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A B S T R A C T

Tropical disturbed forests play an important role in global carbon sequestration due to their rapid post-dis-
turbance biomass accumulation rates. However, the accurate estimation of the carbon sequestration capacity of
disturbed forests is still challenging due to large uncertainties in their spatial distribution. Using Google Earth
Engine (GEE), we developed a novel approach to map cumulative disturbed forest areas based on the 27-year
time-series of Landsat surface reflectance imagery. This approach integrates single date features with temporal
characteristics from six time-series trajectories (two Landsat shortwave infrared bands and four vegetation in-
dices) using a random forest machine learning classification algorithm. We demonstrated the feasibility of this
method to map disturbed forests in three different forest ecoregions (seasonal, moist and dry forest) in Mato
Grosso, Brazil, and found that the overall mapping accuracy was high, ranging from 81.3% for moist forest to
86.1% for seasonal forest. According to our classification, dry forest ecoregion experienced the most severe
disturbances with 41% of forests being disturbed by 2010, followed by seasonal forest and moist forest ecor-
egions. We further separated disturbed forests into degraded old-growth forests and post-deforestation regrowth
forests based on an existing post-deforestation land use map (TerraClass) and found that the area of degraded
old-growth forests was up to 62% larger than the extent of post-deforestation regrowth forests, with 18% of old-
growth forests actually being degraded. Application of this new classification approach to other tropical areas
will provide a better constraint on the spatial extent of disturbed forest areas in Tropics and ultimately towards a
better understanding of their importance in the global carbon cycle.

1. Introduction

As hotspots of global biodiversity and carbon storage, tropical for-
ests play an important role in biodiversity conservation, climate change
mitigation and the provision of multiple other ecosystem services
(Foley et al., 2005). However, millions of hectares of tropical forests
have been lost due to deforestation and degradation disturbances, re-
sulting in estimated net carbon emissions of 1.4 ± 0.5 Pg yr1 from
1990 to 2010 (Houghton, 2012). These emissions represent the second
largest anthropogenic source of carbon dioxide to the atmosphere after
burning of fossil fuels (van der Werf et al., 2009). In contrast, a

significant proportion of previously disturbed tropical forests are re-
growing, trapping some of the carbon we are adding to the atmosphere,
and with the potential to sequester more in the future. The carbon sink
due to tropical forest recovering from deforestation and logging has
been reported to be up to 70% greater than that of intact tropical forests
(Pan et al., 2011). However, our ability to accurately assess tropical
carbon sources or sinks is hampered by the lack of precise information
on the extent of disturbed forests in the tropics (Baccini et al., 2017).

Remote sensing has played a key role in identifying forest dis-
turbances and recovery, especially with the recent proliferation of high-
resolution satellite data (Hansen et al., 2013). Several approaches have
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previously been used to map disturbed forests in tropical regions, in-
cluding optical approaches based on moderate resolution MODIS ima-
gery (Langner et al., 2007), high-resolution Landsat imagery (Lu, 2005;
Vieira et al., 2003) and very high-resolution SPOT data (Carreiras et al.,
2014; Kimes et al., 1999; Souza et al., 2003), as well as Synthetic
Aperture Radar (SAR) (Kuplich, 2006; Trisasongko, 2010) and Lidar-
based approaches (Andersen et al., 2014). However, the majority of
these studies have focused on local scales and have been based on single
date images. For example, Vieira et al. (2003) classified forests into
young, intermediate, advanced and mature forests for one municipality
in the state of Pará, using Landsat spectral information and vegetation
indices, and found that combining Landsat shortwave infrared band
(1.55–1.75 μm) with NDVI generated a better classification than using
any individual band/index. Carreiras et al. (2017) further demonstrated
the use of combined Landsat spectral bands with ALOS PALSAR back-
scatter intensity to distinguish secondary regrowth forest and mature
forest in three landscapes in Brazilian Amazon. Such multiple multi-
sensor fusion approaches have yet to be applied over regional scales.

Several regional satellite-based land cover classifications that in-
clude secondary regrowth and forest degradation have become avail-
able for Neotropical regions. Two prominent examples are the
TerraClass post-deforestation land use/land cover classification
(Almeida et al., 2016) and the DEGRAD forest degradation product
(INPE, 2007–2013), both of which were developed by Brazilian Na-
tional Institute for Space Research (INPE) specifically for the Brazilian
Amazon. In TerraClass, available since 2004, secondary regrowth forest
is mapped on previously deforested areas larger than 6.25 ha using a
semi-manual approach (Almeida et al., 2016). The DEGRAD product is
produced mainly by visual interpretation of Landsat and CBERS sa-
tellite images from a single year and is annually available between 2007
and 2013 (INPE, 2007–2013). Recently, another product, MapBiomas,
has become available that provides annual national-level land cover
and land use maps for Brazil (MapBiomas, 2015). MapBiomas, available
from 2000 to 2016, classifies forest land cover as dense forest, open
forest, secondary forest, degraded forest, flooded forest or mangrove,
using an empirical decision tree classification algorithm based on single
date spectral mixture analysis. All of those single date imagery based
approaches are limited in the discriminatory power they can provide as
they make no use of temporal degradation/recovery signals which
characterise disturbed forests. Thus, none of the existing products fully
exploits the potential of existing Landsat time-series data spanning
multiple decades to provide reliable maps of both forest regrowth and
degradation. Furthermore, none of these products captures historical
(pre-2000) disturbances. There is therefore a clear need for a product
that provides a more comprehensive picture of historical disturbances
over tropical regions.

Methods that exploit temporal information in satellite data (e.g.
threshold approaches, trajectory fitting or segmentation) have been
found to be very useful for mapping forest disturbances (Hermosilla
et al., 2015; Hirschmugl et al., 2017; Huang et al., 2010; Kayastha et al.,
2012; Kennedy et al., 2007; Kennedy et al., 2010; White et al., 2017).
However, majority of these time-series based approaches are based on a
single time-series trajectory and have mainly been implemented at local
scales in extratropical regions (e.g. Canada, U.S.). For example, the
recently developed LandTrendr (Kennedy et al., 2010), Vegetation
Change Tracker (Huang et al., 2010) and patch-based VeRDET (Vege-
tation Regeneration and Disturbance Estimates through Time) (Hughes
et al., 2017) algorithms have all only been extensively tested in the
United States. A recent inter-comparison of disturbance detection al-
gorithms for US forests found that different time-series analysis algo-
rithms are sensitive to different disturbance patterns, with little
agreement among these disturbance detection results (Cohen et al.,
2017). Thus, when applying these algorithms elsewhere, local calibra-
tion and further secondary classification are needed to improve the
algorithm's classification performance (Cohen et al., 2018). Machine
learning approaches (i.e. random forest) offer the potential to harness

the differential sensitivities of different time-series once provided with
an appropriate training dataset, but have rarely been coupled with
multiple time-series trajectories in Tropics.

In this study, we develop a novel Landsat multiple time-series based
classification methodology to map cumulative disturbed forest areas in
Tropics, which exploits the power of 1) time-series images relative to
single date images, 2) an ensemble of reflectance bands/indices tra-
jectories relative to single trajectories, and 3) machine learning algo-
rithm which enhances classification power by harnessing the differ-
ential sensitivities of different time-series. The ‘disturbed forests’ in this
study include both degraded old growth forests and post-deforestation
regrowth forests. The former are characterised by a reduction of forest
canopy cover (e.g. selective logging, windfall, fire) but have not been
clearfelled and thus have not been included in deforestation estimates.
The latter refer to areas that have been previously deforested (clear-
felled) and converted to other land uses (e.g. pasture, agriculture and
mining) but which have subsequently undergone a recovery process
following abandonment. Our approach integrates information from six
different time-series trajectories (Landsat 5/7 short-wave infrared band
5, band 7, NDVI, SAVI, NDWI2130, NDWI1640), extracting both statistical
and temporal characteristics from each trajectory which then serve as
inputs for random forest classification. It not only captures disturbances
occurring within study period (1984–2010), but also areas disturbed
prior to 1984 which thereafter have exhibited clear recovery patterns.
Here, we apply this method to three forest ecoregions (seasonal, moist
and dry forests) in the Brazilian state of Mato Grosso.

2. Study area

Our study area (Fig. 1), the state of Mato Grosso, is located in the
southern edge of Brazilian Legal Amazon. Mato Grosso is the third
largest state in Brazil, covering a total area of 903,357 km2. According
to the Terrestrial Ecoregions of the World (TEOW) from World Wildlife
Fund (WWF), 43% of Mato Grosso area is covered by Cerrado (tropical
savanna), 27% by seasonal forest, 18% by moist forest, 6% by dry forest
and 6% by Pantanal (tropical wetlands) (Olson et al., 2001). In Mato
Grosso, 139,917 km2 have been deforested since 1988 (INPE, 2017)
accounting for 26.5% of the state's intact forest in that year (Skole and
Tucker, 1993), most of which has been converted into pasture and
agricultural land use due to demand for beef and soy beans (Barona
et al., 2010). According to TerraClass (Almeida et al., 2016), herbac-
eous pasture and shrubby pasture cover 61.4% of the total deforested
areas in Mato Grosso while 19.2% of deforested areas are under sec-
ondary regrowth (including secondary vegetation and regeneration
with pasture). The combination of extensive disturbances and sig-
nificant amount of remaining intact forest makes Mato Grosso an ideal
testbed for the application of our newly developed disturbed forests
mapping approach (see Section 3).

As indicated, TerraClass is a project that maps land use/land cover
on previous deforested areas provided by PRODES (Program for
Deforestation Monitoring, INPE, 2017) at approximately bi-annual in-
tervals across the Brazilian Legal Amazon (Almeida et al., 2016). Ter-
raClass classifies previously deforested areas into 12 land use categories
including pasture, annual crops, secondary vegetation and urban areas.
It is extensively validated via field campaigns to determine the accuracy
of classification. These have been conducted across different Amazo-
nian regions, including the state of Mato Grosso. This is the best
available information on the distribution of secondary forests in any
region of the Tropics. However, TerraClass involves a huge effort based
largely on visual interpretation and does not map degradation.

The aim of this study is to propose a Landsat multiple time-series
based approach in Tropics to 1) improve the efficiency/cost-effective-
ness of mapping disturbed forests vs. intact forests, facilitating future
TerraClass efforts, 2) map degraded old-growth forests (outside of
TerraClass), and 3) eventually enable mapping of disturbed forests over
domains for which no reliable data on forest disturbance exist. Only
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forest areas are considered in this study. To make sure all non-forest
areas are excluded, we created a forest cover mask by merging
TerraClass-2010 old-growth forest, secondary vegetation and pasture
with regeneration categories (Fig. 1). The latter category effectively
captures the beginning of the regenerative process containing shrubs
and early successional vegetation (Almeida et al., 2016).

3. Methodology and dataset

The whole approach was developed in Google Earth Engine (GEE)
(Gorelick et al., 2017). GEE is a cloud-based geospatial processing
platform which consists of over 40 years of historical and current Earth
observation imagery, making pixel-based land use and land cover
classification feasible across large regions through its inbuilt machine
learning algorithms. The overall methodology (Fig. 2) consisted of
building Landsat multiple (six) annual time-series trajectories, calcu-
lating trajectory metrics (eleven metrics divided into four groups,
Table 2), generating a training and validation database, applying a
machine learning random forest classification algorithm and validating
the disturbed forests vs. intact forests classification map, all of which
were coded and processed in GEE. We subsequently used the post-de-
forestation regrowth forest mask generated from TerraClass-2010 to
separate the disturbed forests identified through our classification map
into post-deforestation regrowth forests and degraded forests (Table 1).
Finally, we performed a relative important analysis of trajectories and
trajectory metrics used in the random forest classification to evaluate
the extent to which the full suite of all trajectories/metrics enhanced
discriminatory power relative to a single trajectory or individual group
of trajectory metrics. To do this, ten separate classifications were per-
formed whereby our classification procedure was repeated for each
individual trajectory separately (but using all four groups of trajectory
metrics), or separately for individual groups of trajectory metrics (but
using all six trajectories).

3.1. Time-series trajectories

3.1.1. Landsat surface reflectance dataset
We used Landsat atmospherically corrected surface reflectance (SR)

products (30m resolution) (Masek et al., 2006; USGS, 2018) to generate
annual time-series trajectories. All Landsat-5 Thematic Mapper (TM)
surface reflectance images acquired during the period of 1984–2010
were used except for 2001 and 2002. In 2001, most images had striping
artifacts limiting their use, while in 2002, images from Landsat 5 only
covered 61% of our study area. For these reasons, we used Landsat-7
Enhanced Thematic Mapper Plus (ETM+) images, which are compa-
tible in their spectral characteristics (Claverie et al., 2015; Masek et al.,
2013), for these two years. In terms of spectral bands, we chose spectral
bands 3 (red, 0.52–0.60 μm) which is sensitive to the amount of
chlorophyll, 4 (near-infrared, 0.76–0.90 μm) which is related to leaf
cellular structure, 5 (shortwave-infrared, 1.55–1.75 μm) and 7 (short-
wave-infrared, 2.08–2.35 μm) which relate to leaf water content
(Nelson et al., 2000). To minimize the influence of the extent of rivers
on the classification, we excluded water bodies in our analysis using the
Joint Research Center (JRC) Yearly Water Classification History v1.0
product. This dataset contains maps of the location and temporal dis-
tribution of surface water from 1984 to 2015 at annual resolution,
generated using more than three million scenes from Landsats 5, 7 and
8 (Pekel et al., 2016).

3.1.2. Generating time-series trajectories
We processed 11,483 images in total for our entire study period

(1984–2010), ranging from 257 to 715 annual images depending on
data availability, with annual spatial coverage of 99% of our study area
(see Table S1 in supplementary information). Five steps were involved
to process the Landsat SR data and produce time-series trajectories for
1984–2010. First, areas covered by clouds and cloud shadows were
removed based on the pixel quality and radiometric saturation

Old-growth forest 

Secondary vegetation

Pasture with regeneration
Fig. 1. TerraClass classification map for 2010 (pasture with regeneration in TerraClass is treated as young secondary vegetation). Later, we merged old-growth forest,
secondary vegetation and pasture with regeneration into the forest cover mask as the forest boundary. The study area encompasses three WWF forest ecoregions
(moist, seasonal and dry forest).
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attributes of the Landsat surface reflectance product. Second, original
surface reflectance (16-bit signed integer) values were converted to 0–1
range values by multiplying by the scale factor of 0.0001. Third, four
vegetation indices (VIs) were calculated including the Normalized
Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI2130, NDWI1640) (Chen et al., 2005) and Soil-Adjusted
Vegetation Index (SAVI) (Huete, 1988). Fourth, to minimize the influ-
ence of cloud contamination and improve the quality of input data, we
selected the maximum value of individual VIs for each year (Maxwell
and Sylvester, 2012). For time-series of reflectance from spectral bands
5 and 7, median values were calculated for each year. In the final step,

we used the JRC Yearly Water Classification History v1.0 product to
mask water areas (Pekel et al., 2016). After processing, annual time-
series trajectories (1984–2010) of Landsat SR spectral band 5
(1.55–1.75 μm), band 7 (2.08–2.35 μm), NDVI, NDWI2130, NDWI1640
and SAVI were used for the classification of disturbed forests and intact
forests.

3.2. Trajectory metrics

We calculated eleven metrics divided into four groups (Table 2) for
each of the six spectral trajectories to act as inputs for random forest

Trajectory metrics (x11) (Table 2): 
Min, Max, Range, Mean, Standard 
Deviation, C.V., Skewness, Kurtosis, 
Slope, Max-slope, year-2010 value 

Majority filter: remove isolated 
disturbed pixels  

Classification map of disturbed vs. intact forests 

Time-series trajectories (x6):  
► B5 (SWIR1640nm);     ► B7 (SWIR2130nm); 
►NDVI = (NIR – RED) / (NIR + RED) 
►NDWI2130 = (NIR – SWIR2130nm) / (NIR + 
SWIR2130nm) 
►NDWI1640 = (NIR – SWIR1640nm) / (NIR + 
SWIR1640nm) 
►SAVI = 1.5 * ((NIR – RED) / (NIR + 
RED + 0.5)) 

Intact forest:  
Overlay old-growth forest from , and 
masks , , 

Disturbed forest: 
Overlay secondary vegetation & 
regeneration with pasture from , and 
mask , 

Training and validation dataset: 
10,000 sampled points (5,000 intact 
/5,000 disturbed) for each forest 
ecoregion  

Water mask: JRC yearly water classification 

Mask clouds, shadows  

Random Forest classifier (RF) 

Input data: 11metrics x 6 trajectories  
   = 66 variables 

Random sampling 

 TerraClass-2010 
 USGS global tree cover > 75% 
 Hansen GFC >75% 
 GlobeLand30 - Forest 

Landsat 5/7 Surface 
Reflectance 
(1984-2010) 

TerraClass forest mask  

Final classification map (intact forest, post-
deforestation regrowth forest, degraded forest) 

10-fold Cross validation 

Separate disturbed forests into degraded and 
post-deforestation regrowth forests  

TerraClass post-deforestation 
regrowth forest mask (Table 1) 

Fig. 2. Classification methodology for discrimination of disturbed forests and intact forests.
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algorithm (see Section 3.4), based on a priori expectations of diver-
gence between intact and disturbed forests. Each of these 11 metrics
may capture information that is linked to a particular disturbance type.
For example, the coefficient of variation (C.V.) shows the extent of
variability in relation to the mean. Forests which have experienced
large disturbances would be expected to have higher C.V. than un-
disturbed intact forests. We further hypothesized that time-series tra-
jectories of intact forest would follow a normal distribution, while those
of disturbed forests would tend not to and be much more likely to ex-
hibit greater skewness and kurtosis. Finally, trends (based on linear
regressions) were also estimated from the time-series trajectories. We
hypothesized that disturbance events would likely result in either de-
creasing (deforestation/degradation) or increasing (regrowth) trends
over time, and thus expected that the regression slopes of disturbed
pixels would be much smaller/greater than undisturbed pixels where
we expected that the slope value is close to zero. It has been found that
regrowth secondary forests in Amazonia are cut and burned on average
every 5 years (Aguiar et al., 2016). Thus, we also considered the max-
imum absolute regression slopes derived from individual 5-year win-
dows within the 1984–2010 study period.

Fig. 3 demonstrates differences in trajectories and trajectory metrics
between intact and disturbed forest pixels. For intact forests (un-
disturbed during 1984–2010), we expected trajectories to fluctuate, but
to follow a normal distribution pattern, while trajectories of disturbed
forests were expected to exhibit more pronounced decrease and in-
crease patterns. Trajectories of disturbed forest pixels' can follow var-
ious patterns, depending on whether they have been disturbed once
(Fig. 3 Disturbed B) or multiple times (Fig. 3 Disturbed A) within the
study period (1984–2010) or disturbed before 1984 but following a
clear recovery pattern within study period (Fig. 3 Disturbed C).

3.3. Sampling design

We used GEE random sampling to generate a set of spatially re-
presentative points of disturbed and intact forests for classification
training and validation based on TerraClass-2010 map of old-growth
forest, secondary vegetation and pasture with regeneration, USGS
(United States Geological Survey) 30m Global Tree Cover 2010
(Hansen et al., 2013), the Hansen Global Forest Change (GFC) product
(Hansen et al., 2013), and 30m Global Land Cover 2010 (GlobeLand30-
2010) produced by National Geomatics Centre of China (Chen et al.,
2015). Since TerraClass uses deforestation vector data from PRODES
(INPE, 2017) as input data to map subsequent land use/covers (Almeida
et al., 2016), it inherited PRODES historical misalignment issues. To
better align TerraClass with GFC products, we registered the TerraClass-
2010 classification map using the GEE image displacement algorithm
by calculating the displacement between TerraClass-2010 forest mask
and GFC forest mask (Hansen et al., 2013).

For intact forests, points were randomly sampled from areas that
met the following conditions: i) classified as old-growth forest in
TerraClass-2010; ii) tree canopy cover> 75% in GFC in 2000 and no
forest loss during 2000–2010; iii) tree cover> 75% in USGS 30m
Global Tree Cover 2010; and, iv) classified as forest in GlobeLand30-
2010. Similarly, disturbed forest pixels were sampled from areas that
satisfied the following conditions: i) classified as secondary vegetation
or regeneration with pasture in TerraClass-2010; ii) tree cover> 75%
in USGS 30m Global Tree Cover 2010; and iii) classified as forest in
GlobeLand30–2010. To reduce the influence of unwanted positional
errors among these land cover products and avoid edge effects, we re-
quired that both intact forest and disturbed forest sampled points were
located at least 100m away from the patch boundary. For each forest
ecoregion (moist/seasonal/dry forest), 10,000 points (5000 intact and
5000 disturbed) were randomly sampled, respectively. In total, we

Table 1
Classification categories for forested land cover types used in this study.

Categories Description

Total area Total area of each ecoregion
Forest cover Forest mask from TerraClass classification for the year of 2010, combining TerraClass categories of old-growth forest, secondary vegetation

and regeneration with pasture.
Intact forest Forests that have never been experienced any detectable disturbances during 1984–2010. Classified from this study.
Disturbed forest Cumulative disturbed forest areas during 1984–2010. Classified from this study. Further separated into Post-deforestation regrowth forest &

degraded forest.
Post-deforestation regrowth forest Areas that have been previously deforested (clearfelled) and converted to other land uses (e.g. pasture, agriculture and mining) but which

have subsequently undergone a recovery process following abandonment. Secondary vegetation or regeneration with pasture in TerraClass-
2010.

Degraded forest Degraded old-growth forests. Characterised by a reduction of forest canopy cover (e.g. selective logging, windfall, fire) but have not been
clearfelled and thus have not been included in deforestation estimates.

Table 2
Metrics for each time-series trajectory and related main GEE algorithms. The metrics were divided into location, scale, temporal and single year groups which were
further used for metric important analysis (see Section 4.4).

Group Name Description Main GEE algorithm

Location metrics Min Minimum of time-series ee.Reducer.min()
Max Maximum of time-series ee.Reducer.max()
Range The range between maximum and minimum of time-series Code equation ‘max-min’
Mean The mean of time-series ee.Reducer.mean()

Scale metrics StdDev Standard deviation of time-series ee.Reducer.stdDev()
C.V. Coefficient of variation of time-series Code equation ‘mean/stdDev’
Kurtosis Dispersion measure related to the tails of Normality distribution test

(D'Agostino, 1970, see methods)
Code equations based on the reference

Skewness Symmetry measure related to Normality distribution test (D'Agostino, 1970, see
methods)

Code equations based on the reference

Temporal metrics Slope Linear regression slope of total time-series ee.Reducer.linearFit()
Max-slope Maximum linear regression slope of every 5-year window Function of 5-year window; ee.Reducer.linearFit();

ee.Reducer.max()
Single year Year-2010 Time-series trajectory value at year 2010 ‘FilterMetadata’ equals 2010

Y. Wang et al. Remote Sensing of Environment 221 (2019) 474–488

478



sampled 30,000 intact and 30,000 disturbed points across the study
area as the training and validation database.

3.4. Random forest classifier

Mapping of disturbed forests was performed by using the GEE
Random Forest classifier algorithm, which has been recently success-
fully applied to cropland mapping (Shelestov et al., 2017; Xiong et al.,
2017), oil palm plantation detection (Lee et al., 2016), mapping urban
settlement and population (Patel et al., 2015) and soil mapping
(Padarian et al., 2015). Random Forest (RF) classification is a relatively
well-known supervised machine leaning algorithm that iteratively
produces an ensemble of decision tree classifications by using corre-
sponding randomly selected subsets of the training dataset (Breiman,
2001). It grows classification trees by splitting each node using a
random selection subset of input variables, which reduces overfitting
and yields a more robust classification compared to other classifiers
(Breiman, 2001). RF uses a voting system to classify data and the final
classification category for each pixel is determined by the plurality vote
of all trees generated to build the forest.

We used 66 variables comprising 11 metrics (Table 2) for each of
the six time-series trajectories as input predictors for the RF classifi-
cation. RF classifications were applied in moist, seasonal and dry forest
ecoregions, respectively. All classifications were based on the outputs of
500 decision trees (see Fig. S1 in supplementary information). Each tree
split was based on eight variables randomly selected from all 66 input
variables, which was the default configuration for the GEE random

forest classifier. After constructing our disturbed forest classification,
we performed a post-classification filtering to reduce noise and remove
spurious classification artifacts by applying a 90m×90m majority
filter.

3.5. Classification validation

To evaluate how well our classification performed, we used ten-fold
cross-validation (Kohavi, 1995; Schaffer, 1993) based on above ran-
domly sampled database (see Section 3.3, i.e. 10,000 points for each
forest ecoregion), which randomly partitions our sampled database into
ten equal sized subsets. Of the ten subsets, a single subset (1000 points)
was retained as the validation data for testing the classification algo-
rithm, and the remaining nine subsets (9000 points) were used as
training data for RF classifier. The cross-validation process was re-
peated ten times. The final accuracy estimation was determined by the
average of ten-fold results. The accuracy matrix included overall ac-
curacy (OA), producer's accuracy (PA), user's accuracy (UA) and Kappa
statistic (Kohavi, 1995).

For an additional independent confirmation for our Landsat optical
sensor based classification of disturbed forests vs. intact forests, we used
another microwave radar based satellite product, ALOS/PALSAR 25m
spatial resolution mosaic imagery, and very high resolution (5m)
RapidEye imagery as the visual interpretation. ALOS PALSAR imagery
consists of dual polarization HH (transmission of horizontal wave and
reception of horizontal component) and HV (horizontal transmission
and vertical reception), but it has been shown that the polarization

Fig. 3. Examples (NDWI2130) of time-series trajectories for illustrative intact forest pixel and disturbed forest pixels. Values of trajectory scale and temporal metrics
extracted from each trajectory (Table 2) are shown to the right of the graph. Metrics of max, min and year-2010 value are shown on the trajectory with the mean
marked on y axis.
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mode HV is more effective in deforestation detection than HH polar-
ization (Motohka et al., 2014), which corresponds with findings of close
relations between HV backscatter and vegetation structural properties
(e.g. forest height, forest cover) (Joshi et al., 2015). Thus, we visually
compared the 2007–2010 ALOS/PALSAR HV backscatter change with
our final classification results.

SAR data are stored as digital number (DN) in unsigned 16 bit and
typified by a high degree of speckles in the image (random ‘salt and
pepper’ noise). To reduce noise and improve image interpretability, a
multi-temporal speckle filter (7× 7) (Lee, 1980; Lopes et al., 1990) was

implemented in GEE and applied to 2007–2010 PALSAR images,
without significant loss of spatial resolution. Filtered ALOS/PALSAR HV
backscatter DN values were converted to sigma-naught (σ0) in decibel
(dB) units using the following equation:

= ∗ −σ 10 log (DN ) 830
10

2 (1)

σ0 is generally negative and can vary from −35 dB in very low
backscatter areas (degraded/deforested area), up to 0 dB for extremely
high backscatter (dense forest area). For visual interpretation, we ex-
pected a decrease or an increase in σ0 in forest areas that have been

Fig. 4. Classification map of intact forest, post-deforestation regrowth and degraded forest representative of the year 2010. Non-forest areas include areas under
anthropogenic use or natural savannahs/wetlands. Small areas 1 to 3 represent three focal regions within individual ecoregions, for which subsequent fine-scale
visual interpretation confirmation was performed (Fig. 5–7).

Table 3
Areal extent (in km2) of intact forest and historically disturbed forest representative of 2010.

Moist forest Seasonal forest Dry forest Total

Total area 170,154 245,514 54,454 470,122
Forest cover

(% of total area)
125,474
(73.74%)

149,571
(60.92%)

20,338
(37.35%)

295,383
(62.83%)

Intact forest
(% of forest cover)

100,050
(79.74%)

107,991
(72.20%)

12,058
(59.29%)

220,099
(74.51%)

Disturbed forest
(% of forest cover)

25,424
(20.26%)

41,581
(27.80%)

8,280
(40.71%)

75,285 (25.49%)
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recently disturbed or are recovering from past disturbances (Joshi et al.,
2015). However, we also expected that many disturbed areas in our
classification would not be captured by PALSAR due to its short time
period (2007–2010).

4. Results

4.1. Classification results

As represented in Fig. 2, the new developed disturbed forests vs.
intact forests classification approach was applied to three different
ecoregions in Mato Grosso. The final classification map (Fig. 4) was
generated by training the random forest classifier individually for each
ecoregion on the entire sampled database. Our classification results
representative of the year 2010 show that disturbed forests (both post-
deforestation regrowth forests and degraded forests) were widely
spread across Mato Grosso, but were most prevalent along rivers and
next to non-forest areas (Fig. 4). Forests in Mato Grosso covered a total
area of 295,383 km2 in 2010 (Table 3), accounting for about 63% of the
total study area. Our results show that, until 2010, 25% of the total
forested area was disturbed (Table 3). Forest cover percentage varied
considerably across ecoregions, ranging from 37% in dry forest to 74%
in moist forest (Table 3). Dry forest experienced the most severe dis-
turbances with 41% of forest cover classified as disturbed, followed by
seasonal forest and moist forest where disturbed forests accounted for
28% and 20% of forest cover, respectively (Table 3).

We further separated disturbed forests identified through our clas-
sification map into post-deforestation regrowth forests and degraded
forests. It shows that the area of degraded forests was up to 62% larger
than the area of post-deforestation regrowth forests across ecoregions,
with degraded forests and post-deforestation regrowth forests covering
a total area of 47,039 km2 and 28,246 km2, respectively (Table 4). By
comparing degraded forests and old-growth forests classified in Terra-
Class for the year of 2010, we found that 18% of areas identified as old-
growth forests in TerraClass were actually degraded forests, ranging
from 15% to 27% across various ecoregions (Table 4).

4.2. Ten-fold cross validation

Ten-fold cross validation was used as the main validation of our
disturbed forests and intact forests classification map, with accuracy

matrices provided in Table 5. Overall, all the classification accuracies
were above 81% with Kappa agreements above 62%. Across ecoregions,
the overall accuracy was the highest in seasonal forest at 86.1%, with a
producer's accuracy of 88.9% for intact forests and 83.3% for disturbed
forests. In moist forest and dry forest regions, the overall accuracies
were lower at 81.3% and 82.6%, respectively.

4.3. High-resolution image interpretation

To further validate our classification, we consider in detail one
landscape within each biome, comparing our results to radar and other
very high-resolution data. Examples in Fig. 5-7 allow for visual com-
parison of our classification in selected focal areas within each forest
ecoregion with corresponding ALOS PALSAR HV backscatter (σ0) tem-
poral (2007–2010) change composite images and very high-resolution
(5m) RapidEye true-colour composite images (Team Planet, 2017).
Overall, this comparison at local scales shows a very good visual
agreement between our classification and the PALSAR temporal change
as well as with RapidEye images across ecoregions (Fig. 5–7), especially
those logging roads shown in Fig. 6. As expected, there were some
mismatches between our classification and the temporal change in
PALSAR HV σ0, such as several disturbed areas from our classification
not appearing in PALSAR temporal change image. This is likely due to
PALSAR images only being available from 2007 and thus not capturing
much forests disturbed before 2007.

4.4. Importance of individual trajectories and metrics

The relative importance of individual trajectories in our classifica-
tion was measured by the percentage of overall accuracy change (%
OAC) when running our classification for a single trajectory (but using
all four groups of trajectory metrics) relative to our full suite multi-
trajectory classification (Table 5). The larger the overall accuracy
change, the less important an individual trajectory is in distinguishing
the differences between disturbed forests and intact forests. All of the
single time-series trajectory based classifications had much lower
(3–15% across ecoregions) overall classification accuracy than our full
suite classification (Fig. 8). In moist forest and dry forest ecoregions,
Landsat shortwave spectral bands 5 and 7 were the most important
trajectories for distinguishing disturbed forests and intact forests, de-
creasing %OAC the least relative to our full suite classification. How-
ever, in the seasonal forest ecoregion, NDWI trajectories were the most
important, decreasing the overall accuracy the least, followed by
spectral band 7.

The important of specific groups of trajectory metrics (Table 2) was
determined in an analogous manner to the importance of specific tra-
jectories. Importance patterns for groups of metrics were similar across
ecoregions (Fig. 8B), with location metrics being the most important in
distinguishing disturbed and intact forests, followed by temporal me-
trics, scale metrics and single year (2010) values. However, single year
(2010) values alone were found to have much less discriminatory
power than other metrics, resulting in much lower (up to 20%) classi-
fication accuracy relative to our full suite classification with all groups
of metrics included (Fig. 8B).

Table 4
Areal extent (km2) of post-deforestation regrowth forest and degraded forest
representative of 2010.

Moist forest Seasonal
forest

Dry forest Total

Post-deforestation regrowth
(% of disturbed forest)

8,188
(32.21%)

15,950
(38.36%)

4,108
(49.62%)

28,246
(37.52%)

Degraded forest
(% of disturbed forest)

17,236
(67.79%)

25,631
(61.64%)

4,171
(50.38%)

47,039
(62.48%)

TerraClass old-growth forest 116,226 131,703 15,622 263, 551
% of degraded forest within

TerraClass
14.83% 19.46% 26.70% 17.85%

Table 5
Ten-fold cross validation accuracy based on sampled points from our study. See Fig. S5 and Table S2 in supplementary information for the additional independent
ground-truth validation.

Regions Overall accuracy Producer's accuracy User's accuracy Kappa statistic

Intact forest Disturbed forest Intact forest Disturbed forest

Moist forest 0.813 0.888 0.737 0.772 0.867 0.625
Seasonal forest 0.861 0.889 0.833 0.842 0.882 0.722
Dry forest 0.826 0.856 0.797 0.809 0.846 0.653
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4.5. Comparing with other products

We compared our classification of disturbed forests in Mato Grosso
with other relevant products which have recently become available
(Fig. 9). These include the MapBiomas land use/cover products
(2000−2010) and the Latin American secondary forest map recently
produced by Chazdon et al. (2016). The latter was derived from the
map of Neotropical forest aboveground biomass of Baccini et al. (2012)
for 2008. To ensure comparability in time, we only compared disturbed
forests from our classification against the area of secondary forests<
24 years old from Chazdon et al. (2016). To compare against Map-
Biomas products (2000–2010), we reclassified open forest, degraded
forest, secondary forest, and flooded forest categories from MapBiomas-
2010 map into one disturbed forest class. Areas classified as non-dense
forest in 2000–2009 MapBiomass products but classified as dense forest
in 2010 were also considered as disturbed forests.

Our estimate of disturbed forest area in Mato Grosso was three times
larger than disturbed forests from MapBiomas with corresponding
spatial distribution shown in Fig. 9(A & B). The biggest classification
differences were located in moist forest ecoregion, followed by seasonal
forest and dry forest. The difference relative to MapBiomas may be due
to the use of different classification methods (single date based classi-
fication) and the limited time period (2000–2010) for MapBiomas.
However, secondary forest area estimates from Chazdon et al. (2016)
were approximately three times greater than the disturbed area from
our classification (Fig. 9C), increasing to four times greater in the dry
forest biome. This may be due to the coarse resolution (500m) of forest
age map, the misclassification of some anthropogenic land use areas as
forest or to errors arising from interpreting the age from the forest
biomass map (Chazdon et al., 2016).

The large discrepancies of estimated disturbed forests among those
products highlight the importance of using high-resolution time-series

Fig. 5. Moist forest focal region (area 1 in Fig. 4). A) Detailed classification map. B) Forest masked ALOS PALSAR HV σ0 temporal change, pink represents increase of
σ0, green represents decrease of σ0 between 2007 and 2010, grey represents little/no change between 2007 and 2010, white areas are non-forest. C) RapidEye true-
colour composite image (see Fig. S2 in supplementary information for better visualization). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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images and the consideration of historical disturbances when mapping
secondary forest regrowth and forest degradation. By excluding pre-
2000 historical disturbances and ignoring time-series spectral char-
acteristics, MapBiomas significantly underestimate the area of dis-
turbed forests (Fig. 9B), and correspondingly may underestimate the
impacts of disturbance on tropical biodiversity and carbon cycles.

5. Discussion

In this study, we developed a new time-series approach in GEE to
map disturbed forests (both forest degradation and post-deforestation
regrowth) and intact forests. This approach incorporates random forest
machine learning algorithm with multiple Landsat time-series trajec-
tories, which enhances classification power by harnessing differential
sensitivities of different time-series. It is flexible with respect to the

Fig. 6. Seasonal forest focal region (area 2 in Fig. 4). A) Detailed classification map. B) Forest masked ALOS PALSAR HV σ0 temporal change, pink represents increase
of σ0, green represents decrease of σ0 between 2007 and 2010, grey represents little/no change between 2007 and 2010, white areas are non-forest. C) RapidEye true-
colour composite image (see Fig. S3 in supplementary information for better visualization). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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disturbance patterns it captures. It detects three different disturbances
trends (Fig. 3): 1) single disturbance — time-series have a decrease then
increase pattern; 2) multiple disturbances — time-series have multiple
increase and decrease signatures pattern; and 3) recovery on previous
disturbed areas — time-series only have an increase pattern. For ex-
ample, in this study, it not only maps areas that disturbed and re-
covering during time-series period (1984–2010), but also captures areas
that disturbed before 1984 but following a recovery process after 1984,
making our approach more valuable and suitable for distinguishing
disturbed forests and intact forests.

Application of our approach in moist/seasonal/dry ecoregions in
Mato Gross resulted in high overall classification accuracy, ranging
from 81.3% to 86.1% across ecoregions. On one hand, the mis-
classification of disturbed forests as intact forests may relate to the fast
recovery process of secondary regrowth forests whose structural and
spectral characteristics could be similar to intact forests after

20–40 years recovery (Aide et al., 2000; Poorter et al., 2016). The de-
graded old-growth forests recover at even faster rates. For example, it
has been shown that about 50% of the canopy opening caused by se-
lective logging becomes closed within one year of regrowth (Asner
et al., 2004), making it harder to capture such quick recovery process
from remote sensing perspectives. On the other hand, the mis-
classification of intact forests as disturbed might be because of our
sampling of intact forests points which may still include few disturbed
old-growth forests, as TerraClass does not map degraded forests. Fur-
thermore, the variation of classification accuracy across ecoregions
might be due to the differences of land-use history, land use intensity,
severity of disturbance events, soil fertility and texture (Chazdon, 2003)
and water availability (Poorter et al., 2016), which are highly asso-
ciated with post-disturbance recovery processes and the structure of
regrowth forests.

By separating disturbed forests into post-deforestation regrowth

Fig. 7. Dry forest focal region (area 3 in Fig. 4). A) Detailed classification map. B) ALOS PALSAR HV σ0 temporal change, pink represents increase of σ0, green
represents decrease of σ0 between 2007 and 2010, grey represents little/no change between 2007 and 2010, white areas are non-forest. C) RapidEye true-colour
composite image (see Fig. S4 in supplementary information for better visualization). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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forests and degraded forests, we found that approximately two-thirds of
disturbed forests were degraded forests, highlighting the importance of
effective systems for detecting these. Forest monitoring system should
not only focus on clear-cut forest deforestation and recovery, but also
degraded forests which may release more than double the amount of
carbon than released by deforestation (Baccini et al., 2017). Interest-
ingly, our classification clearly captured straight-line patterns of dis-
turbed forests, which also present a consistent agreement with both
PALSAR HV backscatter intensity change and RapidEye very high re-
solution images (Fig. 6). Further development of our methodology may
provide new opportunities to map selective logging activities at a large
regional scale.

The methodology developed in this study dramatically exploits the
power of multiple long-term Landsat time-series in the discrimination
of disturbed vs. intact forests with support of GEE's massive storage and
calculation capability. Unlike previously published single time-series
trajectory based approaches (e.g. LandTrendr, VCT, VeRDET) (Cohen
et al., 2017), this approach incorporates six different time-series tra-
jectories which generates a much higher classification accuracy than
single-trajectory based classification (Fig. 8A). Also, this approach in-
tegrates single year features with scale, location and temporal char-
acteristics derived from time-series trajectories, which significantly
enhanced the discriminatory power. Single year features were found to
be the least powerful (up to 20% less) for discriminating disturbed
pixels compared to the combined use of single year features and other
time-series features (Fig. 8B). Thus, combination of single year and
time-series features represents a significant advance on widespread
single-year approaches to map previously disturbed forests.

6. Conclusion

Our study explored the feasibility of using multiple long time-series
Landsat surface reflectance imagery to map tropical historically dis-
turbed forests as far back as 1984. Using case studies of the moist,
seasonal and dry forests in Mato Grosso, we found that this metho-
dology has high potential in mapping various forested land cover types
related to disturbances with an overall accuracy of up to 86.1%. The
classification approach developed in this study is capable of capturing
not only forest regrowth from forest deforestation (clear-cut), but also
forest degradation (partially cut) due to selective logging or other small
scale disturbances. Based on TerraClass-2010 forest mask, until 2010,
41% dry forest in Mato Grosso were disturbed, with 28% and 20% of
seasonal forest and moist forest disturbed, respectively. By comparing
classification from this study with TerraClass-2010 land cover map, we
found that up to 18% of area classified as old-growth forest in
TerraClass was actually degraded forests, highlighting the importance
of including degradation monitoring alongside clear felling monitoring.

Our study clearly demonstrates the potential of extensive time-series
of satellite imagery to map historical forest disturbances and recovery
processes. More specifically, the discrimination of disturbed forests
(both degraded forest and post-deforestation regrowth forest) vs. intact
forests was enhanced by simultaneously combining a suite of single
date features and time-series characteristics derived from multiple time
series of spectral bands and vegetation indices. Our approach is readily
applicable to other larger tropical areas, making pan-tropical mapping
of forest disturbances and regrowth a highly tangible prospect.

Fig. 8. The percentage of overall accuracy change (% OAC) when running our classification procedure for individual trajectories separately (but using all four groups
of trajectory metrics) or separately for individual groups of trajectory metrics (but using all six trajectories) relative to our full suite classification with all trajectories/
metrics included (Table 5). The larger the absolute % OAC, the less important the particular trajectory (or the group of trajectory metrics).
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