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Abstract  

Whilst air pollution is a major problem in China, little is known about how it is 

distributed socially and how such distributions are changing over time. We use 

population census and air quality data for 2000 and 2010 to explore socio-spatial and 

temporal inequalities in air pollution for Beijing. We find that clear environmental 

inequalities exist with respect to measures of social disadvantage, such as hukou 

migrant status, very young children (aged 0-4 years), and the elderly (aged ≥ 65 years). 

Our temporal analysis reveals that environmental inequality increases for migrants and 

the elderly, who bear a disproportionate and rising share of declining air quality from 

2000 to 2010. Regression results emphasise the spatial and temporal variations in 

environmental inequality, as the associations between air pollution and social 

demographics differ between different urban zones of Beijing and their geographic 

patterns change significantly over time.  
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Introduction 

Reducing health inequalities is a major international development goal that has long 

received public policy support. Much evidence exists to show that marginal social 

groups (poor, ethnic, children) bear unequal environmental burdens and hence 

experience above average environmental health risks (e.g. Pastor et al. 2005; Brulle and 

Pellow 2006; Walker 2009), although the contribution these environmental inequalities 

make to health inequalities has received relatively little attention (Pearce et al. 2010). 

Analyses of environmental inequality at fine-grained spatial scales with a temporal 

dimension are rare, with few developed for China, despite it having 40% of the world’s 

premature deaths due to poor air quality (Lim et al. 2012). Little is known about how 

this health burden is distributed spatially and socially, or how these distributions are 

changing over time. As a result, there is very limited understanding of environmental 

inequalities in China, significantly inhibiting the development of health sensitive 

environmental policy. 

Environmental justice (EJ) is a key concept at the intersection of environmental 

sustainability and social justice discourses that seeks to ensure that all people enjoy 

equal access to a clean environment and equal protection from environmental hazards 

irrespective of ethnic and socio-economic status (Cutter 1995). This popular definition 

address the two most common conceptions of EJ, distributive justice and procedural 

justice. Distributive justice is concerned with the fair distribution of environmental 

impacts and access to environmental goods and services, whilst procedural justice is 

concerned with ensuring fairness in decision making that affects the environment, and 

equal access to judicial redress in environmental matters. In terms of distributions, 

justice theories are used to articulate and differentiate between unequal and unfair. An 

unequal distribution (e.g. of environmental quality) may be viewed as unfair/unjust (or 
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not) depending upon the position subscribed to, whether that be utilitarianism, 

libertarianism, or a Rawlsian egalitarianism conception based on need, desert, or 

entitlement. The scope of EJ continues to evolve beyond these core interests, with 

growing attention to issues of recognition (as participative justice relies upon 

recognition and respect for all those involved), as well as interest from post-structural 

geographers including the use of performative practices to study and understand EJ 

(Jamal and Hales, 2016). Walker (2009) and Schlosberg (2013) review and discuss 

recent developments of environment justice theory.  

Globally, the EJ literature is large and remains dominated by distributional 

studies, with earliest analyses from the USA, showing that noxious industrial facilities 

and waste treatment and disposal plants were predominantly located in communities of 

colour (e.g. UCCCRJ 1987; Bowen 2002). This evidence led to an Executive Order, 

requiring the promotion of environmentally just development, and the establishment of 

The Office of Environmental Justice in the US EPA to coordinate federal efforts to 

integrate environmental justice into all policies, programs, and activities. EJ policy 

subsequently spread internationally, with for example, the ratification of the UN ECE 

Arhus convention on the environment (UNECE 1999). 

As indicated above, socially unequal environmental burdens are not necessarily 

unjust and many argue that in addition to how a ‘fair’ distribution is conceived, 

consideration must also be given to how unequal distributions develop.  Insight into 

processes producing environmental inequalities has been sought through EJ studies that 

add a time dimension, and which are thus better able to test theories about how unequal 

distributions arise (see Mitchell et al., 2015 for a review). Theories include: overt and 

historic discriminatory siting of environmental hazards, post-siting population 

dynamics (e.g. movement of minorities to an environmental hazard for area benefits 
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such as work or better housing; movement away from a hazard by those that can afford 

to, leaving a concentration of minorities who cannot), capacity for collective action to 

resist environmental hazardous, and cultural risk theory, with households trading off 

environmental risk for other benefits the area offers or simply ignoring the risk.  

Understanding how unequal distributions arise is then important in judging 

whether inequality is also unfair. However, where environmental impacts are likely to 

be injurious to health, and particularly where legal environmental standards are 

breached, claims of environmental injustice are better supported. Mitchell and Dorling 

(2003) showed that in the UK in 2001, about 2.5 million people lived in areas where 

air quality did not comply with national (EC) standards; of these people, over half were 

amongst the poorest in the country. Because air quality standards, intended to protect 

public health, are agreed as part of the social contract between the state and its citizens, 

it can be concluded that this is an environmental injustice which policy makers and 

planners need to address.  

Although EJ research has broadened its scope to address a wider range of 

hazards, this interest in air pollution remains high, given the clear health links and 

prevalence of poor air quality. Evidence for the health impact of poor air quality is 

strong, and the Global Burden of Disease project ranked outdoor air quality (fine 

particulates) as the ninth greatest threat to human health globally (fourth in East Asia) 

with 3.2 million premature deaths and 76 million years of healthy life lost each year 

(Lim et al. 2012). The European Environment Agency estimated that 18–21% of 

Europe’s population experience particulate concentrations exceeding the EC standards, 

with an estimated average loss of healthy life of 8 months per person (EEA 2012). EJ 

studies imply that the poor and other marginal groups will bear a disproportionate share 

of these health burdens. For example, the latest estimate of UK national disease burden 
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attributed to outdoor air quality is 40,000 (± 25%) premature deaths each year (RCP 

2016), with distributional analysis revealing that of those people resident in areas that 

failed annual average fine particulate standards in 2011, 85% were in the poorest 20% 

of the population (Mitchell et al. 2015).  

 Where data permits, EJ analysis can be extended over time to gain insight into 

the evolution of environmental inequalities. Mitchell et al (2015) present a dynamic 

analysis of air pollution change in Britain between 2001 and 2011, with results showing 

that air quality improvement is greatest in more affluent areas with deprived areas 

bearing a disproportionate and rising share of declines in air quality, a pattern that they 

concluded would exacerbate respiratory health inequalities (although a reduced disease 

burden overall was expected). However, such dynamic EJ studies are rare, hampered 

by a lack of coherent longitudinal data, and have to date been limited to developed 

countries, predominantly North America, Europe and Japan (see review in Mitchell et 

al. 2015). Many of the most pressing public health related environmental inequalities 

are emerging in developing countries, including China, yet these countries are almost 

absent from the EJ literature. 

 Serious air pollution is probably the most pressing environmental issue in China, 

and a major public health concern. Air quality in Chinese cities is among the worst in 

the world, with 1.2 million premature deaths due to poor air quality in 2010 (Lim et al. 

2012). Understanding how this environmental burden is socially distributed, who is 

most impacted, and how these distributions have evolved over time is key in 

determining how to better protect the health of the most vulnerable social groups in 

China. China also presents a particularly interesting case in the EJ field, as it is a country 

pursuing a social market economy (and is the fastest growing consumer economy in the 

world, with a rising middle class) yet holds to an egalitarian political doctrine which 
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implies that all environmental inequality is unjust. Exploration of public health and EJ 

issues in this context is likely to be both fascinating, and supportive of environmental 

and public health policy (Ma et al. 2017).  

However, the development of economic, environmental and sustainability 

policy in China gives little attention to social equity concerns and their links with public 

health, and the evidence base is poorly developed. Prior studies have focused on 

environmental inequalities at a coarse spatial scale (cities, districts) and conclusions 

cannot be applied to the finer scales important to understanding public health impacts 

and inequalities without invoking the modifiable areal unit problem (Kwan 2012). 

Others studies focus on correlation between perceived environmental hazard and health 

outcome (Chen 2013), but employ a static analysis that constrains our understanding of 

the evolution of environmental inequality over time, and hence its implications for 

health inequalities.  

As the nation’s capital and one of China’s largest metropolitan areas, Beijing 

has undergone rapid urbanisation since the 1980s, and its urban population ratio has 

risen from 77.5% in 2000 to 85.9% in 2010 (Beijing Statistical Bureau 2010). However, 

China’s megacities are less dense than other international megacities, and Beijing’s 

urban sprawl has been accompanied by large increases in car use, creating serious 

problems of traffic congestion, energy consumption and air pollution (Ma et al. 2014). 

Air quality in Beijing is amongst the worst in the world, with the annual average PM2.5 

concentration reaching 80.4 ȝg/m3 for 2015 (Greenpeace East Asia 2016). For 

comparison equivalent annual average PM2.5 standards are 35 ȝg/m3 in China (a 15 

ȝg/m3 standard exists for areas requiring special protection, such as resorts), 25 ȝg/m3 

in the EU, 12 ȝg/m3 in the USA, whilst the WHO guideline value is 10 ȝg/m3. Clearly 
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Beijing’s severe air pollution has potentially highly significant environmental, social 

and health impacts, but these remain largely unquantified.  

Therefore, in this research focused on Beijing, China, we characterise the spatial 

and social distributions of air quality (fine particulate PM2.5 concentrations) at fine 

geographical level and explore the nature and evolution of environmental inequalities. 

This is achieved through combining recently released high-resolution (1 x 1 km grid) 

air-quality data from the Atmospheric Composition Analysis Group (van Donkelaar et 

al. 2016) and the population censuses of Beijing at the sub-district level for 2000 and 

2010. Spatial econometric models are also employed to investigate the relationships 

between air pollution and socio-economic disadvantage over the decade. We present an 

urban environmental inequality study based on observed (rather than perceived) 

environmental data in China with a fine-grained spatio-temporal analysis, and thus add 

a new dimension to the environmental justice literature worldwide. More importantly, 

this research improves the understanding of environmental inequality needed to inform 

the Chinese governments’ environmental and public health policy.   

 

Data and methods 

Air quality data 

China records air quality data via the official real-time air pollution monitoring station 

network, where hourly ground concentration data for several air pollutants are recorded 

by the Ministry of Environmental Protection of China. However, these data are only 

available from 2013 and for Beijing are limited to just a few monitoring stations, 

masking geographical variability (Ma et al. 2017), and making the data unsuited for our 

purpose. Therefore, here we use model-based annual concentrations at ground-level for 

2000 and 2010 from the Atmospheric Composition Analysis Group (van Donkelaar et 

al. 2016). We focus on the finest particulate matter fraction (PM2.5), thought to make 
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the greatest contribution to the global disease burden attributed to poor air quality, some 

3 million premature deaths in 2013 (Forouzanfar et al. 2015). This fraction is also 

strongly associated with combustion sources including vehicle traffic, which emits 

primary particulates plus other gases (e.g. NOX, SO2) that react to produce secondary 

pollutants including nitrate and sulphate particulates. van Donkelaar et al (2016) 

estimated global surface level PM2.5 concentrations by combining satellite based 

observations (Aerosol Optical Depth) with a chemical transport model, with results 

calibrated to ground-based observations of PM2.5 using Geographically Weighted 

Regression. The PM2.5 concentrations are available for 1998 to 2015 (at 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140) at a spatial scale of about 1 x 1 

km, much finer than previously available for China.  We acknowledge that there are 

limitations when applying this global-scale pollution data in a specific city due to 

different meteorological conditions. We have conducted a validation check using the 

PM2.5 concentrations derived from real-time air quality monitoring stations in 2013 

(when such data firstly become available) with a block-Kriging approach (Bivand et al. 

2013). This shows that the calculated PM2.5 concentrations from block-Kriging are in 

line with the global surface level PM2.5 concentrations, as indicated by a Pearson 

correlation coefficient of 0.83. Therefore, we argue that the use of this model-based 

pollution measure is not expected to cause serious issues to our results. 

 On the basis of these data, we then calculate annual average PM2.5 

concentrations at the sub-district (or Jiedao) scale in Beijing for 2000 and 2010 

separately. The sub-district is the basic administrative unit in China. Sub-districts 

contain neighbourhoods, and in Beijing the 318 sub-districts had a population of about 

86,000 each (standard deviation 45,000) in 2010, against a city wide population of 19.6 

million. Thus sub-districts are geographically still quite large, but are the finest spatial 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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unit at which the population census and geographical boundary data are available. We 

overlay the Beijing sub-district polygon data with the 11 km PM2.5 concentration grids, 

and then calculate the weighted annual averages of PM2.5 concentrations for each sub-

district as: ܥ௞ ൌ σ ௌ೔ೖௌೖ ௜௠௜ୀଵܥ                                                 (1) 

where Ck represents the calculated annual PM2.5 concentration for sub-district k, m 

refers to the number of grids falling within (or intersecting with) sub-district k. Sik is the 

area of grid i falling in sub-district k, Sk refers to the total area of sub-district k, and Ci 

refers to the PM2.5 concentration level of grid i.  

 

Demographic data 

The demographic data is from the fifth and sixth population census of Beijing for 2000 

and 2010 at the sub-district geography. All residents are required to answer a short 

census form containing basic information on the household and individual socio-

demographics (e.g. gender, age, education), while a sample of 10% of the total 

population in each sub-district are randomly selected to complete a long census form, 

which elicits additional information on attributes such as housing area, employment 

and occupation. In particular, residential status, or hukou, is a legal record for regulation 

and administration of residents in mainland China, which registers basic socio-

demographic information, original and current residential location, and the rural or 

urban residence status. In many cases, the hukou system is regarded as an entrenchment 

of rights for local or urban residents only. Migrants and rural residents are thus 

restricted in their access to particular goods and services that are key to social welfare. 

These include admission to certain schools and hospital services, and the right to 

purchase a private house or a car. The hukou system is widely criticised as a tool that 
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blocks social mobility and exacerbates rural-urban inequalities across China (Wu and 

Treiman, 2004). Accordingly, we derive the social metrics of residential status (or 

hukou), very young children and the elderly who are particularly vulnerable to air 

pollution, as well as employment status (unemployment rate) from the 2000 and 2010 

population census data, to determine the social distribution of air pollution. In line with 

Ma’s (2010) equity analysis of industrial facilities in Henan province of China, we do 

not address ethnicity in our analysis, as many western EJ studies do, as about 96% of 

the population of Beijing are Han people.  

 

Analytical methods 

This research involves both descriptive analysis and multivariate regression analysis. 

First and foremost, we use a GIS to map the spatial distributions of air pollution and 

proportions of the disadvantaged social groups of migrants, very young children (aged 

0-4 years), the elderly (aged 65 years and above), and the rate of unemployment for 

each sub-district in Beijing, and then relate the air pollution data and social 

demographic data at the sub-district geography for both 2000 and 2010. The PM2.5 

concentrations by sub-districts in 2000 and 2010 have been assigned to the 

corresponding demographic census populations at the sub-district level to represent 

their exposures to air pollution for 2000 and 2010, respectively (Buzzelli and Jerrett 

2003; Milman 2006). We then conduct a preliminary investigation of environmental 

inequality by plotting air quality against relevant social metrics in deciles of equal 

population. Specifically, data are analysed by ranking all sub-districts by residential 

(migrant) status, very young children, the elderly and employment status for 2000 and 

2010. The sub-districts are then divided into equal population deciles and sorted into 

ascending order for each demographic attribute, so that the upper deciles are 
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characterised by the greatest proportion of people of the specified attribute. Average 

PM2.5 concentrations for each decile are then calculated from the sub-district PM2.5 

values for 2000 and 2010, respectively. This is a widely used type of distributional 

analysis in the EJ literature and although statistically simple, is a powerful analysis as 

it deals with the entire population rather than relying on comparison of a population 

sample to national averages.  

 Next, we employ a set of regression models to isolate associations between key 

socio-economic variables and air pollution, while controlling for locational and 

industrial structure attributes of each sub-district. To deal with the spatial pattern of air 

pollution, two analysis strategies are implemented. First, the second-order polynomials 

of the coordinates (Easting and Northing) of sub-districts are included in our model to 

capture the global spatial smoothness trend of air pollution. Second, a popular spatial 

econometric model, the spatial error model (SEM) is specified for the air pollution 

model to tackle the remaining spatial correlation (or auto-correlation). The importance 

of spatial econometric models in environmental equity research is highlighted by 

Laurian (2008). Following Anselin (1988), the SEM is specified as, ܲ݊݋݅ݐݑ݈݈݋ ൌ ଴ߙ ൅ ܺԢࢽ ൅ ࢼԢܮ ൅ ݂ሺ݃݊݅ݐݏܽܧǡ݄ܰ݃݊݅ݐݎ݋ሻ ൅ ࣓; ࣓ ൌ ൅࣓ܹߩ  (2)                                                    ࢿ

where X refers to the socio-economic variables of interest and L represents some control 

variables including spatial location (e.g. distance to city centre and city zonal variables), 

population density, and industrial structure; f (Easting, Northing) is the spatial 

smoothness terms applied to the coordinates of each analysis unit,  and  are two 

regression coefficient vectors to estimate,  is a vector of independent random residuals 

each following a Normal distribution, N(0, 2);  is the model error vector, specified 

as a simultaneous auto-regressive spatial process with a multivariate Normal 
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distribution, MVN(0, ሾሺܫ െ ܫሻԢሺܹߩ െ  ሻሿିଵ). W is a row-normalised spatial weightsܹߩ

matrix specifying the connection structure of analysis units, and  the estimated spatial 

auto-regressive parameter. We extract W based on geographical contiguity of sub-

districts: wkj = 1 if sub-districts k and j share a border, and 0 otherwise. 

 The causal associations between spatial distributions of social and economic 

disadvantage and air pollution, evidencing environmental inequality, are complex, 

arguably more so than previously recognised. Bailey at al 2018 show that, driven by a 

mix of socio-economic processes including path dependency, market sorting and 

heterogeneous residential locational preferences, the association between aggregated 

patterns of air pollution and deprivation (or poverty) in Scotland varies both spatially 

and temporally. To address such potential spatial heterogeneity effects, our study area 

is delineated into four city developmental zones (Table 1) according to the Beijing 

Statistical Bureau (2010), allowing spatial variability in environmental inequality to be 

analysed. We implement SEM by using an open source software package spdep 

(Bivand et al. 2013) in R. To reduce the potential heteroscedasticity and multi-

collinearity issues, all variables except for zonal dummy variables are transformed to a 

standard Normal distribution in our modelling analysis. Definitions and summary 

statistics of key variables are presented in Table 1. 

 

[Table 1 about here] 

 

Results 

Spatial Distribution of Air pollution and Socio-economic Disadvantage in Beijing 

Figure 1 maps annual average PM2.5 concentrations at the sub-district geography for 

Beijing in 2000 and 2010. The area wide annual mean value of PM2.5 concentration is 



13 

 

64.1 ȝg/m3 in 2010, compared to 53.6 ȝg/m3 in 2000, a significant increase (about 20%) 

reflecting urban growth, industrialisation and motorisation over the decade. The 

number of sub-districts where PM2.5 concentrations below China’s limit value of 35 

ȝg/m3 for fine particulate matter (MEP 2012) has decreased significantly, from 16.3% 

in 2000 to 8.5% in 2010. In contrast, there are 37.6% of sub-districts with annual mean 

PM2.5 concentrations above 65 ȝg/m3 (no sub-districts above 80 ȝg/m3) in 2000, rising 

to 57.1% of sub-districts above 65ȝg/m3 and in particular 13.5% above 80 ȝg/m3 by 

2010 in the Beijing metropolis. However, possibly due to the meteorological factors 

(e.g. temperature and wind speed) and domestic coal consumption, there is a significant 

seasonal variation of PM2.5 concentrations in Beijing, which were much higher in 

winter than in summer as reported by Sun et al (2004). The high PM2.5 concentrations 

in Beijing is partly due to meteorology that creates the red alert smog episodes 

(especially in winter) which push up the annual average. 

 

[Figure 1 about here] 

 

The average PM2.5 concentration by sub-district also varies significantly, with 

a clear division of PM2.5 concentrations from the northeast to southwest across the 

metropolis. Annual average PM2.5 concentrations in most sub-districts of north and 

southwest Beijing are relatively low, ranging from 20.6 ȝg/m3 to 46.2 ȝg/m3 over 2000-

2010. In contrast, average PM2.5 concentrations are much higher in southern Beijing, 

with most sub-districts exceeding 69.0 ȝg/m3 in 2000 and 79.0 ȝg/m3 in 2010. This 

division is possibly due to higher vegetation and mountain coverage in north and west 

Beijing, a prevailing northwest wind (especially in smoggy winters) and more pollution 

sources (e.g. heavy industries) in south Beijing. Average PM2.5 concentrations in the 
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central urban and inner-suburban zones of Beijing are notably much higher than in the 

outer-suburban and city fringe zones for 2000 and 2010, probably due to high 

population density and growing car use in these urban areas (Ma et al. 2014).  

 Figure 2 illustrates the spatial distribution of socio-economic disadvantage for 

the sub-district geography in Beijing in 2010. It shows that geographic variation of the 

proportions of migrants, very young children (0-4 years), the elderly (≥ 65 years) and 

the rate of unemployment is evident across Beijing. For instance, clustering of sub-

districts with a high proportion of migrants and very young children are mainly located 

in the inner-suburban zone, where work opportunities exist and housing is more 

affordable than the central urban zone. In contrast, the rate of unemployment is higher 

in the outer-suburban and city fringe zones, particularly in western Beijing. 

 

[Figure 2 about here] 

 

Social Distribution of Air Pollution for 2000 and 2010 

On the basis of air pollution and population census data, we first investigate the 

social distribution of PM2.5 concentration by hukou status in Beijing for 2000 and 2010. 

We define migrants as residents who departed from their original registered residence 

more than six months ago, and who now live in a different area away from their original 

registered residence, without local hukou. Figure 3 illustrates the distribution of PM2.5 

concentration for migrants in 2000 and 2010. All deciles by hukou experience breaches 

of China’s limit value for PM2.5 concentration of 35 ȝg/m3, although those with a high 

proportion of migrants experience more extreme exceedances. The 2000 pattern shows 

a steady increase in PM2.5 concentration as the percentage of migrants increases. The 

sub-districts where most migrants are resident have an annual average PM2.5 

concentration of 68.4 ȝg/m3 in 2000 (D10), compared to 41.6 ȝg/m3 for the sub-districts 
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where the majority are local residents (D1). Thus areas with a high proportion of 

migrants tend to experience a high level of air pollution, a finding consistent with prior 

studies that show the disadvantaged migrant group perceive higher levels of 

environmental hazard than local residents for Beijing (Chen et al. 2013; Ma et al. 2017).  

 

[Figure 3 about here] 

 

 By 2010, many groups experience a significant increase in PM2.5 concentration. 

The sub-districts where the majority are local residents (D1) experience the least serious 

air pollution, with an annual average PM2.5 concentration of 48.5 ȝg/m3 in 2010, and a 

marginal decline in air quality from 2000. In contrast, most of the other sub-districts 

experience a significant decline in air quality, including those with the higher 

percentage of migrants where PM2.5 concentrations are at least double the annual limit 

value of 35 ȝg/m3 (more than 75 ȝg/m3 for D6-D10). These data display a clear social 

gradient in air pollution in the Beijing metropolis, with migrants tending to be resident 

in the most polluted areas.   

Figure 4 shows that there are significant variations in PM2.5 concentrations for 

very young children (aged 0-4 years) in 2000 and 2010. For deciles with a high 

proportion of very young children the mean PM2.5 concentration is 66.8 ȝg/m3 in 2000, 

well above that of the ‘few very young children’ sub-districts (D1 has the fewest 

children aged 0-4, and a mean annual PM2.5 concentration of 42.7 ȝg/m3 in 2000), 

indicating that very young children are likely to reside in highly polluted sub-districts. 

This general pattern is repeated for 2010, with a notable increase in PM2.5 concentration 

(e.g. D9 increases by 24%, from 61.5 to 76.3 ȝg/m3, 2000-2010), and a rising 

prevalence of very young children is associated with higher PM2.5 concentrations. This 
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might suggest that, with the relaxation of hukou system in Beijing by 2010, very young 

children are more likely to live with their adult parents in the more polluted urban areas 

(Figure 2) where work opportunities exist and housing is more affordable. A 

consequence of this demographic process is that very young children, who are 

particularly vulnerable to air pollution, will experience declining air quality and rising 

health impacts. It might then be anticipated that currently proposed relaxations of the 

hukou system might exacerbate this problem.  

 

[Figure 4 about here] 

 

Figure 5 shows the PM2.5 distribution of the elderly (aged 65 years and above) 

for 2000 and 2010. The general pattern of the elderly is similar to that of very young 

children (aged 0-4 years), that is, areas with a high proportion of the elderly also have 

a much higher mean annual PM2.5 concentration compared with the ‘few elders’ sub-

districts. However, in 2010, the social gradient becomes much steeper, where the higher 

deciles experience increasingly large rises in PM2.5 (e.g. D8 rises by 18%, from 66.9 to 

78.7 ȝg/m3, 2000-2010), with one decile (D1) experiencing a marginal increase, from 

47.6 ȝg/m3 to 49.3 ȝg/m3. Furthermore, in 2000 annual average concentrations in the 

sub-districts with the highest proportion of the elderly (D10) is 43% above that of those 

districts with few elders (D1), rising to 59% in 2010. This reveals growing 

environmental inequality in Beijing over the decade.   

 

 [Figure 5 about here] 

 



17 

 

 Similar age based inequality in air quality (NO2) was first described by Mitchell 

and Dorling (2003) for the UK, with the age-gradients being interpreted in the context 

of established patterns of rural-urban migration.  As people in the UK age they tend to 

be first exposed to relatively high air pollution levels, as birth rates in urban areas tend 

to be above that of the population as a whole. Very young children in the UK experience 

above average exposure, as couples tend to have children in the more polluted urban 

areas for work opportunities. The children-exposure patterns for Beijing are remarkably 

similar. However, a key difference exists for the elderly between the Mitchell and 

Dorling age analysis of the UK, and our observations for Beijing. From the midlife 

(>45 years) onwards exposure levels fall in the UK, reaching their lowest levels 

amongst the elderly who are most likely to live furthest away from the centres of 

pollution. In contrast, the elderly (≥65 years) in Beijing tend to be resident in the more 

polluted urban areas (Figure 2), similar to the exposure pattern for very young children 

(aged 0-4 years). This may be due to a combination of China’s one-child policy (1979-

2016) that affects household structure, and very high housing prices in Beijing that 

affect household location. Many of the elderly live with the extended family, providing 

child care for their grandchildren and receiving support from their children (Cong and 

Silverstein 2012) with the family resident in the (more polluted) urban areas for access 

to work by the adult children.  

Moreover, we use unemployment (distinct from economically inactive) as an 

indicator of lack of economic power, and hence disadvantage.  Figure 6 shows that in 

2000 air pollution falls as the rate of unemployment rises. This is likely because sub-

districts with a high rate of unemployment in 2000 are located mainly in the urban 

fringe zone of Beijing, such as Miyun and Huairou to the north and Mentougou to the 

west, where industry was less prevalent and air quality comparatively good (Figure 1) 
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(D1 unemployment rate is 6%, D10 is 18%). However, by 2010, the pattern changes 

significantly, with the worst air quality now coincident with areas of highest 

unemployment (D1 unemployment rate is 2%, D10 is 10%). D10, with the highest 

unemployment rate has a mean annual PM2.5 concentration of 42.0 ȝg/m3 in 2000, rising 

by 48% to 62.3 ȝg/m3 in 2010. In contrast, D1, with the lowest unemployment rate 

experienced a 10% reduction from 59.4 ȝg/m3 to 53.3 ȝg/m3.  

 

[Figure 6 about here] 

 

This changing pattern is rooted in the economic restructuring and industry 

decentralisation that has been a common feature of Chinese cities since the 1980’s, 

including Beijing. Historically, the urban centre has been dominated by industrial and 

administrative functions, with workers housed close to work in Danwei compounds. 

The rise of the tertiary sector, with many services jobs in the centre (commercial, office, 

retail) displaced the traditional industrial base, which suburbanised to capitalise on the 

land value of their central location, and which were encouraged to relocate by the city 

government due to the pollution created. As the traditional work unit began to dissolve, 

and workers were no longer tied to their Danwei housing, the process of 

suburbanisation was further fuelled, with the old run-down Danwei housing 

increasingly swept away to be replaced by tertiary economic activities and expensive 

luxury housing (Wang and Chai 2009). Thus employment opportunities have been good 

in the central urban districts where tertiary growth has been strong, and low 

unemployment rates are associated with improved air quality following industry 

suburbanisation (evident in D1 of Figure 6).  The suburban districts have experienced 

a reduction in unemployment following industrial suburbanisation, but also a 
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substantial increase in PM2.5 concentration. These data illustrate the trade-off between 

economic development and environmental pollution in China, as well as the more 

complex nonlinear relationship between economy (as unemployment) and air quality 

at the sub-district scale in Beijing (Bailey et al. 2018).   

 Table 2 presents the changes in annual PM2.5 concentration by socio-economic 

disadvantage over 2000-2010. While almost all groups (except D1 for unemployment 

rate) experience an absolute decline in air quality by 2010, the relative changes vary 

across different socio-economic groups. For instance, deciles with a lower proportion 

of migrants and very young children (e.g. D2) experience a greater share of declines in 

air quality over the decade, while the decile with the highest rate of unemployment 

(D10) experiences a significant increase (more than 48%) in  PM2.5 concentration by 

2010. These data suggest that the relationships between the disadvantaged socio-

economic groups and air pollution (PM2.5) are not simple linear relationships.  

 

[Table 2 about here] 

 

Statistical Modelling Analysis  

Estimation results from OLS and SEM in 2000 and 2010 are reported in Table 3. 

Despite global spatial smoothness in air pollution being captured by polynomial terms 

of coordinates of sub-district centroids and the distance to city centre variable, spatial 

auto-correlation in the residuals of the OLS model is found to be statistically significant, 

as evidenced by a Moran’s I statistic of 0.344 with a p-value < 0.001 in 2000. A 

likelihood-ratio test also supports that the SEM significantly outperforms OLS models 

in 2010 (Table 3). Moreover, statistical inferences between OLS and SEM differ 

substantially for a few variables due to the relatively large spatial auto-correlation 
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effects indicated by large magnitudes of  in both census years. We therefore discuss 

environmental inequality and its temporal dynamics based on estimates from SEM over 

2000-2010. 

 

[Table 3 about here] 

 

 In 2000, it shows that the proportion of migrants is positively associated with 

air pollution (with a significance level of 5%), indicating sub-districts with higher 

proportions of migrants tend to experience, ceteris paribus, higher air pollution in the 

outer-suburban zone (Zone 3, the base category). However, the interaction terms 

between zonal dummy variables and migrant variable show that the migrant-pollution 

association in the inner-suburban zone (Zone 2) differs significantly from that in the 

outer-suburban zone, while the central urban zone (Zone 1) and city fringe zone (Zone 

4) do not. This suggests that environmental inequality for migrants exists in Beijing in 

2000. For 2010, the estimates on migrant and its interaction terms with zonal variables 

remain consistent with that in 2000, with a key difference being an increase in the 

magnitude of the pollution-migrant association in the city fringe zone.  

 The proportion of very young children is positively and statistically 

significantly associated with air pollution in the outer-suburban zone in 2000. The 

magnitude of the association witnesses a substantial decrease in the central urban zone, 

reaching about -0.11, which is not statistically significantly differentiated from zero (2 

equal to 0.098 with a p-value of 0.755). A statistically significant negative association 

between the distributions of pollution and the elderly is found in the outer-suburban 

zone in 2000, suggesting that sub-districts with higher proportions of the elderly are 

associated with lower air pollution. However, temporal changes in environmental 
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inequality of air pollution are evident over 2000-2010. For instance, the coefficient of 

proportion of the elderly becomes positive in 2010 from negative in 2000 (both 

statistically significant), suggesting the elderly experience a disproportionate share of 

air pollution in the outer-suburban zone by 2010. By and large, these results show 

spatio-temporal variations in environmental inequality for the disadvantaged social 

groups across Beijing. 

As shown in Table 3, there are clear global spatial patterns in the distribution of 

air pollution in Beijing as indicated by the statistically significant polynomial terms of 

geo-coordinates of sub-districts in both years. These terms also partially control for the 

global smoothness of model-based derivations of air pollution data. Also, there is a 

significant negative pollution gradient when moving away from the city centre of 

Beijing. Economic structure (manufacturing employment proportions) becomes 

significantly negatively associated with air pollution in 2010, which is likely due to 

Beijing’s industrial policies initiated from the late 1990s, forcing most manufacturing 

factories to move out of the central urban zone and upgrade their production technology, 

to welcome the 2008 Beijing Olympic Games (Schoolman and Ma 2012). 

 

Discussion and Conclusions 

The study presents a Chinese urban environmental inequality analysis based on 

observed environmental quality, and includes a temporal dimension. Our modelling 

results reveal that clear environmental inequalities exist with respect to hukou migrant 

status, and  age, whilst inequalities are not statistically significant for the unemployed. 

Results also emphasise the spatial and temporal variations in environmental inequality. 

Spatially, environmental inequality for the disadvantaged social groups, including 

migrants, children and the elderly, differ between different city zones of Beijing, calling 
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for a local perspective of environmental inequality research.  This corroborates the 

study by Bailey et al (2018), who argue that variant patterns of environmental inequality 

in different areas are likely to be driven by different social and economic processes. 

Temporally, the associations between air pollution and social demographics and their 

geographic patterns could change significantly over time, as reported in prior studies 

(Buzzelli et al. 2003; Laurian and Funderburg 2014).  

In 2000, migrants without a Beijing hukou and the elderly experience PM2.5 

concentrations that are higher than in areas with the fewest hukou migrants and elders. 

In air quality exposure terms, the unemployed tend to experience better air quality in 

2000, due to their more frequent suburban location. Beijing experiences major 

economic and demographic changes from 2000-2010, a period where its air quality 

declines substantially (c. 20% average increase in annual average PM2.5 concentration). 

Environmental inequality increases for hukou status and the elderly (areas of high 

migrant and elder prevalence have particulate concentration of about 60% higher than 

low prevalence areas), whilst the gradient for unemployment reverses, with areas of 

highest unemployment now experiencing PM2.5 levels about 17% above those of low 

unemployment areas.  

 These results are interpreted in the context of reforms that have taken place as 

China moves from a centrally planned, to a market economy. Economic development, 

transportation and housing construction are intertwined with each other in a region 

(Kruize et al. 2007). The capitalisation of land value in central urban areas has resulted 

in shift of the more polluting industries out of the centre to the suburbs (Zhao et al. 

2014). At the same time, housing reform, including the relaxation of the Danwei system 

has seen a dissolving of the tight spatial bonds of home and work, creating a residential 

property market, a population that commutes further and increasingly by car, and 
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residential sorting of households by economic power. Land market dynamics can 

induce greater environmental pollution and disproportionate environmental impacts, as 

market mechanisms tend to locate pollution sources in poor neighbourhoods and 

concentrate the disadvantaged social groups in more polluted areas (Buzzelli et al. 2003; 

Laurian 2008; Slater and Pedersen 2009). 

 These processes are consistent with the observations of environmental 

inequality by age. These are remarkably similar to children-air quality observations for 

the UK, with a process of urban-rural transition evident. That is, a process of 

demographic churn in which young adults move to the more polluted urban locations 

for work and education opportunities, and later start a family. The notable difference is 

with respect to the elderly, who in Beijing experience the greatest levels of exposure, 

in contrast to the UK where the elderly tend to reside in cleaner rural and suburban 

locations. This difference may be due to China’s one-child population policy and very 

high housing price in Beijing, that causes more of the elderly to live with their working 

age children in urban locations, to care for grandchildren and receive care.  

 Our temporal analysis develops the understanding of the relationship of 

environmental inequality to environmental quality. In a comparable UK air quality 

analysis, Mitchell et al (2015) found that air quality improvement tended to occur where 

more affluent groups lived, whilst the more deprived groups tended to experience most 

of any air quality deterioration. In Beijing, environmental inequality increases for the 

disadvantaged social groups, such as migrants and the elderly over 2000-2010. With 

air pollution policy interventions such as more stringent vehicle and industrial emission 

regulations, as well as relocation of power stations in Beijing, the environmental quality 

will improve and the environmental inequality might increase, as a “good” environment 

is mostly captured by the affluent (Ma et al. 2017). We begin to see the possible 



24 

 

emergence of a common pattern linking environmental inequality and changing 

environmental quality. There is of course a judgement that must be made as to where 

the problem lies, and what is more important – equity or environmental quality? A very 

clean environment implies little problem on either count, whilst a grossly polluted one 

such as we see in Beijing means environmental clean-up may justifiably be prioritised 

over equity concerns so as to lower disease burden. The greatest inequalities are likely 

to occur at the transition between ‘good and bad’ environmental quality, and it is here 

that policy makers must decide whether to focus on environment and health, or 

environment and health ‘for all’. However, to date, no such discourse is evident in 

China’s environmental policy discussion, where the topic of environmental inequality 

has just started to emerge.  

While this research provides a distributional spatio-temporal analysis of 

environmental inequality in Beijing, it does not reveal the mechanisms that lead to 

higher pollution in some particular areas and establish causal processes of 

environmental inequality (Hockman and Morris 1998; Deacon and Baxter 2013). Under 

the ecological analysis framework and without individual mobility information, it is not 

possible to disentangle potential causal competing mechanisms of most interest, 

particularly discriminatory siting of undesirable polluters versus market sorting 

mechanisms that see disadvantaged groups disproportionately exposed following their 

movement into polluted areas for cheaper housing and work opportunities, and/or the 

movement away of the more affluent (Pastor et al. 2001; Richardson et al. 2010; Depro 

et al. 2015). Due to data limitations, we use sub-district level PM2.5 concentration to 

approximate air pollution exposure of populations, and the health impacts of such 

environmental risks has not been investigated, a common challenge in prior 

environmental inequality studies (Lakes et al. 2014; Laurian 2008).  
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Understanding how such questions are addressed in China presents an 

interesting avenue for further research. Other research questions associated with our 

analysis include: extending the analysis to other Chinese cities to test whether the 

patterns observed in Beijing over space and time can be generalised; confirming the 

role of the demographic, economic, housing and transport policies and trends on the 

observed environmental inequalities; linking environmental inequalities to health 

outcome data to better understand what drives health inequalities in Beijing; and 

developing the understanding of those other factors related to age and disadvantage that 

contribute further to health inequality. Finally, we note that in much environmental 

inequalities research, the most exposed yet least able to avoid pollution (children, the 

poor) contribute least to that pollution (e.g. Mitchell and Dorling 2003). We suspect 

this holds true for Beijing, but such a state of affairs, often used to support claims of 

environmental injustice, remains to be tested. 
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Table 1. Descriptions of variables used in the study. 

 

Variable names Definition 

Distance to city centre Distances of each sub-district (centroid) to city centre (km) 

Population density Population density of each sub-district (1000 persons / km2) 

Percent migrants Proportion of the total number of migrants in a sub-district 

Percent children  Proportion of the total number of children (0-4 years) in a sub-

district 

Percent the elderly Proportion of the total number of the elderly (  65) in a sub-

district 

Percent 

manufacturing 

employment 

Proportion of the total number of people employed in 

manufacturing (e.g. steel, textile, chemistry) industries in a sub-

district 

Unemployment rate Proportion of the unemployed in a sub-district 

Percent crowd 

housing 

Proportion of people with a small house (housing area per capita 

 12 m2) in a sub-district 

Zone 1 Central urban zone, including Dongcheng and Xicheng districts 

Zone 2 Inner-suburban zone, including Haidian, Chaoyang, Fengtai and 

Shijingshan districts 

Zone 3 Outer-suburban zone, including Fangshan, Daxing, Tongzhou, 

Shunyi and Changping districts 

Zone 4 City fringe zone, including Mentougou, Yanqing, Huairou, Miyun 

and Pinggu districts 

Easting X-coordinate of the centroid of a sub-district 

Northing Y-coordinate of the centroid of a sub-district 
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Table 2. Change in annual PM2.5 concentration by social-economic groups, 2000-

2010. 

 

  Migrant Children The elderly 
Unemployment 

rate 

Equal 

population 

decile 

Absolut

e change 

(Ɋg/m3) 

Relative 

change 

(%) 

Absolut

e change 

(ɊgȀm͵) 

Relative 

change 

(%) 

Absolut

e change 

(ɊgȀm͵) 

Relative 

change 

(%) 

Absolut

e change 

(ɊgȀm͵) 

Relative 

change 

(%) 

1 6.9  16.6  7.4  17.3  1.7  3.6  -6.1  -10.2  

2 19.7  42.2  17.2  34.3  16.8  36.9  8.8  15.8  

3 18.3  33.8  11.8  20.3  15.3  29.8  9.6  16.1  

4 9.1  14.4  14.2  24.9  22.0  42.4  12.2  21.8  

5 7.9  12.7  10.7  16.9  16.6  27.9  9.9  18.0  

6 13.5  20.9  11.5  18.4  8.7  13.3  12.9  23.2  

7 11.0  16.3  12.4  19.2  11.7  18.1  17.2  32.9  

8 11.3  17.0  13.9  22.2  11.8  17.6  13.8  26.5  

9 8.9  13.3  14.9  24.2  9.4  13.5  13.4  25.8  

10 6.7  9.7  8.4  12.5  9.8  14.3  20.3  48.4  
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Table 3. Model estimation results for 2000 and 2010. 

 

 Year 2000 Year 2010 

 OLS SEM OLS SEM 

Intercept -0.262** -0.448** -0.129* -0.224* 

Distance to city centre -0.42** -0.845** -0.561** -0.855** 

Population density 0.122** 0.017 0.147** 0.039* 

Percent migrants 0.218** 0.116** 0.062 0.122** 

Percent children  0.076 0.860** 0.063 -0.127** 

Percent the elderly -0.263** -0.183** 0.065 0.219** 

Percent manufacturing employment 0.083* 0.023 -0.108** -0.111** 

Percent unemployed -0.045 -0.013 -0.021 -0.01 

Percent crowd housing 0.07** 0.017 0.008 0.038 

Zone 1  Percent migrants -0.204 -0.106 -0.052 -0.097 

Zone 2  Percent migrants -0.094 -0.162** -0.077 -0.141 

Zone 4  Percent migrants -0.298 -0.073 1.021* 1.17** 

Zone 1  Percent children -0.104 -0.871** -0.106 0.121 

Zone 2  Percent children -1.377 -0.445 0.146 0.247** 

Zone 4  Percent children -0.026 0.713 -0.248 -0.405 

Zone 1  Percent the elderly 0.22 0.163* -0.016 -0.191* 

Zone 2  Percent the elderly 0.269** 0.169** -0.168 -0.26** 

Zone 4  Percent the elderly 0.472 -0.040 0.092 -0.046 

Zone 1  Percent unemployed -0.026 -0.009 0.018 -0.009 

Zone 2  Percent unemployed -0.050 -0.018 -0.008 -0.003 

Zone 4  Percent unemployed 0.041 0.000 -0.006 0.011 

Zone 1 0.561** 0.044 -0.135 0.035 

Zone 2 0.179 0.131 0.204* 0.179 

Zone 4 0.158 0.128 0.447** 0.55** 

Easting squared  0.342** 0.282** 0.423** 0.403** 

Easting -0.074 0.105 0.031 0.088 

Northing squared  -0.506** -0.585** -0.477** -0.44** 

Northing 0.066* 0.189** 0.126** 0.19** 

Easting  Northing 0.083** -0.114* -0.062** -0.063 

 
 0.943**  0.861** 

2 0.088 0.034 0.1 0.04 

AIC 197.5 8.345 200.5 11.89 

 Noteǣ the symbols ǲȗǳ and ǲȗȗǳ represent significance levels of 10% and 5%, 

respectively. 
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(a) 2000 

 
(b) 2010 

 
Figure 1. Spatial distribution of the annual average PM2.5 concentration of Beijing’s 
sub-districts in 2000 and 2010. 
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A. Proportion of young children (0-4 years) B. Proportion of the elderly (≥65 years) 

C. Proportion of migrants D. Unemployment rate 

 

Figure 2. Spatial distribution of social-economic groups across sub-districts in 
Beijing, 2010. 
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Figure 3. Annual average PM2.5 by decile of percentage of migrants for 2000 and 
2010. Percentage of migrants is sorted in ascending order. 
 

 

 
Figure 4. Annual average PM2.5 by decile of percentage of very young children (0-4 
years) for 2000 and 2010. Percentage of children is sorted in ascending order. 
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Figure 5. Annual average PM2.5 by decile of percentage of the elderly (≥ 65 years) for 
2000 and 2010. Percentage of the elderly is sorted in ascending order. 
 
 
 
 
 

 
Figure 6. Annual mean PM2.5 by decile of unemployment rate. Unemployment rate is 
sorted in ascending order.  
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