UNIVERSITY OF LEEDS

This is a repository copy of *Kinetic Study of Ni and NiO Reactions Pertinent to the Earth's Upper Atmosphere*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/140154/

Version: Supplemental Material

Article:

Mangan, TP, McAdam, N, Daly, SM orcid.org/0000-0001-7957-4514 et al. (1 more author) (2018) Kinetic Study of Ni and NiO Reactions Pertinent to the Earth's Upper Atmosphere. Journal of Physical Chemistry A, 123 (2). pp. 601-610. ISSN 1089-5639

https://doi.org/10.1021/acs.jpca.8b11382

Copyright © 2018 American Chemical Society. This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry, To access the final edited and published work see https://doi.org/10.1021/acs.jpca.8b11382.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information

A Kinetic Study of Ni and NiO Reactions Pertinent to the Earth's Upper Atmosphere

Thomas P. Mangan, Nathanial McAdam, Shane M. Daly and John M. C. Plane* School of Chemistry, University of Leeds, LS2 9JT, UK.

* corresponding author. Email: j.m.c.plane@leeds.ac.uk

Contents:

Table S1. List of second-order rate coefficients for reactions R1 - R7, as a function of temperature and pressure.

Table S2. Molecular properties and heats of formation (at 0 K) of NiO, $ONiO_2$, NiCO₃ and Ni(OH)₂, and the stationary points on the NiO + CO and Ni + O₂ potential energy surfaces.

Table S3. Parameters used in RRKM fits to the kinetics of reactions R1 and R4 - R7.

Figure S1. Geometries of the molecules listed in Table S1. See the second column of Table S1 for the Cartesian coordinates of the atoms.

Figure S2. Potential energy surfaces for the reactions of NiCO₃ and ONiO₂ with H₂O.

Reaction No.	Reaction	Pressure / torr	T / K	Rate coefficient / cm ³ molecule ⁻¹ s ⁻¹
			191	$(5.96 \pm 0.12) \times 10^{-13}$
		3	218	$(5.33 \pm 0.38) \times 10^{-13}$
	$Ni + O_2 (+ N_2) \rightarrow NiO_2$		248	$(4.62 \pm 0.12) \times 10^{-13}$
			291	$(3.68 \pm 0.19) \times 10^{-13}$
				$(3.45 \pm 0.18) \times 10^{-13}$
		6	293	$(6.76 \pm 0.17) \times 10^{-13}$
R 1		10		$(11.5 \pm 0.26) \times 10^{-13}$
			346	$(2.96 \pm 0.14) \times 10^{-13}$
		2	343	$(2.88 \pm 0.12) \times 10^{-13}$
			373	$(2.43 \pm 0.13) \times 10^{-13}$
		5	404	$(1.98 \pm 0.06) \times 10^{-13}$
		-	406	$(2.02 \pm 0.07) \times 10^{-13}$
			455	$(1.55 \pm 0.06) \times 10^{-13}$
R2	$Ni + O_3 \rightarrow NiO + O_2$	3	293	$(6.5 \pm 0.7) \times 10^{-10}$
R3a	$NiO + O_3 \rightarrow Ni + 2O_2$	3	293	$(1.4 \pm 0.5) \times 10^{-10}$
R3b	$NiO + O_3 \rightarrow NiO_2 + O_2$	3	293	$(2.5 \pm 0.7) \times 10^{-10}$
	$NiO + CO \rightarrow Ni + CO_2$	3	190	$(3.24 \pm 0.65) \times 10^{-11}$
R4			295	$(3.02 \pm 0.53) \times 10^{-11}$
			377	$(2.83 \pm 0.51) \times 10^{-11}$
R2	$\mathrm{NiO} + \mathrm{O_2} \ (+ \ \mathrm{N_2}) \rightarrow$	3	293	$(1.13 \pm 0.27) \times 10^{-13}$
KJ	ONiO ₂	5	218 248 291 293 346 343 373 404 406 455 293 293 293 373 404 406 455 293 293 293 377 293 380 293 380 293 380 293 380 293 380 293 380 293 348 383 191 293 375	$(0.79 \pm 0.29) \times 10^{-13}$
	$\begin{array}{l} \text{NiO} + \text{H}_2\text{O} \ (+ \text{N}_2) \rightarrow \\ \text{Ni(OH)}_2 \end{array}$	3		$(1.38 \pm 0.25) \times 10^{-11}$
		6	293	$(2.32 \pm 0.42) \times 10^{-11}$
R6		10		$(3.35 \pm 0.83) \times 10^{-11}$
		3	348	$(8.65 \pm 0.45) \times 10^{-12}$
			383	$(7.01 \pm 0.12) \times 10^{-12}$
R7	NiO + CO ₂ (+ N ₂) → NiCO ₃	3	191	$(4.24 \pm 0.76) \times 10^{-13}$
				$(1.69 \pm 0.30) \times 10^{-13}$
		6	293	$(3.31 \pm 0.60) \times 10^{-13}$
		10		$(5.24 \pm 0.94) \times 10^{-13}$
		3	375	$(0.93 \pm 0.17) \times 10^{-13}$

Table S1. List of second-order rate coefficients for reactions R1 - R7, as a function of temperature and pressure.

Table S2. Molecular properties and heats of formation (at 0 K) of NiO, $ONiO_2$, NiCO₃ and Ni(OH)₂, and the stationary points on the NiO + CO, Ni + O₂, NiCO₃ + H₂O and $ONiO_2$ + H₂O potential energy surfaces.

Molecule (electronic state)	Geometry (Cartesian co-ordinates in Å) ^a	Rotational constants (GHz) ^a	Vibrational frequencies (cm ⁻¹) ^a	$\begin{array}{c} \Delta_{f}H^{o}(0\ K) \\ (kJ\ mol^{-1})^{b} \end{array}$
NiO (³ Σ ⁻)	Ni, 0.0, 0.0, 0.0 O, 1.631, 0.0, 0.0 ^c	15.1470	861 °	301.9 ^d
ONiO ₂ (³ B ₂)	Ni, 0.0, 0.0, -0.280 O, 0.0, 0.0, -1.917 O, 0.0, -0.649, 1.448 O, 0.0, 0.649, 1.448	37.5506 3.8750 3.5125	79, 182, 495, 543, 801, 1240	157.0 °
NiO ₃ (³ A ₂)	Ni, 0.0, 0.0, 0.837 O, 0.0, 0.0, -1.528 O, -1.103, 0.0, -0.700 O, 1.103, 0.0, -0.700	12.9810 5.4015 3.8144	251, 364, 373, 740, 821, 919	280.6
NiCO ₃ (³ B ₁)	Ni, 0.0, -1.668, 0.0 O, -1.096, -0.194, 0.0 C, -0.0, 0.615, 0.0 O, -0.0, 1.810, 0.0 O, 1.096, -0.194, 0.0	13.1403 2.7796 2.2943	152, 426, 437, 658, 764, 799, 916, 1089, 1802	-174.1 ^e
Ni(OH) ₂ (³ B _g)	Ni, 0., 0., 0. O, -1.737, 0.103, 0. H, -2.389, -0.601, 0. O, 1.737, -0.103, 0. H, 2.389, 0.601, 0.	508.0441 4.6756 4.6329	120, 174, 355, 476, 594, 652, 802, 3893, 3895	-215.1 ^e
OCNiO	Ni, 0.473, 0.196, -0. O, 1.431, 1.560, 0. C, -1.271, -0.416, -0. O, -2.385, -0.608, -0.	51.5479 2.6501 2.5205	93, 328, 369, 411, 745, 2163	84.2 ^e
$OCNiO \rightarrow Ni + CO_2$ transition state	Ni, -0.956, -0.359, -0.253 O, -0.698, 1.278, 0.230 C, 0.840, 0.182, -0.028 O, 1.899, 0.581, 0.126	15.9956 3.8640 3.1122	-363i, 256, 318, 416, 757, 2077	162.3 ^e
NiO ₂ (¹ A ₁)	Ni, 0.017, 0.0, 0.047 O, -0.087, 0.0, 1.805 O, 1.227, 0.0, 1.327	32.2939 ^b 9.3788 7.2680	591, 648, 1023 ^b	319.0 ^f
ONiO $({}^{1}\Sigma_{g}^{+})$	Ni, 0.0, 0.0, 0.0 O, 0.0, 0.0, 1.578 O, 0.0, 0.0, -1.578	6.3420 ^b	82 (×2), 902, 1150 ^b	172.0 ^f

$NiO_2 \rightarrow ONiO$ singlet transition state	Ni, 0.0, 0.0, 0.497 O, 0.0, 1.010, -0.870 O, 0.0, -1.010, -0.870	15.4863 ^b 13.1135 7.1007	286i, 590, 869 ^b	431.8 ^f
NiCO ₃ -H ₂ O triplet complex	Ni, 1.105, 0.425, 0.409 O, -0.487, 1.477, 0.099 C, -1.202, 0.382, 0.337 O, -2.396, 0.261, 0.327 O, -0.322, -0.649, 0.611 O, 2.594, 1.623, -0.116 H, 2.272, 2.427, -0.547 H, 3.446, 1.386, -0.502	9.1864 1.6303 1.3915	50, 82, 152, 217, 341, 354 387, 475, 598, 653, 767, 808, 907, 1101, 1633, 1784, 3771, 3869	-534.2 °
NiCO ₃ -H ₂ O to Ni(OH) ₂ + CO ₂ transition state	Ni, 0.763,-0.700, 0.542 O, -0.453, 0.909, 0.664 C, -1.354, 0.169, -0.109 O, -2.397, 0.599, -0.495 O, -0.854, -1.050, -0.297 O, 1.788, 0.807, -0.015 H, 0.612, 1.200, 0.150 H, 2.140, 0.876, -0.909	5.7043 2.0436 1.6633	-1310i, 121, 147, 308, 391, 463, 533, 581, 696, 720, 754, 835, 911, 1120, 1429, 1679, 1821, 3844	-494.9 ^e
ONiO ₂ -H ₂ O triplet complex	Ni, -0.004, 0.056, -0.005 O, 1.100, 1.391, 0.011 O, -1.761, 0.541, 0.013 O, -1.712, -0.764, 0.016 O, 1.639, -0.985, -0.093 H, 2.098, -0.098, -0.035 H, 1.867, -1.502, 0.690	7.9706 3.0259 2.2049	167, 176, 199, 278, 388, 394, 478, 551, 629, 661, 821, 1219, 1562, 3216, 3813	-117.3 °
$ONiO_2-H_2O$ to $Ni(OH)_2 + O_2$ transition state	Ni, 0.076, 0.148, -0.031 O, -1.354, -0.833, -0.051 O, 1.688, -0.726, -0.132 O, 1.922, 0.551, -0.007 O, -1.310, 1.449, 0.020 H, -1.808, 0.412, 0.022 H, -1.416, 1.894, 0.871	8.7688 2.9797 2.2369	1126i, 166, 172, 198, 411, 492, 549, 569, 616, 732, 757, 1224, 1362, 1859, 3813	-112.6 °

^a Calculated at the B3LYP/6-311+g(2d,p) level of theory ¹

^b Calculated at the CBS-QB3 level of theory ²

^c Experimental values: $r_e(Ni-O) = 1.627$ Å; $\omega_e = 839$ cm^{-1 3}

^d Using experimental $D_0(NiO) = 373 \text{ kJ mol}^{-1.4}$, $\Delta_f H^o(Ni) = 428.1 \text{ kJ mol}^{-1}$ and $\Delta_f H^o(O) = 246.8 \text{ kJ mol}^{-1}$ at 0 K. ⁵

^e Using $\Delta_{f}H^{o}(CO) = -113.8 \text{ kJ mol}^{-1}$, $\Delta_{f}H^{o}(CO_{2}) = -393.2 \text{ kJ mol}^{-1}$, $\Delta_{f}H^{o}(H_{2}O) = -238.9 \text{ kJ mol}^{-1}$.

 $^{\rm f}$ Using a bond energy with respect to $Ni+O_2$ from a multireference configuration interaction calculation. 6

Reaction	$\langle \Delta E \rangle_{\rm down}$	α	V ₀	k _{rec,∞}	Z(T) ^a
	cm⁻¹		kJ mol ⁻¹	cm ³ molecule ⁻¹ s ⁻¹	cm ³ molecule ⁻¹ s ⁻¹
$Ni + O_2$	210	0.2	-	$5.0 \times 10^{-10} \exp(-69/T)$	$1.9 \times 10^{-11} \text{ T}^{1/2}$
NiO + CO	300	0.0	-	$8.3 \times 10^{-11} \exp(-102/T)$	$6.4 \times 10^{-12} \text{ T}^{1/2}$
$NiO + O_2$	300	1.0	-	$4.8 \times 10^{-10} \exp(-352/T)$	$1.2 \times 10^{-11} \text{ T}^{1/2}$
$NiO + H_2O$	200	0.0	-	$6.0 \times 10^{-10} \exp(-171/T)$	$6.0 \times 10^{-12} \text{ T}^{1/2}$
$NiO + CO_2$	240	1.0	14.0	$5.2 \times 10^{-10} \exp(-305/T)$	$6.1 \times 10^{-12} \text{ T}^{1/2}$

Table S3. Parameters used in RRKM fits to the kinetics of reactions R1 and R4 – R7.

 a Collision frequency between the adduct and N_{2}

Figure S1. Geometries of the molecules listed in Table S1. See the second column of Table S2 for the Cartesian coordinates of the atoms.

Figure S2. (a) The potential energy surface for the reaction of NiCO₃ and H₂O. (b) The potential energy surface for the reaction of ONiO₂ and H₂O. Calculated at the CBS-QB3 level of theory. Atom colors: oxygen (red); hydrogen (white); carbon (grey); nickel (blue).

References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, CT, USA, 2016.

2. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method. J. Chem. Phys. **2000**, 112, 6532-6542.

3. Srdanov, V. I.; Harris, D. O. Laser Spectroscopy of NiO: The ${}^{3}\Sigma^{-}$ Ground State. J. Chem. Phys. **1988**, 89, 2748-2753.

4. Watson, L. R.; Thiem, T. L.; Dressler, R. A.; Salter, R. H.; Murad, E. High Temperature Mass Spectrometric Studies of the Bond Energies of Gas-phase Zinc Oxide, Nickel Oxide, and Copper(II) Oxide. J. Phys. Chem. **1993**, 97 5577-5580.

5. Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. NIST-JANAF Thermochemical Tables 1985 Version 1.0. National Institute of Standards and Technology Gaithersburg, MD, 1985.

6. Hübner, O.; Himmel, H. J. Cyclic and Linear NiO₂: A Multireference Configuration Interaction Study. J. Phys. Chem. A **2012**, 116, 9181-9188.