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A diffusion model decomposition of orientation discrimination in children with Autism Spectrum 

Disorder (ASD)

Abstract

Children with and without ASD performed an orientation discrimination task, in which the difficulty

of the discrimination was equated across individuals. Behavioural results showed that subjects with

ASD were slower in making a decision. A computational decomposition of data was performed and

modelled parameters indicated that: (i) participants with ASD adopted a more conservative response

criterion and (ii) motor response did not differ between groups. Our results confirm that differences in

reaction  times  (RTs)  and/or  accuracy  between  participants  with  and  without  ASD in  orientation

discrimination may be related to  differences in  response conservativeness rather than in stimulus

discriminability,  in  line  with  data  previously  reported  from  adults  (Pirrone,  Dickinson,  Gomez,

Stafford  &  Milne,  2017).  This  result  has  important  implications  for  studies  that  have  claimed

impairments/enhancements in ASD on the basis of differences in RTs and/or accuracy alone.

Keywords: autism spectrum disorder, drift diffusion model, speed-accuracy trade-off, orientation 

discrimination

 

Autism Spectrum Disorder (ASD) is characterised by differences in communication, social interaction

and sensorimotor abilities. Research investigating perception in ASD has provided opposing results 

regarding perceptual abilities which, depending on the specific field or experimental paradigm 

adopted, have supported claims of impairments or enhancements  (e.g. Deruelle, Rondan, Gepner & 

Tardif, 2004; Mottron, Peretz, & Menard, 2000; Milne, Swettenham, Hansen, Campbell, Jeffries & 

Plaisted., 2002; Bertone, Mottron, Jelenic & Faubert, 2003). Many existing studies investigating 

perception in individuals with ASD have used the two-alternative forced choice method (2AFC) 

whereby participants are asked to select a single response out of a choice of two to indicate a 

judgement about a specific stimulus. Example responses include: “the target is present / absent”, “the 

dots are moving to the left / right” and “the grating is slanted clockwise / anticlockwise”. In 

paradigms such as these, the dependent variables of accuracy and / or response time are used to 

inform conclusions about perceptual function. Typically, these paradigms involve one-shot, ‘simple’ 

decisions that are made within seconds. However, even ‘simple’ decisions are determined by a 

number of underlying processes: the participant has to encode the stimulus, make a decision weighing



the stimulus information and the costs and benefits of different response options, and execute the 

motor response by pressing a button on the keyboard in order to indicate the response. This central 

component - the decision time - will be influenced by the sensitivity of their perception, the difficulty 

of the task, the response conservativeness of participants and pre-existing bias towards or away from 

available response options. Importantly, each of these factors can have systematic effects on response 

times and on accuracy. As difficulty increases, RTs increase and accuracy decreases; as response 

conservativeness increases, RTs and accuracy increase; as the bias towards a response increases, fast 

RTs towards the biased alternative are predicted and slow RTs towards the opposite alternative are 

predicted; and as the time to encode the stimulus or execute the motor response increases, RTs 

increase but accuracy is unaffected. 

It is clear that a difference in RTs and/or accuracy between two groups can be determined by any 

combination of the processes described above, and that single-measure data analysis (i.e., response 

time or accuracy alone) cannot disambiguate the contribution of these factors to decisions on a 

particular task. Unfortunately, there are myriad examples of studies that purport to provide evidence 

for domain-specific information processing differences between individuals with and without ASD on

the basis of differences in RTs or accuracy alone. As has been argued previously (see Pirrone et al., 

2017), it is possible that some of these differences may reflect alteration in aspects of decision making

in ASD rather than a domain-specific neuropathological difference. Fortunately, it is possible to use 

computational models of decision making to isolate the contribution of the different factors affecting a

decision. In particular, the Drift Diffusion Model (DDM; Ratcliff & McKoon, 2008) has been shown 

to provide a powerful description of decision making in various domains (for a review see Ratcliff & 

McKoon, 2008). In the DDM, the decision maker integrates difference in evidence supporting two 

alternatives until a decision criterion for one of the two alternatives is reached and a decision is 

selected. Four principal parameters are computed from the DDM: dirft rate, which is the parameter 

that relates to stimulus discriminability; boundary separation, which is the parameter that captures the 

speed-accuracy trade-off; the starting point, which is the parameter that captures the bias towards a 



response; and the non-decision time which is the parameter that captures the time to encode the 

stimulus and execute the motor response. 

 Here we further investigate the mechanisms underlying 2AFC decision making in individuals, 

specifically children, with ASD, using the DDM. By fitting the DDM to participant’s data we can 

recover estimates for the parameter values which we hypothesise underlie their decision making. In 

particular, the DDM allows us to extract estimates for differences in speed-accuracy trade-off between

groups, unlike direct measures of speed or accuracy alone. The benefits of performing a 

computational decomposition of data using the DDM when comparing groups have been widely 

shown (see, Ratcliff & McKoon, 2008). For example, in one study where  RTs were found to be 

slower in older participants compared to younger participants, DDM parameters revealed that this 

arose from differences in boundary separation and non-decision time rather than  differences in 

information processing as had previously been assumed (Ratcliff, Thapar & McKoon, 2006). This 

finding is important as it demonstrates that results that were previously interpreted as providing 

evidence for a difference in stimulus discriminability in older adults, are instead due to differences in 

response criterion and motor ability, thus demonstrating the increased understanding of perceptual 

decision making that can be afforded by using the DDM.

The DDM has also been used to investigate orientation discrimination in adults with and without ASD

(Pirrone et al., 2017). Previous research on orientation discrimination in ASD has mostly focused on 

the measurement of orientation sensitivity via the use of psychophysical staircase methods, and 

conflicting results have been reported including impairments for ASD participants (Sysoeva et al., 

2015), no difference between the two groups (Shafai, Armstrong, Iarocci & Oruc, 2015) and 

enhancements for ASD participants (Bertone, Mottron, Jelenic & Faubert, 2005; Dickinson, Jones & 

Milne, 2014 - for participants with high autistic traits; Dickinson, Bruyns-Haylett, Smith, Jones and 

Milne, 2016).  In a recent investigation of perceptual decision making in ASD (Pirrone et al. 2017), 

adults with and without ASD performed an orientation discrimination task in which they were asked 

to decide whether a target stimulus was oriented clockwise or anticlockwise with respect to a 



reference stimulus. Results showed no significant difference in orientation sensitivity between the 

groups, although there was a trend towards enhanced discrimination in the adults with ASD, 

especially when the difference between the target and the reference stimulus was small. However, it 

was also found that participants with ASD were slower to respond to the stimuli, and the DDM 

decomposition of the data showed that slower RTs in participants with ASD compared to neurotypical 

participants were due to differences in response criterion and non-decision time. Importantly, the two 

groups did not differ in drift rate, suggesting that there was no difference in stimulus discriminability 

between the two groups. However, a number of limitations existed in Pirrone et al. (2017). For 

example, the target stimulus always appeared on the right of the screen and the reference was always 

tilted 45° clockwise (hence ‘pointing’ towards the right); as such the design of the paradigm may have

resulted in participants being facilitated in answering clockwise given the interaction of the target 

stimulus location and of the standard stimulus orientation. A further limitation of the results presented 

in Pirrone et al (2017) is that the number of trials per condition was low (N = 20) and the accuracy of 

participants was close to ceiling level. Because of the low number of trials per condition, authors were

limited in the complexity of the decision making model they could fit. They therefore used a 

simplified version of the DDM, the EZ-DDM (Wagenmakers, Van Der Maas & Grasman 2007), 

which estimates drift rates, boundary separation and non-decision time, for each participant and 

condition separately, and makes the assumption that there is no response bias and no across-trial 

variability in parameters.

Here, we revisit the question of whether the processes underlying perceptual decision making are 

altered in individuals with ASD. We developed a new experimental paradigm in which the limitations 

of Pirrone et al. (2017) were directly addressed. In particular, (i) participants decided whether a target 

stimulus was oriented clockwise or anticlockwise with respect to a vertical line which appeared above

the stimulus and (ii) participants performed 70 trials per condition. In addition, by using a 

psychophysical estimation procedure for each subject, we estimated the difficulty for which 65 or 85 

% accuracy was predicted; in this way accuracy is not at ceiling level and DDM parameters can be 



measured independently from any potential group differences in task-difficulty, and we can mainly 

focus on our parameter of interest – the boundary separation.

Method

Participants

Two groups of  participants  were  recruited  for  the  study:  children with  a  diagnosis  of  an  autism

spectrum  disorder  (ASD),  and  children  who  were  free  from  any  neurodevelopmental  disorders

(hereafter referred to as the neurotypical - NT - group). Inclusion criteria were: being aged between 6

and  16  and  having  normal  or  corrected-to-normal  binocular  vision.  Exclusion  criteria  for  all

participants included a history of epilepsy, seizures or migraines. Further exclusion criteria for the NT

group included having  a  first-degree  relative  with  an  ASD diagnosis  and  /  or  having  ever  been

referred for an ASD diagnosis. A total of 29 participants were recruited. Twelve participants (four

females) had received an ASD diagnosis from an experienced clinical psychologist or from a multi-

disciplinary team. Of these participants, six were diagnosed with ASD and six were diagnosed with

Asperger’s syndrome. Four participants, all of whom had a primary diagnosis of ASD, were comorbid

for ADHD. Of the NT participants, 10 were females. Participants were recruited through our research

group participant database, special education charities, social media advertisements and the staff and

student University volunteer mailing list. Demographic details for the two groups of participants are

presented in Table 1. The study received ethical approval from the Departmental ethics subcommittee

and all procedures were carried out in accordance with the Declaration of Helsinki.

A number of baseline variables, described below and reported in Table 1, were measured in order to

better  characterise  the  two samples.  Non-verbal  reasoning  ability  was  measured  with  the  Matrix

Reasoning task of the Weschler Abbreviated Scales of Intelligence (WASI; Wechsler, 1999) and was

used here as a proxy for non-verbal IQ. Given time constraints / participant burden associated with

data collection (which in our case included multiple experiments and questionnaires/tests), we decided

to include only the matrix reasoning sub-task from the WASI and did not also administer the Block



Design task. 

Independent samples t-test indicated that the participants with ASD obtained lower Matrix Reasoning

scores than the NT participants. Binocular vision was measured using Keeler LogMAR crowded cards

(Keeler Limited, UK). The cut-off for having sufficient acuity for this task was having a LogMAR

score of 0.2 or below (Snellen equivalent of 6/9.5). All participants met this cut-off and there was no

difference in visual acuity between the participants with and without ASD. Parents / guardians of all

participants  completed  the  Social  Responsiveness  Scale-  Revised  (SRS-2),  which  is  a  65-item

questionnaire that  measures reciprocal  social interaction. A t-score of 59 or below on the SRS is

considered to be within normal limits,  whereas a T-score of 60 or above is  considered to reflect

clinically significant difficulties in reciprocal social behaviour. As expected, participants with ASD

obtained significantly higher SRS t-scores than participants without ASD. All of the NT participants

obtained SRS T-scores below 59 and all of the participants in the ASD group obtained SRS T-scores

above  60.  As  expected,  participants  with  ASD  obtained  significantly  higher  SRS  t-scores  than

participants without ASD. Finally, the participants with ASD, but not the NT group, completed either

module 3 or 4 from the ADOS-II.  Eight of the participants scored above the ADOS cut-off for autism,

two scored above the ADOS cut-off for autism spectrum. One participant did not complete the ADOS

as he became distressed following experimenter attempts to engage him in imaginative play. Although

we do not have a full ADOS score for this participant, it is reasonable to assume that this participant

would have scored above the cut-off autism. The other participant completed the ADOS but obtained

a combined communication and social interaction score of 4, i.e. in the non-spectrum range. Given

that this participant obtained an SRS score above 60 and had a clinical diagnosis of ASD, their data

were retained in the analyses. 

Insert Table 1 about here please

Perceptual Task

The  experimental  task  consisted  of  two  parts:  an  initial  2AFC  task  (calibration)  that  measured



orientation  discrimination  thresholds  to  off-vertical  gratings  using  a  method  of  constant  stimuli

design, and a second 2AFC task that required participants to indicate whether a grating was tilted

clockwise or anticlockwise with respect to a reference vertical line presented on top of the grating.

Stimuli  oriented  at  each  participant's  65%  and  85%  accuracy  thresholds  obtained  during  the

calibration  task  were  presented  in  the  second  task.  As  such  this  second  task  involved  making

judgements that were harder (65% accuracy threshold) and easier (85% accuracy threshold) using

stimuli tilted at angles that were specific to each participant’s psychometric function.   The task and

stimuli were created using PsychoPy (Pierce, 2007). Stimuli consisted of a single sine wave grating

with a spatial frequency of 1 cycle per degree (cpd). The border of the grating faded out into a grey

background and there was a red fixation dot in the middle of the grating.  Stimuli were presented on a

linearised  Lenovo  laptop  screen  with  a  spatial  resolution  of  1366  x  768  pixels  and  a  temporal

resolution of 60 Hz. 

Testing took place either in the University Psychology department, or in the participant’s home. The

matrix reasoning test was usually administered first as the participants with ASD were generally more

comfortable with tasks that required less verbal interaction. Four participants from the ASD group

completed the tasks over the course of two days, the other participants completed all of the tasks in

one day.

Orientation Discrimination Task 1: Calibration

Participants viewed the laptop screen at a 57 cm distance and were asked to decide, by button press on

the keyboard, whether a target reference was oriented clockwise or anticlockwise with respect to a 

black vertical line that appeared on top of the grating. Subjects were required to use their right hand 

and to press left on the keyboard using their second finger for an anticlockwise response, and to press 

right using their third finger for a clockwise response. This task consisted of 5 levels of difference in 

angle between the target and the reference (0.1°, 0.5°, 1.0°, 2.0°, 5.0°) x 2 levels of rotation 

(clockwise and anticlockwise) x 28 repetitions, equalling a total of 280 trials. Trials were presented in 



random order and no accuracy feedback was provided to participants. After each consecutive 40 trials 

participants could take a self-paced break. For each participant, we computed the difference in angle 

between the reference and the target for which 65% and 85% accuracy was predicted. We did so by 

interpolating the psychometric curve estimated with the model free procedure described in Zchaluk 

and Foster (2009), using MATLAB scripts made available by the authors. 

Orientation Discrimination Task 2: Experiment

For  the second experimental  task we used,  for  each participant,  the  difference  in  angle  between

reference  and target  for  which 65% and 85% accuracy was  predicted  using  the  above  described

method. For example if for a participant a difference of 2° predicted 65% accuracy, and a difference

of  4°  predicted  an  accuracy  of  85%,  the  participant  would  only  be  presented  with  2°  and  4°

discriminations, clockwise and anticlockwise.  The apparatus was the same as for the calibration.

This task consisted of 2 levels of difficulty (65% and 85% expected accuracy) x 2 levels of rotation

(clockwise and anticlockwise) x 70 repetitions, equalling a total of 280 trials. Trials were presented in

random  order  and  no  accuracy  feedback  was  provided  to  participants.  Also  here,  after  each

consecutive 40 trials participants could take a self-paced break.

Results

We analysed our data using the free and open-source software JASP (JASP Team, 2018).  In 

particular, we performed Bayesian ANOVAs, in which the posterior probability for all combination of 

models that could have generated the data are computed. For example if an ANOVA includes only one

factor, the Bayesian ANOVA calculates posterior probabilities for the null model and for the model 



including the factor of interest. The Bayes Factor (BF) then quantifies the support of a specific model 

over the null model, and it allows to select the model that is most likely to have generated the data. 

With regards to the above example, the BF enables the researcher to answer how likely it is that the 

model that includes the factor of interest  generated the data compared to the null model. We adopted 

the classification scheme reported by JASP, that is adjusted from Jeffreys  (1961), as reported in Table

2. For a more in depth discussion of Bayesian principles and JASP, see Marsman and Wagenmakers 

(2017).

Insert Table 2 about here please

Orientation Discrimination Thresholds (obtained from calibration task)

The mean 65% and 85% correct thresholds were .52° (.54°) and 1.55° (1.16°) for the ASD group, 

and .57° (.38°) and 1.72° (1.20°) for the NT group. A  Bayesian repeated measures ANOVA with 

difficulty and orientation as factors, group (ASD vs. NT) as between subject factor and matrix 

reasoning scores as covariate, showed that the best model that explained the data was the one that 

included only the main effect of difficulty (i.e., and not a main or interaction effect with group), BF = 

796356; meaning that, as predicted, thresholds were lower for conditions for which the expected 

accuracy was 65% compared to conditions for which the expected accuracy was 85%. 

Observed Variables (obtained from experimental task)

RTs below .3 seconds and above 3 seconds were removed and this resulted in 8.42% of the data being 

removed.  These cut-offs are based on previous literature according to which RTs below .3 seconds 

and above 3 seconds are less likely to be generated from a diffusion process (Ratcliff, Thapar and 



McKoon, 2006), but can be either considered fast guesses or attentional lapses. It is important to 

remove these data since parameters estimates of the DDM can be strongly affected, especially by fast 

RTs (Ratcliff & Tuerlinckx, 2002). 

 In Figure 1 we show the effects of difficulty and rotation on accuracy, separately for the two 

groups. A  Bayesian repeated measures ANOVA with difficulty and orientation as factors, group as 

between subject factor and matrix reasoning scores as covariate, showed that the best model was the 

one that included only the main effect of difficulty and orientation, and their interaction, BF = 1.838 x

1010. As shown in Figure 1, as difficulty increased, decisions were less accurate; furthermore, subjects 

were more accurate for clockwise compared to anticlockwise judgements. However, Figure 1 shows 

that subjects were more accurate for clockwise judgements only when the expected accuracy was 65 

%.

Insert Figure 1 about here please

In Figure 2 we show the effects of difficulty and rotation on correct RTs separately for the two groups.

Regarding RTs, a Bayesian repeated measures ANOVA showed that the best model was the one that 

included the main effects of difficulty and group, BF = 8021. Figure 2 shows that, in line with our 

hypothesis, ASD subjects were generally slower compared to NT subjects. Table 3 reports mean RTs 

for subjects in the ASD and NT group; the difference can be seen to be of about 200 ms, a 

considerable difference for the type of task and considering that mean RTs were always below 1.5 

seconds. Furthermore, as expected by our manipulation, subjects were faster in easier compared to 

difficult conditions. 

 

Insert Figure 2 about here please



Model Fitting

In order to estimate the parameters of the DDM, we used the Diffusion Model Analysis Toolbox for 

MATLAB (DMAT; Vandekerckhove & Tuerlinckx, 2007; 2008). Using DMAT we estimated 

parameters using a chi-square estimation procedure of the data represented in bins.   In order to avoid 

overfitting, we selected a model in which the boundary separation, the non-decision time and the 

starting point were constant across conditions. This is common practice in decision modelling 

(Vandekerckhove & Tuerlinckx, 2007; 2008) and the rationale behind this choice is that such 

parameters are not stimulus contingent and they are set before the stimulus appears. The drift rate was

instead free to vary across conditions. However, given our calibration task in which we equated 

difficulty across participants, we did not expect a group difference in drift rate. Across-trial 

variabilities require a great amount of trials (usually hundreds) in order to be estimated and they only 

minimally increase the fit; furthermore, error messages provided by DMAT indicated that we could 

not correctly estimate such parameters. For these reasons, we set across trials variabilities (in non-

decision time, drift and starting point) to an arbitrary level that approached zero, .001.

Parameters estimated from the model fitting are reported in Table 4. 

Insert Table 3 about here please

Regarding drift rate, a Bayesian repeated measures ANOVA with difficulty and orientation as factors, 

group as between subject factor and matrix reasoning scores as a covariate, showed that the best 

model that explained the data was the one that included only the main effects of difficulty, BF = 3.415

x 1012. As expected, drift rates were higher for easier discriminations but did not differ between the 

two groups.

Regarding the boundary separation, a Bayesian ANCOVA with group as fixed factor and matrix 



reasoning scores as covariate, showed that the model including the main effect of group model was 

preferred among all models, BF = 4.713, suggesting that ASD subjects had a more conservative 

decision criterion compared to NT subjects.

For both the non-decision time and the starting point, the BF did not show support for group 

differences; the BF for the model including group differences was respectively, .376 for the non-

decision time and .821 for the starting point.

In order to show in absolute terms how good the estimated parameters are, we simulated a DDM for 

each subject with the same number of trials as in the experiment. Subsequently, we computed mean 

accuracy and mean RTs for the simulated data, in the same way in which mean accuracy and mean 

RTs were computed for the observed data. Figure 1 shows comparisons of mean accuracy for the 

model and the data. Figure 2 shows comparisons of RTs for the model and the data. In both cases the 

model shows good agreement with the data, confirming that the parameters of the DDM that we 

recovered can account well for the data.

Insert Table 4 about here please



Discussion

Here, using the DDM, we have performed a computational decomposition of orientation 

discrimination judgements in children with ASD. We found that, when parameters of the experimental

design were manipulated so that accuracy was equated across groups,  children with ASD responded 

more slowly than NT children, showing on average a 200 ms increase in response time. The fact that 

the DDM analyses showed that children with ASD have significantly wider boundary separation than 

NT participants suggests that slower responses in ASD are due to a more conservative speed-accuracy

trade-off, i.e. a more ‘slow and careful’ approach. Importantly, the parameter that captured stimulus 

discriminability, the drift rate, did not differ significantly between the two groups and was carefully 

controlled to be equated across individuals with a calibration task, indicating that any differences in 

response time between the two groups are unlikely to be due to differences in perceptual sensitivity. 

This result is in line with previous work which showed that increased RTs in adults with ASD 

compared to NT participants may be attributed to an increase in response conservativeness rather than

to a difference in stimulus discriminability/sensitivity (Pirrone et al., 2017). This finding has 

important implications for a number of studies that have drawn conclusions regarding perceptual and /

or cognitive deficits or enhancements in ASD on the basis of 2AFC tasks. In particular, there is the 

risk that differences in response criterion have been misinterpreted as differences in stimulus 

discriminability. This study highlights that estimates of differences in stimulus discriminability in 

ASD that are based only on accuracy or RTs could be overestimated or underestimated, given possible

speed-accuracy trade-off confounds as is demonstrated here.  

Previous work has shown that orientation discrimination thresholds are lower (indicating increased 

sensitivity) in adults with autism (Dickinson et al. 2016). Here, in the initial calibration task there was 

no significant difference in orientation discrimination threshold between the participants with and 

without ASD, although there was a trend towards lower thresholds  in participants with ASD. It is 

possible that a larger sample size would have generated a significant difference between the 

discrimination thresholds of the participants with and without ASD.  However, the result of increased 



boundary separation in the ASD group combined with no group difference in drift rate, further 

suggests that lower threshold could be explained by increased response conservativeness in ASD – 

participants with ASD spend more time on each trial and as a consequence make more accurate 

responses and  have lower discrimination  thresholds. 

We believe that our results have important consequences for studies which, on the basis of differences

in accuracy and RTs alone, have reported evidence  for a difference in stimulus discriminability 

without taking into account speed-accuracy trade-off confounds. Future research should investigate 

whether this result can be extended to other domains, and should investigate the mechanisms that 

underlie increased response caution in ASD. It is important to note that, the result of increased 

boundary separation from a DDM perspective is a descriptive account that does not tell us anything 

about the mechanisms and causes that generate it (for a discussion about the mechanisms that may 

underlie increased response conservativeness in ASD, see Pirrone, Wen, Li, Baker  & Milne, 2018).

Although our results do not allow to reconcile the varied results of impaired, equal, or enhanced 

performance in orientation discrimination between subjects with and without ASD, they highlight – together 

with Pirrone et al. (2017) - that any claim regarding orientation discrimination in ASD should be made only 

after having removed confounds of response conservativeness, by focusing on parametric measures of 

sensitivity to stimulus alone, such as drift rate. Otherwise, the risk is that data focusing on reaction times 

only may conclude for an impairment given increased reaction times in ASD, while conversely work 

focusing on accuracy measures, may conclude for an enhancement in ASD given higher accuracy in 

orientation discrimination. That is, differences in response conservativeness may be misinterpreted as 

differences in orientation discrimination, which we believe could in part be a factor explaining 

previous contrastive results and which could be an important factor to consider for future reviews of 

orientation discrimination in ASD. 

There are three main limitations to the data which are: (i) small sample size , (ii) the fact that the 

matrix reasoning scores are significantly lower for participants with ASD than for NT participants and

(iii) the fact that some of the participants with ASD also had co-morbid ADHD. With regards to the 



first point, although the sample size is low, our data allowed us to appreciate a difference between the 

two groups for the DDM parameter of interest – the boundary separation, and for RTs, a particularly 

strong difference of about 200 ms. However, it is possible that some of the null effects that we found 

here may become significant were a larger sample to be recruited. Nevertheless, this does not detract 

from the main finding of our work – that of a clear difference in boundary separation between 

children with and without ASD.  Regarding the second point, matrix reasoning scores were always 

entered as a covariate, and they never affected behavioural or modelling results, thus indicating that 

the difference in non-verbal reasoning identified between the two groups did not significantly impact 

on the results reported. Regarding the third point, recent research has shown that participants with 

ADHD have a decrease in stimulus sensitivity while they do not differ in boundary separation 

compared to NT participants (Karalunas, Huang-Pollock, & Nigg, 2012; Metin et al., 2013), meaning 

that ADHD co-morbidity in our sample should result in worse discrimination in ASD participants and 

a decrease in drift rate. However, we did not observe lower drift rate in the participants with ASD, or 

in the threshold to achieve 65 or 85% accuracy. Furthermore, results are unchanged if the four 

participants with ADHD are removed from the analysis. Nevertheless, it would be useful to measure 

the parameters described above in a further sample of children who have ASD and not ADHD, and to 

compare this with a matched sample of children who have both ASD and ADHD in order to fully 

understand the effect that co-morbid ADHD may have on perceptual decision making in ASD.

In sum, our results confirm the power of the DDM decomposition in generating valid conclusions 

from data and support the hypothesis that previous studies that have shown a difference in stimulus 

discriminability in participants with ASD might need to be reconsidered and controlled for speed-

accuracy trade-off effects.
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 ASD (N = 12) NT (N = 17) Group Comparison

Mean age in years (SD)

Range

11.92 (3.19)

6.96 – 16.16

11.46 (2.44)

8.39 – 15.71

t(27) <1, p = .67

Mean MR T-score (SD)

Range

53.67 (5.33)

46 - 66

59.41 (5.77)

49 – 72

t(27) = 2.7, p = .011

Mean LogMAR score (SD)

Range

-.019 (0.16)

-.275 - .200

-.081 (0.13)

-.275 - .175

t(27) = 1.14, p = .26

Mean SRS T-score (SD)

Range

83.67 (8.76)

62 - 90

44.71 (5.45)

39 - 58

t(27) = 14.78, p < .001

Mean ADOS-II score (SD)

Range

 13.63 (7.05)

4 - 20

  

Table 1: Participant Characteristics. 



Bayes Factor Evidence category

> 100 Extreme evidence for H1

30 - 100 Very strong evidence for H1

10 -30 Strong evidence for H1

3 - 10 Moderate evidence for H1

1 - 3 Anecdotal evidence for H1

1 No evidence

1/3 - 1 Anecdotal evidence for H0

1/10 – 1/3 Moderate evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

Table 2: Classification scheme of Bayes Factor, taken from Lee & Wagenmakers (2014), adjusted 

from Jeffreys  (1961).



Expected difficulty Orientation Group M (s) SD (s)

85% Clockwise ASD 1.14 0.308

NT 0.929 0.244

Anticlockwise ASD 1.185 0.402

NT 0.923 0.230

65% Clockwise ASD 1.23 0.380

NT 0.984 0.269

Anticlockwise ASD 1.261 0.344

NT 1.063 0.235

Table 3: Mean reaction times, in seconds, for the ASD and the NT group.



 Parameter Group Mean SD

Boundary ASD 0.21 0.044

 NT 0.177 0.026

Non-decision 

time

ASD 0.386 0.247

 NT 0.359 0.079

Starting point ASD 0.52 0.03

 NT 0.499 0.04

Drift -85 % ASD 0.103 0.04

 NT 0.121 0.053

Drift -65 % ASD 0.018 0.036

 NT 0.034 0.042

Drift +65 % ASD 0.07 0.041

 NT 0.045 0.038

Drift +85 % ASD 0.107 0.047

 NT 0.122 0.059

Table 4. Parameters of the DDM.



Figure 1: Observed mean accuracy from the data for the two groups of participants across the 

different conditions, and simulated mean accuracy from the model for the two groups of participants 

across the different conditions. Anticlockwise rotations are indicated with - ; clockwise rotations are 

indicated with +. Error bars represent standard error of the mean



Figure 2: Observed mean correct RTs from the data for the two groups of participants across the 

different conditions, and simulated mean correct RTs accuracy from the model for the two groups of 

participants across the different conditions. Anticlockwise rotations are indicated with - ; clockwise 

rotations are indicated with +. Error bars represent standard error of the mean. 
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	The mean 65% and 85% correct thresholds were .52° (.54°) and 1.55° (1.16°) for the ASD group, and .57° (.38°) and 1.72° (1.20°) for the NT group. A Bayesian repeated measures ANOVA with difficulty and orientation as factors, group (ASD vs. NT) as between subject factor and matrix reasoning scores as covariate, showed that the best model that explained the data was the one that included only the main effect of difficulty (i.e., and not a main or interaction effect with group), BF = 796356; meaning that, as predicted, thresholds were lower for conditions for which the expected accuracy was 65% compared to conditions for which the expected accuracy was 85%.
	Discussion
	Here, using the DDM, we have performed a computational decomposition of orientation discrimination judgements in children with ASD. We found that, when parameters of the experimental design were manipulated so that accuracy was equated across groups, children with ASD responded more slowly than NT children, showing on average a 200 ms increase in response time. The fact that the DDM analyses showed that children with ASD have significantly wider boundary separation than NT participants suggests that slower responses in ASD are due to a more conservative speed-accuracy trade-off, i.e. a more ‘slow and careful’ approach. Importantly, the parameter that captured stimulus discriminability, the drift rate, did not differ significantly between the two groups and was carefully controlled to be equated across individuals with a calibration task, indicating that any differences in response time between the two groups are unlikely to be due to differences in perceptual sensitivity. This result is in line with previous work which showed that increased RTs in adults with ASD compared to NT participants may be attributed to an increase in response conservativeness rather than to a difference in stimulus discriminability/sensitivity (Pirrone et al., 2017). This finding has important implications for a number of studies that have drawn conclusions regarding perceptual and / or cognitive deficits or enhancements in ASD on the basis of 2AFC tasks. In particular, there is the risk that differences in response criterion have been misinterpreted as differences in stimulus discriminability. This study highlights that estimates of differences in stimulus discriminability in ASD that are based only on accuracy or RTs could be overestimated or underestimated, given possible speed-accuracy trade-off confounds as is demonstrated here.

