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ABSTRACT

Wearable inertial measurement units (IMUs) are a promising solution to human motion estima-
tion. Using IMUs 3D orientations, a model-driven inverse kinematics methodology to estimate
joint angles is presented. Estimated joint angles were validated against encoder-measured kine-
matics (robot) and against marker-based kinematics (passive mechanism). Results are promising,
with RMS angular errors respectively lower than 3 and 6deg over a minimum range of motion
of 50deg (robot) and 160deg (passive mechanism). Moreover, a noise robustness analysis
revealed that the model-driven approach reduces the effects of experimental noises, making the
proposed technique particularly suitable for application in human motion analysis.
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Introduction

Inertial measurement units (IMUs) are becoming

popular components of devices that need to measure

orientation in space. An IMU is composed by two tri-

axial sensors: a gyroscope to measure angular velocity

and an accelerometer to sense linear accelerations.

These quantities are then generally fused together

using a sensor fusion algorithm (SFA) to estimate the

IMU orientation in a global reference frame. If a tri-

axial magnetometer is also integrated in the IMU

then the global reference frame is Earth-fixed, defined

using gravitational and magnetic field directions. The

IMU orientation is therefore an estimated quantity,

resulting from the fusion of measurements taken in

different domains (Ligorio et al. 2016) and naturally

affected by undesired experimental factors such as

measurement noises, external disturbances, sensor

biases, etc. These factors were demonstrated to nega-

tively impact on the accuracy and the reliability of the

orientation estimates (Khaleghi et al. 2013).

Preliminary studies on motion tracking using a

combination of accelerometers and gyroscopes dates

back to the early 70 s (a good historical review is pro-

vided in (Picerno 2017)). However, the advent of

Micro Electro-Mechanical Systems (MEMS) technol-

ogy has led to a broad adoption of IMUs in a variety

of fields and, in the latest 25 years, opened new fron-

tiers in wearable human motion analysis (Picerno

2017; Cuesta-Vargas et al. 2010).

Human motion analysis was defined by Cappozzo

et al. (Cappozzo et al. 2005) as the science that “aims

at gathering quantitative information about the

mechanics of the musculoskeletal system during the

execution of a motor task”. Joint kinematics, one of

the key descriptors of human motion, are routinely

measured in laboratory settings, where a set of stereo-

photogrammetric cameras track the 3D position of

passive reflective markers placed on well-defined sub-

ject’s bony landmarks (Wu et al. 2002; Cappozzo

et al. 1995). In decades of use of stereophotogram-

metric systems, experimental protocols (Ferrari et al.

2008), data processing pipelines (Kadaba et al. 1990;

Davis et al. 1991), and joint kinematics estimation

techniques (Grood and Suntay 1983) contributed to

the success of this technology that became the de

facto gold standard in biomechanics. Model-based

simulations further enhanced estimated joint kinemat-

ics accuracy and, at the same time, enabled insight on

musculoskeletal function (Arnold et al. 2010). The use

of accurate musculoskeletal models that provide kine-

matics constraints helps to reduce the effects of

experimental sources of errors (Duprey et al. 2010;

Clement et al. 2015; Lamberto et al. 2016). Moreover,
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these models enable the estimation of other internal

quantities such as muscle length and muscle forces

(Delp et al. 2007; Saxby et al. 2016), even in real-time

applications (Van den Bogert et al. 2013; Pizzolato

et al. 2017). Stereophotogrammetric technology, how-

ever, is not the optimal solution for every application.

Optoelectronic systems are bulky, expensive, require

trained personnel to be correctly and efficiently used,

and finally they can only be used in a laboratory

environment. The latter issue is critical, since tasks

performed inside a laboratory may not reflect real-life

movements as in the case of outdoor sports or daily

life tasks executed by patients.

For all these reasons, the biomechanics community

looks toward IMUs as a potential alternative. IMUs

are nowadays wearable, relatively cheap, easy to use

and reliable enough for the requirements of most

human motion analysis applications. Provided with

on-board long-lasting batteries, long range communi-

cation protocols and/or on-board data logging fea-

tures, IMUs could enable continuous kinematics

analysis in almost every environment (i.e. clinical,

outdoor, daily life, industry).

A common approach in most studies using IMUs

to assess human kinematics is the so called “direct

kinematics” one. This method directly prescribes the

IMU orientations to the segments to which they are

attached to in order to estimate the joint kinematics.

Another possible approach directly uses the raw meas-

urements provided by each IMU (i.e. angular velocity,

linear acceleration and, optionally, magnetic field)

together with a kinematic model of the human body

inside an extended Kalman filter, to compute joints

and segments kinematics (Kortier et al. 2014; Van den

Noort et al. 2016; Seel et al. 2014). However, such solu-

tions might be difficult to be used and tuned for other

applications by non-experts in filtering techniques. In

both these approaches, possible misalignments between

sensors and joint axes can be mitigated using ad-hoc

calibration procedures (Palermo et al. 2014; Van den

Noort et al. 2013). However, to the best of authors’

knowledge, very few studies investigated the use of a

model-based inverse kinematics estimation approach

(Koning et al. 2015; Borb�ely and Szolgay 2017; Kortier

et al. 2014; Karatsidis et al. 2018). Furthermore, none

of them presented a throughout methodological assess-

ment of accuracy and robustness to measurement noise

for the proposed algorithms.

This study proposes a model-based Inverse

Kinematics (IK) approach to assess the motion of

multi-link systems from the orientation of IMUs

placed on the constituting bodies. In this approach,

the joint constraints included in the model have to be

respected when calculating joint kinematics (Lu and

O’Connor 1999). General applicability and ease of use

motivated the choice of using IMU orientations as

input for the developed methodology, even if poten-

tially affected by the inaccuracies previously described,

instead of raw sensor data. Furthermore, the proposed

approach has been implemented to be model-inde-

pendent, allowing users to select the most appropriate

kinematic model (lower limb, upper limb, spine, etc.)

according to their specific needs. Moreover, since

musculoskeletal models are essentially chains of rigid

bodies, the use of robots or limb-like mechanisms

reduces the effects of non-methodological sources of

errors when the focus is the assessment of the per-

formances of a new IK approach. In this study, the

proposed approach to calculate joint angles from

IMUs was evaluated in two experimental scenarios,

using respectively a robot and a passive plastic planar

mechanism. This choice allows evaluating the pro-

posed methodology without the confounding effect of

errors that would have been present in human testing,

e.g. soft tissue artifacts, and led to the design of ad

hoc test-benches. The developed orientation-based IK

is freely available as a plug-in for OpenSim (Delp

et al. 2007) at the SimTK project’s page1.

Materials and methods

Inverse kinematics analysis based on

orientation data

Orientation-based Inverse kinematics (OB-IK) is simi-

lar to the marker-based inverse kinematics (MB-IK)

available in OpenSim (Delp et al. 2007), a popular

model-driven global optimization procedure that

allows to estimate joint kinematics starting from

marker data (Lu and O’Connor 1999). The main

benefit of an inverse kinematic method, assuming

enough experimental kinematic measurements are

available to be tracked, is the use of a multi-link

mechanical model with associated joint constraints

(Kainz et al. 2016). Indeed, the constraints in the

model can prevent physiologically unfeasible configu-

rations, such as joint dislocation or joint angles out-

side their physiologycal ranges of motion, possibly

resulting from experimental errors and noises. In

order for OB-IK to work, “virtual” orientation sensors

should be placed on the model links matching the

experimental configuration.

To programmatically retrieve the relative trans-

formation between sensors and segments coordinate

frames we developed a calibration procedure which

2 L. TAGLIAPIETRA ET AL.



assumes the joint angles to be known in at least one

frame, usually in a predefined static configuration.

The calibration procedure then locks the model in

that pose and moves each virtual orientation sensor

around the model segment to which it is attached to

so that its orientation coincides with the experimen-

tally measured one. Thanks to this procedure, no

accurate experimental alignment between sensors and

segment axes (Favre et al. 2006; Liu et al. 2009) is

required. This in turns allows also to avoid experi-

mental functional calibration trials (Seel et al. 2014).

Once the calibration phase is completed, the devel-

oped OB-IK algorithm takes as input the calibrated

model with virtual orientation sensors correctly

placed on the segments and the orientations provided

by experimental IMUs, expressed as unitary quatern-

ions. This representation allows to minimize data size

and, at the same time, avoids the singularity implied

in more compact representations (i.e. Euler Angles)

(Diebel 2006). The goal of the OB-IK is to calculate

the whole-model joint angles that determine the best

match between the orientations of the experimental

IMUs and those of the corresponding virtual orienta-

tion sensors attached to the model (Figure 1). The

algorithm always considers the model as a whole,

therefore no local steps considering kinematic sub-

chains are performed. In order to quantify the orien-

tation mismatch between one experimental IMU and

its virtual correspondent the Euler axis-angle repre-

sentation was used and the angle (a) given by this

representation chosen as the parameter to minimize.

The developed computational tool was based on the

implementation available in the Simbody (Sherman

et al. 2011) source code.

The minimization problem was defined as a state-

less whole-body optimization, where each time frame

is solved independently from the previous ones. For

each time frame, a gradient descent algorithm itera-

tively looks for the global minima of a weighted

quadratic function of the angular tracking error a.

Depending on a priori knowledge of the experimental

setup (e.g., sensors’ placement or hardware character-

istics), a different weighting factor could be assigned

to each sensor to represent the level of confidence we

expect for its measurements.

Being wi the weighting factor associated to the i-th

orientation sensor and ai the orientation mismatch

for the i-th pair (i.e. the angular error coming from

the Euler angle-axis representation of the relative

orientation between the real and the virtual orienta-

tion sensor), the cost function to be minimized can

be written as

cost qð Þ ¼

P
i wi � a

2
i qð Þ

P
i wi

(1)

In Eq.1 the dependency from the set of the model

generalized coordinates q has been made explicit.

Framework 1: validation against encoder

measurements

A 6-DoF actuated robotic arm UR-10 (Universal

Robots A/S, Denmark) was used in this experimental

setup (Figure 2a). Four Cometa WaveTrack IMUs

(Cometa Systems, Italy) were positioned on the four

links around the three most proximal joints of the

robot (i.e. shoulder-pan, shoulder-lift and elbow

Figure 1. Single degree of freedom sketches of the model pose before (a) and after (b) solving the orientation-based IK for a sin-
gle time-frame. Experimental IMUs in green and corresponding virtual sensors in blue. Graphical offset in models position was
manually added for clarity.
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joints). The desired motion was defined by manually

moving the robot’s end-effector within the three-

dimensional reachable workspace, while at the same

time measuring the individual joint angles by means

of the embedded encoders. The recorded joint trajec-

tories were then prescribed to the robot controller pro-

grammed to exactly repeat them four times for each

task in order to ensure repeatability of the performed

task at varying speed of execution. Two task at two dif-

ferent speeds were recorded. During the manipulation,

care was taken to simultaneously involve in the motion

all the three joints of interest, while also spanning a

wide portion of their ranges of motion (i.e. approxi-

mately 90deg for the shoulder_pan_joint and 45deg

for the others). Data were collected, using a common

trigger signal, from both the robot encoders (125Hz)

and from IMUs (286Hz). Two different movement

speeds were selected for the assessment, respectively

the 50% (TR_50) and the 100% (TR_100) of the robot

maximum speed (i.e. maximum 120 deg/s for the

shoulder and 180 deg/s for the elbow) in order to test

robustness of joint angle estimation to various angular

velocities. One trial was recorded for each speed.

A model of the UR-10 was implemented in

OpenSim (Figure 2c) porting the URDF model avail-

able as part of the ROS-Industrial package2.

Virtual orientation sensors were placed on model

links by aligning them to known reference points, as

done during the preparation of the experimental

setup. After the model calibration procedure, the joint

angles were computed by the developed OB-IK tool

using as input the orientations provided by the real

IMUs attached to the robot links.

Results obtained from the OB-IK were compared

to the experimental joint angles measured from the

robot encoders (Figure 3), in terms of squared

Pearson correlation coefficient (r2), root mean square

error (RMSE) and maximum absolute error (MAE)

over the full trial. Within this framework, designed as

the most controlled scenario, our aim was to validate

OB-IK estimates of joint angles against data measured

from robot encoders, considered as gold standard

for accuracy.

Framework 2: validation against marker-

based kinematics

For this framework, a rigid mechanism (phantom)

consisting of four links (lengths from 110 to 150mm)

connected by three co-planar hinge joints was

designed and 3D printed using plastic material

(Figure 2b). Four Cometa WaveTrack IMUs (Cometa

Figure 2. Experimental setups. Picture of the UR-10 robot with real IMUs placed (a). Picture of the custom-designed mechanism
with both IMUs and passive markers placed (b). OpenSim model of the UR-10 robot (c) and of the custom-designed mechanism
(d). In (c) and (d) virtual orientation sensors are placed on the models and numbered respectively A1 to A4 and B1 to B4. Joint
names are also identified in both the models. UR-10 links’ length: La1 ¼ 89:2mm; La2 ¼ 425mm; La3 ¼ 392mm. Custom-designed
mechanism links’ length Lb0 ¼ 75mm; Lb1 ¼ 150mm; Lb2 ¼ 150mm; Lb3 ¼ 110mm.
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Systems, Italy) and fourteen passive reflective markers

were positioned on the mechanism links. Marker tra-

jectories were collected using a Vicon T160 with 10

cameras (Vicon Motion Systems Ltd., UK). A com-

mon trigger signal was used to synchronize the acqui-

sition systems. Markers data were collected at 100Hz,

IMUs data at 286Hz.

Three different trials were recorded involving

respectively one (TR_1, j-1 joint involved), two

(TR_2, only j-3 joint locked) and three (TR_3)

degrees of freedom of the mechanism at the same

time. During all trials the phantom was manually

moved on a planar surface. At the beginning of each

trial the mechanism was aligned to a reference to

guarantee consistency of the starting position.

A model of the phantom mechanism (Figure 2c)

was developed in OpenSim matching the CAD model

used to design and print it. Virtual orientation sen-

sors were placed on the model and their orientations,

with respect to the segments, were refined using the

described calibration procedure. Then, the measured

IMU orientations were processed using the developed

OB-IK tool. Marker trajectories were low-pass filtered

with a 6Hz, 4th order, zero-lag Butterworth filter.

Marker data were then processed using the standard

OpenSim (v.3.3) marker-based IK tool. Simulation

quality for MB-IK was evaluated using tracking

metrics such as RMSE and maximum tracking errors

(reported as mean ± standard deviation).

Joint angle estimates from OB-IK were compared

against MB-IK results (Figure 4) in terms of r2,

RMSE, and maximum absolute error (MAE). The lat-

ter, computed for each frame, has been classified into

three classes (i.e. lower than 6 deg, between 6 and

12 deg, and higher than 12 deg). Then the percentage

of frames in each class has been computed. Finally,

the same classification has been performed excluding

from the trial the frames corresponding to joint accel-

erations and joint velocities higher than the 110% of

the maximum reference values reported for human

gait in Appendix 1 of Winter (2009). The final aim of

this additional computation was to preliminary assess

the performance of the proposed methodology in

conditions comparable to the ones of the final tar-

geted applications, i.e. human motion analysis.

Robustness of joint angle estimation to noisy

input data

Framework 2 was then used to assess the robustness

of the OB-IK to the experimental noise. As starting

point for this analysis, marker trajectories and IMUs

data from TR_3 were used. Using custom Matlab

(v2016-b, The MathWorks, USA) code, Gaussian

Figure 3. Flowchart reporting the quantities involved in the first validation framework and their relationship.

Figure 4. Flowchart reporting the quantities involved in the second validation framework and their relationship. Green boxes rep-
resent the workflow for orientation-based estimates, red ones for marker-based estimates.
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noise was added to each component (i.e. X, Y, and Z)

of each marker 3D trajectory. The characteristics of

the noise distribution were chosen to approximate

realistic experimental noise (mean¼ 0 and

S.D.¼ 3mm) during a standard data collection (Di

Marco et al. 2017). This procedure was repeated 20

times with different seeds of the random noise gener-

ator, obtaining 20 noisy versions of the original trial.

A similar procedure was used to generate noisy

IMUs data. Since IMUs data were stored in quatern-

ion form, and the quaternion space is not linear, it

was not possible to directly add noise to each compo-

nent. Therefore, three independent noise signals were

generated, one for each IMU axis, and treated as if

they were Euler angles defining a “noise” rotation in

space, so that they could be converted into quaternion

form and finally multiplied to the experimental qua-

ternions. This procedure has the physical meaning of

applying “noise” to the original orientation expressed

in quaternion form. The amplitude of the Gaussian

distribution (mean: 0 deg, std: 2 deg) was chosen equal

to the worst orientation error declared by IMU manu-

facturers in a dynamic scenario. Same as for the

markers case, 20 noisy trials were generated.

The obtained noisy data were then processed

according to the procedure described in Framework

2. Similarly, the obtained results were then compared

against the original data using the same metrics, i.e.,

r2, RMSE, and MAE. This procedure enabled to com-

pare the robustness of our methodology to both MB-

IK and to the forward use of IMU orientations in

estimating joint angles.

Results and discussion

Validation against encoder measurements

The goal of this framework was to assess the perform-

ances of the developed OB-IK tool with respect to

directly measured robot joint angles. Obtained results

were similar for both recorded trials (Table 1).

For TR_50 a correlation coefficient r2>0:999 was

obtained for all joints. The highest RMSE¼ 0.83 deg

was obtained for the shoulder_pan_joint (see

Figure 2). At the same joint was recorded also the

highest MAE¼ 1.76 deg. The higher amplitude of

errors at the shoulder_pan_joint with respect to the

other joints could be explained by the wider range of

motion that it spanned during the task.

During the second trial (Figure 5), the robot was

moving at its maximum speed. It can be noticed that

the maximum error amplitude increased up to around

6 deg at the extreme position of the range of motion,

when higher linear accelerations occur on adjacent

links. These results can be explained by the fact that

IMU orientation is not directly measured but esti-

mated using sensor fusion techniques, which are

deeply affected by filter settings. In fact, the set of

parameters chosen by the IMU manufacturer, appro-

priate for slow movements, were not suitable for high

speed ones. The slow filter behavior explains the over-

shoot effects in Figure 5. In fact, it was realized dur-

ing the data collection that the set of parameters

chosen by the IMU manufacturer, neither accessible

nor modifiable through the data collection system,

were appropriate for slow movement but not for high

speed ones.

Validation against marker-based kinematics

Joint angle estimates from OB-IK were compared

with the MB-IK results (Figure 6). Quantitative evalu-

ation parameters, for all the framework trials, are pre-

sented in Table 2.

For joints actively involved in trial motion a good

agreement between the two estimation methods was

found in terms of both RMSE (< 5.8 deg) and r2 (>

0.98) for all the trials, with at least the 66% of the

complete trial characterized by absolute errors lower

than 6 deg. Only for the most distal joint we found

31.4% of frames leading to error up to 12 deg, and in

less than 2.5% of frames the tracking error was larger

than 12 deg with a MAE of 17 deg in the worst frame.

Values related to the unmobilized joints during each

trial were omitted from Table 2, which only reports

metrics for mobilized joints.

In evaluating the outcomes of this framework, it is

worth to remember that both methods are affected by

issues that could negatively influence their outputs.

IMUs are sensitive to environmental noises and their

dynamic behavior strongly depends on their internal

Table 1. Evaluation parameters for the validation against
encoder measurements.

RMSE [deg] MAE [deg] r
2

TR_50
Joint
shoulder_pan 0.83 1.76 0.999
shoulder_tilt 0.76 1.53 0.999
elbow 0.65 1.16 0.999

TR_100
Joint
shoulder_pan 3.04 5.82 0.994
shoulder_tilt 1.76 4.02 0.996
elbow 2.0 3.68 0.999

TR_50 and TR_100 are the trial at the 50 and 100% of the robot max-
imum speed (i.e. maximum 120 deg/s for the shoulder and 180 deg/s for
the elbow) respectively. Root mean squared error (RMSE), Maximum
absolute error (MAE) and correlation coefficient r2 are reported.

6 L. TAGLIAPIETRA ET AL.



filter settings, as shown in framework 1. On the other

hand, joint angle estimates from MB-IK are sensitive

to experimental marker placement and segment size.

In this specific case, however, the metrics from MB-

IK (RMSE <1:760:5 mm, maximum tracking error

<3:561:0 mm in all the trials) allow us to consider

the joint angle estimation of acceptable quality.

The high amplitude of MAE obtained in this

framework, with spikes up to 21 deg, could be due to

the effect of the mechanism’s size on the two IK algo-

rithms. For the OB-IK if two IMUs are too close to

each other a cross-talk effect, generated by magneto-

meters, could emerge leading to inaccurate orientation

estimates. For MB-IK instead the smaller the body

dimensions and the distance between joints and

tracked markers, the larger will be the angular offset

generated by the same marker tracking error.

Furthermore, consequently to the general

Figure 5. Orientation-based IK (dashed black) and encoder measured joint angles (cyan) during the trial TR_100 performed at
maximum robot speed.

Figure 6. Left column: orientation-based IK (dashed black) and marker-based IK (cyan) joint angle estimates for TR_02 when joint
j-2 and j-3 were moving contemporaneously and joint j-1 was manually kept steady. Right column: percentages of frames for
each absolute error (AE) class over all the frames of the trial (blue) and over the frames corresponding to frames corresponding
to joint accelerations and velocities compatible with the ones which characterize the human gait according to literature data
(Winter 2009).

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 7



characteristics and assumptions of the algorithms

employed inside each IMU to estimate its orientation,

the closer the linear acceleration due to the motion is

to the gravitational acceleration, the more prone to

errors is the estimated orientation. In this case, for

both TR_2 and TR_3, the linear accelerations of the

segments reach values close to 1.5 g. However, such

values are unlikely to be reached in biomechanical

applications. Excluding from the trial the frames char-

acterized by joint accelerations and velocities higher

than the maximum values reported for a typical

human gait (Winter 2009), it was found that at least

the 83% of each trial has errors lower than 6 deg with

a maximum of 16% of frames for which the AE is

in between 6 and 12 deg. Concluding, the global met-

rics were reasonably aligned with the results of

Framework 1 and could be considered a promising

starting point to investigate the performances of OB-

IK in estimating human kinematics. In that case

indeed body segments are larger, therefore size-effects

Table 2. Evaluation parameters for the validation against marker-based kinematics. TR_1 consisted in manually moving the joint
j-1 and keeping steady the other joints.

RMSE MAE r
2 AE <6 deg 6 <AE <12 deg AE >12 deg

[deg] [deg] [frame %] [frame %] [frame %]

TR_1
Joint
j-1 – – – – – –

j-2 – – – – – –

j-3 3.89 12.08 0.999 83.4 (91.8) 16.5 (8.1) 0.1 (0.02)

TR_2
Joint
j-1 – – – – – –

j-2 4.89 13.03 0.99 78.0 (89.9) 21.4 (9.9) 0.6 (0.2)
j-3 5.86 18.1 0.98 67.6 (86.4) 28.2 (12.2) 4.2 (1.4)

TR_3
Joint
j-1 1.53 5.32 0.997 100 (100) 0.0 (0.0) 0.0 (0.0)
j-2 5.58 21.4 0.987 76.6 (92.2) 18.7 (6.8) 4.7 (1.0)
j-3 5.83 16.95 0.979 66.2 (83.7) 31.4 (16.0) 2.3 (0.3)

In TR_2 joint j-2 and j-3 were moved simultaneously and joint j-1 was kept steady. During TR_3 all the three joints of the mechanism were moved at
the same time. Root mean squared error (RMSE), maximum absolute error (MAE) and correlation coefficient r2 are reported. Moreover, percentages of
frames included in each absolute error class are listed (in bold only the trial frames corresponding to joint accelerations and velocities compatible with
the ones which characterize the human gait, according to literature data, Winter 2009, have been considered).

Figure 7. Standard deviation of joint angle estimates over the 20 noisy trials for marker-based IK (cyan) and orientation-based IK
(dashed black) during TR_03.
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should be less pronounced, and accelerations should

be lower, leading to more accurate IMU orienta-

tion estimates.

Noise robustness analysis

The joint angle estimates obtained with the developed

OB-IK tool for the 20 noisy trials were summarized in

terms of mean and standard deviation (S.D.). Comparing

that mean with the results obtained for the original data,

no relevant differences arose (RMSE< 0.13deg and a

MAE< 0.67 deg were obtained for all joints). The mean

standard deviation of the 20 noisy estimates was lower

then 0.53±0.1 deg for all joints.

In the worst case scenario of forward use of IMUs

orientation to estimate joint angles, for a planar

movement, a maximum joint angle error of 4 deg is

expected, resulting from an orientation error (of

opposite sign) for both joined links of 2 deg. This

value is approximately five times greater than the one

obtained with OB-IK, suggesting that including model

constraint within the optimization framework results

in a more accurate estimation of joint kinematics.

Figure 7 reports the standard deviation of the 20

noisy trials outputs for both the markers case (cyan

lines) and IMUs case (dashed black lines). The ampli-

tude of the standard deviation of OB-IK outputs over

the 20 trials is constant over joints, time, and move-

ment speed. The amplitude of the standard deviation

of MB-IK outputs is instead larger for the joint con-

necting the smallest links (j_3) and increases at higher

movement speeds (as during the second half of the

trial). This suggests that OB-IK produces more con-

sistent estimation of angles in the face of varying

dynamic conditions than the MB-IK.

Conclusions

The OB-IK methodology presented in this paper com-

bines the benefits of model-driven simulations with

those of inertial sensors in the challenge of accurately

estimating joint kinematics with wearable technolo-

gies. The proposed methodology was tested both

against joint angles directly measured from encoders

and against joint angle estimates from commonly

adopted multibody optimization procedure.

Robustness to noise was also evaluated.

The first testing framework demonstrated the capa-

bilities of the developed OB-IK in estimating joint

angles with a very good accuracy when compared

with experimentally measured angles. The important

aspect of IMU internal filter settings emerged clearly.

Even if it is an aspect related to the acquisition devi-

ces and not to the developed tool, it should be taken

into account by users. Indeed, to accurately estimate

joint kinematics it is necessary to select the adequate

parameter set for the filter (Mazz�a et al. 2012), which

in this investigation was not varied.

In the second framework, the OB-IK tool was vali-

dated using synchronous measurements from a stereo-

photogrammetric system combined with OpenSim’s

MB-IK algorithm. Obtained results are promising even

if characterized by larger errors than those found in

the first framework. The main source of errors was the

most distal segment, which was also the smallest and

most mobile in the tested movements. For this seg-

ment, positioning errors of markers and IMUs,

together with experimental and methodological errors

like its dimensions and its motion characteristics (high-

est accelerations and velocities), could have affected the

estimated kinematics more heavily than other joints.

Nevertheless, once considering only the frames charac-

terized by dynamic parameters comparable with the

ones of a typical biomechanical application (i.e. clinical

gait analysis), the global metrics could be considered

fairly good. Furthermore, they are comparable with the

results obtained for the first framework.

Outcomes from the noise robustness analysis sug-

gested that the use of a model-based inverse kinemat-

ics approach could reduce the effects of experimental

noises and IMU non-idealities on the final joint

angle estimates.

The presented assessments constitute a necessary

step before moving to the application of the developed

orientation-based Inverse Kinematics tool to human

motion analysis. The calibration procedure developed

to adjust the placement of virtual orientation sensors

in the model can be easily applied for other mecha-

nisms similar to those investigated in this work poten-

tially obtaining fairly good results. However, before

application to the study of human motion, the calibra-

tion methodology will have to be thoroughly assessed

and might require specific modifications.

Finally, the developed methodology has been imple-

mented as a plug-in for OpenSim and made freely avail-

able via SimTK project’s page and Github repository3.

The underlying research materials for this article can be

accessed at https:/doi.org/10.15131/shef.data.7097744.

Endnotes

1. https://simtk.org/projects/orientation_based_ik
2. http://wiki.ros.org/universal_robot
3. https://github.com/RehabEngGroup/ob-ik-opensim-

plugin.git
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