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An interplay between fluctuation driven toroidal axisymmetric flows (convective cell

modes) and resistive ballooning mode turbulence after the pedestal collapse is nu-

merically studied by a four-field reduced MHD model in BOUT++ framework. The

strong flow shear suppresses the radial transport of pressure filaments and the pres-

sure profile in the pedestal region is partially recovered. As a result, a secondary

instability is quasi-linearly excited, which yields a secondary collapse. The subse-

quent damped oscillation is also analyzed by phase diagram analysis.

a)seto.haruki@qst.go.jp

1



I. INTRODUCTION

In future tokamak fusion reactors such as ITER1 and DEMO2,3, the high-confinement

mode discharge4 is a baseline operation scenario while intermittent large heat fluxes released

by edge localized modes (ELMs)5 should be avoided or mitigated to levels low enough to

remain within heat load constraints on plasma facing components. One of the critical issues

is therefore to understand the nonlinear dynamics underlying the ELM crash and resultant

energy loss process. Several nonlinear MHD codes such as BOUT6–9, M3D10, NIMROD11,12,

JOREK13–18, M3D-C119 and BOUT++20–25 have therefore been developed and provided

qualitative understanding of the nonlinear dynamics of ELMs.

The fluctuation driven toroidal axisymmetric flows are generally called “convective cell”

modes26, especially “zonal flows”27 for (m = 0, n = 0) where m and n are the poloidal and

toroidal mode numbers respectively. Hereafter, (m,n) indicates Fourier mode with mode

numbers m and n. In this paper, we simply abbreviate “CCs” and “ZFs” for n = 0 E × B

flows. It is well-known that ZFs are not generated by the modes with MHD parity due

to the cancellation between Reynolds stress and Maxwell stress28, therefore, kinetic effects

and/or two-fluid effects play a role for parity breaking which contributes to the generation

mechanism. JOREK simulations13,15,18 show that the strongly sheared ZFs generated via the

residual of force balance mainly described by the Maxwell stress and the toroidal curvature,

which suppress the transport. However, the generation mechanism of CCs and its impact on

transport during ELMs are not yet well understood compared to the drift wave turbulence28.

In the BOUT++ framework, there was a limitation to handle CCs in previous work21–23

which is attributed to the flute ordered one-dimensional Poisson solver for CCs. Recently a

two-dimensional Poisson solver in the quasi-ballooning coordinate system20 for CCs has been

developed and introduced in Hermes code for self-consistent edge turbulence simulations29.

Hermes code belongs to the chain of BOUT++ code solving three-dimensional plasma edge

turbulence physics with conservative finite differences while BOUT++ code solves three-

dimensional plasma edge MHD physics with finite differences in the gradient form. We have

implemented the two-dimensional Poisson solver for CCs in the gradient form in BOUT++

framework at the first time. Detail descriptions on the quasi-ballooning coordinate system

and the two-dimensional Poisson solver are given in Appendix A and B respectively.

In this paper, we report nonlinear simulations of resistive ballooning mode (RBM) tur-
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bulence after pedestal collapse using a four-field reduced MHD model30, with multi-helicity

initial perturbations in a shifted circular equilibrium taking account of CCs. Here we use

the terminology “pedestal collapse” instead of ELM crash, since we consider RBMs instead

of peeling-ballooning mode in this simulation. The interplay between CCs and RBM tur-

bulence is investigated. It is found that the secondary collapse is triggered by a secondary

instability accompanied by damped oscillations, based on energy transfer rate analyses, as

well as spatio-temporal analyses and phase diagram analyses.

The remainder of this paper is organized as the following. The four-field model is de-

scribed in Section II. Section III presents a shifted circular equilibrium and its linear stability

properties using the four-field model. In Section IV, an impact of CCs generated by middle-

n to high-n RBM turbulence on the secondary collapse and the subsequent transport are

reported. Finally this paper is summarized in Section V.

II. FOUR-FIELD TWO-FLUID MODEL

A scale separated four-field reduced MHD model consisting of evolution equations for

vorticity ϖ, magnetic potential A∥, plasma pressure p and ion parallel flow v∥ is employed.

We adopt a rather simple model with a shifted circular equilibrium without sources, sinks,

an equilibrium radial electric field, an equilibrium parallel flow or SOL transport, to identify

the detailed energy channel between CCs and RBM turbulence. The four-field model is

normalized with poloidal Alfvén units with the plasma major radius at the magnetic axis

Rax, the magnetic field intensity at the magnetic axis Bax, the reference ion number density

ni and the poloidal Alfvén time tA = Rax/VA (See Table II), where VA = Bax/
√
µ0nimi is

the Alfvén velocity, µ0 is the permittivity in vacuum, ni is the reference ion number density,

mi is the ion mass respectively. It should be noted that the vorticity has dimensions B−1
ax t

−1
A

rather than t−1
A in this paper. The model30,31 is given by

∂ϖ1

∂t
=− [F0, ϖ1]− [F1, ϖ0]− [F1, ϖ1]−∇∥J∥1 +B0

[

A∥1
,
J∥0
B0

]

+K (p1)

+G (p0, F1) + G (p1, F0) + G (p1, F1) + µ∥∂
2
∥0ϖ1 + µ⊥∇2

⊥ϖ1 (1)

∂p1
∂t

=− [ϕ1, p0]− [ϕ1, p1]− 2β∗K (ϕ1)− β∗∇∥

(

v∥1 + diJ∥1
)

+ χ∥∂
2
∥0p1 + χ⊥∇2

⊥p1 (2)

∂A∥1

∂t
=−∂∥ϕ1 + δe∂∥p1 − δe

[

A∥1
, p0

]

+ ηJ∥1 − λ∇2
⊥J∥1 (3)
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∂v∥1
∂t

=−
[

ϕ1, v∥1
]

− 1

2

(

∂∥p1 −
[

A∥1
, p0

])

+ ν⊥∇2
⊥v∥1 (4)

G (f, g) =
δi
2

{[

f,∇ ·
(∇⊥g

B2
0

)]

+

[

g,∇ ·
(∇⊥f

B2
0

)]

+∇ ·
(∇⊥ [f, g]

B2
0

)}

,

ϖ =∇ ·
(∇F
B2

0

)

, F = ϕ+ δip, ϕ = ϕ1, p = p0 + p1,

B =B0 +∇A∥1
× b0, J∥ = J∥0 + J∥1, δi = δe =

di
4
, di =

c

Rax

√

miε0
niZie2

,

where evolving quantities have been separated into an equilibrium component with subscript

0 and a perturbed component with subscript 1 and terms involving only equilibrium quanti-

ties are removed from the system. Here [f, g] = (b0×∇⊥f ·∇⊥g)/B0, ∇⊥f = (∇− b0∂∥0)f ,

∂∥0f = b0 · ∇f , ∇∥f = B0∂∥(f/B0), ∂∥f = ∂∥0f −
[

A∥1
, f

]

, K (f) = (b0 × κ0 · ∇f)/B0

for any f and g, the unit vector along the field line b0, the equilibrium magnetic curvature

κ0 = b0 · ∇b0, the generalized flow potential F , the electrostatic potential ϕ, the perturbed

parallel current J∥1 = ∇2
⊥A∥1

, the compression parameter β∗ = B2
0/[0.5 + B2

0/(Γp0)], the

adiabatic constant Γ = 5/3, the operator describing the ion diamagnetic effect G, the factor
for ion diamagnetism δi, the factor for electron diamagnetism δe, the ion skin depth di, the

speed of light in vacuum c, the permeability in vacuum ε0, the effective ion charge number

Zi, the elementary charge e, the perpendicular viscosity for vorticity µ⊥, the parallel viscos-

ity for vorticity µ∥, the resistivity η, the hyper resistivity λ, the perpendicular diffusivity χ⊥,

the parallel diffusivity χ∥ and the perpendicular viscosity for parallel flow ν⊥ respectively.

In the derivation of Eqs. (1)-(4), the Boussinesq approximation with a flat ion density

profile ni, the iso-thermal approximation Te = Ti and the charge quasi-neutrality with the

effective ion charge number Zi = 1 have also been assumed and the electron inertia effect

has been neglected for simplicity. For ion diamagnetism model, only the lowest order finite

Larmor radius (FLR) effect in the Chang-Callen ion gyroviscous model31 have been intro-

duced in Eq. (1) like the original BOUT7 and BOUT++21,22. The present four-field model

therefore includes non-ideal effects such as two-fluid effects including the lowest order ion

diamagnetism and electron drift wave, resistivity, hyper-resistivity and flow compression.

For energy transfer rate analyses, multiplying the vorticity equation Eq. (1) by −F1, the

energy equation Eq. (2) by p1/2β∗, Ohm’s law Eq. (3) by −J∥1 and the ion parallel flow
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TABLE I. Normalizations in this paper

Physical quantity Symbol Normalization

time t tA

vorticity ϖ B−1
ax t

−1
A

pressure p B2
ax(2µ0)

−1

magnetic potential A∥ BaxRax

ion parallel flow v∥ VA

electrostatic potential ϕ VABaxRax

parallel current J∥ −Bax(µ0Rax)
−1

resistivity η µ0VARax

hyper resistivity λ µ0VAR
3
ax

Eq. (4) by v∥1, we get a set of equations for energies as

∂Wk

∂t
=⟨F1 [F0, ϖ1]⟩V + ⟨F1 [F1, ϖ0]⟩V + ⟨F1 [F1, ϖ1]⟩V
−⟨F1G (p0, F1)⟩V − ⟨F1G (p1, F0)⟩V − ⟨F1G (p1, F1)⟩V
+⟨F1∇∥0

J∥1⟩V − ⟨F1B0

[

A∥1
,
J∥0
B0

]

⟩V − ⟨F1B0

[

A∥1
,
J∥1
B0

]

⟩V

−⟨F1K(p1)⟩V − ⟨µ∥

∣

∣∂∥0F1

∣

∣

2⟩V − ⟨µ⊥ |∇⊥F1|2⟩V , (5)

∂Wp

∂t
=−⟨p1 [ϕ1, p0]

2β∗
⟩V − ⟨p1 [ϕ1, p1]

2β∗
⟩V + ⟨

χ∥p1∂∥
2
0
p1

2β∗
⟩V + ⟨χ⊥p1∇2

⊥p1
2β∗

⟩V

−⟨p1K (ϕ1)⟩V − ⟨1
2
p1∇∥0v∥1⟩V + ⟨1

2
p1B0

[

A∥1
,
v∥1
B0

]

⟩V

−⟨di
2
p1∇∥0J∥1⟩V + ⟨di

2
p1B0

[

A∥1
,
J∥1
B0

]

⟩V , (6)

∂Wm

∂t
=⟨J∥1

[

ϕ1, A∥1

]

⟩V + ⟨J∥1∂∥0ϕ1⟩V + ⟨δeJ∥1
[

A∥1
, p0

]

⟩V − ⟨δeJ∥1∂∥0p1⟩V
+⟨δeJ∥1

[

A∥1
, p1

]

⟩V − ⟨ηJ∥21⟩V − ⟨λ
∣

∣∇⊥J∥1
∣

∣

2⟩V , (7)

∂Wv

∂t
=−⟨v∥1

[

ϕ1, v∥1
]

⟩V − ⟨1
2
v∥1∂∥0p1⟩V + ⟨1

2
v∥1

[

A∥1
, p0

]

⟩V + ⟨1
2
v∥1

[

A∥1
, p1

]

⟩V
−⟨ν⊥

∣

∣∇⊥v∥1
∣

∣

2⟩V , (8)

where Wk = ⟨|∇⊥F1|2 /2B2
0⟩V is the perpendicular kinetic energy, Wp = ⟨p21/4β∗⟩V is the

internal energy, Wm = ⟨
∣

∣∇⊥A∥1

∣

∣

2
/2⟩V is the magnetic energy, Wv = ⟨v∥21/2⟩V is the parallel

kinetic energy and ⟨f⟩V =
∫

V
fdV represents the volume integral over the entire simulated
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domain respectively. Here, the absence of boundary fluxes has been assumed in the deriva-

tion of Eqs. (5)-(8). It should be noted that the system described with Eqs. (1)-(4) has a

complete set of energy transfer channels, while some contributions from equilibrium fields

such as ⟨F1 [F0, ϖ1]⟩V can be effective sources. In other words all nonlinear cross terms in

Eqs. (5)-(8) are canceled out with other terms so that the total energy should be conserved

after nonlinear relaxation if numerical dissipation terms, effective sources and boundary

fluxes are negligibly small.

The equation for the (m,n) component of internal energy is expressed by

d

dt
W (m,n)
p =T

(m,n)
p,E×B + T

(m,n)
p,D + T

(m,n)
p,CMP , (9)

T
(m,n)
p,E×B =−⟨

p1(m,n) [ϕ1, p1]

2β∗
⟩V − ⟨

p1(m,n) [ϕ1, p0]

2β∗
⟩V ,

T
(m,n)
p,D =⟨

χ∥p1(m,n)∂∥
2
0
p1

2β∗
⟩V + ⟨

χ⊥p1(m,n)∇2
⊥p1

2β∗
⟩V

≃−⟨ χ∥

2β∗

∣

∣∂∥0p1(m,n)
∣

∣

2⟩V − ⟨ χ⊥

2β∗

∣

∣∇⊥p1(m,n)
∣

∣

2⟩V ,

T
(m,n)
p,CMP =−⟨p1(m,n)K (ϕ1)⟩V − ⟨1

2
p1(m,n)∇∥0v∥1⟩V + ⟨1

2
p1(m,n)B0

[

A∥1
,
v∥1
B0

]

⟩V

−⟨di
2
p1(m,n)∇∥0J∥1⟩V + ⟨di

2
p1(m,n)B0

[

A∥1
,
J∥1
B0

]

⟩V ,

where W
(m,n)
p is the (m,n) component of internal energy, T

(m,n)
p,E×B is the (m,n) component of

energy transfer rate by E×B convection, T
(m,n)
p,D by diffusion terms, T

(m,n)
p,CMP by compression

effects respectively.

Similarly, the equation for the (m,n) component of perpendicular kinetic energy is ex-

pressed by

d

dt
W

(m,n)
k =T

(m,n)
k,R + T

(m,n)
k,ID + T

(m,n)
k,J×B + T

(m,n)
k,C + T

(m,n)
k,D , (10)

T
(m,n)
k,R =⟨F1(m,n) [F0, ϖ1]⟩V + ⟨F1(m,n) [F1, ϖ0]⟩V + ⟨F1(m,n) [F1, ϖ1]⟩V ,

T
(m,n)
k,ID =−⟨F1(m,n)G (p0, F1)⟩V − ⟨F1(m,n)G (p1, F0)⟩V − ⟨F1(m,n)G (p1, F1)⟩V ,

T
(m,n)
k,J×B =T

(m,n)
k,LB + T

(m,n)
k,K + T

(m,n)
k,M

T
(m,n)
k,LB =⟨F1(m,n)∇∥0

J∥1⟩V , T
(m,n)
k,K = −⟨F1(m,n)B0

[

A∥1
,
J∥0
B0

]

⟩V ,

T
(m,n)
k,M =−⟨F1(m,n)B0

[

A∥1
,
J∥1
B0

]

⟩V , T
(m,n)
k,C = −⟨F1(m,n)K(p1)⟩V ,

T
(m,n)
k,D =−⟨µ∥

∣

∣∂∥0F1(m,n)

∣

∣

2⟩V − ⟨µ⊥

∣

∣∇⊥F1(m,n)

∣

∣

2⟩V ,
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where W
(m,n)
k is the (m,n) component of perpendicular kinetic energy, T

(m,n)
k,R is the (m,n)

component of the energy transfer rate by the Reynolds stress, T
(m,n)
k,ID by the ion diamagnetic

flow stress, T
(m,n)
k,J×B by J × B force including the line-bending force T

(m,n)
k,LB , the kink term

T
(m,n)
k,K and the Maxwell stress T

(m,n)
k,M , T

(m,n)
k,C by the toroidal curvature term and T

(m,n)
k,D by

the viscosity terms respectively.

In the BOUT++ code, Eqs. (1)-(4) are solved in the quasi-ballooning coordinate system

(ψ, y, z), where ψ is the radial label and y is the parallel label and z is the binormal la-

bel respectively. Details of the quasi-ballooning coordinate system are briefly reviewed in

Appendix A. Differencing methods used are fourth-order central differencing in ψ direc-

tion and y direction and FFT in z direction except for the Laplacian operator ∇2
⊥ and the

Poisson solvers. For the Laplacian operator and the Poisson solvers, second-order central

differencing in ψ direction and y direction and FFT in z direction are employed, where

Poisson solvers used in the present work are also explained in Appendix B. The resultant

differential equation is implicitly solved with Newton-Krylov BDF method provided by the

SUNDIALS library32,33. The radial boundary conditions used are ∂ψϖ1 = 0, ∂ψp1 = 0,

∂ψA∥1
= 0, ∂ψV∥1 = 0, ∂ψϕ1 = 0 and ∂ψJ∥1 = 0 on the inner radial boundary and ϖ1 = 0,

p1 = 0, ∇2
⊥A∥1

= 0, V∥1 = 0, ϕ1 = 0 and J∥1 = 0 on the outer radial boundary respectively.

Hereafter, we will omit the subscript “1” to express the perturbed part of field variables,

where this does not cause.

III. MHD EQUILIBRIUM AND ITS LINEAR STABILITY AGAINST

FOUR-FIELD MODEL

For RBM turbulence simulations after pedestal collapse, a shifted circular equilibrium

(cbm18 dens4) is employed, which is one of a series of equilibria (cbm18 series)19 generated

by the TOQ equilibrium code34,35. The pressure, parallel current on the outer mid-plane

as well as safety factor profile over the radial domain labeled with the normalized ψ (0.4 ≤
ψ ≤ 1.2) are shown in Fig. 1, where these quantities have been normalized by the poloidal

Alfvén units with Rax = 3.5 [m], Bax = 2.0 [T], ni = 1.0 × 1019 [m−3] and the deuterium

mass. It should be noted that the definition of the last closed flux surface (LCFS) ψ = 1.0

has an arbitrarity since there are no X-points or limiters and neither the topology of flux

surfaces nor boundary conditions change at ψ = 1.0 in this equilibrium.
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FIG. 1. Shifted circular equilibrium (cbm18 dens4) profiles and mesh: pressure (black solid),

parallel current (black dotted) and safety factor (red dashed) profiles on the outer mid-plane (left)

and poloidal cross-section of mesh the radial grid of which is coarsened for clarity (right).

The shaded area in Fig. 1 represents the radial domain 0.4 ≤ ψ ≤ 0.856 of volume over

which the released energy ∆Wped and the internal energy Wped are defined by,

∆Wped = −
∫

Vped

p1dV, Wped =

∫

Vped

p0dV, (11)

where ψ = 0.856 is the radial peak position of pressure gradient. Then, the energy loss is

introduced by the ratio of them ∆Wped/Wped
21.

The linear stability for ideal ballooning mode (IBM) and RBM are shown in Fig. 2.

Here, we have set the resistivities to η = 10−8 [µ0VARax] (= 4.3 × 10−7 [Ωm]) and λ =

10−12 [µ0VAR
3
ax] (= 5.3×10−10 [Ωm3]) and also employed the following numerical dissipation

both in the perpendicular directions µ⊥ = χ⊥ = ν⊥ = 10−7 [R2
axt

−1
A ] (= 3.4 × 100 [m2/s])

and in the parallel direction µ∥ = χ∥ = 10−1 [R2
axt

−1
A ] (= 3.4 × 106 [m2/s]) respectively for

numerical stability.

For numerical efficiency of linear analyses, only 1/n-th of the annular torus with the

radial grid points nψ = 1536, the parallel grid points ny = 64 and the binormal grid points

nz = 32 is employed for each toroidal mode number n. The growth rate of n-mode is

therefore evaluated as the fundamental mode in the 1/n-th annular wedge torus. According

to Ref. 20, the effective poloidal resolution for toroidal mode number n is roughly estimated

by nθ ≃ qnnz = mresnz. This resolution is high enough to resolve the poloidal sub-harmonics

of IBM and RBM, where mres = nq is the resonant poloidal mode number for the toroidal

mode number n on the rational q-surface.
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FIG. 2. Linear growth rate and mode rotating frequency of IBM (black) and RBM (red) versus

toroidal mode number.

One can find that for RBM, the toroidal modes n ≥ 10 are unstable and n = 35 mode

is the most unstable one with γ = 1.03 × 10−1 [ωA], where ωA = t−1
A is the poloidal Alfvén

frequency. The toroidal modes larger than n = 60 are introduced as an energy sink for

nonlinear simulations.

For resistivity and hyper resistivity, we have chosen the hyper-resistivity to be λ/η = 10−4,

which is the maximum value estimated in Ref. 22. With these parameters, the resistive

current sheet width ∆η can be estimated as ∆η ≃
√

η/γIBM = 3.0× 10−4 [Rax] (= 1.1 [mm])

and the hyper resistive current sheet width ∆λ as ∆λ ≃ (λ/γPB)
1/4 = 1.7 × 10−3 [Rax] (=

6.1[mm]) for the second harmonics of the most unstable mode (n = 70) with γIBM = 1.11×
10−1 [ωA], where γIBM the linear growth rate of IBM22. The radial grid width ∆ψ is roughly

estimated as ∆ψ ≃ 1.2× 10−4 [Rax] (= 0.4 [mm]) < ∆η < ∆λ so that the radial grid is fine

enough to resolve the n = 70 mode.

IV. NONLINEAR SIMULATIONS

For nonlinear simulations, the same parameters as for linear calculations except nz = 128

for the 1/5-th of torus are employed. A lowpass filter is set at the 32nd harmonics nlp = 32

in the axisymmetric directions avoid aliasing error so that n = 0, 5, . . . , 160 modes are

taken into account. Here, the 32nd harmonic is a small enough number to satisfy the 2/3

9



dealiasing rule nalias = (128/2)× (2/3) ∼ 42 and high-n modes are introduced as an energy

sink for the nonlinear energy cascade during the pedestal collapse. The temporal resolution

is ∆t = 1 [tA]. Note that this is the output, not the internal time step, which is adaptive. The

following multi-helicity perturbation with a truncated ballooning transformation is applied

on the perturbed vorticity ϖ as an initial perturbation,

ϖinit =
3

∑

i=−3

32
∑

k=1

ϖinit,k exp(−X2) exp(−Y 2) sin(Z), (12)

X= (x′ − 0.5)/0.1, Y = [y′ − (i+ 0.5)]/0.3, Z = 2πk(z′ + 5qi)

where 0 ≤ x′ ≤ 1, 0 ≤ y′ < 1 and 0 ≤ z′ < 1 are normalized coordinates corresponding

to the field-aligned coordinates (See Appendix A 2), linear in grid index, and the initial

amplitudes ϖinit,k are small enough to resolve the linear phase growth.

A. Impact of n = 0 net flow and n = 0 magnetic field on energy loss

In the original BOUT++ code, CCs ϕ(m,0) have been set to balance with the ion diamag-

netic flow δip(m,0) without solving the n = 0 component of vorticity equation namely, the

net flow is set to be zero F(m,0) = 0, where m = 0, 1, · · · . The n = 0 magnetic field is also

assumed to be zero A∥(m,0)
= 0. For nonlinear simulations, solving the (m ̸= 0, 0) component

of vorticity equation is important to obtain consistent n = 0 magnetic field evolution since

the pedestal collapse gives a large deformation of zonal pressure, p(0,0) which is coupled with

the toroidal curvature term in vorticity equation.

In some previous BOUT++ simulations, only ZFs ϕ(0,0) were taken into account and the

(m ̸= 0, 0) component of vorticity equation was filtered out. This scheme was applied to

an electrostatic turbulence collapse simulation36 and ELM crash simulations24,25 including

the effect of the geodesic acoustic mode (GAM)37. GAM is produced by the poloidal mode

coupling between ϕ(0,0) and p(1,0) so that solving only the (0, 0) component of vorticity

equation is enough for GAM physics. Even in this scheme, A∥(m,0)
= 0 was still assumed.

To investigate a generation mechanism of F(m,0) and A∥(m,0)
driven by RBM turbulence

and an interplay with CCs, we briefly show the impact of them on the energy loss by

comparing a simulation without n = 0 net flow and magnetic field like previous BOUT++

works where CCs are evaluated from the relation ϕ(m,0) = −δip(m,0) and that with them.

10
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FIG. 3. Time evolution of plasma energy loss ∆Wped/Wped in case 1 (dashed) and that in case 2

(solid) from t = 0 [tA] to t = 600 [tA] in the nonlinear relaxation phase.

Here we will express these cases as case 1 with F(m,0) = 0 and A∥(m,0)
= 0, and case 2 with

F(m,0) ̸= 0 and A∥(m,0)
̸= 0 respectively.

The impact of F(m,0) and A∥(m,0)
on the energy loss level ∆Wped/Wped is shown in Fig. 3.

The energy loss level shows considerable difference in the nonlinear relaxation phase. This

difference is caused mainly by differences in the n = 0 radial electric field shear and the

n = 0 parallel current generated during the pedestal collapse. Time evolution of flux-surface

averaged radial electric field ⟨Er⟩S, total pressure ⟨p⟩S = ⟨p0 + p1⟩S, total parallel current
⟨J∥⟩S = ⟨J∥0 + J∥1⟩S and ion parallel flow ⟨v∥⟩S and poloidal slices of perturbed component

of those quantities Er1, p1, J∥1 and v∥1, after the pedestal collapse t = 600 [tA] are shown in

Fig. 4. Here, ⟨f⟩S =
∫

S
fJdθdζ/

∫

S
Jdθdζ represents the quantity f averaged over the flux

surface, where (ψ, θ, ζ) is the flux coordinate system (See Appendix A 1).

It is seen that the ⟨Er⟩S profile in case 2 is sheared more strongly in the radial direction

than that of case 1. Er shear breaks pressure filaments into pieces. As the result, inward

and outward radial transport of pressure filaments is suppressed and a reduction of energy

loss level is attained, which is consistent with results from Refs. 13, 15, and 18. Here,

⟨Er⟩S = 2.1 × 10−3 [BaxVA] is about 41 [kV/m] in SI units since the radial electric field is

normalized with BaxVA = 1.95× 107 [V/m].

For the parallel current profile, ⟨J∥⟩S collapses at around the pressure peak ψ ≃ 0.856

11



FIG. 4. (a) time evolution of flux-surface averaged radial profile of radial electric field

⟨Er⟩S [BaxVA], total pressure ⟨p⟩S [B2
ax/2µ0], total parallel current ⟨J∥⟩S [−Bax/µ0Rax], and ion

parallel flow ⟨v∥⟩S [VA] in case 1, (b) those in case 2, (c) poloidal slices of perturbed part of those

quantities after the crash t = 600 [tA] in case 1 and (d) those in case 2 respectively. The color bars

to the right are in normalized units.

indicated by the dotted lines in case 2, while only fine filament structures appear on the

poloidal slice in case 1. The global (m ̸= 0, 0) structure as well as the fine filament structure

also appear on the poloidal slice of perturbed parallel current J∥1 in case 2.

For the ion parallel flow in case 2, the global (m ̸= 0, 0) structure as well as the fine

filament structure appear on the poloidal slice of perturbed ion parallel flow vi∥ while ⟨v∥⟩S
is not strongly generated compared to v∥(m ̸=0,0)

.

These results show that solving the n = 0 components of vorticity equation and Ohms

law has a significant impact on the result, both quantitatively and qualitatively.
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B. Generation mechanism of n = 0 net flow and magnetic field

In this subsection, the generation mechanism of F(m,0) and A∥(m,0)
is investigated. Here-

after all figures show results in the case 2 with F(m,0) ̸= 0 and A∥(m,0)
̸= 0.

The time evolution of system energies: internal energy Wp, perpendicular kinetic energy

Wk, magnetic energy Wm, parallel kinetic energy Wv and energy loss level ∆Wped/Wped is

shown in Fig. 5, where each energy includes all toroidal modes given by Wp =
∑32

i=0W
n=5i
p .

The internal energy is larger than the other energies by O(104∼5) after the pedestal collapse

and saturates at t = 2000 [tA].

For the other energies, the parallel kinetic energy monotonically decreases after the

pedestal collapse. It only weakly couples with the other perturbed variables via the ion

parallel flow compression terms in the energy equation Eq. (2) and has little impact on

perpendicular flow and magnetic field. The magnetic energy is larger than the perpendicu-

lar kinetic energy in the nonlinear relaxation phase, which means that RBM turbulence is

electromagnetic in nature rather than electrostatic.

The time evolution of energy loss level (white curve) and power spectrum of perpendicular

kinetic energy over the entire simulated time are summarized in Fig. 5(b). Linearly unstable

modes with n = 20 ∼ 60 grow in the linear phase t < 120 [tA] and the energy cascade

from the linearly unstable modes to their higher harmonics and inverse energy cascade to

CCs occur during the pedestal collapse phase 120 [tA] < t < 240 [tA]. The energy loss

level decreases in t > 240 [tA] and then increases again due to the secondary instability at

t = 825 [tA]. A strong energy cascade occurs at t ∼ 800 [tA] prior to the secondary collapse.

A secondary instability develops in the range of toroidal Fourier modes with n = 15 ∼ 40

after t = 400 [tA] and results in the monotonic increase of energy loss level after the secondary

collapse.

The time evolution of each toroidal Fourier harmonic of internal energy and that of

perpendicular kinetic energy are summarized in Fig. 6, where the black solid curves indicate

total energy in Fig. 5(a). Figure 6(a) indicates that n = 0 internal energy decreases after the

pedestal collapse and then increases again due to the excitation of a secondary instability

around t = 400 [tA]. The peak in mode amplitude is located at n ≤ 30 and n = 20 is the

largest one during the secondary collapse around t = 800 [tA]. After the secondary collapse,

the n = 20 mode damps and then other modes are excited. This secondary instability could
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FIG. 5. Time evolution of (a) system energies including internal energy Wp (red), kinetic energy

of perpendicular flow Wk (green), magnetic energy Wm (blue) and kinetic energy of parallel flow

Wv (yellow) and (b) energy loss level ∆Wped/Wped (white solid) and toroidal mode spectrum of

perpendicular kinetic energy Wk (color map). Here the toroidal mode spectrum of Wk has been

normalized to set the maximum mode of Wk unity at every time step.

be the Kelvin-Helmholtz instability quasi-linearly excited by CCs after the pedestal collapse

but further analyses are necessary to identify the instability.

The peak in mode amplitude after t = 400 [tA] is more clearly seen in the power spectrum

of the perpendicular kinetic energy in Fig. 6(b). The peak in mode amplitude with n =

20 becomes comparable to that of CCs during the secondary collapse. The generation

mechanism of F(m,0) and A∥(m,0)
are investigated by energy transfer rate analyses on n = 0

component of internal energy and perpendicular kinetic energy.

Figure 7 shows the time evolution of n = 0 internal energy transfer rate. It is found that

the main contribution comes from E×B convection and diffusion terms while the contribu-

tion from flow compression effects is negligibly small compared to the other contributions.

This is because the flux-surface averaged pressure ⟨p⟩S is strongly deformed by the pedestal

collapse as shown in Fig. 4(b) and Fig. 4(d).

After the crash t ≥ 120 [tA], the line-bending term T
(m,0)
k,LB is strongly generated to balance

with the toroidal curvature term T
(m,0)
k,C while the kink term T

(m,0)
k,K and the Maxwell stress

term T
(m,0)
k,M are negligibly small compared to the line-bending term. J∥(m ̸=0,0)

is strongly gen-

erated, which is also seen at the poloidal slice of the perturbed parallel current in Fig. 4(d).
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FIG. 6. Time evolution and five time slices during the secondary collapse t ∼ 800 [tA] of toroidal

mode spectrum of (a) internal energy Wp and (b) perpendicular kinetic energy Wk respectively.

In the time evolution of toroidal mode spectrum Wp and Wk, the toroidal modes up to n = 80 are

plotted for comparison and each time of slices are indicated by the black dashed lines.

FIG. 7. Time evolution of energy transfer rates by the terms in equation of internal energy to

n = 0 internal energy transfer rate.

It should be noted that solving the (m ̸= 0, 0) component of the vorticity equation, to en-

sure force balance, requires the two-dimensional Poisson solver for CCs in the BOUT++

framework.

Figure 8(b) shows the time evolution of the residual of force balance among the J ×B
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FIG. 8. Time evolution of (a) energy transfer rates by the terms in equation of perpendicular

kinetic energy to n = 0 perpendicular kinetic energy transfer rate and (b) energy transfer rates by

residual of flow stress T
(m,0)
k,R +T

(m,0)
k,ID , by residual of force balance T

(m,0)
k,J×B+T

(m,0)
k,C and by dissipation

T
(m,0)
k,D .

force T
(m,0)
k,J×B, pressure gradient T

(m,0)
k,C and dissipation T

(m,0)
k,D as well as the residual of flow

stress including the Reynolds stress T
(m,0)
k,R and the ion diamagnetic flow stress T

(m,0)
k,ID . It is

found that the residual of force balance is almost canceled out by dissipation. To identify the

generation mechanism of CCs in this simulation, we create two groups: the local interaction

by doublet of fluctuation quantities and non-local interaction by triplet of them in Eq. (10).

Figure 9 shows the time evolution of energy transfer rate of this categorization. It is shown

that the non-local interaction via Reynolds stress, ion diamagnetic flow stress, and Maxwell

stress can also produce CCs (See Fig 4) via the secondary instability just before the secondary

collapse 700 [tA] < t < 800 [tA] while the local interaction produces them after the secondary

collapse 800 [tA] < t, where middle-n modes are smeared out.

C. Interplay between CCs and RBM turbulence after secondary collapse

The analyses in the previous subsection show the generation mechanism of F(m,0) and

A∥(m,0)
by a secondary instability. However, spatial structures are not yet clarified. In

this subsection, we investigate spatio-temporal structures of flux-surface averaged pressure
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FIG. 9. Time evolution of energy transfer rates to n = 0 perpendicular kinetic energy by local

effects T
(m,0)
k,local (red) and that by non-local effects T

(m,0)
k,nonlocal (blue)

gradient ⟨−∂rp⟩S, (1, 0) component of parallel current at the outboard mid-plane J∥(1,0),

E ×B shearing rate38,39 ωE×B = ⟨(R2Bp
2
0/B0)∂ψ(Er/Bp0R)⟩S and turbulence intensity S =

√

∑

m′

∑

n′ ̸=0 ϕ(m′,n′)ϕ(−m′,−n′) and the phase diagram among them to investigate nonlinear

dynamics. J∥(1,0) is evaluated in the straight field-line coordinate system (ψ, ϑ, ζ) by using

the relation ϑ(ψ, θ) = q−1
∫ θ

(Bζ/Bθ)dθ

The spatio-temporal structures of these quantities in Fig. 10 describe the physical picture

of energy loss processes in the pedestal collapse. Radial profiles of the pressure gradient and

the parallel current spread radially from their initial peak positions at the beginning of the

pedestal collapse t = 120 [tA] and then partially return to their initial peak positions after

which the J × B force balances with the pressure gradient with the small residual as is

shown in Fig. 8, resulting in a decrease of energy loss level after t = 240 [tA]. On the

other hand, the residual of force balance generates two strong flow shear regions beside the

initial pressure gradient peak position, while there is the thin weak flow shear layer between

them. This strong flow shear locks pressure gradient fronts and parallel current fronts at

the outside of the flow shear region so that the energy loss level transiently saturates by the

secondary collapse t = 825 [tA].

A damped oscillation with long period τ = 100 ∼ 300 [tA] (= 7 ∼ 21 [kHz]) spreading

radially from around 0.95 ≤ ψ ≤ 1 appears after the pedestal collapse and continues to the
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FIG. 10. Spatio-temporal structure of (a) flux-surface averaged pressure gradient ⟨−∂rp⟩S , (b)

(1, 0) component of parallel current on the outboard mid-plane J∥(1,0), (c) E × B shearing rate

ωE×B, and (d) turbulence intensity S respectively, where the thick dotted lines represent the

pressure gradient peak position and the color maps are scaled to emphasize the structures after

t = 600 [tA].

secondary collapse as is shown in Fig. 11. In 0.90 ≤ ψ ≤ 0.92, pressure gradient gradually

steepens in 650 [tA] ≤ t ≤ 750 [tA] and then the local flow shear intensity weakens with

delay. Turbulence with streamer structure is then excited and enhances non-local transport

of pressure in ψ ≥ 0.88. As a result, the pressure gradient around ψ = 0.88 steepens. This

steep pressure gradient weakens the flow shear intensity around ψ = 0.88 at t = 825 [tA] so

that the streamer penetrates to the inner region and the pressure gradient ψ = 0.88 is finally

flattened by the non-local transport caused by the streamer. After the secondary collapse,

the amplitude of damped oscillations reduces in the inner region due to the absence of heat

source and disappears after t = 1400 [tA], while RBM turbulence in 0.8 ≤ ψ ≤ 0.9 enhances

radial energy transport resulting in the monotonic increase of energy loss level.

It is clearly observed in Fig. 10(c) that the flow shear intensity in 0.88 ≤ ψ ≤ 1.0

changes temporally in accordance with the damped oscillation while that in ψ ≤ 0.88 is

almost constant after the secondary collapse. To identify a negative feed back loop for the
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FIG. 11. Spatio-temporal structure of (a) flux-averaged pressure gradient ⟨−∂rp⟩S , (b) E × B

shearing rate ωE×B and (c) turbulence intensity S during the secondary collapse. (d) perturbed

electrostatic potential ϕ1 excluding CCs at t = 806 [tA] which shows the streamer structure en-

hancing the non-local radial transport.

damped oscillation, the phase diagram among pressure gradient ⟨−∂rp⟩S, parallel current
J∥(1,0), E × B shearing rate ωE×B and turbulence intensity S averaged in 0.91 ≤ ψ ≤ 0.92

is investigated.

Figure 12(a) shows that the parallel current simultaneously changes in accordance with

pressure gradient. The Lissajous diagram between them therefore becomes a damped recip-

rocal orbit as is shown in Fig. 12(b). The parallel current responds such that the line-bending

term balances the curvature term to suppress CCs generation after the secondary collapse

phase.

Figure 12(c) shows that the pressure gradient changes prior to the E×B shearing rate and

the Lissajous diagram between them is a damped elliptical orbit. Finally Fig. 12(e) shows

that the pressure gradient also responds prior to the turbulence intensity and the Lissajous

diagram between them is a damped elliptical orbit as in Fig. 12(f). Since the turbulence is

generated by the free energy of pressure gradient and the increase of turbulence transport

reduces the pressure gradient, this negative feed back loop drives the damped oscillation.

The damped oscillation is therefore a pressure driven oscillation40 in which the pressure

gradient is the prey and the turbulence is the predator rather than the turbulence driven

oscillation41 where the turbulence is the prey and the ZFs are the predator.
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FIG. 12. (a) time evolution of J∥(1,0) (red) and ⟨−∂rp⟩S (black), (b) Lissajous diagram between

J∥(1,0) and ⟨−∂rp⟩S , (c) time evolution of ωE×B (green) and ⟨−∂rp⟩S (black), (d) Lissajous diagram

between ωE×B and ⟨−∂rp⟩S (e) time evolution of S (blue) and ⟨−∂rp⟩S (black), and (f) Lissajous

diagram between S and ⟨−∂rp⟩S respectively, where the physical quantities are averaged in 0.91 ≤

ψ ≤ 0.92 and the color map represents the time evolution from t = 700 [tA] (blue) to t = 1300 [tA]

(red).

V. SUMMARY

In summary, the generation mechanism of n = 0 net flows F(m,0) and magnetic field

A∥(m,0)
after the pedestal collapse and the interplay between CCs and RBM turbulence

after the secondary collapse have been studied by using a four-field reduced MHD model

and shifted circular equilibrium in the BOUT++ framework including the two-dimensional

Poisson solver for CCs.

The simulation in the case with F(m,0) ̸= 0 and A∥(m,0)
̸= 0 has shown that CCs suppress

radial propagation of pressure filaments like Refs.13, 15, and 18 and the pressure pedestal

recovers partially after the pedestal collapse. These effects result in the considerable reduc-

tion of energy loss level compared to the case with F(m,0) = 0 and A∥(m,0)
= 0 as was used in

previous BOUT++ simulations. These results show that solving the n = 0 components of

vorticity equation and Ohms law has a significant impact on the result, both quantitatively

and qualitatively.

According to the energy transfer rate analyses of n = 0 system energies, it has been
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shown that n = 0 net flow is generated by the residual of force balance described by the

(m ̸= 0, 0) component of the vorticity equation before a secondary collapse. It is found that

the contribution from the residual of flow stress to n = 0 net flow becomes comparable with

that of force balance during the secondary collapse. In particular, just before the secondary

collapse, the secondary instability drives CCs via the non-local interaction.

The time evolution of toroidal mode spectrum of internal energy and perpendicular kinetic

energy shows that n = 0 internal energy decreases after the pedestal collapse and then

increases due to the secondary instability, where the peak is located in n ≤ 30. The secondary

collapse at t = 800 [tA] results in the rapid increase of energy loss level. It can increase the

energy loss level released by a single collapse event. This secondary instability could be the

Kelvin-Helmholtz instability quasi-linearly driven by CCs after the pedestal collapse but

further analyses are required to identify it, which is left as a future work.

The spatio-temporal analyses have revealed that the strong flow shear generated after

the pedestal collapse locks the pressure and parallel current profile at the outside of the flow

shear regions while the secondary collapse occurs via the non-local transport enhanced by

streamer. The phase diagram analyses have also shown that the damped oscillation is driven

by the pressure-driven negative feedback loop between pressure gradient and turbulence,

where the prey is the pressure gradient and the predator is the turbulence.
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Appendix A: Coordinate systems for tokamak edge simulations in BOUT++

The quasi-ballooning coordinate system is a non-commutative right-handed system con-

sisting of a radial coordinate label defined in an orthogonal flux coordinate system42 and a

parallel coordinate label defined in the field-aligned coordinate system. The last coordinate

label can be either a toroidal label in the orthogonal coordinate system or a binormal label

in the field-aligned coordinate system. In this section, we describe relations among these

coordinate systems, which helps readers to understand the tokamak coordinate system in

BOUT++ reported in Ref. 20.

1. Orthogonal flux coordinate system

The orthogonal flux coordinate system (ψ, θ, ζ) is a kind of flux coordinate systems, the

poloidal angle label θ of which is designed to be orthogonal to the other directions, where ψ is

the poloidal magnetic flux function used as the radial label and ζ is the geometrical toroidal

angle respectively. In this system, the equilibrium magnetic field B can be expressed as

B = Bθ
eθ +Bζ

eζ = Bθe
θ +Bζe

ζ = Bpêθ +Btêζ , (A1)

where exi = ∂R/∂xi are tangential basis vectors, exi = ∇xi are reciprocal basis vectors,

êxi = hxie
xi = h−1

xi
exi are unit basis vectors for xi = (ψ, θ, ζ), Bp is the poloidal magnetic

field and Bt is the toroidal magnetic field respectively. The covariant metric tensor becomes

diagonal as

gψψ = h2ψ = 1/B2
pR

2, gθθ = h2θ, gζζ = h2ζ = R2, J = hψhθhζ =
hθ
Bp

, (A2)

where R is the major radius and hθ = |eθ| is the poloidal arc length and the contravariant

metric coefficients are also written as gxixi = g−1
xixi

due to its orthogonal property.

Since the orthogonal flux coordinate system is not a straight field line coordinate system,

the local field line pitch defined by

ν(ψ, θ) =
B · ∇ζ
B · ∇θ =

Bζ

Bθ
=
Bthθ
BpR

(A3)

can vary on the flux surface labeled with the radial label ψ. The safety factor q is therefore

defined with a line integral of the local pitch over the poloidal direction

q =
1

2π

∮

νdθ. (A4)
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For edge plasma simulations inside the LCFS, BOUT++ employs an annular torus domain

divided into toroidally axisymmetric N parts defined with ψin ≤ ψ ≤ ψout, 0 ≤ θ ≤ 2π and

0 ≤ ζ ≤ 2π/N so that a bi-periodic boundary condition inside the LCFS can be written as

f(ψ, θ + 2π, ζ) = f(ψ, θ, ζ), f(ψ, θ, ζ + 2π/N) = f(ψ, θ, ζ), (A5)

where the outer mid-plane is given at θ = π in this paper.

2. Field-aligned coordinates: (x, y, z)

In BOUT++, the field-aligned coordinate system (x, y, z) defined by

x = ψ − ψo, y = θ, z = ζ − α, α =

∫ θ

θo

ν(ψ, θ)dθ (A6)

is also used to efficiently simulate short wave-length instabilities, where ψo is the offset of the

radial label, α is the shift angle designed to be α = 0 at θo. In this paper, we set ψo = ψsep

and θo = π, where the subscript sep represents a value at the separatrix.

The tangential basis vectors and the reciprocal basis vectors of the field-aligned coordinate

system are expressed with those of the orthogonal flux coordinate system as

ex =eψ + Ieζ , ey = eθ + νeζ , ez = eζ , (A7)

e
x =e

ψ, e
y = e

θ, e
z = e

ζ − Ieψ − νeθ, (A8)

where

I =

∫ θ

θo

∂ν

∂ψ
dθ (A9)

is the quantity related to integrated local magnetic shear. With a straight field-line coordi-

nate system (ψ, χ, ζ) with the poloidal angle χ(ψ, θ) = q−1
∫

νdθ, Eq. (A8) can be expressed

as I = q′(χ−χo), where ′ represents ψ-derivative and χo = χ(ψ, θo). One can easily find from

Eq. (A7) that the Jacobian of the field-aligned coordinate system also becomes J = hθ/Bp.

The contravariant metric coefficient gxixj and the covariant metric coefficient gxixj in the

field-aligned coordinate system for (xi, xj) = (x, y, z) are also straightforwardly derived from
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Eq. (A2) and Eq. (A3) as

gxixj =exi · exj =











gψψ + I2gζζ νIgζζ Igζζ

νIgζζ gθθ + ν2gζζ νgζζ

Igζζ νgζζ gζζ











, (A10)

gxixj =e
xi · exj =











gψψ 0 −Igψψ

0 gθθ −νgθθ

−Igψψ −νgθθ I2gψψ + ν2gθθ + gζζ











. (A11)

In the field-aligned coordinates, the equilibrium magnetic field B can be written in Cleb-

sch form

B = e
z × e

x =
ey

J
(A12)

so that the differentials along the field line can be expressed with only the parallel label y

b · ∇ =
1

JB

∂

∂y
=

1
√
gyy

∂

∂y
. (A13)

This fact means that the grid resolution in the y direction can be reduced for k⊥/k∥ ≪ 1.

The left of Fig. 13 shows that the numerical grid defined in the field-aligned coordinate

system is aligned to magnetic field lines.

While the field-aligned coordinate system can reduce computational cost for parallel

derivatives, I gives a secular parallel cell deformation degrading numerical accuracy of x-

derivatives as is shown in the center and the right of Fig. 13. Although there is no cell

deformation on y = π-surface due to the absence of the shifted angle α = 0, the grid is

strongly deformed in the toroidal direction on y = 0-surface with α = π.

To remedy this problem, BOUT++ employs the shifted radial derivative method43,44

obtained from the chain rule of differential Eq. (A7)

∂f

∂x
= ex · ∇f = (eψ + Ieζ) · ∇f =

∂f

∂ψ
+ I

∂f

∂ζ
. (A14)

The coordinate transform between the field-aligned coordinate system and the orthogonal

flux coordinate system required for ψ-derivative can be done with a discrete Fourier trans-

form F and an inverse discrete Fourier transform F−1 in either ζ-direction or z-direction,

f(ψ, θ, ζ) =F−1
{

F {f(x, y, z)} e−ikNα
}

= F−1 {F (ψ, θ, n)} , (A15)

f(x, y, z) =F−1
{

F {f(ψ, θ, ζ)} eikNα
}

= F−1 {F (x, y, n)} , (A16)
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FIG. 13. A rectangular grid constructed in the field-aligned coordinate system expressed in the

orthogonal flux coordinate system for N = 5: the field-aligned grid (red), an orthogonal flux grid

(blue) and magnetic field-lines (gray) on q = 2-surface (left), the field-aligned grid in the edge

region on α = 0-surface (or y = π-surface) (center) and the field-aligned grid in the edge region

on α = π-surface (or y = 0-surface) (right) respectively. These figures are constructed from the

shifted circular equilibrium shown in Fig. 1 where the safety factor q is negatively defined. In this

paper, −q is employed for figures instead of q for readability

where i is the imaginary unit, k is the mode number in the axisymmetric directions in

the 1/N -th annular toroidal wedge and n = kN is the effective toroidal mode number

in the annular torus respectively. The bi-periodic boundary condition inside the LCFS

Eq. (A5) also becomes the following twisted bi-periodic boundary condition in the field-

aligned coordinate system

f(x, y + 2π, z − 2πq) = f(x, y, z), f(x, y, z + 2π/N) = f(x, y, z), (A17)

which is applied on perturbed fields in the Fourier space with machine precision accuracy.

The basic idea of the field-aligned coordinate system with shifted radial derivative used in

BOUT and BOUT++ is reviewed in Refs. 8 and 9.

3. Quasi-ballooning coordinate system

The metric coefficients of the field-aligned coordinate system Eq. (A10) and Eq. (A11)

and the radial derivative ∂x evaluated with the shifted radial derivative Eq. (A14) still have
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I which degrades the numerical accuracy of simulations. BOUT++ therefore has another

coordinate system named the quasi-ballooning coordinate system where the metrics and

basis vectors are complicated but can be expressed without I.

The quasi-ballooning coordinate system is a combination of the orthogonal flux coordinate

system and the field-aligned coordinate system, where physical quantities are stored in the

field-aligned coordinate system. In the quasi-ballooning coordinate system, spatial deriva-

tives are evaluated on either the (ζ, ψ)-plane in the orthogonal flux coordinate system or the

(y, z)-plane in the field-aligned coordinate system. It should be noted that ψ-derivative and

y-derivative are not commutative due to the difference of the coordinate systems. This non-

commutative property however doesn’t make a problem since second-order partial derivatives

∂2ψ,y and ∂2y,ψ or ∂2x,y and ∂2y,x never appear in all differential operators used in this paper

for the orthogonal property gxy = 0. The other second-order partial derivatives relating to

x-derivative can be rewritten as

∂2f

∂x2
=
∂2f

∂ψ2
+ 2I

∂2f

∂ψ∂ζ
+
∂I

∂ψ

∂f

∂ζ
+ I2

∂2f

∂ζ2
, (A18)

∂2f

∂x∂z
=
∂2f

∂z∂x
=

∂2f

∂ψ∂ζ
+ I

∂2f

∂ζ2
. (A19)

The quasi-ballooning coordinate system employs the following shifted basis vectors exi

and e
xi for xi = (u, v, w) rather than Eq. (A7) and Eq. (A8) in order to remove I from

differential operators,

eu =ex − Iez, ev = ey, ew = ez, (A20)

e
u =e

x, e
v = e

y, e
w = e

z + Iex, (A21)

which gives the following shifted metrics

gxixj = exi · exj =











gψψ 0 0

0 gθθ + ν2gζζ νgζζ

0 νgζζ gζζ











, (A22)

gxixj = e
xi · exj =











gψψ 0 0

0 gθθ −νgθθ

0 −νgθθ ν2gθθ + gζζ











. (A23)

With these shifted basis vectors and metrics, terms including I in differential operators are

canceled out so that vector calculus in the quasi-ballooning coordinate system can be written
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without I. For example, the perpendicular Laplacian can be written as

∇2
⊥f =guu

∂2f

∂ψ2
+ gww

∂2f

∂ζ2
+Gu ∂f

∂ψ
+Gw ∂f

∂ζ
+ 2gvw

∂2f

∂y∂z

+

(

gvv − 1

gvv

)

∂2f

∂y2
+

1

J

{

∂

∂y

[

J

(

gvv − 1

gvv

)]}

∂f

∂y
(A24)

and the Poisson bracket can be also written as

b0 ×∇f · ∇g
B

=
∂f

∂z

∂g

∂ψ
− ∂f

∂ψ

∂g

∂z
+
gvw
gvv

(

∂f

∂ψ

∂g

∂y
− ∂f

∂y

∂g

∂ψ

)

. (A25)

Appendix B: Poisson solvers in BOUT++

To reproduce the ELM crash including the complete set of n = 0 modes in the BOUT++

framework, we introduce the two-dimensional Poisson solver for n = 0 mode while the flute-

ordered one-dimensional Poisson solver is still applied for n ̸= 0 modes like Hermes code29.

In this framework, the poloidal asymmetry of n = 0 mode and short wave-length modes

can be handled without any numerical problems. However, it should be noticed that the

flute-ordering assumption is not obvious for very long wave-length modes O(n) ∼ 1. Due

to this issue, we set the computational domain to 1/5-th of annular torus with N = 5 to

remove 1 ≤ n ≤ 4 modes so that only n = 0, 5, 10, · · · , 160 modes are taken in the present

work.

1. Flute-ordered one-dimensional Poisson solver for n ̸= 0 modes

As a first step for the two-dimensional Poisson solver for n = 0 mode, we briefly explain

how the flute-ordered perpendicular Laplacian is implemented in the BOUT++ framework.

The perpendicular Laplacian in the quasi-ballooning coordinate system Eq. (A24) has deriva-

tives to be evaluated in both the orthogonal flux coordinate system and those in the field-

aligned coordinate system. This is the reason why a Poisson solver in the quasi-ballooning

coordinate system is not straightforwardly implemented as a boundary value problem. The

original BOUT++ therefore employs the flute-order assumption k∥/k⊥ ≪ 1 which justifies

to neglect y-derivatives from Eq. (A24) and gives

∇2
⊥f =guu

∂2f

∂ψ2
+ gww

∂2f

∂ζ2
+Gu ∂f

∂ψ
+Gw ∂f

∂ζ
. (B1)
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Now all the derivatives in Eq. (B1) can be evaluated in the orthogonal flux coordinate

system so that the flute-ordered Poisson solver corresponding to Eq. (B1) can be defined as a

boundary value problem in the orthogonal flux coordinate system. For consistency between

the forward operator∇2
⊥ and the backward operator∇−2

⊥ , the original BOUT++ employs the

flute-ordered perpendicular Laplacian Eq. (B1) rather than the full perpendicular Laplacian

Eq. (A24). Since physical quantities are stored in the field-aligned coordinate system, the

flute-ordered perpendicular Laplacian is evaluated in the Fourier space associated with the

toroidal angle ζ as

∇2
⊥f =F−1

{[

∇2
⊥

(

F {f} e−inα
)]

einα
}

= F−1
{(

∇2
⊥F

)

einα
}

, (B2)

∇2
⊥F =guu

∂2F

∂ψ2
+ (in)2 gwwF +Gu∂F

∂ψ
+ inGwF, (B3)

where Eq. (B3) is discretized with second-order central differencing schemes in ψ-direction.

For the flute-ordered Poisson solver, the following Helmholtz equation for a three-

dimensional field f with two-dimensional coefficients d(x, y), c(x, y), a(x, y) and a right-

hand-side field b(x, y, z) is implemented in the BOUT++ framework

d∇2
⊥f +

1

c
∇c · ∇⊥f + af = b. (B4)

This equation can be reduced to the one-dimensional boundary value problem for each

toroidal mode n

dguu
∂2F

∂ψ2
+

(

dGu +
guu

c

∂c

∂ψ

)

∂F

∂ψ
+
(

a− dn2gww + indGw
)

F = F {b} e−inα, (B5)

where y derivative of coefficient c has not been implemented in BOUT++ so far. Eq. (B5)

is also discretized with second-order central differencing schemes in ψ-direction and solved

with Thomas tridiagonal algorithm.

2. Two-dimensional Poisson solver for n = 0 mode

Application of Eq. (B5) for n = 0 mode causes disruptive numerical noise in the magnetic

field line direction since the flute-order assumption is not applicable for n = 0 mode. Mathe-

matically speaking, the flute-ordered Poisson solver cannot reproduce the poloidal structure

of F for n = 0 mode since it is reduced to the one-dimensional boundary value problem in

ψ-direction. To resolve this problem, the two-dimensional Poisson solver for n = 0 mode

d∇2
⊥f̄ +

1

c
∇c · ∇⊥f̄ + af̄ = b̄, (B6)
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is introduced in the BOUT++ framework like Hermes code, where f̄ represents the n = 0

component of the variable f . The reason why the two-dimensional Poisson solver is available

for n = 0 mode is that n = 0 component of f(x, y, z) and that of f(ψ, θ, ζ) are mathematically

identical for

∂f̄

∂x
=
∂f̄

∂ψ
+ I

∂f̄

∂ζ
=
∂f̄

∂ψ
, (B7)

∂f̄

∂y
=
∂f̄

∂θ
+ ν

∂f̄

∂ζ
=
∂f̄

∂θ
. (B8)

With the shifted metrics Eq. (A22) and Eq. (A23) and the relations Eq. (B7) and Eq. (B8),

the Helmholtz equation Eq. (B6) finally gives

dguu
∂2f̄

∂x2
+

(

dGu +
guu

c

∂c

∂x

)

∂f̄

∂x

+d

(

gvv − 1

gvv

)

∂2f̄

∂y2
+
d

J

∂

∂y

[

J

(

gvv − 1

gvv

)]

∂f̄

∂y
+ af̄ = b̄, (B9)

which is equivalent to Eq. (B6) expressed in the flux orthogonal coordinate system. Eq. (B9)

is discretized with second-order central differencing schemes in x-direction and y-direction

and is solved with PETSc library45–47 as a two-dimensional boundary value problem. For

the consistency with the Poisson solvers Eq. (B5) and Eq. (B9), the perpendicular Laplacian

implemented in the original BOUT++ Eq. (B1) is then modified to

∇2
⊥f =guu

∂2f

∂ψ2
+ gww

∂2f

∂ζ2
+Gu ∂f

∂ψ
+Gw ∂f

∂ζ

+

(

gvv − 1

gvv

)

∂2f̄

∂y2
+

1

J

∂

∂y

[

J

(

gvv − 1

gvv

)]

∂f̄

∂y
. (B10)

It should be noted that the fifth term in Eq. (A24) is not taken in the proposed scheme

from the view point of consistency between the forward and the backward operator. To

introduce this term, a novel two-dimensional Poisson solver must be required to invert

Eq. (B4) including y-derivatives for resonant modes, which may have a considerable impact

on very-low-n modes. It is left as a future work.
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