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9 Abstract

10 While the 5:1 rectangular cylinder is a benchmark section, studied extensively, there are limited 
11 experimental studies commenting on any amplitude-dependence of its motion-induced forces. To this goal, 
12 such a cylinder is tested in wind tunnel through a forced vibration protocol for extracting distributed 
13 simultaneous pressure measurements under smooth flow conditions and for different heaving, pitching and 
14 coupled motion amplitudes.  Ordinary flutter derivatives are extracted, and discrepancies due to oscillation 
15 amplitude are scrutinized. Spectral analysis is performed for the developing motion-induced forces, and it 
16 is found that torsional amplitudes above a threshold would increase higher harmonic frequency content.  
17 The phenomenon was also confirmed by means of Probability Density Functions and (PDFs) the Proper 
18 Orthogonal Decomposition (POD) of the unsteady wind force. In order to understand the link between the 
19 observed amplitude dependence and the flow field variation, the movement of the reattachment point on 
20 the cylinder surface is investigated by interpreting statistics of the recorded pressure measurements. The 
21 response in terms of instantaneous angle of attack is proven to be incompatible with respect to 
22 observations, since equal amplitudes of this variable result to different motion-induced forces. 
23

24 Keywords: motion-induced force; 5:1 rectangular cylinders; forced-motion tests; spectral analysis; 
25 statistical analysis

26

27 1. Introduction

28 Due to the fundamental geometry of rectangular cylinders with aspect ratio of 5:1, a great number of 
29 researches have been conducted concerning their aerodynamic properties. Under the framework of 
30 BARC (Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder, Bartoli et al, 2008), Bruno et 
31 al (2014) investigated  aerodynamic forces, their spanwise correlations, and their sensitivity to flow 
32 unsteadiness have all been investigated through wind tunnel tests and/or Computational Fluid 
33 Dynamics (CFD) simulations. Namely, Matsumoto et al (2001) tried to explain the mechanism of 
34 highly coherent structures in surface pressures, for the spanwise direction, through stationary wind 
35 tunnel tests. They found that the coherence of the aerodynamic force is higher than that of the 
36 approaching flow, and stressed that the pressure fluctuations at a position slightly upstream than the 
37 reattaching point would critically influence the evaluation of the buffeting force.  For estimating the 
38 reattachment point location, pressure data without any flow field visualizations were employed.  Le et 
39 al (2009)) extended the work by studying the temporal-spectral coherent structures of the wind 
40 pressures using both Fourier and wavelet analysis. Similarly, statistical characteristics of pressures on 
41 the stationary 5:1 rectangular cylinder in both smooth and turbulent flow were summarized 
42 (Ricciardelli and Marra, 2008). 

43 Besides the research on stationary models, results from oscillating rectangular cylinders are necessary 
44 to shed light on the characteristics of the motion-induced force components. The state of motion 
45 cannot be fully controlled in free vibration tests, so researchers have adopted forced-vibration tests to 
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46 better investigate aeroelastic characteristics. As in the case of classical flutter-induced motion on 
47 elongated rectangular cylinders(B/D=25, with B the cross section width and D the depth facing the 
48 flow), the post-critical flutter response is characterized by large amplitude oscillations, especially in 
49 terms of rotational component (Pigolotti et al, 2017). Information solely on the displacement response 
50 of a model could not contribute significantly to the understanding of the complex aerodynamics at the 
51 micro scale (i.e. separation and vortex formation processes); therefore additional measurements 
52 should be conducted on the pressure field. Beyond a few forced motion tests for 5:1 rectangular 
53 cylinders, pressures of rectangles with aspect ratio of 6.67:1 under imposed heaving and small 
54 pitching motion were measured in both smooth and turbulent flow (Haan et al, 2016). The motion-
55 induced forces were investigated through the ordinary flutter derivatives’ theory (Scanlan, 1978). By 
56 combining and comparing the pressure amplitudes and the phase lag between pressures on the top 
57 surface and the displacement, changes of flutter derivatives were tracked back to a turbulence-induced 
58 increment of the curvature of the separated shear layers and the upstream movement of the 
59 reattachment point. Compared with Haan et al’s research, Noda et al (2003) investigated the 
60 amplitude effect on flutter derivatives of very thin rectangular cylinders with B/D=13 and 150.  A2* is 
61 strongly affected by the torsional amplitude; this was attributed to the movement of the flow 
62 separation on the cylinder surface. In principal, flutter derivatives are based on the combination of the 
63 small-amplitude hypothesis with the aeroelastic-force linearization.  However, several researchers 
64 during wind tunnel tests of particular bridge decks have observed wind forces consisting of high order 
65 motion harmonics (Diana et al, 2008; Falco et al, 1992; Lee and Su, 2015; Mannini et al, 2016). This 
66 implies the existence of nonlinearity in motion-induced forces and, at some level the invalidation of 
67 the flutter derivative notion. Such nonlinear characteristics were considered in different models, 
68 which were applied to flutter response predictions. Next work on the nonlinearity of  motion-induced 
69 forces was carried out through CFD analyses, particularly for flat plate and H-sections (Lin and Haili, 
70 2013; Tang, 2015). For these cases, a secondary vortex has been identified as a potential source of the 
71 nonlinear harmonic content. However, the applicability of this finding to more typical bluff sections, 
72 like a 5:1 rectangle, needs to be verified with wind tunnel tests.

73 Clearly, researchers have long identified that flutter derivatives are amplitude dependent, with several 
74 publications having reported such views (Chen et al, 2005; Diana et al, 2004; Kareem and Wu, 2016; 
75 Noda et al, 2003; Sarkar et al, 2009; Washizu et al, 1978; Wu et al, 2013). The goal of the present 
76 research is to investigate experimentally and describe in more detail any amplitude effects on the 
77 motion-induced forces of a 5:1 rectangular cylinder. Therefore, a forced test rig was designed to 
78 facilitate large amplitude heaving and pitching motions of sectional models. Typical testing cases, by 
79 means of different motion amplitude ranges, were selected to uncover changing characteristics of the 
80 recorded motion-induced forces. Detailed analysis, considering the in-parallel evolution of motion and 
81 surface pressures, was carried out to reveal the inherent flow mechanism substantiating the apparent 
82 nonlinearity. 

83 In the next section, the details of the wind tunnel test set-up and the experimental cases considered are 
84 described. The characteristics of the motion-induced force are analysed in section 3, while section 4 
85 discusses the inherent flow mechanism linking to the nonlinearity of the aeroelastic forces. Finally, 
86 the amplitude dependence of motion-induced forces on 5:1 rectangular cylinders is summarized, 
87 trying to propose explanations and extensions associated with a possible flow mechanism.

88 2. Wind tunnel tests 

89 2.1 Experimental set-up

90 These wind tunnel tests were conducted in the second test section of the XNJD-1 wind tunnel, a 
91 closed-circuit, low-speed wind tunnel located in the Southwest Jiaotong University, China. The test 
92 section has width and height of 2.4m and 2m, respectively. The wind speed can be adjusted from 1m/s 
93 to 45m/s. The quality of the flow field is very stable, and the longitudinal and transversal turbulence 
94 intensity of the empty wind tunnel is less than 0.5% on average according to its performance report 
95 (Zhou et al, 2003). The rectangular model used in the forced motion tests is the same as the one 
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96 mentioned in Li et al (2016). The model is made of glass fibre reinforced by transverse ribs to achieve 
97 very sharp edges and smooth surfaces. It has a depth, D, of 0.1m, a streamwise width, B, of 0.5m and 
98 a span, l, of 1.5m. Screws were used to fix the top face of the model in place, for allowing the 
99 installation of pressure taps and connection tubes. The blockage ratio at zero angle of attack is 

100 approximately 3.1%.  Two identical end plates (0.8m wide and 0.265m high) are installed on both 
101 sides of the cylinder to enable a close to bi-dimensional flow filed.

102
103 Fig. 1 Partial view of XNJD-1 wind tunnel

104 The distribution of pressure rings and pressure taps in one section is shown in Fig. 2. Although there 
105 are 7 rings of pressure taps along the model, only the pressure ring D near the middle of the cylinder 
106 is chosen for analysis. Referring  to previous research (Xiong, 2017), spanwise correlation 
107 coefficients were found to increase at larger oscillation amplitudes. Therefore, albeit such test has not 
108 been carried out in the present study, the measurements on the middle pressure ring may be 
109 considered sufficient for inferring the amplitude dependences of the motion-induced forces.

110 The pressure measurement system shown in Fig. 3 is the type DSM 3400 Scanivalve combined with 
111 the ZOC 33/64PxX2 pressure measuring module, which has 64 sensors to measure the pressure time 
112 histories. The length of the pressure tubes were all made 0.2m to ensure good frequency response 
113 characteristics (Cunming, 2007). The recording time and sampling frequency were set to 64s and 
114 128Hz respectively.

115

116 (a)
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117

118 (b)
119 Fig. 2 (a) Layout of the pressure ring on the model (mm) (b) Layout the pressure taps in one section (mm) 

120

121 A schematic diagram of the forced motion test rig is shown in Fig. 4, while its detailed description can 
122 be found in (Li et al, 2016). Some improvements have been made so that torsional amplitude can 
123 range from 0.1° to 45° and the heaving amplitude could span from 1mm to 200mm. The driving 
124 frequency varies from 0.1Hz to 3Hz. Also, coupled motion of pitching and heaving with different 
125 phase lag can be achieved.  The displacement of the model was measured with two laser displacement 
126 sensors (Micro-Epsilon optoNCDT1401).  The sensors measured the displacement of the front edge 
127 and the midpoint at pressure ring D. The model tested is shown in Fig. 5.  In the case of motion with 
128 only pitching component, displacements are directly transformed into a rotation angle. 
129 Synchronization of pressure and displacement sampling was achieved by a software trigger of both 
130 measuring systems; this reaches a time delay below 5ms. Therefore, phase lags between pressure and 
131 displacement induced by initiation errors could be neglected.

Fig. 3 DSM 3400 pressure measurement system Fig. 4 Schematic diagram of forced motion test rig 

Fig. 5 Forced motion wind tunnel test along with

pressure measurement
Fig. 6 Cobra probe for measuring wind speed
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132 The velocity of the incoming flow was measured using both a TFI Cobra Probe (shown in Fig. 6 ) and 
133 a Pitot tube placed at 2m distance in front of the model.

134 2.2 Testing cases

135 Compared with previous researches (Haan et al, 2016; Li et al, 2016; Sarkar et al, 2009), the cases of 
136 large amplitude  single pitching and single heaving motion, as well as coupled motion, were 
137 considered in this test campaign . The amplitude of single pitching motion 0 ranges from 2° to 16°, 
138 while the single heaving amplitude h0 ranges from 3mm to about 27mm (corresponding to h0/B from 
139 0.6%to 5.5%). In this step, no phase lag between heaving and pitching motion was exerted on the 
140 coupled motion tests. The heaving amplitude of 16.5mm is combined with 4 different values of 
141 pitching amplitudes (2°, 5°, 10° and 14°). According to the definition of reduced wind velocity 
142 Ur=U/fB, any set value can be achieved by varying both U and/or f, i.e. the incoming flow velocity 
143 and forced motion frequency. Considering the limitations of the apparatus, the oscillation frequency 
144 was set between 1Hz and 2.5Hz and wind velocity ranged from 7.5m/s to 15m/s. Thus, reduced wind 
145 velocities between 6 and 32 were accomplished. Pressure distributions of the stationary cylinder at 0° 
146 angle of attack in all tested wind velocities were also measured for comparison purposes.

147 The whole tests are performed in Reynolds number (Re=UD/v, with D denotes the depth of the model) 
148 range of 5×104 ~1 ×105.  For the 5:1 rectangular cylinder, the frequency of vortex shedding is given 
149 by a Strouhal number (St=fvD/U) of St=0.11, which is rather insensitive to Reynolds number effects 
150 (Schewe, 2013). This translates to vortex shedding frequencies of 1.1*U Hz. The value of wind 
151 velocity and forced motion frequency in the experiment was selected in order to foster the separation 
152 of the vortex- and motion-induced force components. 

153 3. General characteristics of motion-induced force

154 3.1 Extraction of motion-induced forces

155 Having surface pressures along the cylinder, lift, drag and moment exerted on the model could be 
156 derived through integration assuming a full spanwise correlation. Drag, for 5:1 rectangular cylinders 
157 shows different characteristics from lift and moment (Xu et al, 2016),  with the 2nd order harmonic 
158 being able to dominate the spectrum of its motion-induced part.  A detailed investigation of the 
159 motion-induced drag would also require forced-motion capability in the along-wind direction, which 
160 the current set up cannot enable. Thus, any drag related references are excluded from any further 
161 discussions within the article. 

162 The wind force in general is the sum of mean ( ) and fluctuating components. The fluctuating F

163 components consist of vortex-induced (Fv), motion-induced (Fse) and high-frequency noise (Fnoise) 
164 force counterparts

total v se noiseF F F F F    (1)

165 For these test cases, the mean wind force could be easily removed by subtracting any mean offsets, 
166 while motion-induced force can be extracted by adopting a low pass filter with minimum phase 
167 distortion. As shown in Fig. 7, the broadband vortex-induced part alongside the high-frequency noise 
168 can effectively be removed from the Power Spectral Density (PSD) of lift after the filtering process 
169 (low pass frequency at 15Hz).  The broadband character of the vortex shedding associated lift is 
170 thought to surface due to the distorting interactions with the imposed low frequency motion 
171 (Matsumoto et al, 2005).
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(b) Motion-induced lift and associated PSD
Fig. 7 PSD of lift force (Ur=12, single heaving,  motion frequency 2.5Hz)

172 3.2 The amplitude dependence of flutter derivatives

173 Traditionally, flutter derivatives are used to model the motion-induced force for bridge decks and 
174 bluff sections.  With the motion-induced force extracted from section 3.1, the flutter derivatives (Ai

*, 
175 Hi

*,i=1~4) could be derived easily referring to the theory of Scanlan (1978) through the simultaneous 
176 records of the displacement time histories. The motion-induced lift, , and moment, , at time t seL seM

177 are,

* * 2 * 2 *1
( ) (2 ) ( ) ( ) ( ) ( )

2se 1 2 3 4

h B h
L t U B KH K KH K K H K K H K

U U B

   
    

 

 
(2)

2 2 * * 2 * 2 *1
( ) (2 ) ( ) ( ) ( ) ( )

2se 1 2 3 4

h B h
M t U B KA K KA K K A K K A K

U U B

 
 

    
 

 
(3)

178 where  is the air density, is the pitching motion,  is the heaving motion, K is the reduced  h
179 frequency and overdots represent the time derivative. The reduced frequency can be calculated by, 
180 K=2fB/U. 
181 For the single pitching and heaving motion cases, the torsional and heaving displacement, respectively, 
182 are harmonic functions with the same frequency f ,

 
( ) cos(2 )0t ft   (4a)

 
( ) cos(2 )0h t h ft (4b)

183

Vortex-induced part
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203 free vibration results on A2
* and A3

* at the initial amplitude of 0=1.72° are close, yet not identical, to 
204 Matsumoto’s and are omitted.

205 Fig. 9 shows flutter derivatives at different pitching amplitudes from 2° to 16°. It can be seen that H2
* 

206 and H3
* are relatively insensitive to amplitude effects. However, the trend of A2

*
 and A3

*
 versus 

207 reduced wind velocity is clearly amplitude dependent. This is similar to the findings for thin 
208 rectangular cylinders (Noda et al, 2003), where the A2

*
  is strongly affected by torsional amplitude. 

209 Similar trends can also be verified by extracted flutter derivatives in full-scale for a real instability-
210 prone bluff bridge (Nikitas et al, 2011).
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211 Fig. 9 Flutter derivatives of 5:1 rectangular cylinder under different amplitudes of pitching motion

212 Compared with Matsumoto’s results, green square dots in Fig. 9, flutter derivatives for similar 
213 torsional amplitude in these experiments fall within an acceptable distance if one considers the 
214 difference of the associated setups in terms of turbulence intensity, Reynolds number and pressure tap 
215 arrangements. Particularly for turbulence intensity variations, there is a marked influence of this 
216 variable on flutter derivatives (Haan Jr, 2000). The present experiments are also performed in a larger 
217 testing section of a closed circuit wind tunnel, which differs to Matsumoto’s (blockage 3.1% here 
218 against >4%). In any case, with the focus herein being the relative effect of forced amplitude on flutter 
219 derivatives, and with trends being similar to both studies, results are considered both consistent and 
220 sufficient. 

221 For both A2
* and A3

*, lower absolute values are found for higher amplitude torsional motion at the 
222 same reduced velocities. According to Eq. (6a), the changing of flutter derivatives is caused by the 
223 variations of M0/0 and of sinM. Fig. 10 shows the cosine and sine values of the phase lag M when 
224 0=2° and 0=16°. As the difference for cosM and sinM are not significant for these two far apart 
225 torsional amplitudes, the decrement of M0/0 would contribute more to the lower value of A2

* and A3
*. 

226 As a series of reduced wind velocities were tested in this study, the amplitude dependence will be 
227 only showcased from this point onwards for the case of a single reduced wind velocity of Ur=6. 
228 Results are similar also for other Ur values, which are not presented herein for the sake of brevity.
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229 Fig. 10 (a) phase lag (b) cosine and (c) sine value of phase lag between motion-induced moment and 
230 displacement

231  

232 3.3 Spectral characteristics of motion-induced forces

233 Based on the discussion in the previous section, the FFT technique is adopted to investigate the 
234 spectral properties of the motion-induced lift and moment for the 5:1 rectangular cylinder when in 
235 harmonic motion. In that case, the critical condition where Scanlan’s linearized assumption (single 
236 harmonic input resulting single harmonic output) is applicable could be found. For the simplicity of 
237 the following discussion, the motion-induced lift and moment are transformed into lift and moment 
238 coefficients by,

21
/ ( )

2L seC L U B (8a)

2 21
/ ( )

2M seC M U B (8b)

239 For comparison purposes, the PSDs of motion-induced lift and moment coefficients (at Ur=6, 
240 Re=5×104) are normalized by their variance. As shown in Fig. 11, the 1st order harmonic (same 
241 frequency as the motion frequency fh=2.5Hz) dominates the spectra of motion-induced lift and 
242 moment coefficients, regardless of heaving amplitude. The increment of the heaving amplitude would 
243 also increase the PSD amplitude at the motion frequency coordinate. There is no higher order 
244 harmonics in the PSD of heaving cases, indicating that the Scanlan’s assumption mentioned earlier 
245 applies without any question.
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Fig. 11  PSD of heaving motion-induced (a) moment and (b) lift coefficient (Ur=6)
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246 Differently from the heaving case, the PSDs of motion-induced lift and moment coefficients under 
247 single pitching motion show a different pattern. Higher order harmonic components begin to appear in 
248 the relevant PSDs. Actually, the 3rd order component is stronger than the 2nd order one. For the PSD of 
249 motion-induced moment, the amplitude of each harmonic increases with the amplitude of pitching.  
250 Namely, the 2nd and 3rd harmonics of motion-induced moment coefficient at 0=8° and 14° are at the 
251 same, substantially higher than the one at 0=2, level.  This is also the case for the 3rd harmonics in 
252 motion-induced lift. 

253 Referring to the concept of total harmonic distortion (THD) (Fuchs and Masoum, 2011), the energy 
254 ratio is proposed as in Eq. (9)  in order to quantify the influence of oscillation amplitude on higher 
255 harmonics. This writes as, 

2

1
2

( )
100%

i

i

f

Ri
f

S f
E df


  (9)

256 where ERi is the energy ratio for ith
 order harmonic, S(f )/2 is the normalized PSD of motion-induced 

257 force coefficient, and f1i and f2i are lower and upper frequencies fully encompassing the harmonic 
258 component of interest. 

259
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260 Fig. 13 Effect of amplitude on ERi for motion-induced moment in single pitching case (Ur=6)

261 From Fig. 13, the energy ratio of the 1st order harmonic is decreasing as the pitching amplitude is 
262 increasing. When 0=16°, ER1 reduces to 79.5%, which is nearly 20% less than the ratio at 0=2°.  
263 Obvious 3rd harmonic content (considered at over ERi> 3% ) is observed when the pitching amplitude 
264 is no smaller than 8°. As such, 0=8° can be seen as a threshold value, determining whether 
265 considerable higher harmonic energy distribution is observed in single pitching motion cases. The 
266 decline of energy ratio for the 1st order harmonic could be also behind the decline of A2

*  
 at larger 

267 torsional amplitudes, since M0  in Eqs. (6), (7) is the motion-induced moment at the motion frequency 
268 alone.
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269 When the single pitching and heaving motions are combined, nonlinear characteristics of motion-
270 induced force for coupled motion cases (no phase lag between the two motion components) can be 
271 found. From Fig. 14, the appearance of higher order harmonics is again evident.  Within the 
272 normalized PSD of motion-induced moment coefficient, 3rd order harmonic content is stronger in the 
273 case of larger torsional amplitudes. Conversely, the 2nd order harmonic of both motion-induced 
274 moment and lift coefficients at 0=2° are larger than the ones at 8° and 14°. This is probably the most 
275 interesting aspect owning to the addition of heaving to single pitching cases. Within the PSD of 
276 motion-induced lift coefficient, the larger torsional amplitude would not translate to a higher peak at 
277 the 3rd harmonic coordinate. As seen in Fig. 15, the 3rd harmonic content appearance criterion falls to 
278 0=5° from the earlier 0=8° of single pitching cases, with a subsequent saturation behaviour. All 
279 these observations indicate that the coupled motion cases are rather different, in terms of nonlinear 
280 aspects, to single motion ones requesting for a different treatment and study
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Fig. 15 Effect of amplitude on ERi for motion-induced moment in coupled motion case (Ur=6, h0=6.6mm)

281

282 3.4 Probability density function of motion-induced forces

283 Fig. 16 to Fig. 18 show the PDFs of motion-induced lift and moment coefficients for the 
284 corresponding cases in Fig. 11 to Fig. 14. An indicative Gaussian distribution (in grey dashed line) is 
285 included in each figure for comparison. The lift and moment from equivalent stationary model tests 
286 were also processed into PDFs (in solid blue lines) and are shown in all figures. 

287 In the single heaving case, the PDFs of motion-induced lift and moment coefficient are quite close to 
288 the Gaussian distribution when the heaving amplitude is lower than 6.6mm. As the heaving amplitude 
289 increases beyond 6.6mm, the distributions become bimodal. For the pitching and coupled motion 
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290 cases, the motion-induced lift and moment coefficients are far from the Gaussian distribution, 
291 showing at all times bimodal features. As the higher order harmonics take a larger part in the 
292 ensemble of the motion-induced force, the peak values of the PDFs decrease while also reshaping. 
293 From the comparison of Fig. 16, Fig. 17 and Fig. 18, it can probably be supported that the PDFs for 
294 the coupled motion case are influenced more strongly by the pitching motion, showing qualitative 
295 similarities in their associated evolutions with increasing pitching amplitudes. 

296 Commonly for all motion cases, the increment of amplitudes results to more pronounced bimodality 
297 within the PDFs of motion-induced lift and motion coefficients. Referring to the case of a stationary 
298 5:1 rectangular cylinder (Schewe, 2013), the variation of such lift and moment PDFs should well 
299 represent  different flow patterns around the tested cylinder. Note the non-symmetric character of the 
300 produced PDFs almost at all instances. This finding was previously reviewed by Bruno et al (2014), 
301 see their Section 4.2.2, who quoted as reason for this “unexpected” symmetry breaking phenomenon 
302 testing details beyond possible misalignments of the section model. Such can be the space-wise 
303 inhomogeneity of the flow, the Pitot tube positioning, the finite nature of the time series used during 
304 the calculation of the PDFs and model imperfections (sharp corners, pressure taps). The phenomenon 
305 could as well be an inherent one, reminiscent of the symmetry breaking features appearing in the case 
306 of dynamically tested inclined circular cylinders (Nikitas and Macdonald 2015).

307
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308 Fig. 16 PDF of heaving motion-induced lift and moment coefficient (Ur=6)
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310 Fig. 17  PDF of pitching motion-induced lift and moment coefficient (Ur=6)
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312 Fig. 18 PDF of coupled motion-induced lift and moment coefficient (Ur=6, h0=6.6mm) 

313 4. Pressure distribution and possible flow mechanism 

314 In the previous section, the general characteristics of motion-induced force were analyzed and 
315 summarized. It is found that the pitching motion amplitude has large influence on the motion-induced 
316 force, which is inconsistent with the assumption of Scanlan’s theory.  The amplitude dependence of 
317 motion-induced force has been mentioned by several other researchers, but few of them try to set up a 
318 link between the flow structures and the motion-induced forces of oscillating 5:1 rectangular cylinders. 
319 Noda et al (2003) pointed out that the variation of A2

* with the increment of torsional amplitude is 
320 linked to the movement of the reattachment point of the separated flow when researching on 
321 rectangular cylinders with B/D=13 and 150. So far, few further investigations were reported on this 
322 issue.  As the pressure fluctuation is closely related to the variation of vortex structures on the 
323 cylinder surface, the mean and r.m.s values, spatial-temporal pressure coefficient distribution and 
324 POD mode of pressure coefficients will all be discussed in this part. The pressure is by U2/2 hence 
325 considering pressure coefficients.

326 4.1 Mean and r.m.s distribution of pressure

327 Fig. 19 shows the mean and r.m.s. value of pressure coefficient distribution under different amplitudes 
328 of pitching, heaving and coupled motion, when Ur=6.  The horizontal coordinate x/B (normalized by 
329 the width of the model) represents the relative distance for each tap on the top surface from the 
330 leading sharp corner. The pressure distributions of a stationary rectangular cylinder at 0° angle of 
331 attack of angle in smooth flow are also presented for comparison. CP and CP

’
 stand for the mean and 

332 r.m.s pressure coefficient for the oscillating cases, while the CP0 and CP0
’ stand for the corresponding 

333 stationary cases. 

334 For the pitching cases, the CP and CP
’
 deviate from the stationary one more when the pitching 

335 amplitude increases. The peak of CP’ is increasing and moving towards the leading edge with the 
336 increment of pitching amplitude. The maximum of CP

’ (0=14°) can reach as high as nearly 1.1, 
337 which is much larger than the value of CP

’=0.22 at 0=2°. The local extreme of CP is also increasing 
338 and moving towards the leading edge. One thing to notice is that CP

’ begins to show the increasing 
339 trend in the trailing edge. 

340  In terms of the heaving cases, the CP
 distribution is very close to the stationary case while CP

’ is 
341 higher than the stationary one with the similar trend across the top surface. For the coupled motion 
342 case, the pattern of CP and CP

’
 distribution follows the same pattern as the pitching case. The 

343 combination of heaving motion has lowered the negative mean pressure coefficient. 

CM/CM’CL/CL’
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Fig. 19  Pressure coefficient distribution on the top surface of the rectangular cylinder under 
different oscillation amplitude  (a) pitching motion (b) heaving motion (c) coupled motion 

h0=6.6mm

344 Usually, the flow would separate in the leading edge corner of the bluff body. The 5:1 rectangular 
345 cylinder falls into the range 3.2<B/D<7.6 for which the free shear layers would reattach to the trailing 
346 edge periodically in time and form a regular vortex street in the wake  (Nakamura et al, 1991; Parker 
347 and Welsh, 1983; Stokes and Welsh, 1986). The position of the reattachment point (xR, the distance 

(a)

(b)

(c)
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348 from the leading edge) can be determined by PIV techniques or smoke and/or oil flow wind tunnel 
349 tests, which can visualize the flow. It has been verified that the mean flow reattachment point lies 
350 between the position where there is a peak in the r.m.s. of the pressure coefficients and a peak in the 
351 mean pressure (Robertson et al, 1978). Due to the lack of any more detailed flow visualizations, the 
352 reattachment point at the top surface of the section was herein assumed to coincide approximately 
353 with the mid distance between the peak of the mean and the r.m.s. of the pressure coefficients. This is 
354 close to what Mannini et al (2017) essentially proposed in their research (using the apparent peaks of 
355 the mean pressure coefficient only). With these in mind, the position of the mean reattachment point 
356 under different oscillating cases can be extracted as in Fig. 20. 

0=14°
0=8°

0=2°

h0=16.5mm
h0mm
h0mm

  x/B

(×100%)
0 10 20 30 40 50 60 70 80 90 100

    x/B

(×100%)
0 10 20 30 40 50 60 70 80 90 100

U
U

(a) single pitching and coupled motion cases (b) single heaving cases

Fig. 20 Position of the mean reattachment point on the top surface

357 From Fig. 20, it can be seen that the increase of pitching amplitude would make the reattachment 
358 point move towards the leading edge. Addition of the single heaving motion case has no contribution 
359 to the movement of the mean reattachment point. However, the value of xR is quite close regardless of 
360 the heaving amplitude (varying from 3mm to 16.5mm).  The early reattachment on the top of the 
361 surface would provide possibility for the further evolvement of the vortex, which may be related to 
362 the higher harmonics in the PSD.  The reattached vortex may separate and reattach to the top surface 
363 again. Comparing with the flow visualizations reported in Mannini et al (2010), the sharp increase of  
364 fluctuating pressure immediately before the trailing edge, observed for the 0=8° and 14° in single 
365 pitching and coupled motion case, is an evidence of a small counter-rotating secondary bubble.   This 
366 phenomenon was also observed in the CFD investigation of flat plate (B/D=200) under large pitching 
367 amplitudes in the paper of  Tang (2015). Similarly, the 5:1 rectangular cylinder under large amplitude 
368 pitching motion would present a secondary mechanism of vortex shedding. 

369 4.2 Spatial-temporal distribution of pressure coefficients

370
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374 Fig. 21 Spatial-temporal CP distributions around the surface of the rectangular cylinder at Ur=6. (a) h0=6.6mm  
375 (b) 0=14° (c) h0=6.6mm 0=14° (positive pressure is drawn inside the cylinder, while negative outside of it)

376 To take a closer look at the surface pressure variation on the rectangular cylinder, 8 time steps are 
377 selected in an averaged single period of motion. Referring to practice on circular cylinders(Nikitas 
378 and Macdonald, 2015), the instantaneous pressure distribution at each time step was calculated from 
379 the ensemble averaging over many cycles. The spatial-temporal distribution of pressure coefficients 
380 for selected motion cases are reported in Fig. 21.  The phase averaged distributions of single heaving 
381 (h0=6.6mm), single pitching (0=14°), and coupled motion cases (h0=6.6mm and 0=14°) at Ur=6 are 
382 presented respectively in (a), (b) and (c). The phase averaged motion-induced lift and moment 
383 coefficients are also shown for comparisons and in support of the previously presented PDFs.

384 From Fig. 21 (a), the pressure distribution around the cylinder shows little variation during the whole 
385 process of the heaving motion. With the nearly symmetric distribution of pressure about the long axis 
386 of the cylinder, it can be seen that vortices keep developing around the cylinder in one pattern. This 
387 gives little chance for the occurrence of a secondary vortex shedding mechanism, substantiating 
388 probably the lack of higher harmonics observed in Fig. 11.  One should also note the non-uniform lag 
389 between the motion and the lift and moment coefficients. When the cylinder is pitching at 0=14°, the 
390 phase averaged pressure distribution varies substantially at each time step within a motion cycle.  The 
391 flow separates at the leading edge corner and reattaches on both the top and bottom surface of the 
392 cylinder, because a local maximum for the pressure coefficient is detected on both sides. Local 
393 maximum of  CP  appearing near the trailing edge is an indication of a secondary vortex process, as 
394 previously noted in the the flow visualization of rectangular cylinders with a positive angle of attack 
395 (Mannini et al, 2010). The position of the reattachment point is also moving forward and backward on 
396 the surface of the cylinder, which implies complex vortex development patterns for the oscillating 
397 cylinder. However, the interaction between the flow and the bluff body is influenced by many factors. 

(b)

(c)
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398 Reynolds number and oscillating frequency of the cylinder would both have an effect on the vortices 
399 around the cylinder. This paper focuses on the effects of amplitudes, so that the other effects (e.g. of 
400 frequency) will be discussed in a future paper. 

401 For Fig. 21 (c), the pressure distribution during the oscillating process is similar to the single pitching 
402 case (Fig.21 (b)), something that can be also validated by the similarity in the mean reattachment 
403 point behavior as identified in 4.1. Now it can be noticed that positive pressures appear near the 
404 trailing edge in both sides of the cylinder. Comparing with the single pitching case with similar 
405 pitching amplitude, this could only be caused by the addition of the heaving motion.  This would 
406 reflect a slightly different vortex development pattern, and it could be adopted to explain the 
407 inconsistent spectral characteristics for higher harmonics with respect to the single pitching cases.  

408 Obviously, coupled motion cases would vary with different phase lag between the pitching and 
409 heaving motion. Therefore more comprehensive experimental study considering the phase lag shall be 
410 conducted in the future to reveal the nature of vortex development in the lag-varying coupled motion 
411 cases.

412 4.3 POD mode of the pressure distribution

413 According to sections 4.1 and 4.2, the closer the reattachment point to the leading edge, the more 
414 space there is for vortices to grow continuously. With further development of vortices, a secondary 
415 vortex, which is thought to be related with the generation of higher harmonics in motion-induced 
416 forces, would appear.  The appearance of higher harmonics indicates that energy content spills in 
417 higher order complex variation patterns.  The proper orthogonal decomposition (POD) has gained 
418 recognition for understanding the underlying mechanisms in fluid mechanics (Pigolotti et al, 2014). 
419 So it is herein adopted to analyse the fluctuating pressure (mean part removed) around the rectangular 
420 cylinder in order to investigate the flow mechanisms underlying the variation of motion-induced 
421 forces. 

422 After conducting the POD analysis for heaving, pitching and coupled motion at Ur=6, the distribution 
423 of cumulative energy proportion for 60 modes is shown in Fig. 22. The result from the equivalent 
424 stationary model is also drawn (in solid line) in the figure for comparison. For the heaving motion 
425 case, the energy contribution of the 1st POD mode approaches 10% with little variation regardless of 
426 the heaving amplitude; this value is almost half of the equivalent one in the stationary case. For 
427 pitching, the contribution of the lower POD modes increases considerably when comparing to the 
428 stationary state for both the torsional amplitudes of 8°and 14°. The proportion of the 1st POD mode 
429 for the torsional amplitudes of 2°, 8° and 14° gradually increases from below the stationary case value 
430 to almost double this. 
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(a) heaving motion (b) pitching motion (c) coupled motion h0=6.6mm

431 Fig. 22 Cumulative energy proportion of the POD modes

432 The path of the cumulative energy proportion for the coupled motion case is almost identical to the 
433 pitching motion case, therefore the focus will be put only on the POD modes recovered for the 
434 pitching scenario. In Fig. 23, the first 3 POD modes at 0=2°, 8° and 14° are presented in terms of 
435 their spatial distribution. The mean and r.m.s. pressure distribution at the corresponding torsional 
436 amplitude are also drawn for comparison. It can be seen that, although the mean and r.m.s. pressure 
437 distributions are close to symmetric in all cases (as expected), the 1st order POD modes at all 
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438 amplitudes are of antisymmetric nature. By contrast, the 2nd and 3rd order POD modes are distributed 
439 either symmetrically or antisymmetrically. In particular, the 2nd order POD mode does not have 
440 monotonic behaviour. Its participation fraction rises until the amplitudes becomes 0=8° keeping to 
441 this point an antisymmetric distribution for the top and bottom faces. For 0=14° the participation 
442 contribution reduces marginally and its shape becomes antisymmetric. The behaviour of the 3rd POD 
443 mode is quite similar to the 2nd one, even though the shape for 14° is less asymmetric. The significant 
444 increase of the 1st POD mode participation, differently to the higher modes that slightly vary the 
445 energy regardless of pitching amplitude, should be due to a magnification of the vortex detachment 
446 mechanism for larger angles of attack. The results compare well with previous studies on POD 
447 analyses for 5:1 rectangular cylinders for the case of stationary cylinders (Bruno et al, 2010; Pigolotti 
448 et al, 2014; Ricci et al, 2017). Particularly, the participation fraction values are very close, with 
449 minimal differences that may be associated to turbulence intensity (for the effect of turbulence 
450 intensity see Ricci et al, 2017) and pressure taps layout. 

1st 2nd 3rd mean r.m.s 

0=2°

0=8°

0=14°

451 Fig. 23 First three POD modes and mean and r.m.s. distributions of pressure coefficients at different torsion 
452 motion amplitude (single pitching, Ur=6). The number indicated in each order of POD mode stands for the 
453 relevant participation proportion among all modes.

454

455 4.4 Discussion on the instantaneous angle of attack

456 Referring to the analysis of bridge decks (Diana et al, 2008; Diana et al, 2010), the nonlinear motion-
457 induced force model conforms to the hypothesis that aeroelastic forces are functions of the 
458 instantaneous angle of attack . This means that equal amplitudes of instantaneous angle of attack ( )t
459 would result in the same motion-induced force characteristics. This was validated by Diana et al 
460 (2010) for certain bridge decks, although the conjecture of this being applicable also for the bluff 5:1 
461 rectangular cylinder was never previously assessed.
462

463 Neglecting the turbulence influence of the incoming flow, the instantaneous angle of attack for the 
464 motion cases studied in this paper can be expressed by

1( ) ( ) tan0

b h
t t

U

     
    

 


(10)

465 where θ0 is the initial angle of attack, b is the half-width of the cylinder (i.e. 0.5B), U is the velocity of 

466 the incoming smooth flow, and ,   denote the amplitude of the pitching and heaving time a h
467 derivatives respectively. In the general case of coupled motion, there would be in general a phase lag 
468 ฀ between the pitching and heaving motions, such that the relative heaving motion displacement 
469 could be represented by

( ) cos(2 )0 hh t h f   (11)

470 For the previously described motion cases, the amplitudes of instantaneous angle of attack , ( )t
471 calculated by Eq. (10), are listed in Table 1. 
472
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473 Table 1  Amplitude of instantaneous angle of attack for different cases of motion (Ur=6)

Motion type Motion amplitude Amplitude of  ( )t

h0=3mm 0.36°

h0=6.6mm 0.79°Single heaving

h0=16.5mm (case 2) 1.97°

0=2° (case 1) 2.30°

0=8° 9.18°Single pitching

0=14° 16.01°

0=2° (case 3) 2.78°

0=8° 9.60°

Coupled motion

h0=6.6mm

(=0°) 0=14° 16.42°

474

475 It can be seen that the single pitching motion of 0=2° (case1), single heaving motion of h0=16.5mm 
476 (case 2) and coupled motion of h0=6.6mm, =2° (case3) share very similar amplitudes of  close ( )t
477 to 2°. In 3.3, it was shown that 1st order motion harmonics dominate the spectrum of motion-induced 
478 forces for all of cases 1 to 3, with minimal (case 1, 3) to zero (case 2) higher harmonics. For the PDFs 
479 of these three cases, significant differences can be found depending on whether heaving, pitching or 
480 coupled motion is applied. PDFs of lift and moment for the single heaving motion are close to a 
481 Gaussian distribution, while cases 1 and 3, involving pitching, present patterns closer to a bimodal 
482 distribution. Such differences are most probably linked to different flow patterns.  As a matter of fact, 
483 it was confirmed in 4.1 that the location of the reattachment point varies a lot between case 2 
484 (x/B=0.38)   and cases 1 and 3 (x/B=0.25).  All these differences indicate that the same amplitude of 
485 instantaneous angle of attack would not result to the same characteristics of motion-induced force. 
486 Though not explicitly presented, discrepancies in spatio-temporal pressure distributions and their 
487 associated POD modes (as previously shown for instance in Fig. 21 to Fig. 23) are also found between 
488 these three cases. 

489

490 Fig. 24 Amplitude of instantaneous angle of attack for heaving motion

491 During the experiments, the heaving amplitude ratio h0/B didn’t exceed 5.5%, which corresponds to 
492 very low amplitudes of instantaneous angle of attack , especially when compared to the pitching ( )t
493 motion cases. From Fig. 24, it can be seen that the amplitude of would reach about 14° when ( )t
494 h0/B=25%. With such large values of , the flow field around the oscillating rectangular cylinder ( )t
495 can be conjectured to vary beyond the currently studied heaving cases, giving rise to more complex 
496 phenomena. It should also be mentioned that there was no phase lag considered for the pitching and 
497 heaving motions during the coupled test scenarios.  Evidently more research on the effects of phase 
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498 lag together with larger amplitudes of heaving should be examined in the future to further enlighten 
499 the motion-induced force amplitude dependence proposed and identified herein.

500 5. Conclusion

501 Results of a comprehensive experimental investigation on the effects of motion amplitude on motion-
502 induced forces of a 5:1 rectangular cylinder were presented and discussed within this paper. Key 
503 conclusions deriving from the study include:

504 1) The torsional amplitude has a considerable influence on the flutter derivatives, especially A2
*. 

505 Indicatively, higher torsional amplitudes would lead to lower values of A2
*
 at the same reduced 

506 velocities. 

507 2) Increased high order harmonics of the motion appear within the PSDs of motion-induced lift and 
508 moment. Such behavior would amplify for the single pitching and coupled motion cases, when the 
509 pitching amplitude exceeds 8° and 5° respectively. Variation of the heaving amplitude does not lead 
510 to similar considerable high order harmonic force components. Additionally larger torsional 
511 amplitudes lead the PDF of motion-induced force to acquire bi-modal attributes, thus becoming 
512 associated to different flow patterns.

513 3) By analyzing the mean and r.m.s. of the spatially distributed pressures, it is found that the 
514 reattachment point moves forward to the leading edge on the surface of the cylinder at larger torsional 
515 amplitudes. This would leave more space for vortices to develop, which could also enable the 
516 formation of secondary vortices. Concerning the POD-analysis results, larger torsional amplitudes 
517 drastically change the energy contribution, leading to a “more” organized flow. This may well relate 
518 to the high order motion harmonics appearance in the pitching and coupling pitching-heaving cases 
519 particularly with large pitching amplitudes.  .

520 4)  Equal amplitudes of instantaneous angle of attack do not lead to equal magnitudes of motion-
521 induced forces. As such, in the future more research should be focused on larger amplitudes of 
522 heaving motion and on the phase lag between imposed heaving and pitching motions. 
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