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ABSTRACT

We have considered resonant damping of kink oscillations of cooling and expanding coronal magnetic loops. We derived an evolu-
tionary equation describing the dependence of the oscillation amplitude on time. When there is no resonant damping, this equation
reduces to the condition of conservation of a previously derived adiabatic invariant. We used the evolutionary equation describing
the amplitude to study the competition between damping due to resonant absorption and amplification due to cooling. Our main aim
is to investigate the effect of loop expansion on this process. We show that the loop expansion acts in favour of amplification. We
found that, when there is no resonant damping, the larger the loop expansion the faster the amplitude growths. When the oscillation
amplitude decays due to resonant damping, the loop expansion reduces the damping rate. For some values of parameters the loop
expansion can fully counterbalance the amplitude decay and turn the amplitude evolution into amplification.

Key words. hydrodynamics – magnetohydrodynamics (MHD) – plasmas – waves – methods: analytical – Sun: corona

1. Introduction

After transverse coronal loop oscillations were first observed
by TRACE in 1998 and reported by Aschwanden et al. (1999)
and Nakariakov et al. (1999), they received ample attention in
the solar physics community. Since then, these oscillations
were routinely observed during various space missions (see e.g.
Erdélyi & Taroyan 2008; Duckenfield et al. 2018; Su et al. 2018;
Abedini 2018, and references therein).

One important property of transverse coronal loop oscilla-
tions is that they are strongly damped with the damping time
being comparable with the oscillation period. At present, a gen-
erally accepted mechanism of this damping is resonant absorp-
tion. It was suggested by Hollweg & Yang (1988) ten years
before the first observation of transverse coronal loop oscil-
lations that, if these coronal loop oscillations exist, they can
be strongly damped by resonant absorption. Hollweg & Yang
(1988) studied resonant absorption using planar geometry, but
then translated their result to the cylindrical geometry and
obtained the correct expression for the decrement in the thin tube
approximation. Later Goossens et al. (1992) studied the damp-
ing of kink oscillations of magnetic flux tubes due to reso-
nant absorption in the general case. Ruderman & Roberts (2002)
applied the theory of wave damping due to resonant absorp-
tion to the first observation of coronal loop kink oscillations.
They showed that the observed damping of these oscillations
can be used to obtain information about the internal structure
of coronal magnetic loops. Ruderman & Roberts (2002) mod-
elled a coronal loop as a magnetic tube consisting of an inter-
nal core of radius R and a transitional or boundary layer of
thickness ℓ between the dense core plasma and the rarefied

surrounding plasma. They obtained that the decrement is pro-
portional to ℓ/R. Using the data on the oscillation damping
reported by Nakariakov et al. (1999) they obtained that ℓ/R =
0.23. Goossens et al. (2002) used observations of eleven cases of
damped kink oscillations of coronal magnetic loops to estimate
ℓ/R. They obtained values of ℓ/R between 0.16 and 0.49. Since
then, observations of damped coronal loop oscillations are con-
tinuously used to obtain information on the loop internal struc-
ture (e.g. Ruderman & Erdélyi 2009; Goossens et al. 2011).

In the first studies of kink oscillations of coronal magnetic
loops, a very simple model of a homogeneous magnetic cylin-
der was used (e.g. Ryutov & Ryutova 1976; Edwin & Roberts
1983). In this model, the tube has a sharp boundary, so it does
not describe resonant absorption. To describe resonant absorp-
tion, this model was modified by including a transitional layer at
the tube boundary. Later, more realistic models of coronal loops
were studied. In particular the variation of the plasma density
along the tube was taken into account. Dymova & Ruderman
(2006) investigated the resonant damping of kink oscillations of
a magnetic tube with such density variation. The main result that
they obtained is the following: if the ratio of densities in the tube
core and in the surrounding plasma is constant, and the ratio of
density inside the boundary layer and in the tube core does not
vary along the tube, then the ratio of the damping time and oscil-
lation period is not affected by the density variation along the
tube.

Although the coronal loop expansion is relatively small,
the ratio of the loop cross-section radii at the apex and
at the foot-points still can be about 1.5 (Klimchuk 2000;
Watko & Klimchuk 2000). On the other hand, in the chromo-
sphere the expansion of vertical magnetic flux tubes can be
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as large as a few hundred (e.g. Tsuneta et al. 2008). Hence,
the account of the magnetic flux tube expansion is important.
Ruderman et al. (2008) and Verth & Erdélyi (2008) derived the
equation describing kink oscillations of an expanding magnetic
flux tube. They considered a magnetic flux tube with a sharp
boundary meaning that the equation that they derived does not
describe resonant damping. Ruderman et al. (2017) generalised
this derivation to include a siphon flow, temporal variation of the
plasma parameters, and a transitional layer at the tube boundary.

Observations show that very often oscillating coronal loops
are in a highly dynamic state. In particular, they can cool quickly
with a characteristic cooling time of the order of a few peri-
ods of kink oscillation (e.g. Aschwanden & Terradas 2008).
Morton & Erdélyi (2009, 2010) found that cooling results in
the decrease of the period of the coronal loop kink oscillations,
while similar results were found by Al-Ghafri et al. (2014) for
longitudinal oscillations. Ruderman (2011b) showed that cool-
ing causes the amplification of coronal loop kink oscillations.
Ruderman (2011a) studied the competition between cooling and
resonant damping. He showed that this competition can result in
the existence of kink oscillations with the amplitude not varying
in time. Recently, Ruderman et al. (2017) studied the effect of
tube expansion on kink oscillations of cooling coronal loops.

Ruderman et al. (2017) considered a magnetic tube with the
sharp boundary thus eliminating the effect of resonant absorp-
tion. In this article we study the effect of resonant absorption on
kink oscillations of cooling and expanding coronal loops. The
paper is organised as follows. In the next section we formulate
the problem and write down the governing equations. In Sect. 3
we consider kink oscillations of coronal loop with slowly chang-
ing density and derive the equation describing the evolution of
the oscillation amplitude. In Sect. 4 we study kink oscillations
of cooling coronal loops with the density exponentially decreas-
ing with the height. Section 5 contains the summary of obtained
results and our conclusions.

2. Problem formulation

We consider kink oscillations of a thin straight magnetic flux
tube with circular cross-section. The assumption that the tube is
thin, that is its radius is much smaller than the wavelength, is
usually satisfied for kink waves in magnetic tubes in the solar
atmosphere. For example, the typical wave length of oscillations
in coronal magnetic loops is of the order of the loop length,
which is by about two orders of magnitude larger than the cross-
section radius. The cross-section radius varies along the tube.
The tube consists of a core region where the plasma density only
weakly varies in the radial direction, and the transitional region
where the density quickly decreases from its value in the core
region to that in the external plasma. A sketch of the unperturbed
configuration is shown in Fig. 1.

Below, we use cylindrical coordinates r, φ, z. In these coor-
dinates the equilibrium density is given by

ρ =



ρi(t, r, z), 0 ≤ r ≤ R(z)(1 − l/2),

ρt(t, r, z), R(z)(1 − l/2) ≤ r ≤ R(z)(1 + l/2),

ρe(t, r, z), r ≥ R(z)(1 + l/2),

(1)

where R(z) is the tube radius, and lR(z) is the thickness of
the transitional layer. There is also the plasma flow U =

(Ur(t, r, z), 0,Uz(t, r, z)) that is assumed to be parallel to the equi-
librium magnetic field B = (Br(r, z), 0, (Bz(r, z)). The subscripts
“i” and “e” indicate that a quantity is referred to inside the tube

r

φ

z

R(z)

ρt(t, r, z)

ρi(t, z)

ρe(t, z)

B0(r, z)
U0(t, r, z)

lR(z)

Fig. 1. Unperturbed configuration.

and in the external plasma, respectively. The plasma density and
velocity are related by the mass conservation equation

∂ρ

∂t
+

1

r

∂(rρUr)

∂r
+
∂( ρUz)

∂z
= 0. (2)

Ruderman et al. (2017) showed that in the thin tube approxima-
tion this equation reduces to the approximate form

∂ρ

∂t
+

1

R2

∂( ρR2U)

∂z
= 0, (3)

where U ≈ Uz. They also obtained the approximate relation

R2B = const, (4)

that follows from the divergent-free condition for the magnetic
field. It follows from the divergence-free condition for the mag-
netic field that it can be expressed in terms of flux function ψ as

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
· (5)

The equations of the internal and external boundaries of the tran-
sitional region are ψ = ψi and ψ = ψe, respectively. Given
that we consider coronal environment, we use the cold plasma
approximation. This is a viable assumption because a typical
value of plasma beta is 0.01 in the solar corona. Then, it fol-
lows that, the equilibrium magnetic field must be potential. This
condition results in the equation for ψ,

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (6)

We introduce now the plasma displacement ξ = (ξr, ξφ, ξz),
the unit vector in the magnetic field direction b0 = B/B, and
the component of the displacement that is perpendicular to the
magnetic field lines and in the φ = const planes,

ξ⊥ = ξrb0z − ξzb0r. (7)

Ruderman et al. (2017) showed that, in the thin tube and cold
plasma approximation, kink oscillations of a flux tube with vari-
able radius are described by the equation

ρi

(
∂

∂t
+

Ui

R2

∂

∂z
R2

) (
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+

Ue

R2

∂

∂z
R2

) (
∂η

∂t
+ Ue

∂η

∂z

)
−

2B2

µ0

∂2η

∂z2
= L, (8)
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where

L =
δP

R2
+

B2

µ0

∂2(lη + δη)

∂z2

− ρe

(
∂

∂t
+

Ue

R2

∂

∂z
R2

) (
∂

∂t
+ Ue

∂

∂z

)
(lη + δη), (9)

Ui and Ue are the flow velocities inside and outside the coronal
loop respectively, P is the magnetic pressure perturbation, µ0 is
the magnetic permeability of free space, and

η =
1

R(z)
ξ⊥

∣∣∣
ψ=ψi

, (10)

δP = P|ψ=ψe
− P|ψ=ψi

, δη =
1

R(z)

(
ξ⊥

∣∣∣
ψ=ψe
− ξ⊥

∣∣∣
ψ=ψi

)
, (11)

3. Kink oscillations of coronal loops with slowly

varying density

3.1. The WKB approximation

In this section, we study kink oscillations of a magnetic flux
tube with a variable cross-section and slowly varying density.
We assume that the resonant damping is weak and the damp-
ing time is much larger than the oscillation period. Since the
ratio of the oscillation period to the damping time is of the
order of l (see, e.g. Hollweg & Yang 1988; Goossens et al. 1992;
Ruderman & Roberts 2002; Shukhobodskiy & Ruderman 2018)
this assumption is equivalent to the condition l ≪ 1. We have
already mentioned, Goossens et al. (2002) estimated the thick-
ness of the transitional layer using 11 cases of observation of
coronal kink oscillations. The largest value that they obtained
was l = 0.49, which does not look small. However, the numeri-
cal study by Van Doorsselaere et al. (2004a) showed that the thin
boundary approximation gives fairly good approximation for the
damping time for l . 0.5.

We aim to study the competition between the oscillation
amplification due to cooling and damping due to resonant
absorption. The oscillation amplification occurs on the time-
scale comparable to the characteristic time tch of the density
variation (Ruderman 2011b; Ruderman et al. 2017), that is, in
turn, of the order of the cooling time. Observations show that
the typical cooling time is of the order as a few oscillation peri-
ods (Aschwanden & Terradas 2008; Aschwanden & Schrijver
2011). We would like to obtain the effects of damping and cool-
ing in the same order approximation. Accordingly we formally
assume that the characteristic cooling time is comparable to the
damping time and take tch equal to l−1 times the characteristic
wave period. This assumption does not impose any restriction
on the ratio of cooling and damping times. If the cooling time
is, in fact, much larger than the damping time, then the effect of
cooling can be neglected, and vise versa. In accordance with out
assumption we introduce the “slow” time t1 = lt.

Now, we follow Ruderman (2011a) and use the Wentzel–
Kramers–Brillounin (WKB) method (see, e.g. Bender & Orszag
1978) to seek the solution to the problem. In accordance with
this method, we write

η = S (t1, z) exp[il−1Θ(t1)]. (12)

Then we expand S in the series

S = S 0 + lS 1 + . . . (13)

We have the estimate δP ∼ lP. In accordance with these
estimates, we now introduce the scaled jump of the magnetic

pressure perturbation δ̃P = l−1 δP. We also have the estimate

δη ∼ lη. Since δη = δS eil−1Θ, this estimate inspires us to intro-

duce δ̃S = l−1δS . Finally, it follows from Eq. (3) that U ∼ l,

so we introduce the scaled velocity Ũ = l−1U. Now, substituting
Eq. (12) in Eqs. (8) and (9) we obtain

( ρi + ρe)

[
Sω2 − il

(
2ω

∂S

∂t1
+ S

∂Ω

∂t1

)]

−
2ilω

R
( ρiŨi + ρeŨe)

∂(RS )

∂z
+

2B2

µ0

∂2S

∂z2
= −lL̃ + O

(
l2
)
, (14)

L̃ =

(
ρeω

2 +
B2

µ0

∂2

∂z2

) (
S + δ̃S

)
+
δ̃P

R2
e−il−1Θ, (15)

where ω = dΘ/dt1.
Substituting Eq. (13) in Eq. (14) and collecting terms of

order of unity yields

∂2S 0

∂z2
+
ω2

C2
k

S 0 = 0, C2
k =

2B2

µ0( ρi + ρe)
· (16)

This approximation is called the approximation of geometric
optics. Since we assume that the tube ends are frozen in the
dense photosphere, we impose the boundary conditions η = 0
at z = ±L/2. Then, we obtain

S 0 = 0 at z = ±L/2. (17)

Equations (16) and (17) constitute the Sturm–Liouville problem
for function S 0. This problem coincides with the boundary value
problem obtained by Dymova & Ruderman (2005) for kink
oscillations of a magnetic tube with the density varying along the
tube that is in a static equilibrium as well as with the boundary
value problem obtained by Shukhobodskiy & Ruderman (2018;
hereafter Paper I) for kink oscillations of an expanding mag-
netic tube with the density varying along the tube that is in a
static equilibrium. We assume that ω2 is the eigenvalue and S 0 is
the corresponding eigenfunction. In accordance with the Sturm–
Liouville theory, the eigenvalues are real and constitute a mono-
tonically increasing sequence. Multiplying Eq. (17) by S 0 and
integrating it over z we have

ω2

∫ L/2

−L/2

S 2
0

C2
k

dz =

∫ L/2

−L/2

(
∂S 0

∂z

)2

dz. (18)

This result implies that ω2 > 0.
Proceeding to the next order approximation, we collect terms

of the order of l in Eq. (14). This yields

∂2S 1

∂z2
+
ω2

C2
k

S 1 =
i

C2
k

(
2ω

∂S 0

∂t1
+ S 0

∂ω

∂t1

+
2ω( ρiŨi + ρeŨe)

R( ρi + ρe)

∂(RS 0)

∂z

 −
L̃

C2
k
( ρi + ρe)

·

(19)

The function S 1 must satisfy the boundary conditions

S 1 = 0 at z = ±L/2. (20)

The homogeneous counterpart of Eq. (19) with the boundary
conditions given by Eq. (20) has a non-trivial solution S 1 = S 0.
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This implies that the boundary value problem determining S 1

has solutions only if the right-hand side of Eq. (19) satisfies the
compatibility condition, which is the condition that it must be
orthogonal to S 0. To obtain this condition, we multiply Eq. (19)
by S 0, integrate the obtained equation with respect to z, and use
the integration by parts and the boundary conditions given by
Eqs. (17) and (20). As a result, we obtain

∫ L/2

−L/2


∂(ωS 2

0
)

∂t1
+
ω( ρiŨi + ρeŨe)

R2( ρi + ρe)

∂(R2S 2
0
)

∂z


dz

C2
k

= −i

∫ L/2

−L/2

L̃ dz

C2
k
( ρi + ρe)

· (21)

Using integration by parts and Eqs. (3), (4) and (17) we obtain
the identity

∫ L/2

−L/2

( ρiŨi + ρeŨe)

R2C2
k
( ρi + ρe)

∂(R2S 2
0
)

∂z
dz

=
µ0

2R4B2

∫ L/2

−L/2

R2( ρiŨi + ρeŨe)
∂(R2S 2

0
)

∂z
dz

= −
µ0

2

∫ L/2

−L/2

S 2
0

R2B2

∂

∂z

[
R2( ρiŨi + ρeŨe)

]
dz

=
µ0

2

∫ L/2

−L/2

S 2
0

B2

∂( ρi + ρe)

∂t1
dz =

∫ L/2

−L/2

S 2
0

∂C−2
k

∂t1
dz. (22)

Using this identity and returning to the non-scaled time we trans-
form Eq. (21) to

d

dt

ω
∫ L/2

−L/2

S 2
0

C2
k

dz

 = −il

∫ L/2

−L/2

S 0L̃ dz

C2
k
( ρi + ρe)

· (23)

The quantity in the brackets on the left-hand side of this equa-
tion is called adiabatic invariant. It can be interpreted as the wave
action. When l = 0 the right-hand side is zero and the adia-
batic invariant is conserved. This result was previously obtained
by Ruderman et al. (2017). It is worth noting that the oscillation
energy is not conserved because, in general, there is the plasma
flow through the loop footpoints. Even if we impose the condi-
tion that there is no plasma flow through the footpoints, there
is the plasma redistribution in the loop caused by cooling. As a
result, there is the exchange of energy between the oscillation
and gravity field.

3.2. Calculation of L̃

Equation (23) describes the evolution of S 0 and, consequently,
the oscillation amplitude. This equation is not closed because

the expression for L̃ contains δ̃S and δ̃P. To close it, we need to

express δ̃S and δ̃P in terms of S 0. Since we only need to calcu-
late the right-hand side of Eq. (23) in the leading order approx-
imation with respect to l, it follows that we need to calculate

δ̃S and δ̃P also only in the leading order approximation. Using
Eq. (3), we obtain the estimate that Ui,e ∼ lCk. It also follows
that ∂S 0/∂t ∼ lωS 0. These estimates imply that the account of
the flow in the transitional layer and the time derivative of S

can only give corrections of order l to δ̃S and δ̃P. Hence, we
can neglect the flow and the time derivative of S when calculat-
ing these quantities. Then, we can use the same equations as in

Paper I to calculate δ̃S and δ̃P. However, we cannot directly use
the results obtained in Paper I. The reason is that it was assumed

in Paper I that the unperturbed density is equal to the product of
two functions, one depending on ψ, and the other on z. Here, we
cannot make this assumption because even if it is satisfied at the
initial time, in general, later it will be not valid because of the
density variation with time. Hence, we need to modify the anal-
ysis given by Paper I. Below, we briefly describe this analysis
and the modification that we make.

Following Paper I, let us use the variable ψ instead of r.
Then, we consider Alfvén oscillations of individual magnetic
filed lines, which are described by the eigenvalue problem

V2
A

∂2Y

∂z2
= −λY, Y = 0 at z = ±L/2, (24)

where

V2
A =

B2

µ0ρ
(25)

is the Alfvén speed. Here, Y and VA depend on t, ψ, and z, and λ
on t and ψ. The eigenvalues of this problem are real and consti-
tute a monotonically increasing sequence λn, where λn → ∞ as
n → ∞ (e.g. Coddington & Levinson 1955). It is easy to show
that all eigenvalues are positive. Any square integrable function
f (z) in the interval [−L/2, L/2] can be expanded in a generalised
Fourier series

f (t, ψ, z) =

∞∑

n=1

fn(t, ψ)Yn(t, ψ, z), (26)

where Yn(t, ψ, z) is an eigenfunction of the boundary value prob-
lem (24). Obviously, all Yn can be chosen to be real. According
to the classical Sturm–Liouville theory the eigenfunctions corre-
sponding to different eigenvalues are orthogonal with the weigth
V−2

A
(t, ψ, z). In addition, we can normalise them in such a way

that they satisfy the relation

∫ L/2

−L/2

V−2
A (z)Ym(z)Yn(z) dz = δmn, (27)

where δmn is the Kronecker delta-symbol. If f (z) has a con-
tinuous second derivative and satisfies the boundary condition
f (±L/2) = 0, then the sum in (26) is uniformly convergent and
can be differentiated twice (see, e.g. Naimark 1967). The Fourier
coefficients in the Fourier series (26) are given by

fn =

∫ L/2

−L/2

V−2
A (z) f (z)Yn(z) dz. (28)

The resonance of a global kink oscillation with the nth harmonic
of local Alfvén oscillations occurs at the resonant magnetic sur-
face defined by the equation ψ = ψn if the relation λn(ψn) = ω2

is satisfied. Since λn → ∞ as n→ ∞, it follows that only a finite
number of Alfvén resonances exist.

Observations show that, in most cases, the fundamental har-
monic of kink oscillations is dominant, so the oscillation ampli-
tude is determined by the fundamental harmonic. In accordance
with this, in what follows, we restrict our analysis to the funda-
mental harmonic. We assume that ρ(t, ψ, z) is a monotonically
decreasing function of ψ for all z ∈ [−L/2, L/2] and at any time.
Then VAi(z) < Ck(z) < VAe(z) for all z ∈ [−L/2, L/2]. From
using the comparison theorem for ordinary differential equa-
tions (e.g. Coddington & Levinson 1955), it is straightforward
to show that λ1(ψi) < ω2 < λ1(ψe). This implies that there is
ψ1 ∈ [ψi, ψe] such that λ1(ψ1) = ω2. Hence, there is always
at least one resonant surface in the transitional layer. Below, we
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assume that λ2(ψi) > λ1(ψe). Then, it follows that there is exactly
one resonant surface.

Now, the derivation of expressions for δP and δη almost
completely repeats the derivation of expressions for these quan-
tities given in Paper I. The only difference is the following.
In accordance with the assumption about the density made in
Paper I, V2

A
= V2

Ai
g(ψ), where g(ψ) is a monotonically increasing

function and g(ψi) = 1. Then, in Paper I, the following expansion
is used:

V2
Ai

Qi

R2
=

∞∑

n=1

ΦnYn(z), (29)

where Q = P/B2. Since in this paper V2
A

cannot be factorised,
we use instead the expansion

V2
A

Q

R2
=

∞∑

n=1

Φn(ψ)Yn(ψ, z). (30)

After that we obtain the expressions for δQ and δη substituting
Φn(ψ) for Φng(ψ) in all Eqs. from (41) to (63) in Paper I. They
read

δQ =

∫ ψe

ψi

(
Qi

ψi

−
( ρi − ρ)ω2η

B3

)
dψ, (31)

δη =
µ0

BR2
P

∫ ψe

ψi

∞∑

n=1

Φn(t, ψ)Yn(t, ψ, z)

ω2(t) − λn(t, ψ)
dψ

−
πiµ0Φ1(t, ψ1)Y1(t, ψ1, z)

|∆(t)|BR2
, (32)

where P indicates the principal Cauchy part of the integral and

∆ = −
dλ1

dψ

∣∣∣∣∣
ψ=ψ1

. (33)

When deriving Eq. (32) we took into account that BR2 = const.
Now, we use the Eq. (30) from Paper I where we substitute ω for
Ω, ν for ν̄, and z for Z because, in this article, we do not use the
scaled frequency, kinematic viscosity, and the coordinate along
the tube. Then, we obtain

V2
A

∂2W

∂z2
+ ω2W − iνωR2B2 ∂

2W

∂ψ2
=
µ0V2

A
Qi

R2
, (34)

where

W =
∂(rBξ⊥)

∂ψ
· (35)

The last term on the left-hand side of Eq. (34) describing the
effect of viscosity is only important in the thin dissipative layer
embracing the resonant surface. Below, we use Eq. (34) out-
side of the dissipative layer and thus can neglect this term.
Ruderman et al. (2017) showed that in the thin tube approxima-
tion B and ξ⊥ are independent of ψ and ψ = 1

2
r2B. Then, using

the approximation r ≈ R valid in the transitional layer we obtain
W = η. As a result, Eq. (34) reduces to

V2
A

∂2η

∂z2
+ ω2η =

µ0V2
A

Qi

R2
· (36)

We take this equation at ψ = ψi. Then, using Eq. (16) we obtain
in the leading order approximation with respect to l

Qi =
ω2R2S 0( ρi − ρe)

2B2
eil−1Θ. (37)

Substituting this result in Eq. (31), noticing that ψi =
1
2

BR2[1 +

O(l)], and using the relation δ̃P = l−1B2δQ yields

δ̃P =
ω2l−1S 0

B
eil−1Θ

∫ ψe

ψi

( ρ − ρe) dψ. (38)

Now, we need to express δ̃S in terms of S 0. We have δ̃S =

l−1δη e−il−1Θ, where δη is given by Eq. (32). This equation con-
tains the functions Φn(t, ψ), so we need to express these func-
tions in terms of S 0. To do this, we use Eq. (30). Since we only
need to calculate Φn(t, ψ) in the leading order approximation
with respect to l, we can substitute Qi for Q in this equation.
Then, using Eqs. (28) and (37) we obtain

Φn = ω
2eil−1Θ

∫ L/2

−L/2

S 0Yn( ρi − ρe)

2B2
dz. (39)

Substituting this expression in Eq. (32) and using the relation

between δ̃S and δη yields

δ̃S =
l−1πiµ0ω

2Y1(ψ1, z)

|∆|BR2

∫ L/2

−L/2

S 0(z̃)Y1(ψ1, z̃)[ ρe(z̃) − ρi(z̃)]

2B2(z̃)
dz̃

+
l−1µ0ω

2

BR2
P

∫ ψe

ψi


∞∑

n=1

Yn(z)

ω2 − λn

×

∫ L/2

−L/2

S 0(z̃)Yn(z̃)[ ρi(z̃) − ρe(z̃)]

2B2(z̃)
dz̃

)
dψ, (40)

where we only showed the dependence on z, but we
did not show the dependence on t and ψ. Finally, using
Eqs. (15), (16), (38) and (40) we obtain

L̃ = l−1ω2S 0(z)

(∫ ψe

ψi

ρ(z) − ρi(z)

B(z)R2(z)
dψ −

ρi(z) − ρe(z)

2

)

+
µ0ω

2

BR2
P

∫ ψe

ψi

( ∞∑

n=1

Yn(z)[ω2ρe(z) − λnρ(z)]

ω2 − λn

×

∫ L/2

−L/2

S 0(z̃)Yn(z̃)[ ρi(z̃) − ρe(z̃)]

2B2(z̃)
dz̃

)
dψ

+
l−1πiµ0ω

4Y1(ψ1, z)[ ρ(ψ1, z) − ρe(z)]

|∆|BR2

×

∫ L/2

−L/2

S 0(z̃)Y1(ψ1, z̃)[ ρi(z̃) − ρe(z̃)]

2B2(z̃)
dz̃. (41)

3.3. Amplitude variation

We consider an eigenfunction X(t, z) of the boundary value prob-
lem constituted by Eqs. (16) and (17) that is real-valued, cor-
responds to the fundamental mode, and satisfies the condition
maxz X(t, z) = 1. Since S 0 is also an eigenvalue of the same
boundary value problem it must be proportional to X(t, z) with
the proportionality coefficient depending on time. Hence, we can
write

S 0(t, z) = A(t) eiF(t)X(t, z), (42)

where A(t) and F(t) are real-valued functions, and A(t) > 0.
Since maxz |S (t, z)| = A(t), the function A(t) can be considered
as the oscillation amplitude. Using Eq. (42) we obtain

d

dt

ω
∫ L/2

−L/2

S 2
0

C2
k

dz

 = e2iF(t) d

dt

ωA2

∫ L/2

−L/2

X2

C2
k

dz



+ 2iωA2e2iF(t) dF

dt

∫ L/2

−L/2

X2

C2
k

dz. (43)
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With the aid of Eq. (41) we calculate the right-hand side of
Eq. (23),

−il

∫ L/2

−L/2

S 0L̃ dz

C2
k
( ρi + ρe)

= A2e2iF(t) (Γ + iωΥ) , (44)

where

Γ =
πµ2

0
ω4

|∆|BR2

∫ L/2

−L/2

XY1(ψ1)

2B2
[ ρ(ψ1) − ρe] dz

×

∫ L/2

−L/2

XY1(ψ1)( ρi − ρe)

2B2
dz, (45)

Υ = ωe2iF(t)


∫ L/2

−L/2

X2

2C2
k

(
ρi − ρe

ρi + ρe

− 2

∫ ψe

ψi

( ρ − ρi) dψ

BR2( ρi + ρe)

)
dz

−
µ0

BR2
P

∫ ψe

ψi

( ∞∑

n=1

∫ L/2

−L/2

XYn(ω2ρe − λnρ)

C2
k
( ρi + ρe)(ω2 − λn)

×

∫ L/2

−L/2

XYn( ρi − ρe)

2B2
dz

)
dψ

]
. (46)

Substituting Eqs. (43) and (44) in Eq. (23) we eventually arrive
at

d

dt

ωA2

∫ L/2

−L/2

X2

C2
k

dz

 = −ΓA2, (47)

dF

dt

∫ L/2

−L/2

X2

C2
k

dz = Υ. (48)

Equation (47) describes the evolution of the oscillation ampli-
tude with time. The function F(t) determines the phase shift
related to the presence of the transitional layer.

4. Kink oscillations of coronal loops with

barometric density distribution

4.1. Kink oscillations of static coronal loops

We, now, verify that Eq. (47) correctly describes the damping of
kink oscillations of static coronal loops. In the case of a static
loop, Eq. (47) becomes

dA

dt
= γA, γ =

Γ

2ωI
, (49)

where

I =

∫ L/2

−L/2

X2

C2
k

dz. (50)

It follows form Eq. (49) that oscillation amplitude decreases
exponentially with the decrement γ. Let ζ = ρi(L/2)/ρe(L/2).
Similarly to Paper I, we assume, that ρi(z)/ρe(z) = ζ and
ρt(ψ, z) = ρi(z)/g(ψ), where g(ψ) is a monotonically increasing
function satisfying g(ψi) = 1 and g(ψe) = V2

Ae
/V2

Ai
. As a result,

following the analysis in Paper I, we can write λ1 as

λ1(ψ) = λ1(ψi)g(ψ). (51)

We recall our assumption that there is only one resonant surface
ψ = ψ1. Now, we can rewrite Eq. (16) as

B2

µ0ρe(z)

∂2S 0

∂z2
= −

ω2(ζ + 1)

2
S 0. (52)

For fundamental mode at ψ = ψ1 Eq. (24) can be rewritten as

B2

µ0ρe(z)

∂2Y1(ψ1)

∂z2
= −

ζλ1(ψ1)

g(ψ1)
Y1(ψ1). (53)

We see that both S 0 and Y1 are eigenfunctions of the same
differential operator corresponding to the fundamental mode.
This implies that the coefficients on the right-hand sides of
Eqs. (52) and (53) must be equal. Then, it follows from the res-
onant condition, λ1 = ω

2, that

g(ψ1) =
2ζ

ζ + 1
· (54)

Substituting Eqs. (51) and (54) in Eq. (33) yields

∆ = −ω2g′(ψ1). (55)

Using Eq. (54) we obtain

ρe(z) =
2ρ(ψ1)

ζ + 1
· (56)

The functions X(z) and Y1(ψ1, z) are the eigenfunctions of the
same eigenvalue problem corresponding to the same eigenvalue.
Therefore, we have X = ςY1(ψ1), where ς is a constant. Using
this result and Eqs. (27), (55) and (56) we transform Eq. (45) to

Γ =
πς2ω2ζ(ζ − 1)2

BR2g′(ψ1)(ζ + 1)3
· (57)

Again, using the relation X = ςY1(ψ1), and also
Eqs. (27) and (56) we obtain I = ς2. Using this result and
Eq. (57) yields

γ =
πωζ(ζ − 1)2

2BR2g′(ψ1)(ζ + 1)3
· (58)

Following the analysis in Paper I, we consider the linear density
profile in the transitional layer and take

ρt(r, z) =
ρi + ρe

2
+ ( ρi − ρe)

R − r

lR
, (59)

Then, using Eq. (54) and the relation ψ = 1
2

Br2 we obtain in the
leading order approximation

g′(ψ1) =
4ζ(ζ − 1)

lBR2(ζ + 1)2
· (60)

Substituting this expression in Eq. (58) yields

γ

ω
=
πl(ζ − 1)

8(ζ + 1)
· (61)

This expression coincides with that obtained by Goossens et al.
(2002) for a tube with the density not varying along the tube and
in Paper I.

Next, we consider sinusoidal profile determined by

ρt(r, z) =
ρi + ρe

2
−
ρi − ρe

2
sin

(
π(r − R)

lR

)
· (62)

Using the relation ψ = 1
2

Br2 we obtain

r = R

(
1 −

l

2

)
+
ψ − ψi

BR
+ O(l2). (63)
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It follows from Eqs. (62) and (63) that

1

g(ψ)
=
ζ + 1

2ζ
+
ζ − 1

2ζ
cos

π(ψ − ψi)

lBR2
· (64)

With the aid of Eqs. (54) and (64) we obtain

ψ1 = ψi +
1

2
lBR2. (65)

Then, using Eqs. (54), (64) and (65) yields

g′(ψ1) =
2πζ(ζ − 1)

lBR2(ζ + 1)2
· (66)

Substituting this result in Eq. (58) we arrive at

γ

ω
=

l(ζ − 1)

4(ζ + 1)
· (67)

This expression coincides with that obtained by
Ruderman & Roberts (2002) who considered damping of
kink oscillations of a magnetic tube with the constant cross-
section and density not varying along the tube. This result again
confirms the conclusion made in Paper I that the ratio γ/ω is not
affected by the density and cross-section radius variation along
the tube if ρt(ψ, z) = ρi(z)/g(ψ).

4.2. Kink oscillations of cooling coronal loops

In this section, we again assume that there is only one reso-
nant position ψ = ψ1. Also, similarly to Ruderman (2011a)
we assume that the temperature of plasma outside the loop
does not change with time and is T0, while inside the loop
it decreases with time due to the effect of radiative cool-
ing. The loop cooling occurs due to radiation. The radiation
energy flux is proportional to the density square. Since the
density in the loop is substantially higher than the density
of the surrounded plasma the assumption that cooling only
occurs in the tube looks like a viable assumption. Similar
to Aschwanden & Terradas (2008), Morton & Erdélyi (2010),
Ruderman (2011b) and Ruderman et al. (2017) we approximate
the temperature evolution inside the loop by the exponentially
decaying function,

T (t) = T0 exp(−t/tcool), (68)

where tcool is the cooling time. Following Ruderman et al. (2008,
2017) we describe the variation of the loop cross-section as

R(z) = R fϑ

√
cosh(L/2Lc) − 1

cosh(L/2Lc) − ϑ2 + (ϑ2 − 1) cosh(z/Lc)
, (69)

where R f is the cross-section radius at the footpoints, Lc is and
arbitrary positive constant with the dimension of length, and ϑ =
R(0)/R f is the expansion factor. Ruderman et al. (2008) showed
that the z-component of magnetic field is positive in everywhere
in the region |z| ≤ L/2 only if ϑ < ϑm, where

ϑ2
m ≈

1.4 cosh(L/2Lc)

1 + 0.4 cosh(L/2Lc)
· (70)

It follows from this equation that ϑm is a monotonically increas-
ing fucntion of L/Lc, ϑm → 1 as L/Lc → 0, and ϑm → 1.87 as
L/Lc → ∞. Typical coronal loop expansion does not exceed 1.5,
thus by varying L/Lc we can cover the whole range of values of
the expansion factor. In what follows, we consider a loop with a

half-circle shape. We neglect the effect of the loop curvature on
oscillations because, as it was shown by Van Doorsselaere et al.
(2004b) and Terradas et al. (2006), it is very weak. As a result,
the loop shape only determines the density variation along the
loop. The density outside the loop is given by the barometric
formula,

ρe(z) =
ρ f

ζ
exp

(
−

L

πH0

cos
πz

L

)
, (71)

where ρ f is the plasma density at the footpoints inside the loop
at t = 0, ζ is the ratio of densities inside and outside the loop at
the footpoints and at t = 0,

H0 =
kBT0

mg
, (72)

kB is the Boltzmann constant, m is the mean mass per particle
approximately equal to 0.6mp in the solar corona, mp is the pro-
ton mass, and g is the gravity acceleration. Ruderman (2011a)
showed that under typical coronal conditions and observed cool-
ing time, the effect of flow inside the coronal loop due to cooling
is fairly weak. That justifies the use of barometric approximation
inside a cooling coronal loop. As a result, we have

ρi(z) = ρ f exp

(
−

L

πH(t)
cos

πz

L

)
, (73)

where

H(t) =
kBT (t)

mg
· (74)

We also assume that the density profile in the transitional layer
is linear, therefore

ρt(t, r, z) =
1

2
[ ρi(t, z) + ρe(z)] + [ ρi(t, z) − ρe(z)]

R − r

lR
· (75)

It follows that ρt = ( ρi + ρe)/2 at r = R. It is straightforward to
see that VA = Ck when r = R, the boundary value problems for
S 0 and Y are the same and, consequently, λ1 = ω2 and r = R
is the resonant surface. Then, using the relation ψ = 1

2
Br2, we

obtain that ψ1 =
1
2

BR2.
The functions X and Y1(ψ1) are defined by the same bound-

ary value problem which implies that Y1(ψ1) is proportional to
X and Y1(ψ1). Since the equilibrium is symmetric with respect
to the apex point, it follows that X(z) describing the fundamental
mode is an even function. Hence, it takes maximum at z = 0, and
thus the condition maxz(X) = 1 reduces to X(0) = 1. Summaris-
ing, we obtain

Y1(ψ1, z) = Y1(ψ1, 0)X(z). (76)

Then it follows from Eq. (27) and the relation VA(ψ1) = Ck that

Y2
1 (ψ, 0) =

1

I
· (77)

We substitute Y1 for Y in Eq. (24), differentiate the obtained
equation with respect to ψ, take ψ = ψ1, and use λ1(ψ1) = ω2

and VA(ψ1) = Ck. As a result we obtain

∂3Y1

∂z2∂ψ
+
ω2

C2
k

∂Y1

∂ψ
= −

1

C2
k

∂V2
A

∂ψ

∂2Y1

∂z2
−

dλ1

dψ

Y1

C2
k

, (78)

where ψ = ψ1. Using Eq. (75) yields

∂V2
A

∂ψ

∣∣∣∣∣
ψ=ψ1

=
2C2

k
( ρi − ρe)

lBR2( ρi + ρe)
· (79)
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Using this result and Eqs. (24) and (76) we obtain

∂3Y1

∂z2∂ψ
+
ω2

C2
k

∂Y1

∂ψ
=

(
2ω2( ρi − ρe)

lBR2( ρi + ρe)
−
∂λ1

∂ψ

)
XY1(ψ1, 0)

C2
k

· (80)

Multiplying Eq. (80) by X, integrating the obtained equation
with respect to z, and using Eqs. (16), (33) and (50) yields

∆ = −
∂λ1

∂ψ

∣∣∣∣∣
ψ=ψ1

= −
2ω2J

lBR2I
, J =

∫ L/2

−L/2

( ρi − ρe)X2

( ρi + ρe)C2
k

dz. (81)

Then using Eqs. (75)–(77) and (81), and the relation ρ(ψ1) =
1
2
( ρi + ρe) we obtain from Eq. (45)

Γ =
π

4
lω2|J|. (82)

Now, we introduce the dimensionless variables

Z =
2z

L
, τ =

t

tcool

, ̟ =
ωL

C f

, κ =
L

πH0

, Λ =
R

R f

, (83)

where the kink speed at the footpoints is defined by

C2
f =

2ζB2(0)

µ0ρ f (ζ + 1)
· (84)

We solve a linear problem. Hence we can fix A at the initial
moment arbitrary. If we take A(0) = 1, then A(t) is the ratio
of the current oscillation amplitude and its value at the initial
time. Now, we substitute X for S 0 in Eq. (16). Then, using
Eqs. (68), (71)–(74), and the relation BR2 = const we obtain

∂2X

∂Z2
+
̟2Λ4X

4(ζ + 1)

[
ζ exp

(
−κeτ cos

πZ

2

)
+ exp

(
−κ cos

πZ

2

)]
= 0.

(85)

Since the loop is symmetric with respect to the apex point, and
we consider the fundamental mode, we can solve Eq. (85) using
the boundary conditions

∂X

∂Z
= 0 at Z = 0, X = 0 at Z = 1. (86)

The function X(Z) takes maximum at Z = 0, so we can reduce
the condition maxz X(z) = 1 to X(0) = 1. This boundary value
problem determines ̟ and X(Z). We recall that ̟ and X(Z) also
depend on τ parametrically.

Using Eqs. (47), (71), (73) and (81)–(83) we obtain

d(̟Π+A2)

dτ
= −α̟2|Π−|A

2, (87)

where

Π± =

∫ 1

0

X2Λ4
[
ζ exp

(
−κeτ cos

πZ

2

)
± exp

(
−κ cos

πZ

2

)]
dZ,

(88)

α =
πlC f tcool

4L
· (89)

The parameter α determines the relative strength of resonant
damping and amplification caused by cooling. We see that the

dependence of the oscillation amplitude on time is determined
by five dimensionless parameters: α, ζ, κ, ϑ, and L/Lc.

Numerical solution was obtained using software packages
from Wolfram Mathematica 11.3. To obtain the solution to the
eigenvalue problem constituted by Eq. (85) with the boundary
conditions (86) we used the program NDEigenesystem that cal-
culates the eigenvalue ̟(τ) and the eigenfunction X(τ,Z). Then,
we substituted ̟(τ) and X(τ,Z) in Eq. (87) and integrated this
equation numerically using the program NIntegrate. By default,
this program uses the Global adaptive method that automatically
choses a numerical method that minimises the error. As a result,
we calculated the dependence of A on τ.

In our calculations we took ζ = 3 and L/Lc = 6. The func-
tion A(t) is determined numerically for various values of α, κ
and ϑ. The results of these calculations are presented in Fig. 2.
We see that when there is no resonant absorption (α = 0) cool-
ing results in the amplification of oscillations. This result is in a
complete agreement with that obtained by Ruderman (2011a,b)
and Ruderman et al. (2017). As we have already pointed out,
our analysis describes competition between the amplification of
oscillations due to cooling and damping of oscillations caused by
resonance absorption. We see that the magnetic tube expansion
enhances the amplification. As a result, when there is no reso-
nant absorption the larger the tube expansion the faster the oscil-
lation amplitude growths. When resonant absorption is present,
the larger the tube expansion the slower the decay of the oscil-
lation amplitude is. For particular values of parameters we even
can have the oscillation damping in a non-expanding tube, and
the oscillation amplification in an expanding tube.

Now, we introduce the critical value of α defined by the con-
dition that A(1) = A(0) for α = αc. That means that oscillation
amplitude at t = tcool is equal to its initial amplitude. Similarly,
we introduce the critical value of transitional layer thickness, lc,
given by

lc =
4αcL

πC f tcool

· (90)

When l = lc the damping due to resonant absorption is balanced
by amplification due to cooling.
Figure 3 shows the dependence of αc on ϑ for various values of
κ. Again, we see that the tube expansion enhances the effect of
the amplitude amplification. What is also interesting, the depen-
dence of this effect efficiency on κ is not monotonic. The effect
efficiency increases when κ changes from 0.5 to 1, and then is
getting weaker when κ further increases.

The observations of large-amplitude kink oscillations of
cooling coronal magnetic loops that do not decay are very scarce.
Probably, one of the best documented observations of this kind
is that reported by Aschwanden & Schrijver (2011). Ruderman
(2011a) discussed the possibility to explain the undamped nature
of this oscillation by the effect of cooling. His conclusion was
that cooling can stop damping due to resonant absorption only if
the transitional layer is very thin, l ≈ 0.02. We now discuss how
the account of loop expansion can change this estimate.

The initial oscillation period of the oscillations was 395 s.
Using the data reported by Aschwanden & Schrijver (2011) and
Ruderman (2011b) obtained that κ ≈ 1 and tcool ≈ 2050 s. We
take the tube expansion θ = 1.5 because the effect of expansion is
the strongest for this value of θ. The phase speed Ck varies along
the loop due to the density and cross-section radius variation.
The density decrease and cross-section radius increase act in the
opposite directions. Hence, we can expect that the variation of
Ck along the loop is weak and we can take Ck ≈ C f . Then, the
oscillation period is approximately equal to 2L/C f and we obtain
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Fig. 2. Dependence of dimensionless amplitude A of the fundamental mode on the dimensionless time τ for ζ = 3 and L/Lc = 6. The upper, middle,
and lower panels correspond to κ = 0.5, 1, and 2, respectively. The left, middle, and right panels correspond to α = 0, 0.5, and 1, respectively. The
solid, dotted, dashed, and dashed-dotted lines correspond to ϑ = 1, 1.15, 1.3, and 1.5.
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Fig. 3. Dependence of critical value αc on expansion factor ϑ. The solid,
dotted, dashed, and dash-dotted lines correspond to κ = 0.5, 1, 1.5, and
2, respectively.

L/C f ≈ 198 s. Using Fig. 3 we obtain that αc ≈ 0.6. Then it
follows from Eq. (90) that lc ≈ 0.074. Although this is still a
very thin transitional layer, it looks more realistic than lc ≈ 0.02
obtained by Ruderman (2011a).

5. Summary and conclusions

In this paper, we studied resonant damping of kink oscillations
of cooling coronal magnetic loops. A coronal magnetic loop is
modelled by a thin straight magnetic tube with the plasma den-
sity and the cross-section radius varying along the tube. The

equilibrium plasma density is approximately independent of the
radial coordinate inside the core of the tube and outside of the
tube. However, it varies in the radial direction from its value in
the core region to its value outside of the tube in a thin transi-
tional value. This density variation results in the presence of res-
onant absorption. We use the system of two equations describing
oscillations of non-stationary magnetic tubes in the presence of
resonance absorption in the thin tube approximation that were
derived by Ruderman et al. (2017). This system contains three
dependent variables: the tube displacement η, and the jumps of
the plasma displacement and the magnetic pressure perturbation
across the transitional layer.

The system is not closed. To close it, we need to express
the jumps of the plasma displacement and the magnetic pressure
perturbation in terms of η. To do this, we applied the thin bound-
ary layer approximation. Shukhobodskiy & Ruderman (2018)
have carried out such a study, in the case of static magnetic
tubes, under the assumption that the density in the transitional
layer can be factorised and written as a product of two func-
tions, one depending on the coordinate along the tube and the
other depending on the magnetic flux function. However, we
cannot make this assumption here, when a loop is dynamic,
because even if this condition is initially satisfied it will not be
valid later because the density is changing with time. Hence,
we adapted the derivation given by Shukhobodskiy & Ruderman
(2018). Eventually, we derived an equation describing the evo-
lution of the oscillation amplitude. This equation reduces to
the conservation of an adiabatic invariant previously derived by
Ruderman et al. (2017) where there is no resonant absorption.
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We studied the amplitude evolution of kink oscillation of a
cooling coronal magnetic loop. When doing this, we assumed
that the cooling is slow meaning that the cooling time is sub-
stantially larger than the oscillation period. We also assumed
that cooling only occurs in the magnetic tube, while the temper-
ature of the outside plasma does not change. The cooling causes
the amplification of loop oscillation, while resonant absorption
causes its decay. Hence, the governing equation for the oscilla-
tion amplitude describes the competition between the amplifica-
tion and damping. This equation was solved numerically. Our
main aim was to study the effect of the loop expansion on the
amplitude evolution of transversal oscillations. We found that
the loop expansion acts in favour of oscillation amplification.
When there is no damping due to resonant absorption the larger
the loop expansion the faster the oscillation amplitude growths.
If resonant absorption is present then the loop expansion either
reduces the damping rate, or even can turn it into the amplifica-
tion of oscillation.

We also considered the possibility of existence of oscilla-
tions that are not amplified and also do not decay. We define
such oscillations as those with the amplitude at the cooling time
tcool equal to its initial value. In this case, there is the balance
between the amplification due to cooling and decay due to res-
onant absorption. Again, we found that the loop expansion acts
in favour of amplification. As a result, the larger the loop expan-
sion the stronger resonant absorption can be counterbalanced by
cooling with the same cooling rate.
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