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Reduced habit-driven errors in 
Parkinson’s Disease
Colin Bannardͷ, Mariana Leriche, Oliver Bandmann, Christopher H. Brown  ͅ , 
Elisa Ferracaneͺ, Álvaro Sánchez-Ferroͻ, José Obesoͻ, Peter Redgraveͼ & Tom Staơord  ͼ

Parkinson’s Disease can be understood as a disorder of motor habits. A prediction of this theory is that 
early stage Parkinson’s patients will display fewer errors caused by interference from previously over-
learned behaviours. We test this prediction in the domain of skilled typing, where actions are easy to 
record and errors easy to identify. We describe a method for categorizing errors as simple motor errors 
or habit-driven errors. We test Spanish and English participants with and without Parkinson’s, and show 
that indeed patients make fewer habit errors than healthy controlsǡ andǡ furtherǡ that classiƤcation of 
error type increases the accuracy of discriminating between patients and healthy controls. As well as 
being a validation of a theoryǦled predictionǡ these results oơer promise for automatedǡ enhanced and 
early diagnosis of Parkinson’s Disease.

Parkinson’s Disease (PD) is a neurodegenerative disorder. he cardinal features, bradykinesia, tremor and rigidity, 
are driven by dysfunction of the basal ganglia, speciically the loss of dopaminergic inputs. Diagnosis is primarily 
based upon these motor symptoms, which do not appear until a signiicant loss of dopaminergic neurons from 
their source, the substantia nigra pars compacta, has already occurred1. Recent results have suggested a particular 
spatial pattern in the progression of loss of dopaminergic neurons — starting in the ventrolateral substantia nigra 
and their terminals in the caudal putamen2,3. herefore, a test for the early loss of function, speciically in the 
caudal putamen, could serve as an early marker for PD.

he basal ganglia receives inputs from functionally segregated regions of cerebral cortex in a topographically- 
organised manner4. Therefore, cortical regions associated with limbic (i.e. motivational and emotional), 
associative (i.e. cognitive) and sensorimotor functions access spatially ordered territories extending from 
rostro-ventromedial to caudo-dorsolateral zones of the striatum. Current evidence5,6, indicates that goal-directed 
and habitual control of behavior can be mapped respectively onto the associative (caudate and rostral putamen) 
and sensorimotor (caudal putamen) territories of the striatum. Under voluntary goal-directed control, actions are 
selected on the basis of relative outcome values, while automatic stimulus-response habits are selected according 
to relative stimulus salience, independent of outcome value7.

Given the early degeneration of ventrolateral dopaminergic cells, and given that these cells project to areas 
which support habitual action, our proposal in 2010 was that Parkinson’s disease would be expected to prevent 
patients from engaging their automatic everyday habits5. hus, with a progressive loss of rapid low-cost habitual 
action control, patients would have to rely increasingly on their slower, efortful voluntary goal-directed control 
system. Recent experimental work and the clinical literature contain much evidence supporting this notion8–10.

his now well-supported description of malfunction within the basal ganglia5 provides the theoretical basis 
for the experiment reported here. he idea is to develop a behavioural assay that provides a quantitative index of 
the functional status of the caudolateral putamen2. he challenge is to come up with an easy and simple test that 
would give early warning that habitual control is starting to degrade.

Our solution is to exploit the phenomenon of ‘action slips’11. hese are mistakes where we do something 
out of habit, but at an inappropriate time. An example would be, while deep in thought, taking the lit to your 
old oice rather that to the loor where your new oice is located. Such mistakes satisfy the independence of 
outcome-valuation criterion for habits7. A paradigm where we think action slips can be brought under tractable 
experimental control are the mistakes we all make while typing on computers, tablets and smart-phones.
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Stimulus-response habits develop when predictable sequences of behaviour are repeated7. Thus, any 
frequently-used sequence of key-strokes (such as i-n-g) will gradually become habitual. Obviously practice typ-
ing will train the motor system to absorb a host of statistical regularities associated with reappearing patterns in 
the language typed. Our project is based on the prediction that habitual control of frequent key-stroke patterns 
by PD patients should start to disappear as the dopamine loss progressively impairs the automatic sensorimotor 
function of the caudal putamen. his means that alongside less luent typing overall, PD should be marked by a 
decrease in the habit driven errors (such as typing t-h-i-n-g when the intended word is t-h-i-n-k). his prediction 
is marked in that it speciies decreases in one particular type of error committed by patients. Obviously to predict 
an increase in error, even an error of a speciic type, would be less interesting for a disease predominantly char-
acterised by dysfunction of the motor system. However while our theory leads us to predict a general increase 
in motor errors, the present investigation tests whether there is a speciic decrease in habit-driven errors in the 
typing of participants with Parkinson’s Disease.

As well as testing this theory driven prediction, our experiment aims to lay the foundation for continuous, 
unobtrusive, quantitative monitoring of people’s dependence on habitual control. he advantage of typing is that, 
increasingly for many people, it is an everyday behaviour that potentially afords the unobtrusive measurement of 
a high volume of movement related data. With the habit error test we hope to lay the foundation for an automated 
analysis to detect caudal putamen dysfunction as an indication of early Parkinson’s. If successful, we would have 
an objective patho-physiologically inspired test for the early detection of Parkinson’s disease. We may also have 
a procedure that provides insight into the mechanisms of action of current and future therapies for Parkinson’s.

Results
By taking the opportunity to test at two sites — one in England and one in Spain — we are able to seek support 
for the language-independence of our methods. he results from both sites are in line with one another, but we 
present key measures separately.

First we look at interkey interval (IKI, a standard metric for assessing typing speed), for both correct key 
presses and errorful key presses. In order to exclude mid-sentence breaks from consideration, we start by exclud-
ing any keypresses that are greater than the 99.5th percentile for correct keypresses in each of the two languages 
— all interkey intervals greater than or equal to 2973 ms for English and 2476 ms for Spanish. For errorful key 
presses this results in the removal of 1.4% of the English data and 3.9% of the Spanish data. Of the removed errors 
69% were from patients.

he timing of correct and errorful keypresses in both language and populations is shown in Fig. 1. As can be 
seen, patients take longer to perform both correct and errorful keypresses than non-patients for both languages. 
A 2 × 2 × 2 mixed ANOVA conirmed there to be an efect of keypress type (Correct or Errorful; F(1,57) = 39.67, 
p < 0.001) and participant group (Patient or Control; F(1,57) = 20.19, p < 0.001) on a participant’s mean interkey 
interval, but no signiicant efect of language and no signiicant interactions.

Each error made was next classiied as being a motor error, a habit slip or neither. An error was classiied as a 
motor error if the key pressed in error was closer to the previous key than to the target (correct) key. An error was 
classiied as a habit slip if it was not a motor error and the key pressed in error had a higher conditional probability 
given the previous keypresses than the target key. See our method section for further details. he proportion of a 
participant’s full set of errors that were motor errors was then taken as their motor error rate, and their proportion 
of non-motor errors that were habit slips were taken as their habit slip rate.

Our end goal is to look at the relationship between patient status and participants’ patterns of errors. However 
it is also important to understand the relationship between error type and timing. he proportion of each type 
of key press error for each interkey interval can be seen for each of the two languages in Fig. 2. We found above 
that participants’ mean interkey intervals were longer for errorful key presses than correct key presses but that 
this didn’t vary by patient status. Here we look at the relationship between timing and error type, speciically 
asking whether a participant’s mean IKI for errors difers depending on the rate with which they produce the two 
kinds of errors. Multiple regression modelling with model comparisons used to evaluate the signiicance of terms 
reveals that as well as the efect of patient status (F(1,56) = 12.06, p < 0.001) on mean IKIs for errors there was also 
an efect of habit slip rate (F(1,56) = 9.82, p < 0.01) but no efect of motor error rate or language.

A summary of the timing and error proportions can be seen in Table 1, and the relationship between patient 
status and error type collapsing over time and language can be seen in Fig. 3. he diference in habit error rate 
between patients and controls is signiicant (t(59) = 1.715, p < 0.05).

We next look at whether the error rates observed can be used to predict the patient status of participants. We 
do this by irst using a regression model to predict UPDRS scores and then looking at the utility of our predicted 
scores in distinguishing patients from controls. As there is no reason to assume that the predictors have a linear 
relationship with the UPDRS score we use generalized additive regression models, and as the UPDRS score is 
heavily right skewed we employ a poisson link. he mgcv package12 was used to it these models with the default 
thin plate regression splines used to represent the smooth terms. A model including language plus each partic-
ipants mean IKI for correct and for errorful key presses and both motor error and habit slip rates was found to 
give a better it to the data that a model with any of these predictors removed. Fit was estimated using AIC, and we 
can infer from the diferences between its that the plausibility that the subset models give as good a it as the full 
model is “essentially none”13. he full model explained 75.6% of the deviance.

Finally we look at the value of the UPDRS scores predicted by our GAM models in distinguishing patients 
from non-patients. We do this by exploring a range of thresholds for diagnosis to produce the sensitivity vs spec-
iicity plot seen in Fig. 4. his shows the classiication performance of our full model and a model with only lan-
guage and IKIs included as predictors. he AUC of the all predictor curve (AUC = 0.954) is signiicantly greater 
than that making use of the reduced predictor set (AUC = 0.874; p < 0.05; DeLong’s test). A model including habit 
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slip rate (and language and IKI predictors) but not motor slip rate also gives a signiicant improvement over the 
language-and-IKI-only model (AUC = 0.947; p < 0.05).

Discussion
As predicted, patients with Parkinson’s commit fewer habit errors than healthy controls. his is in the context of 
the expected increase in simple motor errors and general slowing.

By using errors rates to perform classiication we have demonstrated that typing data alone allows disease 
status to be identiied. he model shows that both habit errors and typing speed contribute to this classiication: 
accuracy is enhanced when habit slip rate is added to simpler models which use only speed information, or speed 
information and motor error rate, suggesting that the classiication using habit slip rate adds additional informa-
tion beyond that of motor speed alone.

While patients typed more slowly than controls in general, participants who typed more slowly were not 
less likely to make motor errors. However those who typed more slowly were less likely to make habit slips. his 
habit-speciic speed-accuracy trade-of is additional evidence for a distinct control system for habits working 
within overall motor control of typing. It also raises the possibility that decreased habits in patients are simply the 
result of slower typing in patients - that they make fewer habit error simply because they type more slowly. While 
not inconsistent with our hypothesis, such an interpretation would complicate the causal relationship we have 
proposed. It is important to note then that habit slip rate was found to be of predictive value over and above tim-
ing information, suggesting that there is a clear separable relationship between habit slips and participant group.

hese results provide compelling evidence supporting our hypothesis5. In both languages tested, English 
and Spanish, patients committed fewer habit errors than healthy controls but made more simple motor errors. 
his suggest that the habit system in PD patients is impaired, causing them to have to rely more on voluntary 
goal-directed control. Consistent results at both testing sites, and in two languages, suggest that the result is not 
language-speciic and so has potential for further generalisation beyond Spanish and English.

Figure 1. Distribution of interkey intervals for correct and errorful keypresses in English and Spanish patients 
and controls.

https://doi.org/10.1038/s41598-019-39294-z
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his method has the potential for early diagnosis of PD for two reasons. First, because of results suggesting 
that the neural substrate of the habit system is irst to be afected in the progression of Parkinson’s, a measure 
which is based on the loss of habit errors is well positioned to be sensitive to the irst behavioural signs of the dis-
ease. Second, because typing is an everyday activity which can be unobtrusively and easily monitored, providing 
a very high volume of psychomotor behavioural data for any potential test.

While promising, the result reported sufers from some limitations as well. It was conducted with patients up 
to ive years ater they were diagnosed, with Parkinson’s Disease, rather than pre-, or at the point of, diagnosis. he 
sample size is limited and the result awaits replication by a preregistered trial. Furthermore, it remains to be seen 
if this method will generalise to non-laboratory conditions and to free text entry rather than copy-typing. Next 
steps to obtain further support for the hypothesis could include: larger studies with clinical populations and/or 
prospective studies with at risk populations, such as people with REM sleep behaviour disorder14,15.

Earlier diagnosis is one potential beneit of a typing test of Parkinson’s. Others are the role in conirmation 
of initial diagnosis (given high levels of misdiagnosis reported at some sites16) and as a measure of disease state 
or progression which is not reliant on subjective or time-consuming clinical assessment. A sensitive behavioural 
measure of disease state would accelerate the development of efective treatments.

Figure 2. Distribution of motor and habit slip errors at diferent interkey intervals for patients and controls in 
English and Spanish. Note that habit errors rate is a proportion of errors that are not motor errors.

Motor Errors Habit Errors Correct keypress IKI in seconds Error keypress IKI in seconds

Controls Patients Controls Patients Controls Patients Controls Patients

English 0.481 (0.108) 0.564 (0.142) 0.274 (0.146) 0.200 (0.141) 0.322 (0.120) 0.578 (0.267) 0.402 (0.148) 0.774 (0.474)

Spanish 0.522 (0.105) 0.588 (0.078) 0.320 (0.135) 0.269 (0.070) 0.288 (0.043) 0.435 (0.112) 0.389 (0.076) 0.545 (0.144)

Table 1. Mean error rates and interkey intervals by language and participant group. Standard deviations are in 
parentheses. Note that habit errors rate is a proportion of errors that are not motor errors.

https://doi.org/10.1038/s41598-019-39294-z
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Other authors have suggested typing tests for Parkinson’s disease17–20. Our task involves higher level cognitive 
function than Noyce et al.’s inger tapping task, and so has the potential to identify dysfunction in a richer array 
of cognitive systems. Giancardo et al.’s19 algorithm is less transparent as to what speciic features of behaviour are 
afected in Parkinson’s and so contribute to the performance of the classiication algorithm.

Figure 3. Rates of error types by participant group, collapsing over time points and language. Note that habit 
errors rate is a proportion of errors that are not motor errors.

Figure 4. Receiver operating characteristic (ROC) curves for classiication of participants as having Parkinson’s 
diagnosis or not. Two models shown with bootstrapped 95% conidence intervals: using all predictors, including 
rates for diferent error types (AUC = 0.954), and only using average speed of correct keypresses, average speed 
of errorful keypresses and language (AUC = 0.874). he AUC of the all predictor curve is signiicantly greater 
than that making use of the reduced predictor set (p < 0.05; DeLong’s test). A model including habit slip rate 
(and language and IKI predictors) but not motor slip rate also gives a signiicant improvement over the reduced 
model (AUC = 0.947; p < 0.05).

https://doi.org/10.1038/s41598-019-39294-z


6SCIENTIFIC REPORTS |          (2019) 9:3423  | httpsǣȀȀdoiǤorgȀͷͶǤͷͶ;ȀsͺͷͻͿ;ǦͶͷͿǦͿͿͺǦz

www.nature.com/scientificreportswww.nature.com/scientificreports/

Cognitively and neurophysiologically informed behavioural testing holds great promise for both understand-
ing the symptoms of Parkinson’s, and in contributing to diagnosis and management.

Methods
Ethical oversight. All experimental protocols were approved by NHS Health Research Authority (no. 
STH18662TK) and HM Hospitales, Spain (no. 14.11. 710-GHM). Informed consent was obtained from all sub-
jects involved in the study. All the experiments and recruitment were carried out in accordance with the relevant 
institutional guidelines.

Participants. Patients were recruited to be in the early stages of PD (Hoehn-Yahr stages 0–2.5, UPDRS <20 
in the medicated state if not medication naive), with normal cognitive function (MMSE 27–30) and with less than 
5 years from a conirmed diagnosis. Demographic information is shown in Table 2.

We excluded participants with cognitive impairment or dementia, participants unable to use a keyboard (e.g. 
due to upper limb functional limitation). Two control participants were excluded from the analysis because their 
UPDRS scores were in the same range as the patients.

Most patients (21 out of 27) were tested prior to taking their morning medication. hese patients were retested 
in the same visit, 1.5–2 hours ater ater taking their medication (not reported here). Six patients were tested 
medicated (1 on a MAO-B inhibitor (rasagiline); 1 on a dopamine agonist (mirapexin); 4 on both (rasagiline and 
rotigotine, pramipexol or mirapexin).

Procedure. All tests were completed in one visit. Evaluation of motor symptoms and cognitive state were 
measured by applying the UPDRS (Part III) and MMSE. he experiment was designed to run in a typical web 
browser, so we could easily move to testing online if required, and to demonstrate that this detection mechanism 
could be widely deployed, without requiring specialized hardware. Bespoke sotware was written which pre-
sents a series of sentences to be copy-typed, and collects identity and timing of each key-press. his sotware has 
been released as open-source at https://github.com/chbrown/typing-evaluation, which includes all the required 
code and instructions for running it, but omits the speciic stimuli data we used. he outcome of each keypress 
appeared on the screen, as in normal computer typing (note that some experiments on typing restrict visual feed-
back21). If participants did not complete copy-typing the full set of sentences within 20 minutes they were invited 
to stop when they wished. In addition to the copy-typing measures, participants were also asked to participate in 
another experimental task which involve navigating an online road in the manner of a driving game (not reported 
here), and to complete some simple key- tapping exercises in order to collect the measures validated by17.

Materials. For stimuli we sought naturally occurring sentences on which we knew people were likely to make 
typing errors. Our sentences were taken from a much larger set of sentences used to study typing errors (as part 
of a larger project) because they met this need. hese sentences were identiied using Wikipedia revision logs. 
Errors were extracted from pairs of sentences and their revisions, by assuming that older sentences contain errors 
and new versions of these sentences correct these errors. We performed this by applying the Wikipedia Revision 
Toolkit22 to the Wikipedia revision dumps downloaded from http://download.wikimedia.org/. Revision pairs 
that contained an edit to a single word token and where the replacement token was a real word were considered 
candidates for inclusion. A total of 15 sentences in English were chosen for the English participants. 30 sentences 
in Spanish were chosen for Spanish participants. Sentences ranged in length from 10 to 25 words.

For the identiication of habit errors, character-based 5-gram language models were build using the SRILM 
toolkit23. he English and the Spanish n-gram models were estimated from the English and Spanish components 
of the Europarl corpus24. Back-of smoothing was used when the typed character n-grams did not occur in the 
corresponding corpus.

Analysis. Error classiication. An alignment between the typed sequence and the target sequence was found 
using the Needleman-Wunsch algorithm25 with scores of 1 for a match, -1 for a substitution and -2 for an inser-
tion or deletion. he algorithm uses this scoring to maximise an alignment score (the inverse of an edit distance), 
and so return two full-sentence sequences of equal length with either matching items for corresponding posi-
tions in the sequences, mismatching items for corresponding positions (substitutions), a character in the typed 
sequence and a skip character in the target sequence (insertions), or a character in the target sequence and a skip 
character in the typed sequence (deletions). Sequences of typed characters were then paired with target words, by 
moving backwards from the end of the full typed sequence, concatenating characters to form tokens, and insert-
ing token boundaries where there was a space character in the target sequence that was paired with anything but 
a skip character in the typed sequence. If a typed token did not match its corresponding target word then an error 
was assumed to be present. he mismatching tokens were then reversed to match the order in which they were 
typed/intended and skip characters were removed from the typed sequence. he irst mismatched character in the 
tokens, moving from beginning to end was taken to be an error and this was included in our following analyses. 
he time interval between the preceding keypress and the erroneous keypress was also extracted.

N Average age N female Education (years) MMSE UPDRS Hoehn-Yahr

Controls 34 58.7 17 17.2 29.6 0.85 0

Patients 27 60.7 10 17.2 29.4 13.15 1.85

Table 2. Demographic and clinical information of study participants.

https://doi.org/10.1038/s41598-019-39294-z
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Once this error identiication procedure had been performed, each error was categorised as a suspected 
motor error and/or a suspected habit error Motor errors were identiied based on the keyboard distance from 
the preceding character to the typed character. If this distance was less than the distance from the preceding 
character to the target character then this was taken to be a potential motor error. Distance was calculated over 
the maps shown in Fig. 5, with identical coordinates used for secondary characters produced using the same key. 
he distance from a key to an adjacent key (including diagonally adjacent) was 1. he distance from that key to all 
other keys was the euclidean distance (using the depicted grid layout, Fig. 5. If a key is not found in the map (this 
includes ø, æ, β, Chinese, Greek, Cyrillic characters), then we calculate its distance as the euclidean distance from 
the preceding character to the average position on the keyboard. Capital characters or characters with diacritics 
are treated as “secondary characters”. For example, A is treated as a, and ç is treated as c.

Habit errors were identiied by comparing the (back-of smoothed) conditional probability of the typed char-
acter given the preceding 4 characters and the (back-of smoothed) conditional probability of the target character 
given the preceding 4 characters. If p(typed|target-1…target-4) was higher than p(target|target-1…target-4) then 
the error was classiied as a potential habit error. Assessed independently an error could be marked as both a 
motor and an habit error. For clarity of analysis and because habit errors are the focus on attention in this paper, 
only errors that were not motor errors were allowed to be habit errors.

Code for performing error identiication and classiication is publicly available at https://github.com/elisaF/
typing-classiication/.

Data Availability
Full data on participants in not available, because consent was not obtained to share identifying and clinical in-
formation. However a sample of anonymised keypress information and analysis scripts which demonstrate the 
error identiication and classiication procedure are available at https://osf.io/2z8t9. he full code for error iden-
tiication and classiication are available at https://github.com/elisaF/typing-classiication/. Scripts for gathering 
typing data are available at https://github.com/chbrown/typing-evaluation.
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