Effect of spatial hole burning on output characteristics of high power edge emitting semiconductor lasers: a universal analytical estimate and numerical analysis.
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[bookmark: _GoBack]Abstract: the effect of longitudinal spatial hole burning on the performance of a semiconductor laser with a strongly asymmetric resonator is investigated numerically.  The effects of spatial hole burning on, firstly, the non-stimulated recombination in the laser (quantified as an increased effective threshold current) and, secondly, the output efficiency are calculated and compared, and the latter is shown to dominate at high currents. It is shown that the output efficiency at high pumping levels in the presence of the spatial hole burning effect can be estimated using the standard expression as the ratio of output loss to total loss, but with the internal loss enhanced by a factor greater than one and independent on the injection level. A simple universal expression for this factor for a highly asymmetric cavity, as function of the output mirror reflectance, is obtained and compared to numerical results, with good agreement.

Introduction:  The effect of (long-range) longitudinal spatial hole burning (LSHB) in edge emitting semiconductor lasers has been intensely investigated throughout the history of semiconductor laser technology [1-17].   The LSHB effect consists in the inhomogeneous distribution of carrier density, and therefore optical gain, along the laser axis, caused by the inhomogeneous lasing light intensity distribution in the longitudinal direction [1-10]. It is in practice most pronounced in lasers of an asymmetric design, where one mirror is antireflection (AR) coated and the other mirror, high-reflection (HR) coated. Such a design is common in high power lasers.  The long range LSHB is thus distinct from short-range spatial hole burning, which is due to the standing wave pattern of the laser mode and the associated variation of carrier density on the spatial scale of the laser wavelength, and is more weakly dependent on the mirror reflectances (see e.g. [11]).   Most theoretical  approaches to LSHB presented in the literature used either numerical methods of various degrees of complexity [2],[7],[8], or semi-analytical approaches resulting in complex transcendental formulas that give the spatial dependences of photon and carrier densities in a parametric form [4],[6].  Either way, it is not easy to get a generic view of the magnitude of the effect and its dependence on laser parameters, which restricts the conclusions of the analysis to a particular laser construction and operating parameter range.  Some analytical progress was made in [1], [12], [13].   In [1], an analytical estimate was obtained for the photon density distribution in almost all of the laser cavity (but not for the current dependence of the output power) neglecting non-stimulated recombination.  In [12], we obtained a further simplified estimate for the photon and electron distributions (in the entire cavity) making an additional approximation of neglibible intracavity losses.  Under those approximations, the carrier distribution was found to stabilize at high currents, and the LSHB was shown to have no direct effect on the laser output (as could be expected from the laws of conservation).  The conclusion that in the absence of internal losses LSHB has no significant direct effect on the laser performance was confirmed in [13], where the case of a ring resonator was also treated.  It is however well established that in the presence of substantial internal absorption, the effect of the LSHB can be a noticeable factor contributing to limiting the output of the laser [8],[15],  and influencing the laser design [7] [15], particularly if the AR coated mirror has a very low reflectivity (<1-2% in the construction studied in [7] and as low as 0.001 in [15]).  In [16],[17], we attributed the LSHB role mainly to the its amplifying the increase in the internal absorption at high injection levels which happens due to other reasons, thus enhancing the saturation trend of the laser output (sublinearity of the output curve).  The question that has not been answered clearly to date is whether LSHB can be considered a mechanism of this output power saturation in its own right, as well as enhancing other mechanisms of the power curve saturation.   This paper seeks to settle this argument definitively, while also shedding more light on LSHB role and nature in general.   The analysis concentrates on direct effects of LSHB; indirect effects such as any effects of thermal nature contributing to the longitudinal inhomogeneity in the laser are not considered, effectively restricting the treatment to pulsed operating conditions, nor are any lateral effects included in the purely one-dimensional analysis. For more discussions of the limitations of the analysis, see the Discussion and Conclusions section.  While the approximations made by necessity limit the accuracy of the results, they allow for some analytical progress and insight, as discussed in the following section. 

Analysis.

As in the previous papers (see e.g. [12] and references therein) we use for the analytical and numerical study the steady state one-dimensional model consisting of a distributed rate equation for the carrier density N(z) (assuming equal electron and hole densities Ne=Nh=N) and the densities of forward and reverse propagating lasing photons Sf (z) and Sr(z):
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Here,  is the pumping current, e the electron charge,  the injection efficiency, V=dawL the active layer volume  (da, w, and L being the active layer thickness, stripe width, and cavity length respectively),  is the group velocity of light in the laser waveguide, g is the carrier density dependent material gain (gain compression due to effects such as spectral hole burning and dynamic carrier heating is much less significant in steady-state analysis than in dynamics. We therefore neglected it in analytical derivations as in [12], while keeping it for generality in numerical studies as shown below. Furthermore, (N) is the recombination time (other than stimulated recombination),  is the confinement factor, and, finally, i stands for the built-in internal dissipative absorption coefficient in the laser. For the purposes of this model study, i is taken as constant around the length of the resonator and independent on the pumping conditions. 
The equations are complemented by the standard reflection boundary conditions at facets at z=0,L, with reflectances R0 and RL respectively:
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The output power from the laser is determined as 
	

	 (5)



with  the lasing  light quantum.
In the numerical implementation of the model, we ran a time-dependent Travelling Wave model for field amplitudes, with the linewidth enhancement factor set to zero and an artificially narrow gain spectrum to ensure near single-frequency operation, and allowed the simulation to reach steady state.  The resulting output power was further time-averaged over 1 ns to smooth out any remaining small traces of satellite longitudinal mode excitation.  Such a procedure is equivalent to solving the steady state equations for photon density (1-4). For the carrier density dependence of gain, we used a three-parametric logarithmic approximation [18] with gain compression: 
	

	 (6)


Here the parameters g0, Ntr and N1 are the gain constant, the transparency carrier density, and the correction carrier density, respectively, and  is the gain compression coefficient for numerical simulations. The carrier recombination was assumed to be nearly entirely bimolecular, characterised by the bimolecular recombination coefficient B [18] :
	

	 (7)


, since the analysis was concentrating on lasers operating at wavelengths of around 1 m, where Auger recombination is weak and the mature technology makes monomolecular recombination due to material imperfections not too important either (we used τnr=50 ns).  The parameter values used, unless otherwise indicated in the text, are summarised in Table 1.
Typical simulated output curves for a particular laser design (RL=0.01, L= 3 mm) and three values of the internal loss are seen in Figure 1. For reference, also shown are idealised output curves calculated from the simple lumped rate equation model without the LSHB:  
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 In (8), as usual in lumped laser models,is the output efficiency, and the outcoupling loss is  calculated as  (we use R0=0.9991).  As could be expected, the reduction of the output power with LSHB taken into account compared to the idealised value  calculated using (8) is seen to increase with the internal loss value.   However, this reduction is not in the form of increasing sublinearity/saturating behaviour: the curve Pout(i) is to a good accuracy a straight line, albeit with a smaller tangent than the idealised value . 



Figure 1: output powers in the numerical calculations (bottom curve in each pair) and in the simple lumped model with a constant threshold current   (top curve) for three values of the internal loss.

We proceed next to analyse the nature of the power reduction by LSHB and identify the physical effects at play.  Essentially, all the effects of LSHB stem from the fact that the carrier density (hence recombination current and gain) become progressively inhomogeneously distributed along the cavity length as the current is increased above threshold.  The carrier distributions, normalised to the threshold value, and the photon density/power distribution in the cavity at high currents are shown in Figures 2a and 2b respectively for one representative laser design.    

Unlike the case of zero internal losses treated in [12], we cannot obtain a simple analytical solution for the carrier density profile; on the other hand, the numerical study allows us to calculate the distributions at an arbitrary current, not just at i>>ith as in [12].  It is seen that at modest currents (i~ (1 - 5) ith ), there is considerable variation of the carrier density profile with current as the LSHB establishes its effect. For higher currents, the shape of the carrier density profile is approximately stabilised (similarly to the analytical results of [12], where the stabilisation was exact and full).  The slow overall growth of the carrier density with current is caused by the gain compression, described by the parameter  and neglected in [12]; it disappears if  is set to zero. 




Figure 2. Effect of LSHB on longitudinal carrier distribution (a) and the internal power distribution (b); the dashed and dotted lines in (b) are the power distribution neglecting LSHB
As discussed above, it can be analytically shown, and follows from the laws of conservation, that when both non-stimulated recombination and the internal loss can be neglected, the LSHB has no effect on the output power at all. This suggests an heuristic generalisation of (8)  for the output power with LSHB as [16],[17]:
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The two distinctions between (9) and the simple “lumped” formula (8) represent the two mechanisms via which LSHB directly affects the laser output.  The first mechanism, present even in the absence of internal losses and already briefly discussed in our previous paper [12], is to do with the fact that the strongly inhomogeneous carrier distribution in the laser along the cavity length under LSHB conditions (Fig. 2a) makes the current spent on non-stimulated recombination (the effective threshold current at a pumping current i) greater than the actual threshold current ith  and, in general, dependent on the pumping level i. The current is evaluated as [12]
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 As discussed in [12], the threshold modification by LSHB is absent, and thus , if the gain-carrier density dependences of the gain and (non-stimulated) recombination rate are both linear; however in realistic Quantum Well materials typically used in high-power lasers, and hence in our simulations, the former dependence is sublinear (logarithmic) and the latter, superlinear (quadratic), meaning that  for i>ith .


The second mechanism takes into account the fact that the LSHB affects the output efficiency  of the laser. The equation (9) is, formally, the definition of this parameter, assuming Pout is calculated from a distributed model, and the effective threshold, from Eq. (10).   Physically, as in a lumped model,  represents the relation between, on the one hand, the average photon density inside the laser and, on the other hand, the output power, proportional to the density of outbound photons at the output facet.  






The nature of the output efficiency modification by LSHB can be seen most clearly for small to moderate internal losses, such as the case shown in Figure 2b. Indeed, let us compare the longitudinal distribution of the photon density S, or the internal power , along the cavity with LSHB taken into account (straight line in  Figure 2b) to the S(z) distribution calculated with LSHB neglected (with  used instead of the electron density distribution of Figure 2a; dashed line in Figure 2b).  It is seen in the figure that, while the output power, and thus , is slightly lower in the presence of LSHB than in the case (the difference is relatively small though so long as αi is small, and completely absent if αi=0, also shown in the figure for reference), the value of S(z) in the bulk of the laser is noticeably higher in the presence of LSHB than in its absence.  Thus the average photon density , and thus the total number of photons absorbed in the cavity per unit time , are increased in the presence of LSHB compared to the approximation of a longitudinally constant N (no LSHB).  With this picture in mind, it is convenient to describe the reduction of out by LSHB in the heuristic form
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The dimensionless “LSHB factor”  can thus be interpreted either as effective enhancement of the internal loss in the laser cavity [16],[17] (seeing that at a given current, more photons per unit time are absorbed in the cavity with LSHB taken into account than neglecting it) or, alternatively, as effective reduction in the output losses  (since in a calculation taking into account LSHB, a smaller fraction of the average internal photon density, or total photon number, leaves the cavity than when LSHB is neglected).   The value of depends on current and also on the parameters of the laser structure and will be discussed in more details below.



The variation of carrier density profile with current described above (significant variation at low currents with subsequent stabilisation at higher currents) determines the current dependence of both the effective threshold current  and the factor.  We first quantify the first effect, the increase in the effective threshold with current.  This is shown in Figure 3, with the effective threshold current evaluated using (10),


Figure 3. Effective threshold current increase over the actual threshold current, as function of current for the laser parameters as in Figures 1-2. 1,1’ -αι=5 cm-1; 2,2’ - αι=1.5 cm-1; 3,3’ - αι=0.5 cm-1;
 1,2,3 – ε as in Table 1; 1’,2’,3’ – ε=0.


As can be expected given the carrier density variation in Figure 2, the effective threshold current (which at threshold equals the actual threshold current: ) increases fast with i at small excess currents above threshold. At high currents, it increases with current much slower, and in an approximately linear fashion, due to the gain compression (note that in the dotted curves 1’,2’,3’, calculated with ε=0, this slow linear increase is absent and the effective threshold settles at a constant value).  We can then calculate what correction the threshold modification, as well the LSHB effects as a whole, make to the laser output by calculating the total relative power correction
	

	 (12)





and the relative power correction  due to the threshold increase only.  The latter is calculated as , where  is the power that would be emitted by the laser if the effective threshold modification were the only effect of LSHB. From this, using (8), we obtain
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Both of these relative corrections are shown in Figure 4 as functions of current. From this figure (which corresponds to two of the light-current curves of Figure 1) it is seen that at low power (close to threshold), the effect of the LSHB is to a substantial extent determined by the effective threshold current increase. At high currents, as the denominator of (13) increases, the relative effect of the threshold enhancement on current decreases, with   settling to a small constant value (in the absence of gain compression, it would tend to zero).  


Figure 4. Reduction in the output power due to the effective threshold current increase (1’,2’) and the total power reduction by LSHB (1,2), normalised to the power in the lumped model,  for a laser with L= 2 mm, RL=0.01, and the internal loss αι= 5 cm-1 (1,1’) and 1.5 cm-1 (2,2’).





The total relative LSHB-induced correction to power  increases with current at small to moderate injection levels, as the slope of the curve decreases from what is essentially the lumped-model value at threshold to the lower value seen at high injection levels.  At high currents, the value of  stabilises at a constant value which substantially exceeds the correction due to modification of effective threshold and is dominated by the second of the LSHB effects, the modification of the output efficiency .  This is consistent with the known fact that under high current operation, when i>>ith, it is the differential quantum efficiency of the laser, rather than the threshold, that has the most important effect on the Pout(i) curve. 



 We proceed then to calculate the LSHB factor, characterising the decrease in , as a function of current from the numerically simulated curves, by resolving the expressions (9) and (11) for :
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The results of this procedure are shown in Figure 5 for several values of internal loss and reflectance coefficients. It is seen that, as can be expected from Figure 4, at moderate currents the value of increases monotonically with current whereas at high currents it appears to reach a constant limit >1.  The value of  decreases with the output facet reflectance coefficient RL and increases somewhat with the internal loss coefficient.



Figure 5. The LSHB factor (extracted from numerical simulations) as function of current for three values of the output facet reflectance and for the internal loss of 5 cm-1 (solid), 1.5 cm-1 (dashed), 0.5 cm-1 (dash-dotted)






In order to confirm that  is indeed a limit value in the mathematical sense, an analytical solution of the system (1-4) is required.  As mentioned in the Introduction, only limited analytical progress leading to transcendental equations [6] is possible in the generic case of an arbitrary internal loss.  However we note that, whilst the assumption of zero loss  made in [12] is in practice unattainable, all practical lasers are designed to have a small to moderate built-in loss . Making the small loss assumption (to be quantified below), assuming in addition negligible non-stimulated recombination, and setting =0 and R0=1 as mentioned above, it is possible (see Appendix for the derivation) to confirm that the LSHB factor does indeed tend to a constant value   in the high injection limit.  The procedure allows us to obtain a simple and universal analytical estimate for  which turns out to be a function of only one parameter, the output facet reflectance, in the form of 
	

	[bookmark: _Ref521441748] (15)







This expression is one the central results of this paper.   The fact that the coefficient  is independent of power/current proves that the spatial hole burning in itself, as suggested in [12], is not a distinct mechanism behind the saturating trend of the light-current curve (sublinear dependence of power on current) at high currents/powers, even in the presence of internal losses.  Rather, it just modifies the output efficiency to a value of  that is smaller than the small-signal value as defined by Eq. (8), but does not depend on current or power other than through the internal loss αi.  Thus if the internal loss can be considered constant, the laser output efficiency will stay constant as well and so will the total efficiency once the condition  is satisfied (which is known to be the case at relatively modest currents).














The fact that  only depends on RL means that the high-current output efficiency , and thus the effect of the LSHB on the output of the laser, can be roughly estimated using the expressions (9)-(11) and (15) from the values of  and RL, without the need to solve the spatially distributed system (1-4) numerically.  Clearly the estimate will be the more accurate, the smaller the value of the internal losses (since the expression (15) was derived in the assumption of weak internal absorption). Figure 6 shows the numerically calculated values of  for different cavity lengths, output facet reflectances, and internal loss values.  It is seen that for small internal absorption (=0.5 cm-1) the agreement between the numerical results and the analytical formula (15) is excellent, and for the intermediate absorption value (=1.5 cm-1, or for the cavity lengths shown), it stays good – indeed, the applicability limit of  Eq. (15) is   rather than  (see Appendix), so the formula can still work reasonably well for values of .    Even at =5 cm-1 (which, strictly speaking, no more satisfies any condition of weak absorption, particularly for long cavities), there is reasonable agreement between the simulations and the analytical theory, and the correct tendency is reproduced in numerical results – the factor  decreases with RL, tending to one when RL approaches one (in which case, there is no LSHB). For a more accurate estimate, the value of  can be taken directly from the numerical points in Figure 6 (hence we are showing these results here for a number of parameter values for reference purposes).  


We note that, as in previous studies, any appreciable effect of LSHB is only seen for RL<~0.01, and in most cases the value of  is no greater than approximately 2-2.5 in all cases considered (Figure 6). Thus the LSHB effect, even at output reflectances as small as ~0.01, becomes important only for  values of internal absorption that are relatively substantial, particularly by the standards of modern technology ().  










Figure 6. High-power limit of the LSHB factor as function of the output facet reflectance: analytical (solid line) and numerical (points).


Discussion and summary: 
It has to be noted that, whilst the agreement between analytical and numerical results shown in Figure 6 proves that the analytical result (15) is an accurate enough approximate solution to the system of equations (1)-(4), it leaves open the issue of how accurately the system (1)-(4) itself describes a practical high-power laser, or in other words of the possible importance of physical effects not included in the model.   Indeed, to begin with, the analysis here, in common with a number of studies in the literature (see e.g. [7,8,16,17,19]) is one-dimensional,  leaving aside the laterally multimode nature of the broad-area laser emission.  Such an approach is most rigorously justified for a narrow-stripe single lateral mode laser (the results for such a design can be obtained by scaling the stripe width, the current, and the power in our calculations down by the same factor of 30-50).  When applied to a broad-area laser with parameters as in Table 1, the model effectively assumes that there are so many lateral modes in the laser emission that the light intensity, averaged over time, fills the entire stripe approximately evenly. We also ignore the interplay of longitudinal and lateral nonuniformity in self-heating [19], effectively restricting the analysis to pulsed operating regime.   

Our analysis also relies on the internal loss coefficient’s being constant along the length of the laser.  The estimate (15) is  thus not straightforwardly applicable to the internal loss caused directly and/or indirectly by two-photon absorption (TPA; see [19]  and references therein) which is by its nature very inhomogeneous along the laser cavity, although a longitudinally averaged value can possibly be used at least in the first approximation.   Likewise, the relation between the active layer carrier density (which also varies along the laser length due to LSHB) and the internal absorption was ignored – we deliberately took the internal absorption coefficient as a pre-defined constant to quantify its effect on LSHB explicitly.  We note finally that the analysis here, both numerical and analytical, only dealt with direct effects of LSHB. As mentioned in the previous studies [12], LSHB will affect the efficiency more significantly in the case of the carrier density at the HR coated facet becoming so high as to contribute to the carrier leakage from the active layer to the Optical Confinement Layer (OCL), which is particularly important at raised temperatures. This indirect effect (which, like the effects of TPA, is inhomogeneous along the cavity length)  may have been one of the causes of the additional saturation tendency of the Pout(i) curve seen in some numerical studies [8] [14] when LSHB was included in the calculations, particularly as the authors of used a fairly small RL value (RL =0.01 was used in [8] and [14]).  
The additional effects discussed above need to be taken into account for detailed, inclusive modelling of a practical laser design. The purpose of the current paper was to isolate, as much as possible, the primary, direct effects of LSHB and their physical nature. The results can be summarized as follows:


   We have  shown that at low currents, the dominant direct effect of the LSHB was the  increase in the non-stimulated recombination (effective threshold) current, whereas at high currents the modification of output efficiency (which can be seen as effective enhancement of the internal losses, or equivalent effective reduction of output losses) dominated. We found the factor characterizing this effective loss enhancement by LSHB at high currents to stabilize at a constant value, and found a simple analytical estimate for this value, for the case of low to moderate internal losses and a strongly asymmetric cavity (non-output facet reflector ≈1), as function of only the output facet reflectance.  Good agreement was found between this analytical estimate and numerical simulations, provided that the internal losses remained substantially smaller than the outcoupling losses. We believe the results prove definitively that in the high current limit, the LSHB is not a distinct mechanism behind the saturating trend (sublinear behaviour) of the power vs current curve, but just increases the effect of other power saturation mechanisms, primarily the increase in internal losses with power/injection level.  If optical losses at high power can be evaluated, our analysis allows the effect of LSHB on the output efficiency to be estimated without solving the spatially resolved model, using the analytical expression (15) as a first-order estimate or numerically calculated  (Figure 6) for better accuracy. Whilst the numerical calculations were performed for a representative Quantum Well near-infrared laser, the analytical expression (15) applies for any class B laser including, for example, Quantum Cascade lasers analysed in Ref. [25].


Appendix. The derivation of the high-current value of the LSHB factor.

For obtaining an analytical estimate of the output power, we return to the system of equations (1-4) and follow previous work (see e.g. [2,5,6,12]) in noting that the nature of Equations (2)-(3) means that the product Sf(z)Sr(z)=const(z)=S02,  One of the two differential equations, say (3), is then eliminated, and the constant S0 is determined when solving the system (1)-(2) with boundary conditions (4).  In order to do so, as in previous work, we restrict the analysis to the case of high injection levels when all non-stimulated recombination can be neglected. Then, the gain can be expressed formally from (1) as a function of photon density, and the problem is reduced to a single equation for Sf  [6]

                                                    (A1),


With . Setting R0≈1, a simple estimate for S0 for the case of =0 is obtained [12]): 

                                                         (A2)
In the general case, separating variables in (A1) and introducing normalized variables 



results in a normalized form of (A1):   which after separation of variables has a formal solution


In general, this results in transcendental equations as in [6]; however in the case of b<<1 a first order Taylor expansion in b gives

, so

                                              (A3)


At the output facet (z=L) we have and from the reflectance condition (4a), 


Substituting these values into (A3) gives a correction to the value of s0, and hence to the output power, in the first order in the small parameter b.   Using the value of s0 at =0 to approximate  and returning to dimensional units, we obtain an estimate for Sf  at the output facet in the form of


Comparing this to the value without LSHB

,

we obtain the estimate      (15)


The limit of its validity is estimated as b<<1, so  which is somewhat more relaxed (since RL<<1) than 

TABLE 1. The main parameters in the calculations.

	Parameter  and notation
	Value
	Units

	Bimolecular recombi-
nation coefficient
	B 
	1.5×10-10    
	cm3/s

	transparency carrier density, 
	Ntr
	1.8×1018    
	cm-3

	Correction carrier density
	N1
	-0.4×1018    
	cm-3

	gain parameter
	g0
	1800
	cm1

	gain compression factor
	
	2×10-17
	cm3

	stripe width 
	w
	100
	μm

	active layer thickness 
	da
	16
	nm

	Confinement factor 
	
	0.01
	

	Injection efficiency
	i
	1
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