. Since we have previously 

reported -catenin signaling pathway to be upregulated in 30% of primary melanomas 

overall and in 60% of the most aggressive tumors [11], we tested the overlap between the 

CTNNB1 expression signature with the immunosuppressive mechanisms identified in this 

study and their joint effect on survival (Cox-proportional hazard regression). For the CNA 

visualization, the ComplexHeatmap package in R was used [23]. The CNA data analysis in 

detail is included in supplementary methods. 

 

Statistical analyses 

The univariable Cox proportional hazards model was used to test the association between 

tumor immune subgroups and melanoma specific survival (MSS) in the LMC and overall 

survival (OS) in TCGA datasets. To test independence between the tumor immune 

subgroups and clinico-pathological factors, Chi-square and Kruskal-Wallis tests were used. 

A univariable Cox proportional hazard model was used to test the prognostic value of the 

immune cell scores and the clinical and environmental factors (AJCC staging version 7, age 

at diagnosis (median: 58.34 years), sex, site of melanoma (limbs vs rest), smoking 

ever/never (median duration of smoking in the smoking group was 23 years), vitamin D 

levels at recruitment (median level in winter: 39.5 nmol/L)) and a social status/deprivation 

index measured by Townsend score [24] in the whole LMC dataset. Subsequently, the 

significant clinical and environmental predictors were included in a multivariate model 

(adjusting for the immune clusters). The predictors with the strongest degree of 

independence in the whole dataset were jointly tested within each immune subgroup.  

 

Results 

Devising a list of genes indicative of specific immune cells infiltrating melanoma  

The first filtration step resulted in 458 genes representing 30 distinct immune cell subsets 

(Subset 1, Figure 1, Supplementary Data 1). The second step resulted in the elimination of 
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scores for effector memory CD4+ T cells, activated CD8+ T cells and activated CD4+ T cells 

(Subset 2, Figure 1, Supplementary Data 1). The plasmacytoid dendritic cell score (pDCs) 

was retained despite having only 1 attributed gene (IL3RA), as in the previous version of the 

Immunome compendium [10] because it is known to be highly expressed in pDCs [25][26]. 

The final filtration step left 376 genes representing 27 immune cell subsets (Subset 3, Figure 

1, Supplementary Data 1). We noted that when applied to TCGA transcriptomes, the 

correlation matrices between genes within each cell type also demonstrated a number of 

negatively correlated genes although fewer than in our primary melanoma cohort (data 

available upon request).  

 

The association of 27 immune cell scores with survival 

We tested the association of the immune cell scores with melanoma specific survival (MSS) 

(univariable analysis) and the results revealed that the majority of immune cell scores (17 

out of 27) in the LMC and (23 out of 27) in TCGA were associated with improved survival 

after Bonferroni correction (27 tests, P<0.002). For 8 of the remaining 10 cell scores in the 

LMC, a similar protective effect was found but the effects did not withstand adjustment for 

multiple testing (Supplementary Table S1). The survival analysis was repeated after removal 

of the 16 participants known to have received checkpoint therapies and the results for all the 

immune cell scores were essentially unchanged. 

 

Identification of three prognostic immune subgroups 

Consensus clustering analysis of tumor samples using the 27 immune cell scores identified 

3 clusters with distinct immune phenotypes (Supplementary Fig. S1), which we termed Low, 

Intermediate and High Immune Subgroups (Figure 2A). Importantly, by classifying the TCGA 

metastatic melanomas in these 3 immune subgroups (supervised classification), we were 

able to replicate the results obtained in LMC with strong similarities in overall immunological 

profiles (Figure 2B). Furthermore, the three immune subgroups were associated with 

survival in both datasets: in the LMC, a significantly lower hazard of melanoma death was 

observed for patients assigned to the High compared to Low and Intermediate Immune 

Subgroups (Hazard Ratio (HR)=0.5, P=0.001 (95% CI 0.3-0.7); HR=0.6, P=0.05 (95% CI 

0.4-1.0), respectively) (Figure 2C).  

For TCGA, tumors classified as High Immune also exhibited a lower overall death hazard 

with HR=0.3, P=1.1x10-7 (95% CI 0.2-0.5) compared to those classified in the Low Immune 

Subgroup. Tumors in the Intermediate Immune Subgroup had a HR=0.5, P=4.6x10
-5 

(95% CI 

0.4-0.7) when compared to those of the Low Immune Subgroup (Figure 2D).  
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The 3 class signature reported here (High, Intermediate and Low Immune) was concordant 

with the 6 consensus immunome clusters (CICs) we published previously [11], (Cramer’s 

V=0.72) (see Supplementary Fig. S2A).  

 

 

However, there was only moderate concordance with another 3-class signature (immune, 

keratin and MITF low) published by TCGA, (Cramer’s V=0.47). In essence, our High Immune 

group overlapped well with the TCGA immune class but the Intermediate and Low Immune 

subgroups had much less overlap with TCGA groups (Supplementary Fig. S2B). Kaplan 

Meier curves for our three immune subgroups were more clearly/significantly separated than 

the three TCGA classes. Generally, we observed the expected prognostic trend of the 

immune signature but there was no difference between the immune and keratin groups of 

the TCGA signature (Supplementary Fig. S2C). There were 70 genes identified that were 

shared between our and TCGA signature (listed in Supplementary Data 2X). 

 

The immune subgroups are associated with tumor thickness, TILs and mitotic 

number 

In the LMC data, the High Immune, in comparison to the Low and Intermediate Subgroups, 

featured consistently thinner tumors (Kruskall Wallis P=0.004) and, crucially, more TILs 

reported by both clinical dermato-pathologists (Chi2 P=4x10-7) and a single observer from 

our research group who was blinded to the transcriptomic data (Chi2 P=3.6x10-8) (see 

Supplementary Table S2). The mitotic number was significantly lower in the High Immune 

Subgroup (Kruskal Wallis P=2x10-4). The Low Immune Subgroup had the lowest proportion 

of tumors harboring a BRAF mutation (40%) and the highest proportion with an NRAS 

mutation (30%), although these observations were only marginally significant 

(Supplementary Table S2). The recorded site of melanoma was significantly different across 

the immune subgroups, with primary tumors located at “rare” sites (not exposed to the sun) 

most frequently classified in the Low (19%) compared to the Intermediate (9.5%) and the 

High Immune Subgroups (8%) (Chi2 P=0.02). AJCC stage, patient sex, age at diagnosis, 

smoking status and levels of season-adjusted serum vitamin D were not significantly 

different between the subgroups (Supplementary Table S2).   

 

Identification of MYC as the regulator of immune response in network analyses 

We compared gene expression among the 3 immune subgroups (Supplementary Fig. S3). 

5607 differentially expressed genes across the genome were identified between the High vs 

Low Immune Subgroups. The genes upregulated in the Low Immune Subgroup (n=3324) 

were predominantly associated with high proliferation and metabolic activity 
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(Hypergeometric test adjusted P value 10-14 to 10-7) with lower levels of expression of the 

genes coding immune checkpoint molecules (expressed by tumor) such as CD274 coding 

for PD-L1. The most enriched pathways were the citric acid (TCA) cycle and respiratory 

electron transport, mitochondrial translation and mitosis pathways (Figure 3A and 

Supplementary Data 2A). Network analysis of genes enriched in the Low Immune Subgroup 

revealed that the proto-oncogene MYC had the highest centrality (Figure 3A). 

Unsurprisingly, network analysis indicated that the genes upregulated in the High Immune 

Subgroup (n=2283) were mostly involved in immune pathways (Hypergeometric test 

adjusted P value 10-14 to 10-10). The top enriched pathways were: Interferon alpha/beta 

signaling, antigen processing and presentation, interferon gamma and NF-B signaling 

(Figure 3B and Supplementary Data 2B), with the nodal gene in this network being NFKB1 

encoding the p105/p50 subunit of NF-B (Figure 3B).  

The identification of MYC as the gene with the highest centrality in the Low Immune network 

suggested that it might fulfil a key role in immune evasion. We took an agnostic approach to 

testing correlations between MYC expression and the rest of the genome in transcriptomes 

from patient-derived primary melanoma cell lines (lacking immune cells) [22]. Genes were 

ranked according to their correlation with MYC and of 50 genes most significantly negatively 

correlated with MYC one tenth were involved in antigen processing and presentation (HLA-

B, HLA-C, B2M, TAP1 and ERAP1), with HLA-B representing the strongest results (R=-0.57, 

P=1.6x10-10) (Figure 3C and Supplementary Data 2C). The correlation of MYC with HLA-B 

gene expression in the LMC was: R=-0.3 (P=5.5x10-14). 

An immunosuppressive effect of oncogenic MYC has previously been demonstrated, 

although by different mechanisms than suggested in this study: MYC was reported to 

increase expression of genes encoding CD47 and PD-L1 on lymphoblastic leukemia cells 

[27]. We tested this observation using Spearman’s rank correlation, but MYC expression did 

not significantly correlate or correlated negatively with CD47 or PD-L1 expression in either 

the primary melanoma cell lines (R=-0.17, P=0.09; R=-0.16, P=0.1, respectively) or in the 

LMC tumors (R=0.04, P= 0.3; R=-0.17, P=2.3x10-6, respectively). 

 

mRNA gene expression correlation with protein scores – Immunohistochemistry (IHC) 

A subset of tumors was immunohistochemically stained using antibodies for key proteins. 

We found that the protein expression of MYC localized to the tumor cell nuclei while HLA-B 

localized to the tumor cell membrane and the expression of both proteins was positively 

associated with their mRNA transcripts (P=0.056 and P=0.002 respectively) (Figure 4). MYC 

staining was only detected in tumor, not immune cells. Using the Nuance software for 

calculation of number pixels of positive staining per analyzed image of MYC and HLAB we 
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observed a negative correlation (R=-0.6, P=0.02) only for samples where MYC was detected 

(N=15) (Figure 4C). For samples where MYC was barely detected (<1%) the correlation was 

not seen, which indicated that there are other factor regulating HLAB expression in the 

absence of MYC. NF-B p105 was detectable in the nuclei of both tumor cells and TILs and 

the levels of expression from these were positively correlated  (P=3x10-5). Importantly, 

mRNA expression of NFKB1 was positively correlated with tumor NF-B p105 nuclear 

staining (P=0.02) (Figure 4).  

 

MYC was more frequently amplified, while NF-B and IFN- signaling genes was more 

frequently deleted, in the Low Immune Subgroup 

Given that we observed upregulation of MYC and downregulation of NFKB1 expression (the 

nodal genes) in the Low Immune Subgroup, we hypothesized that MYC amplifications and 

NFKB1 deletions would be more common in this immune subgroup in the LMC. Using next-

generation sequencing derived copy number data from a subset of the LMC tumors, we 

observed that 29% had amplifications of MYC and 14% deletions of NFKB1 in the Low 

Immune Subgroup, more than in the Intermediate or the High Immune Subgroup (P= 0.02 

for MYC, P=0.0003 for NFKB1) (Figure 5A, Supplementary Data 2D). Interestingly both of 

these copy number changes were strongly predictive of poor prognosis overall (adjusted for 

AJCC stage) separately (MYC amplifications: HR=1.8 (95% CI 1.8-2.6), P=0.006; NFKB1 

deletions: HR=1.5 (95% CI 1.1-2.1), P=0.007) and when combined (HR=3.7 (95% CI 1.6-

8.5), P=0.002, adjusted for AJCC) (Figure 5B, C, Supplementary Data 2F).  

Because the NF-B and IFN- pathways were amongst the most enriched pathways in the 

High Immune Subgroup, we then asked if other genes within these pathways were deleted 

in the Low Immune Subgroup. Indeed, we found evidence of deletion of NFKB2 (26% of 

whole dataset), CHUK (22%), MYD88 (5%), IRAK2 (5%), MAP3K7 (17%), JAK2 (10%), and 

STAT1 (4%). These copy number changes were not mutually exclusive (Figure 5A) but were 

much more frequent in the Low Immune than in other subgroups (Figure 5B, Supplementary 

Data 2D). Deletion of CHUK, MYD88, IRAK2 or JAK2 each were predictive of death from 

melanoma after adjusting for AJCC stage (Figure 5B, Supplementary Data 2E,F). As 

expected, these copy number changes were highly correlated with mRNA expression of 

corresponding genes (Supplementary Data 2F). 

In our previous study [11] we demonstrated that CTNNB1 expression alone was 

overexpressed in 30% of all primaries and 59% of those with the worst outcome. Here, we 

observed a similar pattern across the three immune subgroups: CTNNB1 was more 

commonly overexpressed in the Low Immune Subgroup compared to other groups (Figure 

5A). Comparing the copy number alteration of genes in the NF-B pathway and CTNNB1 
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expression, we found some overlap but also heterogeneity in the Low Immune Subgroup. 

Specifically, 15% of tumors had evidence of increased CTNNB1 expression alone, 32% had 

a deletion in at least one gene of the NF-B pathway in the absence of CTNNB1 

overexpression, whilst 31% had both (i.e. increased -catenin and a deletion in at least one 

gene). In prognostic terms, in the whole dataset the HR for melanoma death in the presence 

of CTNNB1 upregulation was HR=2.2, P=5x10-5, 1.5-3.1; for NF-B pathway deletions was 

HR=2.03, P=2x10-4, 1.4-3.0; and for the combination of these two pathways was HR=3.4, 

P=5x10-5, 95% CI 2.2-5.5.  

These data demonstrate the involvement of genetic factors in modulating immunity and 

shaping the tumor immuno-phenotype. However, it is commonly postulated that 

environmental factors also play a role in this process, and we therefore tested this 

hypothesis.  

 

Smoking as a strong independent risk factor for melanoma death in the High Immune 

Subgroup  

In addition to clinico-pathological tumor characteristics, the LMC has a record of patient 

smoking behaviors,  a vitamin D level from a blood sample at diagnosis and a deprivation 

index measured by the Townsend score [24]). In a univariable Cox proportional hazard 

model, AJCC staging, mitotic number, site of primary melanoma, age at diagnosis, sex and 

smoking (ever/never), were significantly predictive of MSS in the whole dataset while 

season-adjusted vitamin D was not. Among these variables, AJCC stage, mitotic number, 

site of melanoma, age at diagnosis, and smoking remained significant in multivariable 

analysis of the whole dataset but different sets of variables were significant in each of the 

three immune subgroups (Table 1). Body site of the primary melanoma was a strong 

predictor of MSS in the Low Immune Subgroup along with AJCC stage, driven by tumors 

arising in sun-protected body sites which were predominantly classified within this group and 

are known to have a particularly bad outcome [28] (Table 1). The prognostic effect of 

smoking was heterogeneous across the three immune subgroups (p<0.03 for equal HRs 

across the subgroups). In the High Immune Subgroup (HR=4.6 for “ever smoked”, P=0.003, 

N=156), compared to within the Intermediate Immune Subgroup (HR=1.8, P=0.05, N=275) 

and the Low Immune Subgroup (HR=0.9, P=0.7, N=272) (Figure 6). The deleterious effect of 

smoking in the High Immune Subgroup was reproduced when the analysis was repeated 

using two alternative definitions of smoking habits: duration of smoking (number of years) 

and the cumulative number of smoked cigarettes (packs per year) (Supplementary Data 2G, 

2H). The negative prognostic effect of cigarette smoking in the High Immune group 

remained significant after adjusting for the deprivation index (HR=1.6, P=0.001). To gain a 
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deeper insight into the interplay between smoking and immune responses, we assessed the 

expression of GRP15 which has previously been described as a biomarker of exposure to 

tobacco smoke, with increased expression previously demonstrated in a number of immune 

cell types measured in the peripheral blood [29][30]. In the tumors, we found no significant 

association between GRP15 expression with smoking (ever/never) across the whole LMC 

dataset (fold change=1.07, P=0.12). However, the association was stronger in the High 

Immune subgroup (fold change=1.32, P=0.02) (Supplementary Fig. S4A). Furthermore, 

GRP15 expression was the highest in the High Immune Subgroup when testing a subset of 

data of ever smokers: P=5x10-5, while the result was not significant for the second subset - 

never smokers: P=0.3 (Supplementary Fig. S4B). GRP15 expression in the blood is reported 

to decrease after cessation of smoking [30] and therefore we assessed its expression in ‘still 

smokers’ compared to ‘non-smokers’. We observed a markedly stronger differential 

expression in the High Immune Subgroup for still smoking (fold change=1.9, P=0.002) than 

in the whole dataset (fold change=1.32, P=0.01) (Supplementary Fig. S4B). We tested the 

differences in immune cell scores between ever/never smokers (in the High Immune 

Subgroup), but we did not find any statistically significant results (Supplementary Table S3). 

We also examined the association between smoking and tumor histological features 

(Supplementary Table S4) as well as the whole genome expression, including cytokine 

genes, but no significant associations were identified after multiple testing. 

 

Discussion 

The dramatic survival benefit of checkpoint blockade in melanoma, in around half of patients 

with advanced disease [31], has highlighted the need to understand the drivers of Low 

Immune (“cold” tumors) which are less likely to respond to treatment.  In silico immune cell 

analysis in cancer has been adopted in recent years in order to better understand these 

drivers [32][12][33] although these approaches do not allow distinction to be made between 

weak signals coming from numerous infiltrating immune cells and strong signals from fewer 

cells.  

 

Previously we reported the survival analysis of 24 immune cell scores [11], derived from an 

earlier version of the immunome [10]. In the current analysis, we used an updated version of 

the immunome [12] allowing inference of 31 immune cell scores, which we reduced to 27 

after the gene filtration. We noted that in the earlier report, 10/24 cells were significantly 

prognostic and replicated in TCGA (41% of cells) but in this study the number increased 

17/27 (63%).   

In evaluating the updated immunome, we showed that almost half of the genes proposed to 

be specific to particular immune cell subsets were also expressed at significant levels in 
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melanoma cell lines, disqualifying them as immune specific. The fact that not all of the genes 

postulated to characterize a particular immune cell type were positively correlated may 

represent in part a technical feature of our dataset, as we observed that the correlations 

between these genes were slightly higher in the TCGA dataset sourced from fresh-frozen 

tumors rather than archived Formalin-Fixed Paraffin-Embedded (FFPE) specimens. These 

observations suggest that use of “off the shelf” algorithms to infer immune activity may have 

limited application. 

 

We have identified three immune subgroups with distinct survival profiles indicating better 

survival in the presence of stronger immune responses. We also showed that these 

subgroups were stronger in terms of prognosis prediction than the 3-class identified in 

metastatic melanoma from TCGA, which we applied to our primary tumors from LMC. We 

recapitulated this result in the TCGA metastatic melanomas, suggesting that similar immune 

infiltration and exclusion mechanisms span the whole spectrum of disease progression. 

 

All the immune scores were highly correlated with each other (including those known to play 

an immunosuppressive role), the majority being upregulated in the High Immune Subgroup. 

We did not observe increasing representation of immunosuppressive cells e.g. Tregs, nor a 

relative increase in expression of checkpoint molecules in the High Immune Subgroup. 

Rather, our data suggest a coordination of the immune cell populations as a whole. This is 

entirely in keeping with previously published observations of increased Tregs numbers and 

accompanying expression of checkpoint molecules as a results of homeostatic mechanisms 

driven by melanoma infiltrating CD8+ T cells [34]. We cannot however exclude the possibility 

that the inference of immune cell subgroup infiltration from transcriptomic datasets may be 

insensitive to subtle variations that nevertheless might have an impact on immune function. 

 

The protein-protein network analysis in Reactome FIViz of genes upregulated in the Low 

Immune Subgroup revealed enrichment for genes in cell proliferative pathways with MYC as 

the major node (the gene with the highest centrality). MYC is a pro-proliferative oncogene 

which has in recent years been reported to have various immunosuppressive functions 

[27][35][36][37], and to have specific involvement in melanoma metastasis and invasiveness 

[38]. However, the relation of MYC and immune response within melanoma is unclear.  

In our study we were able to show a negative relation between MYC and antigen processing 

and presentation machinery especially with HLA-B in tumors and patient derived melanoma 

cell lines. An inverse relationship between HLA class I and MYC expression has previously 

been reported [39] in melanoma cell lines. Moreover, it was described that MYC down-

regulates the expression of HLA-B by directly binding to its proximal promoter [40]. Our data 
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therefore provide strong evidence that MYC contributes significantly to immune evasion in 

primary melanoma making it a therapeutic target, not withstanding the difficulties of 

achieving this [41]. The requirement for MYC in T cells suggests that a more targeted 

approach may be required, or that regulators/effectors of MYC activity might prove more 

appropriate targets [41].   

 

NFKB1 was the network hub gene in the High Immune Subgroup. A number of important 

NF-B family genes (NFKB1, NFKB2, c-REL, RELB) were also upregulated in this group 

suggesting activation of the pathway. RELA was stable across the immune subgroups, 

reflecting its constitutive expression in different tissues. IHC staining showed that tumor and 

TIL nuclear localization of NF-B significantly correlated with lymphocytic infiltration, 

suggesting a reciprocal NF-B-driven phenotype generated between the tumor and its 

immediate microenvironment, as described in other cancers [42][43].  Conversely in the Low 

Immune Subgroup we found loss of genes important in NF-B and IFN- signaling, resulting 

in decreased expression. JAK2 mutations have recently been reported to be involved in 

acquired and primary resistance to anti PD-1 therapy [44][45]. Our hypothesis therefore is 

that a great proportion of melanoma tumors in the Low Immune Subgroup may have primary 

resistance to this therapy even in adjuvant usage. 

 

In our study, we report for the first time the association of smoking with immune responses 

to primary melanoma. Our results implied that smoking had an adverse effect on outcome by 

reducing the protective value of immune infiltration. That there was no obvious 

transcriptomic differences between melanomas in smokers and non-smokers may however 

suggest that the immune infiltrate in smokers may simply represent non-specific systemic 

inflammation or even that we see similar transcriptomic signals from pro-tumourigenic 

(cigarette driven) and anti-tumour immune responses. 

 

We did observe a positive correlation between smoking and the expression of GPR15 gene 

which codes for a chemo-attractant receptor which is regarded as a biomarker of smoking 

known to be hypo-methylated and hence overexpressed in circulating immune cells in 

smokers [46][29]. The GPR15 protein is reported to play a role in the trafficking of T cells 

[47][48], but its full biological function and significance with respect to smoking is still 

unknown. The overall pattern of association between reported smoking and death from 

melanoma however reinforces the view that discontinuation of smoking should be strongly 

recommended in melanoma patients. As it is not known whether the adverse effects of 

smoking in melanoma are mediated by nicotine or other components of cigarettes, the 
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recommendation should probably be to avoid vaping [49], despite the acknowledged 

difficulty of smoking cessation for many. 

 

In conclusion we report the use of bioinformatics to define broad prognostic 

immunophenotypes of primary melanoma, with evidence of a prominent role of NF-B and 

IFN- signaling downregulation (including by deletion) and MYC overexpression (including 

amplification) in driving immunosuppression. We report evidence that a key mechanism in 

this process is perturbation of the antigen presentation machinery and that smoking 

predicted significantly worse melanoma specific survival in patients with stronger immune 

responses.  
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Figure 1 Devising a list of genes indicative of specific immune cells infiltrating 

melanoma.  

From the initial gene list, genes found to be highly expressed in melanoma cell lines (in-

house data) were removed, resulting in 458 genes retained representing 30 distinct immune 

cell types (Subset 1). In a second step, cell subsets where more than 90% of genes were 

lost in the previous step were removed, resulting in Subset 2. In the third step of filtering, all 

genes negatively correlating with the majority of the genes within each cell subset were 

removed, and thus the final number of genes was 376 representing 27 immune cell scores 

(Subset 3). Next, those genes were used to calculate a score for each immune cell, and 

these were used for consensus clustering of the tumors in immunologically different groups. 

 

Figure 2 Identification of three prognostic immune subgroups in LMC primaries and 

TCGA metastatic melanoma datasets.  

(A) Heatmap showing the three identified immune subgroups from the consensus clustering 

of immune cell scores in LMC (N=703). (B) Similar heatmap in TCGA (N=339). (C) Kaplan 

Meier survival curves for melanoma-specific survival (MSS) in LMC by immune subgroups. 

(D) Similar curves for overall survival (OS) in TCGA. P values from likelihood ratio test. 

 

Figure 3 Identification of “hub” genes and enriched pathways in the network analyses. 
(A) The most enriched pathways in the Low Immune Subgroup, in the network. Protein-

protein interaction network of genes upregulated in the Low Immune Subgroup. (B) The 

most enriched pathways in the High Immune Subgroup, in the network. (K=KEGG, 

R=Reactome). Protein-protein interaction network of genes upregulated in the High Immune 

Subgroup. The size of nodes (protein from the interaction network) indicates the gene 

importance in the network (betweenness). (C) The 50 genes most positively and negatively 

correlated with MYC in melanoma cell lines data (Spearman’s rank correlation). The arrows 

point to the genes coding for proteins involved in antigen processing and presentation via 

HLA.   

 

Figure 4 Gene expression levels correlate with protein scores – 

Immunohistochemistry (IHC). 

(A) Representative images of positive and negative staining for MYC (nuclear), HLA-B 

(membranous), NF-B p105 (Tumor and TILs nuclei), 20x magnification. (B) Dot and box 

plots show comparisons of mRNA level (y axis)  and staining level (x axis), using Mann 

Whitney U test (MYC: N=48, HLA-B: N=30, NF-B p105: N=29). NF-B p105 nuclear 
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staining is indicated by arrows, NF-B p105 in tumor infiltrating lymphocytes by a star. 

Purple chromogen was used for staining, therefore the color representing the positive 

staining is lavender-purple. (C) The scatter plot represents the scoring values for HLA-B 

(percentage of positive pixels for chromagen in outputs from Nuance software) on the y-axis 

and on the x-axis MYC (percentage of positive pixels for both haematoxylin and 

chromagen). The dashed line indicates MYC detection at less than 1%, which we 

considered as very low/absent expression. The red line is fitted for the MYC values higher 

that 1% of positive pixels. 

 

Figure 5 MYC is amplified while NF-B and IFN- signaling genes are deleted in the 

Low Immune Subgroup. 

(A) Oncoprint figure for Low, Intermediate and High Immune group representing CNA of 

MYC, NF-B and genes in the IFN- pathway with annotation of CTNNB1 expression and 

survival status. (B) Kaplan Meier plots for participants whose tumors showed MYC 

amplifications, NFKB1 deletions, and for a combination of MYC and NFKB1 CNVs in the 

whole dataset. Hazard ratios were calculated using the univariable Cox proportional hazard 

model.  

 

Figure 6 Kaplan Meier plots of smoking (ever/never). 

In the whole data set (N=703) - black, High Immune Subgroup (N=156) - red, Intermediate 

Immune Subgroup (N=275) - yellow, and Low Immune Subgroups (N=272) - blue. Hazard 

ratios were calculated using a Cox proportional hazard model for MSS. Figure shows that 

the detrimental effect of smoking on survival increases with the strength of the patient’s 

tumor immune signal. 
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Table 1 Multivariable Cox proportional hazard model for MSS in different immune 

subgroups, showing variable statistically significant in the whole data analysis. Smoking 

categories: ever/never; AJCC stage is categorized as stage 1, 2 or stage 3.  Site of 

melanoma is sun exposed and non-sun exposed. Mitotic number is the count of mitoses per 

mm2. Significant associations are shown in bold.  

 

Characteristics (risk category) HR P-value 95% CI 

Whole dataset (N=703) 

AJCC stage 2.05 2.4x10
-8

 1.59-2.64 

Smoking (ever) 1.4 0.032 1.03-2.04 

Site of melanoma (non-sun exposed) 1.64 0.012 1.11-2.41 

Age at diagnosis (per year) 1.03 2.0x10
-5

 1.01-1.05 

Mitotic number (per mitosis) 1.02 0.008 1.00-1.03 

High Immune (N=156) 

AJCC stage 3.99 0.0002 1.93-8.22 

Smoking (ever) 4.58 0.003 1.68-12.53 

Site of melanoma (non-sun exposed) 2.52 0.075 0.91-6.7 

Age at diagnosis (per year) 1.05 0.025 1.00-1.10 

Mitotic number (per mitosis) 1.02 0.71 0.93-1.11 

Intermediate Immune (N=275) 

AJCC stage 1.75 0.012 1.13-2.71 

Smoking (ever) 1.77 0.05 1.01-3.12 

Site of melanoma (non-sun exposed) 1.36 0.31 0.75-2.46 

Age at diagnosis (per year) 1.03 0.021 1.00-1.06 

Mitotic number (per mitosis) 1.04 0.0004 1.02-1.06 

Low Immune (N=272) 

AJCC stage 2.01 1.3x10
-4

 1.40-2.87 

Smoking (ever) 0.92 0.73 0.56-1.50 

Site of melanoma (non-sun exposed) 1.97 0.016 1.13-3.43 

Age at diagnosis (per year) 1.03 0.002 1.01-1.06 

Mitotic number (per mitosis) 1.01 0.26 0.99-1.03 
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