
This is a repository copy of Propagation of Surface Magnetohydrodynamic Waves in 
Asymmetric Multilayered Plasma.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140360/

Version: Published Version

Article:

Shukhobodskaia, D. and Erdelyi, R. (2018) Propagation of Surface Magnetohydrodynamic 
Waves in Asymmetric Multilayered Plasma. The Astrophysical Journal, 868 (2). 128. ISSN 
0004-637X 

https://doi.org/10.3847/1538-4357/aae83c

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Propagation of Surface Magnetohydrodynamic Waves
in Asymmetric Multilayered Plasma

Daria Shukhobodskaia
1

and Róbert Erdélyi
1,2

1
Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK; robertus@sheffield.ac.uk
2
Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
Received 2018 May 10; revised 2018 October 12; accepted 2018 October 12; published 2018 November 30

Abstract

Investigation of magnetohydrodynamic wave propagation in different equilibrium configurations is important for
the development of solar magnetoseismology. In the present work, a magnetized plasma slab sandwiched between
an arbitrary number of nonmagnetic layers is considered and an analytical approach is used for the derivation of its
dispersion relation. This work is a natural generalization of the symmetric slab model studied by Roberts and the
asymmetric magnetic slab model, considered by Allcock & Erdélyi. Similar to the dispersion relation for an
asymmetric slab, and unlike a symmetric slab, the dispersion relation for an asymmetric multilayered plasma
cannot be decoupled into sausage and kink eigenmodes. The waves that permitted us to propagate in multilayered
slabs have mixed characters; therefore, the notion of quasi-sausage and quasi-kink waves is more appropriate.
Here, we focus on how a multilayered structuring affects the eigenmodes. The amplitudes of the eigenmodes
depend on the equilibrium structuring and the model parameters; this motivates an application as a solar
magnetoseismology tool. Finally, specific cases of two- and three-layered slabs are studied in detail and their
potential applicability to magnetic bright points is discussed.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields – Sun: oscillations – Sun: photosphere
– waves

1. Introduction

The solar atmosphere, from the photosphere to the corona, is
dominated by a complex and dynamic magnetic field that makes
the plasma highly structured. Multiwavelength observations from
high-resolution satellites and ground-based telescopes enable the
detection of periodic motions in different magnetic structures in
the solar atmosphere, such as in coronal loops (Thompson et al.
1998; Wang 2004; Aschwanden 2005; Banerjee et al. 2007; De
Moortel 2009), plumes (Ofman et al. 1997; DeForest & Gurman
1998; Nakariakov 2006), prominences (Arregui et al. 2012),
solar wind (Belcher 1971; Abbo et al. 2016), and spicules
(Zaqarashvili & Erdélyi 2009; Tsiropoula et al. 2012).

These observed periodic perturbations may be described in
terms of magnetohydrodynamic (MHD) waves. They provide
us with a tool to diagnose these structures, a method known as
solar magnetoseismology (SMS; see reviews by Nakariakov &
Verwichte 2005; Erdélyi 2006a, 2006b; Andries et al. 2009;
Ruderman & Erdélyi 2009). High-resolution observations of
waves and oscillations in magnetic structures, combined with
theoretical MHD wave modeling, enable us to determine solar
atmospheric parameters that are difficult to measure directly,
such as the coronal magnetic field strength (Nakariakov &
Ofman 2001; Erdélyi & Taroyan 2008). The principles of SMS
were first suggested by Uchida (1970), Zaitsev & Stepanov
(1975), and Roberts et al. (1984) for coronal application, and
by Tandberg-Hanssen (1995) for prominence application.

MHD wave propagation is a popular topic with plenty
of applications to solar and solar-terrestrial plasmas. Their
significance has increased not only because of their potential as

a remote diagnostic tool, as outlined above, but also due to their

presumed contribution to plasma heating processes. It is

believed that the heating processes that generate and sustain

the hot solar atmosphere may be accounted for by the MHD

waves (Alfvén 1947; Osterbrock 1961; Ionson 1978; Hollweg

1991; Goossens et al. 2011; Mathioudakis et al. 2013) that are

generated by the convection reservoir and propagating from the

lower atmosphere (Roberts 2000).
Many MHD wave models employ slab geometry where a

magnetic slab is embedded in an (a)symmetric, semi-infinite,

(non)magnetic environment, e.g. Roberts (1981a, 1981b), Edwin

& Roberts (1982), Allcock & Erdélyi (2017), and Zsámberger

et al. (2018). Cylindrical geometry is often better for modeling

magnetic structures in the corona, whereas slab geometry

appears to be a reasonable representation of structures closer

to the photosphere, such as magnetic bright points (MBPs),

sunspot light bridges, or light walls (Yuan et al. 2014; Yang

et al. 2016, 2017). MBPs are small-scale magnetic elements

between granular cells of different temperatures and densities.
However, real plasma structuring is more complicated than a

simple slab model. A more realistic model, with a number of

applications, is a plasma structured by a finite number

of parallel discontinuities, which was studied in the incom-

pressible limit by Ruderman (1992). Another model is a

magnetized plasma slab sandwiched between an arbitrary

number of interfaces with different densities and temperatures

with a straight and uniform magnetic field only present in one

layer. We consider the existence of MHD waves in this model

in the present work. The general dispersion relation is derived

and is solved analytically for the cases of two (i.e. one

magnetic and one nonmagnetic) or three (i.e., a magnetic slab

sandwiched between two asymmetric) slabs in the cases of an

incompressible fluid and under the thin-slab approximation.
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2. Derivation of General Dispersion Relation

Consider an infinite compressible inviscid static plasma
embedded in a uniform and confined region ∣ ∣x x0 with
magnetic field ( ) zB x , where
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The effect of gravity is ignored. Inside the magnetic slab, the

equilibrium kinetic plasma pressure, density, and temperature

are denoted by p0, ρ0, and T0, respectively. pi
L R, r

i
L R, and

Ti
L R denote the equilibrium kinetic pressure, density, and

temperature inside the i−th slab on the left/right of the

magnetic region with subscript i that varies from 1 to p+1 on

the left side and from 1 to q+1 on the right (see Figure 1). In

total, there are p+q+3 regions, of which one has a

magnetic field.
The equations that govern the perturbations within the

magnetic slab are the ideal MHD equations:
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where μ0 is the magnetic permeability of free space, γ is the

adiabatic index, variables v=(vx, vy, vz), B, p, and ρ are

velocity, magnetic field, kinetic pressure, and density, at time t.

After linearizing and some algebra, we have
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Here, vA= m rB0 0 0 is the Alfvén speed and c0= g rp0 0

is the sound speed in the magnetic slab. The sound speed in the

i−th left/right nonmagnetic region is denoted by ci
L R

=

g rp
i
L R

i
L R . The equilibrium pressure balance across each

interface is required, i.e.,
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Equation (3) yields to the following relation between

characteristic speeds and density ratios for any two nonmag-

netic regions:
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We seek a solution to Equations (2) of the following form:
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representing wave propagation in the -z direction, where ω is

the angular frequency and k is the length of the wavenumber

vector in the z -direction. We only consider field-aligned

propagation of the perturbations. Substituting solutions (4) into

the system of Equations (2), and combining the obtained

equations, it is possible to derive an ordinary differential

equation for vx representing transversal motions inside the

magnetic slab, i.e., ∣ ∣x x0:
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Note that since k=(0, 0, k), and the system is homogeneous in

the y−direction, the other transversal component of the motion

(i.e., vy) representing Alfvén waves decouples. For each of the

Figure 1. Equilibrium configuration of a layered plasma. The red arrows represent the vertical magnetic field, ( )zB x . Kinetic pressure, p
i
L R, density, r

i
L R, and

temperature, Ti
L R, are equilibrium parameters. The subscript i corresponds to the relevant slab and varies from 1 to p+1 on the left side and from 1 to q+1 on the

right side, where L/R corresponds to left/right.
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left/right nonmagnetic regions, we obtain
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Equations (5) and (7) are formally identical to the corresp-

onding equations for the symmetric slab, considered by Roberts

(1981b), if p=q=0 and r r r= =L R
e1 1
.

Let us assume that the perturbations vanish at infinity so that

v 0x as  ¥x . It should be noted that m0
2 and ( )mi

L R 2

may be positive or negative for i from 1 to p on the left side and
from 1 to q on the right side. Taking into account that the wave
amplitudes decay exponentially in the ambient, i.e., we are only
dealing with trapped waves, we acquire a general solution of
Equations (5) and (7) given by

where Ai
L, Bj

L, As
R, Bt

R, A0, and B0, are constants with i=1, 2,
K p+1, j=1, 2, K p, s=1, 2,K q+1 and t=1, 2,K q.
The total (kinetic plus magnetic) pressure perturbation, PT(x, t),
satisfies the equation
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Considering PT(x, t) in a Fourier form, PT(x, t) =
w- ( ) ( )p x ei kz t ,

and employing Equations (2) and (10), we obtain that
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Let us now establish appropriate boundary conditions.

For physical solutions, the velocity, vx(x, t), and total

pressure, PT(x, t), have to be continuous across the boundaries

= -x xi
L, x=±x0 and =x xj

R, for i=1Kp and

j=1Kq. Equations (9) and (11) give us 4+2(p+q)

coupled homogeneous algebraic equations:
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Here, Ai
L R are constant with respect to x. We now rewrite the

above equations into the following compact matrix form:
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where M is a [4+2 (p+q)]×[4+2 (p+q)] matrix. The

precise form of the matrix M is given by Equations (33)–(38))

in Appendix A.
In order to have a nontrivial solution of the system, the

determinant of the matrix M must be equal to zero:

= ( )Mdet 0. 15

Equation (15) is the dispersion relation of the multilayer

system. In general, unlike the symmetric case studied, e.g., by

Roberts (1981b), the dispersion relation Equation (15) cannot

be decoupled into two equations that correspond to the well-

known sausage (oscillations at the slab boundaries in antiphase,

that correspond mathematically to the equation containing

m xtanh 0 0) and kink (perturbations of the slab boundaries

oscillating in-phase that correspond to the equation with

m xcoth 0 0) MHD waves. Solutions to Equation (15) will

provide modes modified by the density difference at the sides

of the magnetic slab similar to a single asymmetric slab

investigated by Allcock & Erdélyi (2017). We adopt the

notions of quasi-sausage and quasi-kink to describe these

eigenmodes, because they have mixed characters. The slab

cross-sectional width, that is constant for symmetric kink

modes, is affected for asymmetric kink modes and the line of

zero perturbation is shifted for asymmetric sausage modes

when compared to the symmetric case, namely, the center of

the slab. Furthermore, both the sausage and kink modes can be

further categorized as body and surface modes. Surface waves

exist when >m 00
2 , which corresponds to evanescent solutions

of Equation (5), while body waves exist when <m 00
2 , which

corresponds to spatially oscillatory solutions. This nomencla-

ture for wave classification was introduced by Roberts (1981b)

for symmetric and Allcock & Erdélyi (2017) for asymmetric

equilibria.
Let us now consider some specific cases of an asymmetric

multilayered plasma slab structure that are analytically solvable

and have potential for solar application. First, by setting
p=q=0, we verify that the dispersion relation reduces to
that which governs the asymmetric slab configuration of
Allcock & Erdélyi (2017), namely,

L L + L L + L L + L =( ) ( ) ( )m xtanh 2 0. 16L R L R
0 0 0 0 1 1 0 1 1

We will now focus on cases of two layers (one magnetic and

one nonmagnetic), and three (a magnetic layer sandwiched

between two nonmagnetic) slabs, respectively, and investigate

how the multilayered structure affects the eigenmodes and their

eigenfunctions.

2.1 Two-slab Case

Let us first consider the case of two slabs, represented by
p=1 and q=0, which is illustrated by Figure 2. The width of
the nonmagnetic and magnetic slabs are denoted as d L1 and d0,
respectively. Such a model could be useful for modeling MHD
waves in MBPs of the solar photosphere (as shown on
Figure 3). MBPs are approximately vertical magnetic structures
between supergranule convection cells of different densities
and temperatures. Since neighboring granular cells affect the
MBP, we can apply a two-slab description to analyze what will
change when comparing eigenmodes to MHD waves in a single
slab case.
From condition (15), we obtain the dispersion relation
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Note, that the two-slab case may be reduced to the single slab

case, by letting =x x L0 1 and L = LL L
1 2 . By substituting

notations introduced by Equation (12) into the dispersion

relation (17), we obtain
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r r r
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r r
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r
w
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R

R
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Equation (18) is the dispersion relation describing the
propagation of quasi-kink and quasi-sausage waves for the
case of two (one magnetic and one nonmagnetic) slabs.
Next, let us plot the eigenfunctions using numerical

solutions. In Figure 4(a), the effect of varying the density
ratios r rL

1 0 and r rL L
2 1

is shown, and its cross-cut slice is
plotted in Figure 4(b) for a characteristic value of the ratio
r r = 0.3L
2 0 . The panels of Figure 4(c) illustrate the behavior
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of slow surface quasi-kink and quasi-sausage modes, in a two-
slab system using numerical solutions for the dispersion
relation Equation (18) for r r = 1, 2, 3L

1 0 . The central plot

shows the case where r r=L R
1 1

. The density ratio is r r = 2R
1 0 ,

the characteristic speed orderings are =c c0.7R
1 0, vA=0.4c0,

the nondimensional width of the magnetic slab is kx0=1.5
and the width of the nonmagnetic slab is =x x2L

1 0.
Two important features are notable when inspecting the

eigenfunctions of Figure 4(c). First, although the eigenfunc-
tions themselves are continuous, this is not the case for their
derivatives, which are discontinuous at the interfaces. Assum-
ing a suitable spatial resolution of linear perturbations during
an observation of structured MHD waveguides, the spatial
distribution of the eigenfunctions (say transversal velocity,
intensity, or the appropriate component of the magnetic field)
could be measured and the above discontinuous feature
confirmed. Now, from the measured spatial distribution of
these eigenfunctions, one may then determine the details of the
structuring of the MHD waveguide by means of SMS.

Second, the amplitudes of the perturbations themselves at
the boundaries of an asymmetric structured waveguide will not
be symmetric with respect to the center of the magnetic
waveguide. This information could also be exploited to
determine the equilibrium parameters of the MHD waveguide
structure, however, that is beyond the scope of the current
paper. For an analog of how the concept works for a single
asymmetric waveguide, see Allcock & Erdélyi (2018).

Figures 5(a)–(d) reveal the behavior of the slow surface
modes as the nonmagnetic slab density is varied with
kx0=0.01, 0.1, 1, and 3. For a wide slab width kx0?1,
the phenomenon of avoided crossing is visualized in
Figure 5(d), i.e., the loci of the eigenvalues of the slow surface
modes do not intersect, which demonstrates why the dispersion
relation Equation (18) does not decouple into two equations for
sausage and kink modes, as it does in the symmetric case. For
more on the meaning of avoided crossings of eigenmodes in the
present context, see Allcock & Erdélyi (2017). The density
ratios are fixed at r r = 0.3L

2 0 , r r = 2R
1 0 , the characteristic

speed orderings are =c c0.7R
1 0, vA=0.4c0 and the width of

the nonmagnetic slab is =x x2L
1 0.

In Figure 6(a), the effect of varying the nondimensional

magnetic slab width kx0 and the ratio d dL
1 0 is illustrated. For

a characteristic value of the ratio of nonmagnetic slab width to

magnetic slab width =d d 0.5L
1 0 , a cross-cut of Figure 6(a)

is plotted in Figure 6(b), and for a specific value of

nondimensional magnetic slab kx0=1.5 in Figure 7(a). The

panels in Figures 6(c) and 7(b) show the slow surface quasi-

sausage and quasi-kink modes for different values of the

nondimensional magnetic slab width kx0=0.5, 1.2, 1.9 and

the ratio =d d 0.1, 0.8, 1.5L
1 0 , respectively. The density

ratios are fixed at r r = 0.3L
2 0 , r r = 3L

1 0 , and r r = 2R
1 0

and the characteristic speed orderings are =c c0.7R
1 0 and

vA=0.4c0.

2.2 Three-slab Case

Let us now move on to study the three-slab case as a

generalization of the two-slab configuration, to better model,

e.g., MBPs. It could help to understand how consideration of a

set of multiple granular cells may influence oscillations in

MBPs. The case of three adjacent slabs is established when

p=q=1 and is visualized in Figure 8, where the widths of

the left nonmagnetic slab and right magnetic slab are denoted

by d L R
1 and d0, respectively. The dispersion relation in this

case takes the form:

L L L - L -

´ L - L -

+ L L L - L -

´ L - L -

+ L L L L + L

- L L L + L L -

- L L L + L L -

+ L L L + L L L

´ - - =

( ( ( ))

( ( ))

( ( ))

( ( )))

( ( )

( ) ( )

( ) ( )

( )

( ) ( )) ( )

m x m x x

m x x

m x x

m x x

m x x

m x x

m x x m x x

tanh 2 tanh

tanh

tanh

tanh

tanh

tanh

tanh tanh 0. 19

L L L L

R R R R

L R L L L L

R R R R

L R L R

L R R L R R R

R L L L R L L

L L R R R L

L L R R

0 0 0 0 1 2 1 0 1

1 2 1 0 1

1 1 2 1 1 0 1

2 1 1 0 1

0 1 1 2 2

1 1 1 2 2 1 0 1

1 1 1 2 2 1 0 1

1 1 2 1 1 2

1 0 1 1 0 1

Figure 2. Equilibrium configuration for a two-slab case: a magnetic slab, ∣ ∣x x0, and a nonmagnetic slab,  - -x x xL
1 0.
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Substituting back the notations of (12), we arrive at
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Equation (20) is the dispersion relation for the three-slab

case with one magnetic slab embedded between two

nonmagnetic plasma slabs with different equilibrium para-

meters. It was shown by Roberts (1981b) that the dispersion

relation governing wave propagation in the case of a single

symmetric slab consists of two decoupled equations,

describing sausage and kink MHD waves. For the two-

and three-slab cases, similarly to the one-slab asymmetric

case, the dispersion relation is a single equation, which

describes the propagation of quasi-kink and quasi-sausage

waves.
In the symmetric case, where r r r= =L R

1 1 1 and r =L
2

r r=R
2 2, the dispersion relation (20) decouples into two

equations, one with tanh (sausage mode) and one with coth

(kink mode):

r
r
w r r

w r r

- -

= - - -

⎛

⎝
⎜

⎞

⎠
⎟( ( ))

( )( ( )) ( )

m m m m x x
m x

m x

m k v m m m x x

tanh
tanh

coth

tanh . 21A

1

0

2
0 1 2 2 1 1 0 1

0 0

0 0

1
2 2 2

2 1 1 2 1 0 1

3. Analytical Solutions

Let us now consider the analytical examination of the
dispersion relations (18) and (20) under the incompressible and
thin-slab approximations.

3.1. Spurious Solutions

It is obvious that w = k vA
2 2 is an exact solution of both of the

dispersion relations (18) and (20). However, for this solution,

Figure 3. Asymmetric multislab approximation for an elongated MBP, based on Figure 11 of Liu et al. (2018), observed by the New Vacuum Solar Telescope in TiO

7058 Å.
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m0=0, which leads to a linear solution of the governing

differential Equation (5). Hence, this solution is considered to

be spurious. The same is true for the solutions ω=kc0 and

ω=kcT. So, there are no global modes with a finite

wavenumber with phase-speed cT, c0, or vA.

3.2. Incompressible Approximation

Magnetoacoustic modes in the incompressible limit arise
only from slow modes in the given equilibrium and choice of
field-aligned propagation. In general, it is not possible to solve
the dispersion relations (18) and (20) analytically, but the

Figure 4. (a) Slow surface mode solutions of the dispersion relation (18) showing the effect of varying the density ratios r rL
1 0 and r rL L

2 1
. Panel (b) is a cross-cut of

panel (a) for r r = 0.3L
2 0 . Distributions of the transverse velocity perturbation,vx , for given density ratios are plotted on panels (c). Here, the other density ratio is

fixed at r r = 2R
1 0 . The characteristic speed ordering is =c c0.7R

1 0, vA=0.4c0, the width of the nondimensional magnetic slab is kx0=1.5, and =x x2L
1 0. The

orange (blue) dots in panel (b) corresponds to the quasi-sausage (quasi-kink) mode. The parameters at each blue and orange dot are used to plot the distribution of the
transverse velocity perturbation. The upper (lower) rows in panels (c) correspond to the quasi-sausage (quasi-kink) mode solutions corresponding to density ratios

r r =L
1 0 1, 2, and 3.
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incompressible approximation simplifies it significantly and

allows us to find an analytical solution. Therefore, we focus

on other effects than compressibility. Let us examine the

dispersion relations (18) and (20) in the limit g  ¥, where

γ is the adiabatic index, corresponding to the approximation of

an incompressible plasma. In this limit, we obtain c vT A,

hence m k0 , m ki
L , and m kj

R .

3.2.1 Two-slab Case

First, let us study the two-slab case. Here, applying the

incompressible approximation, the dispersion relation (18)

becomes

w
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r r
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0
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1
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Figure 5. Dependence on the ratio of nonmagnetic slab density to the magnetic slab density is shown in panels (a)–(d) for typical values of nondimensional magnetic

slab width kx0=0.01, 0.1, 1, and 3. The characteristic speed orderings are =c c0.7R
1 0 and vA=0.4c0, the width of the nonmagnetic slab is =x x2L

1 0, and the density

ratios take values r r = 0.3L
2 0 and r r = 2R

1 0 .
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Figure 6. Same as Figure 4, but (a) shows slow surface mode solutions of the dispersion relation (18) emphasizing the effect of varying the ratio of nonmagnetic slab

width d L1 to magnetic slab width d0. Panel (b) is a cross-cut of panel (a) for =d d 0.5L
1 0 . In panels (c), distributions of the transverse velocity perturbationvx as the

ratio of nondimensional magnetic slab width kx0 are plotted. The density ratios are fixed at r r = 2R
1 0 , r r = 3L

1 0 , and r r = 0.3L
2 0 . The characteristic speed

orderings are =c c0.7R
1 0 and =v c0.4A 0, and the nonmagnetic slab width is =x x2L

1 0.
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Figure 7. Same as Figure 4, but the density ratios are now fixed at r r = 2R
1 0 , r r = 3L

1 0 , and r r = 0.3L
2 0 and nondimensional magnetic slab width is kx0=1.5.

The characteristic speed orderings are =c c0.7R
1 0 and vA=0.4c0. In panel (b), distributions of the transverse velocity perturbation,vx , for a specific value of the ratio

of nonmagnetic slab width d L1 to magnetic slab width d0 are plotted. The upper (lower) row in panel (b) corresponds to the quasi-sausage (quasi-kink) mode solutions.

10

The Astrophysical Journal, 868:128 (16pp), 2018 December 1 Shukhobodskaia & Erdélyi



Equation (22) is quadratic in ω2, so we can solve it in a closed

form. Its solutions are

w

s r r r V

s r r
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The solutions given by Equation (23) are surface waves with

sub-Alfvénic phase speeds. We introduce the following

notation r r=Ri
L R

i
L R

0.
Figure 9(a) shows the dispersion behavior of two sub-

Alfvénic surface modes in one symmetric slab for density ratios
= = =R R R 2L L R

2 1 1 . Figures 9(b)–(d) illustrate that, in the
incompressible approximation, the phase speed of the modes
approach either the Alfvén speed or zero in the long-
wavelength limit. However, when  ¥k , and depending on
the external densities, the phase speeds converge to different
speeds. Furthermore, when »R Ri

L
i
R the converged speeds are

almost identical. For Figure 9(b), the density ratios are
= =R R3, 1L L

2 1 , and =R 2R
1 , for Figure 9(c) density ratios

are = =R R5, 10L L
2 1 , and =R 0.2R

1 , and in Figure 9(d)

= =R R100, 0.1,L L
2 1 and =R 0.2R

1 .

3.2.2 Three-slab Case

Similar to the two-slab case, from the dispersion relation

(20), we now obtain
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Equation (25) is quadratic in ω2 so its analytical solutions exist,

namely,

Figure 8. Equilibrium configuration for the three-slab case. A magnetic slab at ∣ ∣x x0 is sandwiched between two nonmagnetic slabs at  - -x x xL
1 0

and  x x x R0 1 .
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Here,
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As well as for the two-slab case, solutions (26) correspond to

surface MHD waves with sub-Alfvénic phase speeds. Let us

now visualize these solutions. Figure 10(a) illustrates the

symmetric case with density ratios = =R R 0.5L R
2 2 and

= =R R 10L R
1 1 . In Figures 10(b)–(d), dispersion is shown

under the incompressible approximation, for the case of

three adjacent slabs. The behavior of surface modes

resembles the two-slab case. Strong dispersion is found for

kx0�1, and weak dispersion is found in the short-

wavelength limit. In the case of strong asymmetry,

Figures 10(c)–(d), the quasi-sausage/kink modes do not

seem to converge to the same phase speed. This feature

could be exploited for solar magnetoseismology purposes

as indication of asymmetric structures. Figure 10(b)

corresponds to = = =R R R3, 2L L R
2 1 1 , and =R 0.5R

2 , for

Figure 10(c) the density ratios are = =R R100, 70,L L
2 1

=R 0.1R
1 , and =R 0.5R

2 and in Figure 10(d) =R 0.5,L
2

= =R R2, 10L R
1 1 , and =R 1R

2 .

Figure 9. Dispersion of MHD modes in an incompressible multilayered symmetric (a) and asymmetric slab (b)–(d) system (p=1, q=0, =x x2L
1 0). Plotted are the

two sub-Alfvénic surface modes for different density ratios Ri
L R

= r r
i
L R

0 for the two-slab case.

w
s r r r r r V

s r r r r
= ´

+ - - - - 

+ - - - -
r r

r

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( ( ))( ( ))

( ( ))( ( ))

( )k v
kx k x x k x x

kx k x x k x x

1

2

tanh 2 tanh tanh

tanh 2 tanh tanh

. 26A

L L L R R R

L L L R R R

2 2 2 0 0 1 2 0 1 1 2 0 1

0 2 1 0 1 2 1 0 1

L R
1 1

0
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3.3. Thin-slab Approximation for Surface Waves

By propagating waves in the thin-slab approximation, it

is meant the wavelength λ is much greater than the lateral

characteristic dimension of the magnetic field. We consider

two cases, l» » d d dL R
1 1 0 and l»  d d dL R

1 1 0 . The

first case corresponds to slabs with similar width, the second

one corresponds to a case where the widths of slabs on the

left/right are much smaller than that of the central one. We

now focus on surface waves, meaning that >m 00
2 and

>( )m 0i
L R 2 . The details of the derivation of the relevant

dispersion relation in this approximation are given in

Appendix B. Equations (40) and (41) are the dispersion

relations for the two-slab case for l» » d d dL R
1 1 0 and

l»  d d dL R
1 1 0 , respectively. Similarly, Equations (43),

(44) correspond to the dispersion relations for the three-slab

case under the same assumptions.

3.3.1 Two-slab Case

Let us now investigate the modes in the case of a thin

magnetic and nonmagnetic slab embedded in an asymmetric

plasma environment. The spurious solution w = k vA
2 2 2 to

Equations (40) and (41) is dealt with in Section 3.1. The other

solutions to Equation (41), up to first order in kx0, are

w =

´ -
-

+ - + -r

r

r

r

⎡

⎣

⎢
⎢
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥

( )( )

( )

( )

( ) ( )

k c

kx c c

c v

1
2

1 1

,

28

T

T

A
c

c

c

c

2 2 2

0 0
2 2

0
2 2

R

T

R L

T

L

0

1

2

1
2

0

2

2

2
2

and

w
r

r r
=

+
( ) ( )k v kx

2
. 29A R L

2 2 2
0

0

1 2

Solution (28) behaves like w  k cT
2 2 2 as kx 00 . In

particular, although there are no modes with a finite

wavenumber with phase-speed cT, there are waves with

approximate phase speed cT that exist only if <c cT
R
1 and

<c cT
L
2 . This mode is identified as a slow quasi-sausage

surface mode. Solution (29) corresponds to the slow quasi-kink

surface mode.

Figure 10. Solutions to the dispersion relation (25) of the modes in an incompressible symmetric (a) and asymmetric (b)–(d) slab for the case of a magnetic slab

embedded between two nonmagnetic asymmetric slabs, all in an asymmetric plasma environment, with p=1, q=1, and = =x x x2L R
1 1 0.
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3.3.2 Three-slab Case

Let us now analyze the three-slab case in the thin magnetic
slab approximation. Similar to the two-slab case, w = k vA

2 2 2 is
a spurious solution to Equations (43) and (44). The slow quasi-
sausage surface mode solution to Equation (44) up to first order
in kx0 is

w = -
-

+ - + -r

r

r

r

⎡

⎣

⎢
⎢
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥

( )( )

( )

( )

k c
kx c c

c v

1
2

1 1

,

30

T
T

A
c

c

c

c

2 2 2 0 0
2 2

0
2 2

R

T

r
L

T

l

0

2

2

2
2

0

2

2

2
2

and the slow quasi-kink surface mode solution is

w
r

r r
=

+
( ) ( )k v kx

2
. 31A R L

2 2 2
0

0

2 2

If c1l=c1r=c2l=c2r=ce and, hence, r r= =R L
1 1

r r= =R L
2 2

ρe, we have one more solution of Equations (41)
and (44):

w
r

r
= -

-

+ -

⎛

⎝

⎜
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟

( ) ( )

( )( )
( )k c

kx c c c

c v c c
1 . 32e

e e e

A T e

2 2 2 0
2

0
2 2

0 0
2 2 2 2

2

Equation (32) is a quasi-sausage mode. Since the results (28)–(32)

do not depend on d L1 and d R1 , the results are the same for both

cases, up to the first order of the approximation used, and it agrees

with the results obtained by Allcock & Erdélyi (2017).

4. Conclusions

A mathematical model of a magnetized plasma slab
sandwiched between an arbitrary number of plasma interfaces
is considered, generalizing MHD wave studies in a plasma slab
embedded in an asymmetric environment studied by Allcock &
Erdélyi (2017, 2018). It was shown that, unlike the symmetric
case investigated by Roberts (1981b), the dispersion relation
does not decouple into dispersion relations of independent
modes, resulting now in the existence of solutions with mixed
properties, namely the quasi-kink and quasi-sausage modes.

Analytical solutions for the two- and three-slab cases were
obtained in the incompressible limit. It is worth noting that
the overall behavior of the phase speed of the modes (i.e., the
dispersion) for multilayered slabs is similar to that of the
asymmetric single slab case. The phase speeds approach either
the Alfvén speed or zero in the thin-slab limit, and they
converge to different speeds in the wide slab limit.

Next, the thin-slab approximation for surface waves was
investigated. It is noted that, up to first order in kx0, the
solutions depend on the equilibrium parameters only of the
magnetic slab and the plasma environment at infinity.
Furthermore, for both cases l» » d d dL R

1 1 0 and

l»  d d dL R
1 1 0 , the solutions remain the same.
There is potential applicability as an SMS diagnostic tool of

our current model put forward. We have illustrated that the
spatial distribution of the oscillation amplitudes depend on the
type of structuring of the equilibrium model. We have also
shown that in asymmetric (multi-)slab configurations, the

oscillation amplitudes are different at the boundaries of these
slabs. Since these amplitude ratios are observable, assuming
adequate instrumental resolution is available, knowing them
and some other parameters such as the wave frequency,
wavelength, or magnetic and nonmagnetic slab widths, further
equilibrium parameters of the MHD waveguide could be
diagnosed and determined. The property of the oscillation
amplitude ratio is proposed to be seen as a novel diagnostic tool
to unveil the approximate structuring of local solar multilayered
MHD waveguides, analogous to Allcock & Erdélyi (2018) for
a single asymmetric waveguide. Furthermore, there is another
distinct property of the oscillations in asymmetric slab
equilibria that could be exploited for SMS: namely the
discontinuity in the derivatives in the (velocity) perturbation
as shown here (or for other eigenfunctions, like magnetic field,
etc.) could be exploited for indication of the actual structuring
present that should be taken into account when modeling the
wave propagation in such media. Such discontinuities may be
deduced from suitable time–distance plots of a given oscillating
asymmetric MHD waveguide, yielding further evidence about
its structuring.
A direct application of the considered model might be the

analysis of wave propagation in elongated MBPs of the solar
photosphere. Knowing the characteristic parameters of neigh-
boring granular cells, one would be able to find out what is the
least amount of granular cells that one should consider for a
correct description of waves in MBPs. With the completion
of the next generation of solar telescopes with ultra-high
resolution, e.g., the Daniel K. Inouye Solar Telescope
(DKIST), significant improvement is expected in studying
wave phenomena in MBPs; therefore, the ability to better
address the wave coupling between the solar photosphere and
the lower solar atmosphere above it will be enabled. Further
applications to the MHD wave diagnostics of sunspot light
bridges, light walls, or the oscillations in the filamentary
structure of sunspot penumbrae.

The authors are grateful to M.S. Ruderman for a number of
fruitful discussions and to M. Allcock for proofreading the
article. D.S. acknowledges support from the University of
Sheffield. R.E. is grateful to Science and Technology Facilities
Council (STFC grant No. ST/M000826/1) UK for the support
received.

Appendix A
Boundary Conditions in Matrix Form

It is possible to rewrite the boundary conditions (13) in
matrix form (14), where M has dimension [4+2
(p+q)]×[4+2 (n+q)]. The precise form of the matrix,
with the first row corresponding to the continuity of the
velocity at = -x xp

L, is:

= -

=- =
+ +[ ]

[ ] [ ] ( )

M

M M

m x m x

m x m x

1, 1 cosh sinh ,

1, 2 cosh , 1, 3 sinh . 33

p
L

p
L

p
L

n
L

p
L

p
L

p
L

p
L

1 1

The second row represents the continuity of the total pressure at

= -x xp
L:

= L -

= L = -L
+ + +

( )

[ ] ( )

[ ] [ ] 34

M

M M

m x m x

m x m x

2, 1 cosh sinh

2, 2 sinh , 2, 3 cosh .

p
L

p
L

p
L

p
L

p
L

n
L

p
L

p
L

p
L

p
L

p
L

1 1 1
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The penultimate row corresponds to the continuity of the

velocity at =x xq
R:

+ + + + =

+ + + + =

+ + + + =

-
+

+

[ ( ) ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ]

( )

M

M

M

p q p q m x

p q p q m x

p q p q m x

m x

2 3, 2 2 cosh ,

2 3, 2 3 sinh ,

2 3, 2 4 sinh

cosh . 35

q
R

q
R

q
R

q
R

q
R

q
R

q
R

q
R

1

1

Finally, the last row that represents the continuity of the total

pressure at =x xq
R, and is:

+ + + + = L

+ + + + = L

+ + + + = L

-
+ +

+

[ ( ) ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ] (

)

( )

M

M

M

p q p q m x

p q p q m x

p q p q m x

m x

2 4, 2 2 sinh ,

2 4, 2 3 cosh ,

2 4, 2 4 cosh

sinh .

36

q
R

q
R

q
R

q
R

q
R

q
R

q
R

q
R

q
R

q
R

q
R

1 1

1

For 1�i�p , the general boundary condition on the left

regions takes the form

+ =

+ + =-

+ + =-

+ + =

+ =-L

+ + = L

+ + = L

+ + =-L

- + -

- + -

- -

- -

- + - + -

- + - + -

- - -

- - -

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ] ( )

( )

( )

( )

( )

( )

( )

( )

( )

M

M

M

M

M

M

M

M

i i m x

i i m x

i i m x

i i m x

i i m x

i i m x

i i m x

i i m x

2 1, 2 cosh ,

2 1, 2 1 sinh ,

2 1, 2 2 cosh ,

2 1, 2 3 sinh ,

2 2, 2 sinh ,

2 2, 2 1 cosh ,

2 2, 2 2 sinh ,

2 2, 2 3 cosh . 37

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

p i
L

1

1

1 1

1 1

For p+1�i�p+q , the general boundary condition on

the right regions is

+ =

+ + =

+ + =-

+ + =-

+ = L

+ + = L

+ + =-L

+ + =-L

- - - -

- - - -
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( )

( )

( )

( )

( )

( )
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( )

M

M

M

M

M

M

M

M

i i m x
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i i m x
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i i m x

i i m x

2 1, 2 cosh ,

2 1, 2 1 sinh ,

2 1, 2 2 cosh ,

2 1, 2 3 sinh ,

2 2, 2 sinh ,

2 2, 2 1 cosh ,

2 2, 2 2 sinh ,

2 2, 2 3 cosh . 38

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R

i p
R
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R

i p
R

i p
R

i p
R

i p
R

i p
R

1 1

1 1

1

1

1 1 1

1 1 1

1

1

For the rest of the values, M[i, j]=0.

Appendix B
Dispersion Relation for Thin-slab Approximation

1.1 Two-slab Case

Let us now derive the dispersion relation, up to first order in

kx0, under the thin-slab approximation. From Equation (18), we

found a power series expansion with respect to x0 and d L1 ,

namely,
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If l d dL
1 0 , up to the first order in kx0, using

Equation (39), we have
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If l» d dL
1 0 , again, up to the first order of approximation

in kx0, from Equation (39), we obtain
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1.2 Three-slab Case

For Equation (20), we obtain a power series expansions in
kx0, with respect to x0, d

L
1 , and d

R
1 :
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If l»  d d dL R
1 1 0 , up to first order in kx0, from

Equation (42), we acquire
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If l» » d d dL R
1 1 0 , from Equation (42), we have
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