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Mathematical supplementary information

Derivation of non-dimensional model

We use the simple modelling framework provided in Booton et al. 2018

to describe the within-host infection dynamics under toxicant exposure in an

individual. X, Y and Z represent the total within-host cells, parasite density

and immune function, respectively. Toxicant exposure Q both reduces the

functionality of the immune system at rate h (sub-lethal) and damages the

functionality of the host at rate r (lethal). � sets the rate of production for

new healthy cells, � the rate of infection, d the death of healthy cells, a the

death of parasites, p the immune suppression, c the production of immunity

and b the removal of immunity. This model is given by the below equations

dX

dt
= �− �Y X − dX − rQ

dY

dt
= �Y X − aY − pY Z

dZ

dt
= c− bZ − hQ

In order to significantly reduce the analysis we non-dimensionalise this model.

We write these differential equations in terms of the new variables: X = X̂X,

Y = Ŷ Y , Z = ẐZ and

t = t̂t

, where the quantities X̂, Ŷ , Ẑ and t̂ will be chosen later. By the chain rule,
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dX

dt
=

X̂

t̂

dX

dt

=
�X̂

t̂
−

�XY

t̂Ŷ
−

dX

t̂
−

rQX̂

t̂

dY

dt
=

Ŷ

t̂

dY

dt

=
�XY

t̂X̂
−

aY

t̂
−

pYZ

t̂Ẑ

dZ

dt
=

Ẑ

t̂

dZ

dt

=
cẐ

t̂
−

bZ

t̂
−

hQẐ

t̂

Let t̂ = b, X̂ = b
�
, Ŷ = �

b
, Ẑ = t̂

c
= b

c
, ⇠1 =

r
�
, ⇠2 =

h
c
, which gives

dX

dt
= 1− XY −

d

b
X − ⇠1Q

dY

dt
=

��

b2
XY −

a

b
Y −

pc

b2
YZ

dZ

dt
= 1− Z − ⇠2Q

Then we let � = d
b
, � = a

b
, ✏ = ��

b2
and ! = pc

b2
which gives the final simplified

set of equations
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dX

dt
= (1− ⇠1Q)− X (�+ Y)

dY

dt
= Y(✏X − � − !Z)

dZ

dt
= (1− ⇠2Q)− Z

For convenience in the main text and for the remainder of the supple-

mentary information we replace the above X with X and likewise for Y , Z

and t with Y, Z and t.
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Piecewise equilibria for the within-host model

The equilibria for the non-dimensional model are

(XDFE, YDFE, ZDFE) = (
1− ⇠1Q

�
, 0, 1− ⇠2Q)

and

(XEE, YEE, ZEE) = (
� − ⇠2Q! + !

✏
,

✏− ⇠1Q✏

� − ⇠2Q! + !
− �, 1− ⇠2Q)

We define X 0 to be the equilibrium state of within-host cells in an unin-

fected individual in the absence of infection. Under increasing Q, the solution

for X 0 is defined until 1�⇠1Q

�
= 0 (after which the solution would be negative)

and hence we set the value equal to zero after this point:

X 0 =

8

>

>

<

>

>

:

1�⇠1Q

�
, if 1− ⇠1Q > 0

0, otherwise

We defineX⇤ to be the equilibrium state of within-host cells in an infected

individual. The solution depends on whether or not the infection is present

within the host, and whether or not the immune system has been depleted

to zero. If the immune system Z is nonzero (1− ⇠2Q > 0), X⇤ is the solution

defined by XEE. However, once the immune system is depleted, then the
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ODEs become

dX

dt
= (1− ⇠1Q)−X(�+ Y )

dY

dt
= Y (✏X − �)

which has a solution at

(XEE2, YEE2) = (
�

✏
,
−��− ⇠1Q✏+ ✏

�
)

Hence if Z = 0 at 1 − ⇠2Q = 0 and the parasite density is above zero, then

X⇤ is the solution defined by XEE2. However, once the infection is removed

from the system by the toxicant, the ODE system becomes

dX

dt
= (1− ⇠1Q)− �X

which has a solution at

XDFE =
1− ⇠1Q

�

After Y ⇤ = 0 the solution for X⇤ becomes identical to X 0. Collecting these

three conditions together yields the piecewise equilibria defined as:
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X⇤ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

��⇠2Q!+!

✏
, if 1− ⇠2Q > 0

�

✏
, if 1− ⇠2Q ≤ 0 & Y ⇤ > 0

X 0, if 1− ⇠2Q ≤ 0 & Y ⇤ = 0

Similarly Y ⇤ is the equilibrium state of parasite density in an infected

individual. This is determined by the status of immunity and by the point

at which the infection is removed from the system. If Z > 0 at 1− ⇠2Q > 0

then Y ⇤ is defined by YEE1. However if the immune system is depleted then

the ODE system becomes 2 dimensional and the solution for Y ⇤ becomes

YEE2. This solution is defined until YEE2 = 0, at which point the infection

is completely removed from the host and remains at 0 indefinitely. Collect-

ing these conditions together yields the piecewise equilibria for the parasite

density:

Y ⇤ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

✏�⇠1Q✏

��⇠2Q!+!
− �, if 1− ⇠2Q > 0

����⇠1✏+✏

�
, if 1− ⇠2Q ≤ 0 & ����⇠1✏+✏

�
> 0

0, ����⇠1✏+✏

�
≤ 0
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The basic reproduction number

We will use the next generation matrix method to derive the basic repro-

duction number. The disease free equilibrium for the between-host model

is

(SDFE, IDFE) =
⇣

Λ+ kΛX 0

u
, 0

⌘

The next generation matrix G is comprised of two parts: F and V �1 where

F represents the new infections and V represents the transfer of individuals

between compartments:

F =

0

B

@

0 0

IY ⇤✓ SY ⇤✓

1

C

A

V =

0

B

@

u
kX0+1

+ IY ⇤✓ SY ⇤✓

0 u
kX⇤+1

1

C

A

V �1 =

0

B

@

kX0+1
u+I(kX0+1)Y ⇤✓

−
S(kX0+1)(kX⇤+1)Y ⇤✓

u(u+I(kX0+1)Y ⇤✓)

0 kX⇤+1
u

1

C

A

so that

G = FV �1 =

0

B

@

0 0

IY ⇤✓ SY ⇤✓

1

C

A

0

B

@

kX0+1
u+I(kX0+1)Y ⇤✓

−
S(kX0+1)(kX⇤+1)Y ⇤✓

u(u+I(kX0+1)Y ⇤✓)

0 kX⇤+1
u

1

C

A
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G =

0

B

@

0 0

1− u
u+I(kX0+1)Y ⇤✓

S(kX⇤+1)Y ⇤✓

u+I(kX0+1)Y ⇤✓

1

C

A

The eigenvalues of G are

(0,
✓SY ⇤(kX⇤ + 1)

✓IY ⇤(kX 0 + 1) + u
)

The largest eigenvalue of G evaluated at the DFE is the basic reproduction

number. ✓SY ⇤(kX⇤+1)
✓IY (kX0+1)+u

evaluated at (SDFE, IDFE) = (Λ+kΛX0

u
, 0) gives the

basic reproduction number:

R0 =
✓ΛY ⇤(1 + kX 0)(1 + kX⇤)

u2
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Additional figures

Absence of toxicant lethality (r = 0)

Figure ES1 shows the predicted outcome of the model in the absence of

toxicant lethality for increasing toxicant exposure Q. Setting the parameter

⇠1 = 0 means that there is no direct lethality-causing toxicant effect. Under

this condition, the first stages of the epidemic are similar to those observed

in the original analysis (Fig. 3). However in this scenario, after the host

immune function is destroyed, a new phase III⇤b occurs for all values of

toxicant higher than a critical value. This results in a persistent epidemic

caused by the lack of direct lethality within the toxicant, and increasing

the toxicant further has no effect on the epidemic. In this case the basic

reproduction number increases to a maximum value and remains constant

for all further exposure.

Aggressive toxicant lethality (⇠1 relatively larger than ⇠2)

Figure ES2 shows the stages of the epidemic for increasing toxicant ex-

posure Q, but for a relatively greater lethality effect compared to that of the

sub-lethal immunosuppressive effect. This condition results in the population

becoming highly infected even at low values of toxicant exposure. This oc-

curs because of the aggressive lethality of the toxicant causing the within-host

parasite density to reduce before the immune function. These later phases of

the epidemic (III⇤, IV and V ) all correspond to the phases in the previous

simulation (Fig. 3), so we can think about these results as sub-dynamics of
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the original phases. This shows that in general the infective phases of the

population dynamics increase as the toxicant exposure increases, regardless

of the parameter conditions.
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Figure ES1: The predicted three phases of an infected population under increasing toxicant
stress Q with no direct lethality of the toxicant ⇠1 = 0. Starred phases (II∗ and III∗b)
represent the outbreak of infection where R0 > 1. The individual remains highly infective
in the absence of toxicant lethality. Parameters taken from Table 1 but with ⇠1 = 0.
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Figure ES2: The predicted three phases of an infected population under increasing toxicant
stress Q with a relatively aggressive lethal effect of the toxicant ⇠1 > ⇠2. Starred phase
III∗ represents the outbreak of infection where R0 > 1. The individual is highly infective
to begin with and then the aggressive toxicant effect removes the within-host parasite
load which reduces the chance of infection at the population level. Parameters taken from
Table 1 but ⇠1 = 3, ⇠2 = 2 and ✏ = 3.

Dependence of R0 on Q and k

Here we plot the dependence of the basic reproduction number R0 on Q

and k (Figure ES3). Since k sets the sensitivity of the relative effect of host

mortality, and appears in the derivation of R0 twice, we plot the relationship

between these parameters in 3D space. Here we see that k determines the
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rate at which R0 reaches a maximum, and the subsequent rate at which R0 is

reduced. Note that this maximum value also depends on the parasite density

Y ⇤.

Figure ES3: The dependence of R0 on toxicant exposure Q and relative effect of host
mortality k
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Parameter dependence

In the within-host system, the parameter set (�, ✏, �,!) determine the

within host dynamics when the immune system is depleted before the host is

dead under the assumption ⇠2 > ⇠1. We ran simulations around this param-

eter set to determine the universal behaviour of the model. We found that

in the within-host system, three such possibilities exist for any combination

of parameters:

• The within-host parasite density is maximised at an intermediate level

of toxicant Q and is equal to 0 when Q = 0. An example of such a

parameter set is (�, ✏, �,!) = (0.5, 0.5, 0.2, 1).

• At Q = 0, the within-host parasite density is non zero. An exam-

ple of such a parameter set close to the above set is (�, ✏, �,!) =

(0.25, 0.5, 0.2, 1).

• The within-host parasite density is equal to zero when Q = 0 and

remains at zero regardless of Q. This represents the region under which

a parasite infection is not feasible. An example of such a parameter set

close to the above set is (�, ✏, �,!) = (0.75, 0.25, 0.4, 1).

Given these three different possibilities for the within-host dynamics, we

run further simulations to examine the effects of parameter dependence on

between-host dynamics. For the between-host parameter set (u,Λ, ✓, k) we

set the within-host parameter set (�, ✏, �,!) equal to the above 3 options.
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This ensures that we examine each possibility for a range of parameter

space. We vary u ∈ (0.01, 0.21), Λ ∈ (0.001, 0.101), ✓ ∈ (0.01, 0.51) and

k ∈ (0.1, 2.1). This ensures we see the different dynamical behaviour of the

model under different parameter combinations.

(0.01,&0.001,&0.01,&0.1) (0.01,&0.001,&0.01,&2.1) (0.01,&0.001,&0.51,&0.1) (0.01,&0.001,&0.51,&2.1)

(0.01,&0.101,&0.01,&0.1) (0.01,&0.101,&0.01,&2.1) (0.01,&0.101,&0.51,&0.1) (0.01,&0.101,&0.51,&2.1)

(0.21,&0.001,&0.01,&0.1) (0.21,&0.001,&0.01,&2.1) (0.21,&0.001,&0.51,&0.1) (0.21,&0.001,&0.51,&2.1)

(0.21,&0.101,&0.01,&0.1) (0.21,&0.101,&0.01,&2.1) (0.21,&0.101,&0.51,&0.1) (0.21,&0.101,&0.51,&2.1)

The sensitivity of the between-host system with respect to the parameter set (�, ✏, �,!) =
(0.5, 0.5, 0.2, 1), for varying (u,Λ, ✓, k).

As in the main text, Q is on the x axis, and the density is on the y axis.

Each figure has identical within-host dynamics and are scaled according to

the between-host dynamics. In the case of intermediate within-host parasite

density at (�, ✏, �,!) = (0.5, 0.5, 0.2, 1), the only possible between-host dy-

namics are either no between-host infection, or the usual 5 phase epidemic

we see in the main text, where the epidemic is maximised at an intermediate
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Q.

(0.01,&0.001,&0.01,&0.1) (0.01,&0.001,&0.01,&2.1) (0.01,&0.001,&0.51,&0.1) (0.01,&0.001,&0.51,&2.1)

(0.01,&0.101,&0.01,&0.1) (0.01,&0.101,&0.01,&2.1) (0.01,&0.101,&0.51,&0.1) (0.01,&0.101,&0.51,&2.1)

(0.21,&0.001,&0.01,&0.1) (0.21,&0.001,&0.01,&2.1) (0.21,&0.001,&0.51,&0.1) (0.21,&0.001,&0.51,&2.1)

(0.21,&0.101,&0.01,&0.1) (0.21,&0.101,&0.01,&2.1) (0.21,&0.101,&0.51,&0.1) (0.21,&0.101,&0.51,&2.1)

The sensitivity of the between-host system with respect to the parameter set (�, ✏, �,!) =
(0.25, 0.5, 0.2, 1), for varying (u,Λ, ✓, k).

In the case of a non-zero parasite density at Q = 0 at (�, ✏, �,!) =

(0.25, 0.5, 0.2, 1), the only possible between-host dynamics are either no between-

host infection, or the usual 5 phase epidemic we see in the main text, where

the epidemic is maximised at an intermediate Q. In addition we see a

third qualitative outcome where the between-host infection is present at

Q = 0, which corresponds to the figure starting in phase III⇤, and continu-

ing through phases IV and V . So we may think of these as sub-dynamics of

the original 5 phases.
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(0.01,&0.001,&0.01,&0.1) (0.01,&0.001,&0.01,&2.1) (0.01,&0.001,&0.51,&0.1) (0.01,&0.001,&0.51,&2.1)

(0.01,&0.101,&0.01,&0.1) (0.01,&0.101,&0.01,&2.1) (0.01,&0.101,&0.51,&0.1) (0.01,&0.101,&0.51,&2.1)

(0.21,&0.001,&0.01,&0.1) (0.21,&0.001,&0.01,&2.1) (0.21,&0.001,&0.51,&0.1) (0.21,&0.001,&0.51,&2.1)

(0.21,&0.101,&0.01,&0.1) (0.21,&0.101,&0.01,&2.1) (0.21,&0.101,&0.51,&0.1) (0.21,&0.101,&0.51,&2.1)

The sensitivity of the between-host system with respect to the parameter set (�, ✏, �,!) =
(0.75, 0.25, 0.4, 1) for varying (u,Λ, ✓, k). No between-host epidemic is possible.

Finally we examine the possibility that the within-host parasite density

remains at zero regardless of Q at (�, ✏, �,!) = (0.75, 0.25, 0.4, 1). Here we

see that the absence of within-host infection corresponds to the absence of

between-host infection, regardless of between-host parameter choice.

To summarise, there are three possible outcomes for the between-host

dynamics regardless of parameter choice. These are

• No between-host infection (R0 < 1), which depending on the level of

immunity are sub-dynamics of the original 5 phases (phases I and IV ).

• Between-host infection is maximised at an intermediate toxicant expo-
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sure, with 5 epidemic phases.

• The between-host infection is present at Q = 0, which represents sub-

dynamics of the original 5 phases (phases III⇤, IV and V )

The universal behaviour of the model falls into these 3 categories.

Units

Here we provide the units for the original parameters and the new de-

rived parameters from the non-dimensionalisation process. For each unit of

within-host time (denoted by time0 to signify the different timescale) and

unit of between-host time (denoted by time) we calculate the units for each

parameter as:
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Parameter description Symbol Units
Within-host (before non-
dimensionalisation)
production of within-host cells � cells time0�1

within-host transmission rate � cells�1 time0�1

mortality of within-host cells d time0�1

direct lethal effect of toxicant r cells time0�1

toxicant exposure Q no dimension
death rate of parasites a time0�1

immune suppression p cells�1 time0�1

production of immunity c cells time0�1

removal of immunity b time0�1

indirect sub-lethal effect of toxicant h cells time0�1

Within-host (after non-
dimensionalisation)
lethal toxicant effect relative to production
of new cells

⇠1 no dimension

sub-lethal toxicant effect relative to produc-
tion of immunity

⇠2 no dimension

mortality of cells relative to removal of im-
munity

� no dimension

mortality of parasite relative to removal of
immunity

� no dimension

transmission and production of cells relative
to removal of immunity

✏ no dimension

suppression and production of immunity rel-
ative to removal of immunity

! no dimension

Between-host
birth rate Λ individuals time�1

between-host transmission rate ✓ individuals�1 time�1

mortality rate u time�1

relative effect of host mortality k no dimension

Table 1: The units for the between and within-host parameters used in the analysis and
simulations of the model.
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