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LETTER Transient LTRE analysis reveals the demographic and trait-

mediated processes that buffer population growth

Adriana A. Maldonado-

Chaparro,1,2,3* Daniel T.

Blumstein,1,4 Kenneth B. Armitage5

and Dylan Z. Childs6*

Abstract

Temporal variation in environmental conditions affects population growth directly via its impact

on vital rates, and indirectly through induced variation in demographic structure and phenotypic

trait distributions. We currently know very little about how these processes jointly mediate popu-

lation responses to their environment. To address this gap, we develop a general transient life

table response experiment (LTRE) which partitions the contributions to population growth arising

from variation in (1) survival and reproduction, (2) demographic structure, (3) trait values and (4)

climatic drivers. We apply the LTRE to a population of yellow-bellied marmots (Marmota fla-

viventer) to demonstrate the impact of demographic and trait-mediated processes. Our analysis

provides a new perspective on demographic buffering, which may be a more subtle phenomena

than is currently assumed. The new LTRE framework presents opportunities to improve our

understanding of how trait variation influences population dynamics and adaptation in stochastic

environments.
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INTRODUCTION

Temporal variation in environmental conditions is a ubiqui-

tous feature of natural systems, with potentially strong effects

on vital rates such as survival and reproduction (Saether et al.

2000; Coulson et al. 2001; Mace et al. 2015; Koons et al.

2017; McDonald et al. 2017; Paniw et al. 2018). In turn, envi-

ronmentally induced fluctuations in vital rates drive stochastic

variation in population growth and fitness (Tuljapurkar 2010).

It is well established that prevailing conditions influence popu-

lation growth through their direct impact on survival and

fecundity, but they also act indirectly by inducing transient

changes in the population stage structure (‘demographic pro-

cesses’) or ontogeny and development of cohorts (‘trait-

mediated processes’). Transient fluctuations in population

structure are important when vital rates vary across different

classes of individual (McDonald et al. 2016); for example a

population may be skewed towards young, non-reproductive

individuals following a year of unusually high recruitment,

leading to reduced population growth. Similar effects can also

be mediated by fluctuations in the distribution of fitness-

linked traits such as body size (Benton et al. 2006); for exam-

ple if poor environmental conditions decrease the body mass

of a cohort, this may reduce their survival and reproduction

in future years (van Benthem et al. 2017). The population

level consequences of such effects are difficult to tease apart

because their impacts are expressed over multiple years and

may involve more than one life-history process (Beckerman

et al. 2003; Van de Pol et al. 2006; Monaghan 2008).

All else equal, variation in population growth reduces the

stochastic fitness of a population (Tuljapurkar 1982), leading

to selection for physiological, behavioural or life-history

strategies that minimise variation in population growth. This

observation has led to the development of the demographic

buffering hypothesis (Pfister 1998). In its most general form,

this hypothesis predicts that the vital rates to which popula-

tion growth is most sensitive will be selected to become the

least variable, leading to a negative correlation between the

population growth rate sensitivity and temporal variance of

vital rate parameters. Despite technical challenges, ample

empirical evidence has accumulated to support this general

prediction (Pfister 1998; Gaillard et al. 2000; McDonald et al.

2017), though it is far from universal (Jongejans et al. 2010).

However, correlational evidence of this kind does not consider

the full array of indirect demographic and trait-mediated pro-

cesses that may mediate demographic buffering. While the

impact on population growth of a particular pathway can be

large, different environmental drivers and pathways may act
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antagonistically to buffer populations from the total effect of

the environment (Tuljapurkar et al. 2009). Moreover, studying

the total (co)variance of vital rates ignores the possibility that

demographic buffering may evolve in response to particular

axes of environmental variation, such as temperature or pre-

cipitation.

The interplay between fluctuating environmental condi-

tions, transient fluctuations in age/stage structure, trait varia-

tion and realised vital rates have only recently begun to be

evaluated (Dahlgren & Ehrl�en 2009; Brooks et al. 2016).

Structured population projection models – including matrix

projection models (MPM; Caswell 2001) and integral projec-

tion models (IPM; Ellner et al. 2016) – are central to this

endeavour (Dahlgren & Ehrl�en 2011). Dissecting the depen-

dence of vital rates on environmental conditions requires

observations across a range of conditions to identify relevant

covariates and characterise functional relationships (Frederik-

sen et al. 2008; Morris et al. 2008). Estimating these relation-

ships is challenging when multiple vital rates are temporally

variable or multiple environmental drivers influence the same

process. These challenges are most easily addressed within

an IPM framework, where information about the trait

dynamics and vital rates, along with the environmental

dependence of these associations, is completely described by

a small set of time-varying regression parameters (Merow

et al. 2014; Rees et al. 2014; Ellner et al. 2016). Each param-

eter is associated with a specific vital rate that can affect the

population in predictable ways. For example the parameters

governing state-dependent survival and fecundity directly

determine population growth rate in a given year. However,

they may also influence the demographic structure of the

population, which will impact on population growth in

future years.

With a parameterised model in hand, the impact of different

sources of variation on annual population growth rate can be

quantified using a life table response experiment (LTRE) anal-

ysis (Caswell 2001). The goal of a random LTRE is to decom-

pose the variance in growth rate into contributions arising

from the temporal (co)variances of model parameters (Brault

& Caswell 1993; Caswell 2001). The standard random LTRE

is based on the (linear) first order Taylor approximation:

Var ~kt

� �

�
X

n

i¼1

X

n

j¼1

Covðhit; hjtÞsisj ð1Þ

where ~kt is the asymptotic growth rate associated with the

year-specific projection kernel, Cov(hit, hjt) is the temporal

covariance of hit and hjt and si is the eigenvalue sensitivity for

parameter hi calculated in the mean kernel (Ellner et al. 2016).

In the presence of small environmental variation, the func-

tional dependence of ~kt on each time-varying parameter is

approximately linear. In reality, the environmental variance is

often large and demographic parameters are nonlinearly

related to population growth rate. To address this challenge,

Rees and Ellner (Rees & Ellner 2009) introduced a Monte

Carlo approach to random LTREs that uses a statistical

model to partition the variance of ~kt. However, this approach

assumes that the population remains close to the stable popu-

lation structure implied by each projection kernel, which

means it does not account for the impacts of transient varia-

tion in trait or (st)age structure.

We show how to construct a Monte Carlo transient LTRE

to address these restrictions. Instead of working with year-spe-

cific asymptotic growth rates ( ~kt), the LTRE partitions vari-

ance in the realised annual population growth rate at time t

(kt) into contributions from the model parameters at different

time lags. This separates the contribution of direct effects that

play out immediately from the indirect delayed drivers of vari-

ation that act through changes in population structure. We

then show how to extend the analysis to partition the compo-

nent contributions from different environmental (e.g. climatic)

factors to these variance components. Capitalising on 37 years

(1976–2012) of individual-based data from a population of

yellow-bellied marmots (Marmota flaviventer), we parameterise

an environmentally driven, stochastic Integral Projection

Model with body mass- and stage-dependent demographic

rates. Individual vital rates and body mass in marmots are

strongly influenced by environmental conditions (Van Vuren

& Armitage 1991; Ozgul et al. 2010; Maldonado-Chaparro

et al. 2015), particularly by winter duration and summer rain-

fall (Armitage 1994, 2014). However, the drivers of variation

in population growth have not been quantified, and nothing is

known about the potential role of demographic buffering in

this system. We use the transient LTRE to quantify the

impact of these drivers and investigate the potential for demo-

graphic buffering in this population.

MONTE CARLO LTRES

Monte Carlo random LTREs

A random LTRE assumes that the time-varying demographic

rates and trait transitions are drawn from a joint probability

distribution. The goal is then to partition the variance in

annual population growth rate associated with the parameters

that govern these processes, hit. In an IPM framework, ran-

dom LTREs are most informative when constructed with

respect to the ‘low level’ regression parameters that define the

vital rate functions – typically the intercepts of generalised lin-

ear models, such that Eðvital rateitÞ ¼ g�1ðhit þ � � �Þ, where g�1

is the nonlinear inverse link function. Monte Carlo random

LTRE analysis proceeds as follows:

Step 1 Simulate a long sequence of realisations of the time-

varying parameters hit, for t = 1, . . ., tmax) from their joint

distribution.

Step 2 Construct the year-specific IPM kernel from the

sampled parameters and compute the asymptotic popula-

tion growth rate implied by that kernel, ~kt.

Step 3 Fit a predictive statistical model to ~kt using the hit
as predictors, and use term-wise predictions from the fitted

model to partition the variance explained by hit.Any pre-

dictive modelling framework could be used in the last step

(Ellner et al. 2016). Using a linear model (LM), the predic-

tive model is ~kt ¼ b0 þ
Pn

i¼1 bihit þ et, where the bi are

regression slopes associated that capture the estimated

(partial) effect of parameter i on ~kt. The corresponding

variance decomposition is then:

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Var ~kt

� �

�
X

n

i¼1

X

n

j¼1

Covðhit; hjtÞbibj þ VarðetÞ; ð2Þ

where ~kt is the asymptotic growth rate associated with the

year-specific projection kernel, Cov(hit, hjt) is the temporal

covariance of hit and hjt and Var(et) is the unexplained vari-

ance. One advantage of using the Monte Carlo random

approach is that the linear model effectively averages parame-

ter sensitivities over their range of variation (Rees & Ellner

2009). The difference between the estimated bi and the sensi-

tivities in eqn 1 arises from nonlinearities in the relationship

between the asymptotic growth rate and model parameters.

Nonlinearities can be accommodated by adopting a more flex-

ible model such as a generalised additive model (GAM). The

model is then ~kt ¼ b0 þ
Pn

i¼1 gi hitð Þ þ et, where gi() is a non-

linear smooth function estimated with the GAM. The corre-

sponding variance decomposition becomes:

Var ~kt

� �

�
X

n

i¼1

X

n

j¼1

CovðgiðhitÞ;gjðhjtÞÞ þ VarðetÞ; ð3Þ

where Cov(gi(hit), gj(hjt)) is now the contribution induced

through the nonlinear impact of the parameters on ~kt, and

Var(et) is the unexplained variance.

Monte Carlo transient LTREs

The Monte Carlo random LTRE introduced by Rees and Ell-

ner (Rees & Ellner 2009) effectively assumes that the popula-

tion is always close to the stable structure implied by each

kernel – the ~kt are the leading eigenvalues of each kernel.

Two simple modifications make it possible to partition contri-

butions arising from transient fluctuations in the stage struc-

ture and trait distributions. First, we replace the eigenvalues

with the realised values of kt from a full simulation of the

population dynamics. These are a function of the current ker-

nel and the current state distribution at each iteration. In a

stationary environment, this distribution is a result of the

prior sequence of time-varying parameters, up to some maxi-

mum lag. The second modification is to include lagged param-

eters in the predictive model for the realised kt to explain the

variance induced by delayed effects. For example the GAM

model underpinning the Monte Carlo LTRE becomes

kt ¼ b0 þ
Pl

k¼0

Pn
i¼1 gikðhiðt�kÞÞ þ et, where hi(t�k) refers to

time-varying parameter i at lag k, and gikðhiðt�kÞÞ is the corre-

sponding estimated smooth function. The variance decomposi-

tion is then:

Var ktð Þ �
X

l

k¼0

X

n

i¼1

X

n

j¼1

Covðgikðhiðt�kÞÞ;gjkðhjðt�kÞÞÞ þ VarðetÞ:

ð4Þ

This decomposition assumes temporal autocorrelation in the

environmental process is negligible (i.e. the hit are iid), because

it only considers covariances across parameters at shared lags.

Autocorrelation could be accommodated by including covari-

ances across parameters at different lags, resulting in a modi-

fied version of eqn 4 with four summations across parameters

and lags.

Decomposing environmental drivers of variation

An environmentally driven IPM can be constructed by includ-

ing environmental covariates in one or more of the underpin-

ning regression models. For example a varying intercept

(generalised) linear model takes the form

E vital rateitð Þ ¼ g�1 hit þ � � �ð Þ, where hit is now defined as

hit ¼ /it þ
Pm

p¼1 apiept; the ept are the values of the time-vary-

ing environmental covariates, api are coefficients that capture

the effect of these covariates on the vital rate and /it are

time-varying intercepts that capture additional variation not

explained by the covariates. Under this model for environ-

mental effects, the linear approximation for the variance of ~kt
expands to:

Var ~kt

� �

�
X

n

i¼1

X

n

j¼1

Cov /it;/jt

� �

þ
X

m

p¼1

X

m

q¼1

apiaqjCov ept;eqt
� �

" #

sisj;

ð5Þ

where si is again the eigenvalue sensitivity for parameter hi
calculated from the mean kernel, and Cov ept; eqt

� �

and

Cov /it;/itð Þ are the temporal covariances between the envi-

ronmental covariates and the unexplained variance terms

respectively. Three factors determine the net contribution of

environmental covariates to ktð Þ: the magnitude of their (co)-

variances, Cov ept; eqt
� �

, the strength of their effects on the

vital rate, api, and the sensitivity of population growth rate to

hit, given by si.

Constructing the corresponding transient Monte Carlo

LTRE will be challenging if the dependences of kt on hit is

nonlinear because this induces a hierarchy of effects that can-

not be additively partitioned. In principle, it is possible to

construct such a decomposition using ideas from nonlinear

path analysis (Scheiner et al. 2000), though this will make the

implementation and interpretation of the decomposition sig-

nificantly more complicated. However, it is straightforward to

construct a transient Monte Carlo LTRE when the depen-

dences of kt on hit is approximately linear. If the environmen-

tal effects are also linear the variance decomposition is

directly analogous to eqn 6:

Var ktð Þ �
X

l

k¼1

X

n

i¼1

X

n

j¼1

Cov /i t�kð Þ;/j t�kð Þ

� �

þ

"

X

m

p¼1

X

m

q¼1

apiaqjCov epðt�kÞ; eqðt�kÞ

� �

#

bibj þ VarðetÞ

ð6Þ

where the bi coefficients are estimated from a transient Monte

Carlo LTRE with respect to only hit, i.e. the total effect of the

unexplained variation (/it) and the environment (ept). If the

environmental effects act nonlinearly, the corresponding

covariance term will instead include the transformed terms,

similar to eqn 4.

Validating and interpreting the LTRE

An advantage a model-based LTRE is that regression diag-

nostics can be used to investigate model adequacy (Rees &

Ellner 2009). We advocate a pragmatic approach, whereby the

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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performance of possible candidate models is evaluated in

terms of R2, regression diagnostics and interpretability. For

example we assumed that the individual terms act additively

and defined our transient LTRE in terms of Var ktð Þ, in order

to remain consistent with the usual linear approximation.

However, it may usually be more appropriate to decompose

the variance of log(kt), because the kernel is a nonlinear func-

tion of the low-level time-varying parameters and the state-

trait distribution at time t depends non-additively on the prior

sequence of environments (Fox & Gurevitch 2000). We also

only included univariate terms, which assume that interactive

effects between parameters are negligible. However, higher

order terms can easily be incorporated and evaluated in terms

of the additional variance explained.

Once a suitable model has been identified, graphical sum-

maries of the g functions (or b slopes) and the distributions

of hit provide a simple way to understand how each term con-

tributes to population growth. The former represent sensitivity

surfaces that account for the immediate (k = 1) or delayed

(k > 1) impact on log(kt), conditional on the other terms in

the model and averaged over the full range of variation in

population structure induced by the stochastic environment.

Finally, the contributions from each term in the (co)variance

term in the LTRE can be rescaled by the total variance of kt
to summarise their relative contributions. For example using

the GAM version of the LTRE in eqn 4, the scaled contribu-

tions are:

Covðgikðhiðt�kÞÞ;gjkðhjðt�kÞÞÞ

Var ktð Þ
ð7Þ

APPLICATION TO YELLOW-BELLIED MARMOTS

Modelling

Our population of yellow-bellied marmots at the Rocky

Mountain Biological Laboratory (RMBL; Colorado, USA;

38°570 N, 106°590 W), has been studied since 1962 (Armitage

2014). We used data collected from all females with known

age, trapped between 1976 and 2012, because detailed local

weather data were available for this period. For every female

individual in the study we estimated its body mass in two cen-

sus points of the growing season: 1 June and 31 August as

described in Maldonado-Chaparro et al. (2017). We used a set

of three climatic variables obtained from the RMBL weather

station (106�59.5880 N, 38�7730 W at 2900 m). Winter mean

temperature and spring mean temperature correspond to the

average daily mean temperature in °C calculated from 1

November of the previous year to 31 March of the current

year, and from 1 April to 31 May of the current year respec-

tively; snow-free date (SF) represents the day of the year when

no snow remained on the ground at the weather station.

We describe the marmot life cycle using a post-reproductive

census (Fig. S1), from the end of the active season (31

August) prior to the main mortality period (hibernation). To

describe the mass- and stage-dependent demography we fitted

(generalised) linear mixed effect models ((G)LMM;

Appendix S1) to describe the dependence of mortality and

reproductive probability on body mass, the mass-dependent

growth dynamic changes across development due to ontogeny

and to phenotypic plasticity and the body mass probability

distribution of juveniles weaned. The regression models

describing the mass- and stage-dependent demography showed

a positive relationship between: (1) the probability of survival,

the probability of reproduction and weaned litter size with

body mass; (2) offspring body mass and mother’s body mass

in August; (3) growth and body mass in August the previous

year and body mass in June and (4) body mass in June and

body mass in August (Fig. S2; parameter values and fitted

functions in Table 1).

We used an information-theoretic model-averaging

approach (Burnham & Anderson 2002) to quantify the cli-

mate effects on each demographic and trait transition func-

tion. The climate model selection suggested differences in the

effects of environmental factors on each of the vital rates

(Table S1). Variation in winter temperature was associated

with changes in both survival and reproductive probability,

but recruitment (i.e. the number of individuals that a non-

juvenile individual weans) did not show a response to any of

the environmental variables. Mass changes during the winter

and summer were mainly associated with snow-free date and

winter temperature respectively. Whereas, offspring mass in

August was mainly influenced by spring temperature.

On the basis of these demographic and trait transition func-

tions, we constructed a density-independent, stage-structured,

stochastic IPM (Rees & Ellner 2009; Rees et al. 2014). The

model describes the temporal dynamics of the population den-

sity and the distribution of body mass (z) in juvenile (J) and

non-juvenile (A) stages. Our model assumes that: (1) the

demography of individuals are determined only by their body

size and stage; (2) birth and death rates in the population is

density-independent (Oli & Armitage 2003; Armitage 2014);

(3) all individuals the population expressed the same plasticity

in response to environmental change; (4) the body size growth

dynamics of individuals are captured by two functions

describing the growth of juveniles and non-juveniles and (5)

the probability of an individual being alive and available for

capture at time t given the individual was alive at t � 1 (i.e.

apparent survival) reflects the true survival probability of an

individual (i.e. the probability of being alive at time t given

the individual was alive at t � 1), although it underestimates

the true survival due to emigration (Ozgul et al. 2009). We

used a two-step Monte Carlo resampling approach (Metcalf

et al. 2015) to simulate the stochastic population dynamics

while preserving the between-year correlations in vital rates.

The structure of the IPM and the Monte Carlo resampling

approach is described in Appendix S2.

Results: Transient LTRE

We decomposed the variance in annual population growth

using both linear (LM-) and generalised additive (GAM-)

transient LTREs. Residual analysis indicated that decomposi-

tions of kt exhibited a positive mean-variance relationship so

we chose to decompose the variance of log(kt). We investi-

gated the maximum lag required by comparing the R2 of LM-

LTREs and GAM-LTREs with different maximum lags. In

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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both cases increasing this beyond 1 year improved the vari-

ance explained by < 1%. We adopted these ‘lag 1’ models in

all further analyses. The LM-LTRE and GAM-LTRE

explained 97.5 and 99.5% of variance of log(kt) respectively.

The LM-LTRE analysis indicated that the variance of log(kt)

was mostly explained by the direct effect of fluctuations in

survival and reproduction, with contributions of ~ 59 and

~ 37% respectively. The delayed reproduction term explained

a further ~ 7% of this variance. The only covariance term

with a contribution > |5%| was between survival and repro-

duction (�7%). The GAM-LTRE produced qualitatively simi-

lar results: variation in survival, reproduction probability,

delayed reproduction probability and the survival-reproduc-

tion covariance represented 65, 37, 9 and 8% of the variance

of log(kt) respectively. We also fitted all possible pairwise

smooths to the GAM-LTRE to evaluate whether interactions

between the vital rate parameters were important. We found

that each of these terms represented � 1% of the variance of

log(kt), meaning these could be excluded.

Figure 1 shows the sensitivity surfaces for log(kt) estimated

from the GAM-LTRE (i.e. the (gik)) and a summary of the

parameter variability to understand the direct (k = 0)) and

delayed (k = 1) contributions to log(kt) from each hi(t�k). The

direct effect of survival variation is larger than reproduction

primarily because its sensitivity function is steeper (the param-

eters have similar variance), whereas the direct effect of

recruitment is negligible, despite the steep sensitivity function,

because this parameter is almost time-invariant. The direct

contributions from the growth parameters are absent because

a shift in body mass does not alter log(kt) in the year it

occurs. The sensitivity surfaces for the delayed effects of

reproduction and recruitment show how changes in age struc-

ture influence log(kt) (Fig. 1b). These terms have steep nega-

tive sensitivity functions because a recruitment pulse increases

the proportion of non-reproductive individuals in the future.

Trait-mediated effects occur via changes in the body mass dis-

tribution. The delayed effects attributed to the growth

parameters are all positive because an increase in body mass

in the current environment does not affect the population

dynamics until future years. The differences between winter-

summer and juvenile-adult growth contributions are sum-

marised in Appendix S3.

The individual covariance contributions were generally

small. Survival and reproduction are negatively correlated

(Pearson’s correlation coefficient, q = �0.11), resulting in a

moderate contribution of �8% to the variation in population

growth (Fig. 2a). Together, the growth effects explained 6%

of the variance in log(kt) (Fig. 2a). The growth parameters all

positively covary (minimum q = 0.52; Fig. 2b), and since the

associated sensitivity surfaces all have positive slope, this

results in a positive contribution of growth fluctuations to the

variance of log(kt). The growth and reproduction parameters

positively covary (minimum q = 0.39), but the direction of the

sensitivity slopes of these parameters have different signs,

resulting in a negative contribution (total effect = �7%).

These antagonistic effects among the growth-reproduction

(co)variances result in a very small net contribution of growth

fluctuations to variation in population growth.

Environmental drivers

We then used the linear LTRE to further decompose the vari-

ance of log(kt) into sources attributed to the modelled envi-

ronmental factors and the remaining unexplained stochastic

variation. The effects operating through the six largest terms

are summarised in Fig. 3a. The environmental effects

explained relatively little variance of log(kt) driven by the

direct effect of survival fluctuations, but were similar in mag-

nitude to the unexplained sources of variation for the remain-

ing demographic drivers. All but one of the contributions of

the environmental effects had the same direction as those due

to unexplained sources. The environmental effects influencing

the reproduction-survival covariance made a large negative

contribution to variance of log(kt) (~ 20%), whereas the

Table 1 Average parameter estimates describing the association between 31 August mass (z) (cube root transformed) and demographic and trait transition

rates

Function Model Fitted GLM

Survival logit(s) �2.229 + 0.163z � 0.068 Twinter + 0.0002Tspring � 0.0001SF

Reproduction logit(pb) �2.605 + 0.225z + 0.162Twinter + 0.033Tspring + 0.001SF

Recruitment log(b) �0.557 + 0.096z + 0.002Twinter � 0.004Tspring � 0.0005SF

Ontogenetic growthw H0

H1

l0 = 1.975 + 0.651z + 0.056Twinter + 0.021Tspring + 0.013SF

l1 = l0 � 0.742 + 0.064z

r2 = 0.572

Ontogenetic growths H’0
H’1

l0 = 10.946 + 0.360z* + 0.065Twinter + 0.024Tspring + 0.0005SF

l1 = l0 � 0.612 + 0.041z

r2 = 0.611

Recruitment mass C0 7.788 + 0.237z + 0.002Twinter + 0.107Tspring � 0.003SF

r2 = 0.771

Notes All functions included cube root body mass and the climatic variables winter temperature (Twinter), spring temperature (Tspring) and snow-free date

(SF) as fixed effects and year as a random effect. The functions ontogenetic growth in winter (H), ontogenetic growth in summer (H’) additionally included

age and the interaction between age and body mass in the fixed effects. All functions were modelled using generalised linear mixed models using the speci-

fied error structure. The coefficients presented correspond to the averaged estimates, l0 corresponds to average growth of an individual of age a (0 or 1),

and r2 the variance in the ontogenetic growth and number of individuals of mass z recruited on year. The data fitted to the models correspond to female,

yellow-bellied marmots of all ages, from a population in and around the Rocky Mountain Biological Laboratory collected between 1976 and 2012. In the

table the following conventions were used: survival (s), reproduction (pb), recruitment (b) and recruitment mass (C0).
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Figure 1 Sensitivity surface illustrating the contribution to the population growth rate, log(kt). (a) Illustrates the direct (k = 0) contributions from each of

the vital rate parameters, hit; and (b) Illustrates the delayed (k = 1) contributions from each of the delayed (‘lag 1’) vital rate parameters hi(t�1). Vital rate

parameters (x-axis) were mean-centred to facilitate comparisons. Rugs on the x-axis and y-axis illustrate the distribution of the hit and the distribution of

the log(kt) contribution respectively.
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unexplained sources of variation increased the explained vari-

ation by 10%. The strongest contributions arising from the

environmental factors (> 5% of the variance of log(kt)) were

exclusively driven by the variation in winter temperature, with

a few smaller effects (1–5%) arising from the covariance

between winter and spring temperature (Fig. 3b). The total

absolute contribution of these effects was 59%, yet when we

account for their direction the net effect is only 2%, indicating

that population growth is effectively buffered from effects of

temperature variation. The remaining environmental (co)vari-

ances made a negligible contribution to the variance of log

(kt).

DISCUSSION

Population biologists have long sought to understand how

demographic processes drive temporal variation in population

growth (Gaillard et al. 2000; Morris et al. 2011; Boggs &

Inouye 2012), and how the environment impacts on these pro-

cesses (e.g. climate; Dalgleish et al. 2011; Jenouvrier 2013).

More recently, the role of indirect and delayed drivers of vital

rate variation has begun to receive attention (e.g. Thompson

& Ollason 2001). The Monte Carlo transient LTRE we

adapted, serves both aims, by partitioning population growth

rate variation into: (1) components due to the direct effects of

environmental variation, and (2) delayed effects arising from

transient fluctuations in age, stage or trait structure. Applying

our model to data from a long-term study on hibernating

rodent, we quantified the effect of previously identified envi-

ronmental drivers and trait-mediated effects. This flexible

approach also allowed us to accommodate nonlinear relation-

ships between direct and indirect effects and population

dynamics.

We used the Monte Carlo transient LTRE methodology to

quantify sources of population growth rate variation in a wild

population of marmots, a hibernating social rodent. This

analysis showed that the largest components are due to direct

effects of survival and reproduction, but significant delayed

demographic effects are also associated with reproduction.

Delayed, trait-mediated effects of seasonal mass change made

only a modest contribution to the variance of population

growth rate. We also quantified the contributions arising from

different environmental drivers acting through these pathways.

Among the evaluated climatic drivers, variation in winter tem-

perature was the most important factor, both through its

direct influence on reproduction and survival, and through its

delayed effects on reproduction and growth. Though some of

the component effects of temperature were substantial in mag-

nitude, these operate antagonistically, such that their net

impact is negligible, indicating that the population is effec-

tively buffered against temperature fluctuations during hiber-

nation, the most important period of mortality in this

population.

Populations frequently exhibit delayed demographic and

life-history responses to environmental fluctuations (Becker-

man et al. 2002; Jenouvrier et al. 2005). In the marmot popu-

lation, the delayed effects of reproduction (a demographic

effect) and ontogenetic growth (a trait-mediated effect) both

influence population growth rate. Delayed reproductive effects

arise when a pulse in reproduction skews the population to

younger age classes, lowering the mean per capita reproduc-

tion the following year. This is likely to be a very general

mechanism, as has been shown in Soay sheep (Ovis aries L.,

Coulson et al. 2001) and northern fulmar (Fulmarus glacialis

L., Thompson & Ollason 2001), and may occur whenever vital

rates differ between stage/age classes and the state distribution

fluctuates over time. Delayed growth effects will occur when

variation in body mass impacts demographic rates in future

years. Despite the evident influence of the environment on

body mass dynamics in marmots (Ozgul et al. 2010; Maldon-

ado-Chaparro et al. 2015), we found that interannual varia-

tion in body mass explains relatively little variation in

population growth. Over-winter changes in body mass are

considerably more variable than summer mass gains. How-

ever, the former is associated with a low population growth

rate sensitivity, because winter growth changes are compen-

sated over the summer growth period. Such compensation

Figure 2 The contributions of the variance and (co)variances of the vital

rates to the variance of the population growth rate, log(kt). (a) The

contribution is partitioned according to the direct (vital rate parameters,

hit), and the delayed effects (‘lag 1’ vital rate parameters, hi(t�1)). Each bar

indicates the scaled contribution (percentage of total variance of log(kt))

from each parameter on the predicted value of kt. (b) Covariation

between vital rate parameters and its contribution to the predicted value

of kt. The colour of the dots illustrates the directionality of the

covariation.
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may be common in species that have evolved to accumulate

reserves over a limited window of time, such as hibernating

rodents (Nicieza & Metcalfe 1997; Morgan & Metcalfe 2001).

Interannual fluctuations in climatic conditions drives signifi-

cant (co)variation in demographic rates, with associated

impacts on population growth (Dalgleish et al. 2011; Tafani

et al. 2013; Abadi et al. 2017). Demographic buffering mecha-

nisms evolve to increase stochastic fitness in the face of these

fluctuations by reducing variation in population growth rate

(Pfister 1998; Morris et al. 2008; Jongejans et al. 2010). Corre-

lational evidence for demographic buffering via direct demo-

graphic effects has been accumulated from wild populations.

Our study is the first to consider the role of indirect demo-

graphic and trait-mediated pathways operating in response to

specific axes of climatic variation. Because marmots are hiber-

nating rodents, winter conditions strongly influence their

energy expenditure during hibernation (Armitage et al. 2003).

We found that although winter (and spring) temperatures

impact population growth via direct and indirect effects on

reproduction and survival, with an additional small contribu-

tion from arising from trait-mediated effects, the net effect on

variance in population growth rate is negligible. This indicates

that the population has evolved a life-history strategy that

buffers it from this important component of environmental

variation. Demographic buffering is achieved through a suite

of pathways that include both direct and delayed, demo-

graphic and trait-mediated effects, though the latter contribu-

tions are small. Few studies have found support for

demographic buffering in wild populations (Morris & Doak

2004; Rotella et al. 2012), in part because it is methodologi-

cally challenging to (J€ak€al€aniemi et al. 2012; Bjorkvoll et al.

2016), a limitation our LTRE methodology overcomes.

Temporal covariation between demographic rates can be an

important secondary driver of variation in population growth

(Coulson et al. 2005; Ezard et al. 2006; Jongejans et al. 2010;

Morris et al. 2011). A negative covariance between vital rates

is expected to reduce variability because the direct sensitivities

of population growth rate to vital rates such as survival,

Figure 3 The contributions from the environmental and stochastic (unexplained) variation to the variance of the population growth rate, kt. (a) Each bar

indicates the contribution (percentage) from the six largest demographic contributors to the variance of log(kt) decomposed into explained (environmental)

and unexplained (stochastic) sources; and (b) Each bar indicates the contribution from each parameter on the predicted variance of log(kt) decomposed

into the contributions each of the environmental factors modelled.
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growth and reproduction are positive (Brault & Caswell 1993;

Doak et al. 2005). In our system, the most important covari-

ance contributions arise from the direct effects of survival and

reproduction, and the delayed effects of reproduction and

growth, both of which reduce the variance of population

growth. The direct survival-reproduction contribution is dri-

ven by a negative covariance between these rates. The delayed

reproduction-growth contribution represents a novel pathway,

whereby positive covariance contributes to a reduction in pop-

ulation growth variation, because the sensitivity of population

growth to the delayed (i.e. lagged) reproduction term is nega-

tive. This represents a general mechanism which can only be

identified once delayed effects of reproduction have been

quantified.

The marmot population model led to a simple transient

LTRE in which only a single lag was required to capture the

impact of the past environments. This is a consequence of the

marmot’s fast, compensatory growth and their short juvenile

period, which lead to fast-decaying trait-mediated and demo-

graphic effects. We predict that in populations where the pace

of growth is slow and the juvenile period is extended, these

effects will decay more slowly and longer parameter lags will

need to be considered. In addition, we found that a purely

additive model was able to explain > 99% of the variance in

population growth (i.e. interactive effects were negligible).

This is unlikely to be a general result. For example when the

slope of the trait-dependent survival function varies over time,

there will be fluctuations in size-selection, and the realised

state distribution will depend on the prior sequence of both

growth and survival parameters. Such effects can be captured

by including interaction terms that incorporate lagged values

of these two classes of parameters.

The transient LTRE analysis we developed in this study

complements recent efforts to understand how unstable pop-

ulation structure influences population growth (Koons et al.

2016, 2017). The strength of our approach is that it provides

mechanistic insights into the joint impact of demographic

and trait-mediated processes on population growth, though

it assumes a stationary environment and requires develop-

ment of an appropriate regression model to capture the rele-

vant effects. We have shown, that although body mass is an

important fitness-linked trait in the marmot system (Ozgul

et al. 2010), its role in driving population fluctuations is rel-

atively small, and that the population is buffered against

impacts of temperature fluctuations. Importantly, our analy-

sis demonstrates that demographic buffering may be a more

complex phenomenon than is currently assumed. Due to the

growing body of evidence for climatic impacts on species

traits (Gardner et al. 2011; Sheridan & Bickford 2011), there

is a need to understand the role played by trait-mediated

and demographic responses in other systems to evaluate

their wider impact on population processes. Future work

should identify the conditions under which we expect to

observe substantial demographic and trait-mediated effects,

and determine the extent to which buffering of population

growth against the effects climatic drivers is common in nat-

ure – such information will provide valuable insights for

predicting population responses to future environmental

change.
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