

This is a repository copy of *Toxic effect of the novel chiral insecticide IPP and its biodegradation intermediate in nematode Caenorhabditis elegans*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139858/

Version: Accepted Version

Article:

Bian, T., Zhu, X., Guo, J. et al. (3 more authors) (2018) Toxic effect of the novel chiral insecticide IPP and its biodegradation intermediate in nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 164. pp. 604-610. ISSN 0147-6513

https://doi.org/10.1016/j.ecoenv.2018.08.059

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Toxic effect of the novel chiral insecticide IPP and its biodegradation
2	intermediate in nematode Caenorhabditis elegans
3	
4	Tingting Bian ^a , Xiaolin Zhu ^a , Jing Guo ^a , Ziheng Zhuang ^a , Zhiqiang Cai ^{a,*} , Xiubo
5	Zhao ^{a,b,*}
6	
7	^a Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical
8	Engineering & Life Science, Changzhou University, Changzhou, 213164, China
9	^b Department of Chemical and Biological Engineering, University of Sheffield,
10	Mappin Street, Sheffield S13JD, UK
11	* Corresponding author: Zhiqiang Cai, E-mail: zhqcai@cczu.edu.cn. Xiubo Zhao,
12	E-mail: Xiubo.Zhao@sheffield.ac.uk
13	
14	ABSTRACT
15	Caenorhabditis elegans, a kind of model organism, was used to investigate
16	biodegradation pathway of IPP and M1 in nematodes, in vivo toxicity from IPP and
17	M1 and the possible underlying molecular mechanism. The results showed that both
18	IPP and M1 could decrease lifespan, locomotion behavior, reproductive ability and
19	AChE activity. During IPP biodegradation process, three intermediates (M1-M3) were
20	monitored and identified. Based on the identified metabolites and their biodegradation
21	courses, a possible biodegradation pathway was proposed. IPP was probably
22	transformed to different three metabolites in nematodes through oxidation and

23	elimination of methyl and propyl etc. Under the same concentration, IPP had more
24	severe toxicity than M1 on nematodes. IPP and M1 might reduce lifespan and
25	decrease reproductive ability through influencing insulin/IGF signaling pathway and
26	TOR signaling pathway. They could decrease expression levels of daf-16, sgk-1,
27	aak-2, daf-15 and rict-1 genes, which involved in IGF and TOR signaling pathway.
28	
29	KEYWORDS: Paichongding; Biodegradation intermediate; Toxic effect; Nematode;
30	Caenorhabditis elegans
31	

32 1. Introduction

33	Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5
34	-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2- α -]-pyridine), is a novel chiral insecticide
35	with independent intellectual property rights developed in China (Cai et al., 2015a,
36	2015b, 2016a; Fu et al. 2013). It has higher insecticidal activity (40-50 times)
37	compared to imidacloprid-resistance pests, and also has low toxicity to human. In
38	China IPP was used for pesticide control and sprayed for almost 3.3 million hectares
39	(Cai et al. 2016a; Chen et al. 2017).
40	Insecticides residue in environment was accumulated and accelerated with the
41	increase of insecticides application. Many studies reported that insecticides and their
42	residue in soil environment have potential risk to the soil balance (soil biochemical
43	properties and fertility, etc), they also can be transferred through food chain and make
44	ecosystems deterioration (Zabaloy et al. 2012; Zhang et al. 2014). Previous studies
45	have emphasized on the biodegradation pathway of IPP, its behavior in soils, and its
46	effect on microbial community, soil enzyme activity etc. (Cai et al. 2016a, 2016b,
47	2016c). However, little information is available on the toxicity of IPP and its
48	biodegradation intermediates on protozoan in soils.
49	The nematodes are a diverse animal phylum and live in complex microbial
50	environments that present many potential challenges to their heath and viability.
51	Caenorhabditis elegans is a kind of nematodes and the model organism, which has
52	widely been used in drug discovery, drug toxicity, ageing mechanism research etc.,
53	due to its relatively short lifespan and conserved mechanisms for regulation of

54	antioxidant response (Avila et al. 2012). C. elegans has been widely accepted and
55	utilized as an important alternative animal model for toxicity testing (Avila et al. 2012;
56	Leung et al. 2008; Sprando et al. 2009). Many studies used C. elegant for
57	toxicological research including organic compounds, drugs and nanomaterials etc.,
58	and found that toxicity is similar to that observed in mammals (Ju et al. 2013; Li et al.
59	2013; Zhao et al. 2013). In this study, we first studied and compared the toxicity of
60	IPP and its metabolites, M1, to nematodes Caenorhabditis elegans, and IPP and M1
61	degradation pathway in nematodes were also studied and proposed. Moreover, there
62	are limited information about toxicological mechanism for IPP and M1, we examined
63	the relative gene expression for toxicity of IPP and M1. The results of this study will
64	be useful for further understanding IPP degradation characteristics and its toxicity to
65	animals.
66	
66 67	2. Materials and methods
66 67 68	2. Materials and methods
66 67 68 69	 Materials and methods 2.1. Chemicals and worm strain
66 67 68 69 70	 2. Materials and methods 2.1. Chemicals and worm strain Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-propoxy-
66 67 68 69 70 71	 2. Materials and methods 2.1. Chemicals and worm strain Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-propoxy- 1,2,3,5,6,7-hexahydroimidazo [1,2-α-]-pyridine, chemical purity 98.3%) was obtained
66 67 68 69 70 71 72	2. Materials and methods 2.1. Chemicals and worm strain Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-propoxy- 1,2,3,5,6,7-hexahydroimidazo [1,2-α-]-pyridine, chemical purity 98.3%) was obtained from Jiangsu Kesheng Company Ltd The biodegradation intermediate of IPP,
 66 67 68 69 70 71 72 73 	2. Materials and methods 2.1. Chemicals and worm strain Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-propoxy- 1,2,3,5,6,7-hexahydroimidazo [1,2-α-]-pyridine, chemical purity 98.3%) was obtained from Jiangsu Kesheng Company Ltd The biodegradation intermediate of IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-hydroxyl-
 66 67 68 69 70 71 72 73 74 	2. Materials and methods 2.1. Chemicals and worm strain Paichongding (IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-propoxy- 1,2,3,5,6,7-hexahydroimidazo [1,2-α-]-pyridine, chemical purity 98.3%) was obtained from Jiangsu Kesheng Company Ltd The biodegradation intermediate of IPP, 1-((6-chloropydidin-3-yl) methyl)-7-methyl-8-nitro-5-hydroxyl- 1,2,3,5,6,7-hexahydroimidazo [1,2-α-]-pyridine (M1), was synthesized in our lab and

76	described previously (Studzinski et al. 2017). Briefly, IPP was dissolved in
77	dichloromethane and added boron tribromide at -78 $^{\circ}$ C, then reacted for overnight at
78	room temperature. M1 was extracted by dichloromethane. Other chemical reagents
79	are A.R. grade and purchased from Sinoreagent Company, China.
80	The wild type nematode, Caenorhabditis elegans, was used and maintained on
81	nematode growth medium (NGM, pH 7.2) plates seeded with Escherichia coli OP50
82	at 20 °C as described previously (Sulston et al. 1974; Zhang et al. 2015; Tissenbaum
83	et al. 2001). Age synchronous populations of C. elegans were obtained accrording to
84	the previous reports (Zhao et al. 2013; Zhang et al. 2015). Different concentration of
85	IPP and M1 (10mg L^{-1} , 5 mg L^{-1} and 2.5 mg L^{-1}) were added to the NGM plates just
86	before inocubation.
87	
88	2.2. Lifespan and reproduction
89	During the lifespan assay, the worms transferred daily for the first several days of
90	adulthood. The surviving worms were measured, and recorded every day and would
91	be scored as dead when they did not respond to the stimulation of a platinum wire.
92	The results were treated with three replicates. The reproduction was assayed by the
93	brood size, which was determined as the number of offspring at all stages beyond the
94	egg. Twenty replicates were performed.
95	
96	2.3. Locomotion behavior

97 For the locomotion behavior assay, different concentration of IPP and M1 treatment

98	were performed throughout the lifespan from L1-larvae. Head thrash and body bend
99	were used as endpoints for locomotion behavior. Head thrashes are defined as a
100	change in the direction of bending at the mid body. Body bends are defined as a
101	change in the direction of the part of nematodes corresponding to the posterior bulb of
102	the pharynx along they-axis, assuming that nematode was traveling along the x-axis.
103	During the locomotion behavior assay, the examined nematodes were transferred
104	into the assay plate containing K medium on top of the agar. After a recovery time of
105	1 min, head thrashes, and body bends were counted for 1 min and 20 s respectively.
106	Twenty replicates were performed for each experiment.
107	
108	2.4. Acetylcholinesterase (AChE, EC 3.1.1.7) activity analysis
109	Inhibition of AChE in the LC50-treated worms was monitored after 24 and 48 h
110	of exposure. Similarly, the normal worms were used to study the in vitro evaluation of
111	AChE activity. 100 worms were chosen to estimate AChE activity (Ache, EC 3.1.1.7)
112	and were ground with liquid nitrogen, then added 1.5ml of 0.1 M phosphate buffer
113	(containing 0.1% of TritonX-100, pH 7.5) and mixed thoroughly. The mixture was
114	centrifuged at 12,000 rpm for 30 min at 4 oC. The supernatant was used for
115	estimation of AChE activity and protein content. Protein was estimated by the method
116	of Lowry et al. (1951). AChE was assayed as described by Ellman et al. (1961).
117	The procedures of enzyme assay were as follows: the blank consists of phosphate
118	buffer (0.1 M, pH 8.0), substrate (0.075 M of acetylthiocholine iodide) and DTNB
119	solutions (Dithiobisnitrobenzoic acid, 0.01M, 39.6mg of DTNB were dissolved in

120	10ml pH 7.0 phosphate buffer and 15 mg of sodium bicarbonate were added). 0.1 ml
121	of supernatant and 0.5 ml of substrate were mixed together and kept at 37oC for 6 min,
122	then 0.01 ml of DTNB solution and 4% of SDS solution were added in the reaction
123	solution. The absorbance was measured at 421 nm. Enzyme activity was determined
124	graphically using double-reciprocal plots of Leneweaver and Burk transformations
125	
126	2.5. IPP/M1 degradation in nematodes and metabolite extraction
127	The wild type worms were grown for two generations on NGM plates seeded with
128	OP50. The worms in six crowded plates were washed into 50 ml solution of NGM
129	medium contained 10 mg L ⁻¹ of IPP or M1, grown at 22 °C and 220 rpm.
130	Concentrated OP50 from 500 ml bacterial cultures were given on day 1, day 3 and
131	day 5. The culture was harvested on day 7 by centrifugation at 5000 rpm. The
132	supernatant was lyophilized and the residue was extracted with 95% ethanol for 10 h.
133	the extraction was evaporated at RT to yield the crude extracts.
134	A Dionex U3000 HPLC system coupled with Bruker maXis 4G ion trap mass
135	spectrometer with an electrospray ionization source (ESI) was used for LC-MS/MS
136	analysis. The separate conditions were in accordance with those used for HPLC
137	analysis. The ion source temperature was controlled at 250 $^{\circ}$ C, and the capillary
138	voltage was -4.5 kV. The analysis mode of ionization was electrospray ionization (ESI,
139	positive). The operation conditions were as follows: collision energy, 10.0 eV; ISCID
140	energy and ion energy, 5.0 eV; dry gas, 6 L·min ⁻¹ ; dry temperature, 180 °C; gas
141	pressure, 1.5 bar. The continuous full scanning from m/z 50 to 500 Da was performed

142 in positive ion mode.

144	2.6. RNA isolation and quantitative real-time PCR
145	Total RNA was isolated using Triozol RNA kit (Life technology) from worms
146	treated with or without 5 mg L^{-1} of IPP or M1 for 48 h. Total RNA was then
147	reverse-transcribed using PrimeScript 1 st strand cDNA synthesis kit (Takara).
148	Quantitative real-time-polymerase chain reaction (RT-PCR) was used to determine the
149	relative quantification of the targeted genes (sod-2, daf-2, sgk-1, aak-2, age-1, daf-16
150	and aak-2 etc.) in comparison to the reference act-1 gene, and the results were
151	expressed as the relative expression ratio. The primers used in this study were
152	referenced the previous reports by Zhang et al and Zhuang et al. (Zhang et al. 2015;
153	Zhuang et al. 2014).
154	
154 155	3. Results and discussion
154 155 156	3. Results and discussion
154 155 156 157	3. Results and discussion3.1. Effect of IPP and M1 on lifespan of C. elegans.
154 155 156 157 158	 3. Results and discussion 3.1. Effect of IPP and M1 on lifespan of C. elegans. Nematodes were treated with different concentration of IPP and M1 (2.5 mg L⁻¹, 5)
154 155 156 157 158 159	 3. Results and discussion 3.1. Effect of IPP and M1 on lifespan of C. elegans. Nematodes were treated with different concentration of IPP and M1 (2.5 mg L⁻¹, 5 mg L⁻¹ and 10 mg L⁻¹) from L1-larvae stage in order to investigate IPP and M1's
154 155 156 157 158 159 160	 3. Results and discussion 3.1. Effect of IPP and M1 on lifespan of C. elegans. Nematodes were treated with different concentration of IPP and M1 (2.5 mg L⁻¹, 5 mg L⁻¹ and 10 mg L⁻¹) from L1-larvae stage in order to investigate IPP and M1's effect on lifespan of C. elegans. The results were shown in Figure 1. Both IPP and M1
154 155 156 157 158 159 160 161	3. Results and discussion 3.1. Effect of IPP and M1 on lifespan of C. elegans. Nematodes were treated with different concentration of IPP and M1 (2.5 mg L ⁻¹ , 5 mg L ⁻¹ and 10 mg L ⁻¹) from L1-larvae stage in order to investigate IPP and M1's effect on lifespan of C. elegans. The results were shown in Figure 1. Both IPP and M1 decreased nematodes lifespan significantly under the concentration of 10 mg L ⁻¹ , and
154 155 156 157 158 159 160 161 162	3. Results and discussion 3.1. Effect of IPP and M1 on lifespan of C. elegans. Nematodes were treated with different concentration of IPP and M1 (2.5 mg L ⁻¹ , 5 mg L ⁻¹ and 10 mg L ⁻¹) from L1-larvae stage in order to investigate IPP and M1's effect on lifespan of C. elegans. The results were shown in Figure 1. Both IPP and M1 decreased nematodes lifespan significantly under the concentration of 10 mg L ⁻¹ , and IPP has higher toxicity to nematodes than M1 under the same condition. Lifespan was

IPP and M1 both had gentle toxicity to C. elegans under the lower concentration (2.5
mg L⁻¹).

167	3.2. Effect of IPP and M1 on the locomotion and reproduction of C. elegans.
168	C. elegans shows gradually impaired locomotion ability during its aging process.
169	The effect of IPP and M1 on the locomotion ability of nematodes was investigated.
170	Two important endpoints for locomotion ability, head thrash and body bend, were
171	recorded every 1 minute during its lifespan after treated with different concentration
172	of IPP or M1 solution for 48 hours. As shown in Figure 2a and 2b, higher
173	concentration of IPP and M1 solution significantly decreased locomotion ability
174	during its aging process compared with untreated nematodes, which indicated that IPP
175	and M1 can decrease life quality of nematodes. The body bent frequency are 30 and
176	26 per minute after treated with 5 and 10 mg L^{-1} of IPP, while they are 39 and 36 per
177	minute after treated with same concentration of M1, respectively. These results
178	showed that under IPP has more toxicity than M1 under the same concentration.
179	Number of progeny of nematodes was used for investigating the effect of IPP and
180	M1 on reproduction of C. elegans. Nematodes were pretreated with different
181	concentration of IPP or M1 solution for 48 h, then moved to the plates at 35 $^{\circ}$ C. The
182	number of progeny of nematodes were counted after 4 days and the results were
183	showed in Figure 2c. There are significant difference on the numbers of progeny with
184	or without IPP or M1 treatment, which indicated that the toxic effect of IPP and M1
185	on C. elegans existed by damaging the reproductive system of C. elegans. IPP shows

186 more toxicity to the reproductive system of C. elegans compared with M1 under the187 condition of same concentration.

188

189 3.3. Effect of IPP and M1 on AChE activity of C. elegans

190 Acetylcholinesterase (AChE) is the key enzyme in biological nerve conduction. Its

191 enzymatic degradation of acetycholine could terminate the effects of

192 neurotransmitters epicuticular on postsynaptic membrane excitation, for ensuring the

193 neural transmission of nerve signals in vivo. It could be concluded from Figure 2d

that higher concentration of IPP and M1 strongly inhibit AChE activity. 2.5 mg L^{-1} of

195 IPP has almost no toxicity to AChE, however AChE activity was significantly inhibit

by 5 mg L^{-1} of IPP. M1 has higher toxicity to AChE activity than IPP, especially under

197 the condition of lower concentration.

IPP is a novel chiral neonicotinoid insecticide with four stereoisomers (RR, SS, RS
and SR-IPP) and it was widely used in China for insecticide control in agriculture. Cai
et al. reported that IPP could decrease soil enzyme activities, change soil microbial
population, diversity and composition (Cai et al. 2015a, 2016b, 2016c). The activities
of microbial protease, catalase, urease and dehydrogenase in soil are both impacted
after IPP application in crop (Cai et al. 2015a, 2016b, 2016c). The relative abundance
of genus of Bacillus, Pseudomonas, Azohydromonas and Paenibacillus in soils with

205 IPP application increased, the genus of Brevundimonas, Xanthomonadaceae, Massilia,

- 206 Pedobacter, and Hydrogenophaga were newly appearance. The bacterial species
- 207 diversity and community structure in soils were remarkably different responding to

208	IPP-sprayed (Cai et al. 2016b, 2016c). Neonicotinoids have been considered to
209	increase mortality in honey bees by impairing their homing ability and to reduce the
210	reproductive success of bumble bees and solitary bees (Henry et al. 2012; Whitehorn
211	et al. 2012; Woodcock et al. 2017). Until now, there was little information about
212	neonicotinoids toxicity on other animals. In this study, Caenorhabditis elegans,
213	regarded as the model organism, was used as an alternative animal model for IPP
214	toxicity testing. The results showed that IPP and M1 can decrease nematodes lifespan,
215	inhibit locomotion ability and reproductivity. Based on these results, it can be
216	concluded that IPP had higher toxicity to C. elegans than M1 in nematodes. They also
217	inhibit AChE activity significantly, AChE was more sensitive to M1. The toxicity
218	differences between IPP and M1 at relatively high concentrations also occurred with
219	the aid of head thrash, body bend, locomotion and lifespan. M1 is one of the
220	intermediates of IPP biodegradation in environment, and also determined in soil after
221	IPP application (Cai et al. 2015a, 2015b, 2016a, 2016b, 2016c; Chen et al. 2017; Fu et
222	al. 2013). The toxicity of toxicants in C. elegans is similar to the toxic results in
223	mammals, the results in this study imply the possible potential more severe toxicity of
224	IPP than M1 in mammals. Woodcock et al. reported that reproduction in wild bees
225	was negatively correlated with neonicotinoid residues and neonicotinoids can caused
226	a reduced capacity of bee species to establish new populations (Woodcock et al. 2017)
227	Neonicotinoid insecticides are high toxicity to vertebrates, and its use has been partly
228	restricted for their effects on pollinators (Henry et al. 2012; Whitehorn et al. 2012).
229	These researches are accordance with the results in our research.

231 3.4. IPP and M1 degradation characteristics by C. elegans.

232	During the degradation of IPP in nematode body, three degradation metabolites
233	were determined by HPLC analysis with retention times of 2.2 min (M1), 19.3 min
234	(M2) and 12.2 min (M3). These intermediates appeared with the decrease of IPP. And
235	these three biodegradation intermediates of IPP were analyzed and identified by
236	high-performance chromatography-time-of flight mass spectrometry and LC-MS/MS.
237	The ion fragments of IPP were at m/z 367.1534 ($C_{17}H_{23}ClN_4O_3$) [M+H] ⁺ and m/z
238	321.1578 (Figure 3a), and the ion fragment of m/z 367.1500 includes daughter ions of
239	306.1368 (100), 308.4442 (15) and 137.1069 (62), which were accordance with the
240	structure of standard IPP (Cai et al. 2015a,2015b; Chen et al. 2017). M1 showed m/z
241	325.1052 [M+H], and the daughter ion showed m/z 264.0904. Metabolite M1 was
242	identified as 1-((6-chloropyridin-3-yl) methyl)-7-methyl- 8-nitro-5-hydroxy-
243	1,2,3,5,6,7- hexahydroimidazo [1,2- α -] pyridine according to its LC-MS/MS and MS ²
244	spectra (Figure 3d), which indicated that M1 was generated through hydrolysis of
245	propoxyl group of IPP. M2 appeared after M1 and its m/z was 276.0887 (M+H, Figure
246	3c), the M2 ions matched the formula $C_{14}H_{14}ClN_3O$, M2 was identified as
247	1-((6-chloropyridin-3-yl)methyl)-2,3- dihydro-5-one-7- methylimidazo [1,2- α]
248	pyridine.
249	Figure 3d shows that the m/z of metabolite M3 was 297.1144, which should be
250	the transformation of the group of 8-nitroso on M1 to the group of 8-amino, and the
251	nitroso group on M1 transformed to hydroxyl. On the basis of these characteristics,

M3 was preliminarily identified as 1-((6-chloropyridin-3-yl)methyl)-5,7-diol-8-

amino -1,2,3,5,6,7-hexahydroimidazo [1,2- α]pyridine.

254	During the degradation of M1 in nematode body, two degradation metabolites
255	were determined by HPLC analysis with retention times of 19.3 min (M2) and 12.2
256	min (M3). M2 and M3 were same intermediates of IPP. The results showed that IPP
257	and M1 have the same biodegradation intermediates and pathway in nematode.
258	In nematodes, there were three metabolites, M1, M2 and M3 were determined,
259	M1 appeared first, and then M2 and M3 formed almost simultaneously. The propyl
260	group of IPP was de-esterified and hydrolyzed to form M1, which was accordance
261	with the previous study (Cai et al. 2015a,2015b; Chen et al. 2017). M1 was
262	determined during the process of IPP biodegradation. The nitro group of M1 could be
263	aminated to form amino, methyl was hydrolyzed to hydroxyl group, thus M3 was
264	generated. M2 was formed through loss of nitro group from M1. Therefore the
265	biodegradation pathway in nematodes was concluded in Figure 5. M1 biodegradation
266	pattern was also described in Figure 5. IPP and M1 degradation pathway in nematodes
267	is similar with IPP biodegradation in aquatic and soil environment (Cai et al.
268	2015a,2015b; Chen et al. 2017).
269	

270 3.5. Effect of IPP and M1 on relative genes expression in nematodes

271 There are three major signaling pathways controlling nematodes' aging process,

272 IGF (insulin/insulin-like growth factor), TOR (target of rapamycin) and germline

signaling pathways. In order to illustrate the mechanism of IPP and M1 toxicity to the

274	nematodes lifespan, expression of several genes involved in three signaling pathways
275	were investigated. After exposure in 5mg L ⁻¹ of IPP or M1, expression level of sod-2,
276	daf-16, sgk-1 and aak-2 genes decreased, and daf-2 and age-1 genes increased (Figure
277	6). IPP has more toxicity for inhibiting the expression levels of daf-16, sgk-1 and
278	aak-2 than M1. IPP and M1 did not increase expression level of some genes involved
279	in TOR pathways, however, they both inhibited daf-15 and rict-1 gene expression (Fig.
280	6). Both IPP and M1 did not significantly influence expression level of some genes
281	involved in germline signaling pathway. The results indicated that IPP and M1 should
282	affect the lifespan through mixed IGF and TOF signaling pathways in nematodes.
283	The chemical structure of IPP and M1 is similar, the data of this study showed
284	that IPP and M1 inhibit lifespan and reproduction of nematodes possibly through
285	same molecular mechanism. They might reduce the lifespan and reproduction through
286	affecting both the IGF signaling pathway and TOR signaling pathway. In C. elegans,
287	insulin/IGF-1 receptor (DAF-2) can activate tyrosine kinase and initiates
288	phosphorylation process, which make some kinase active, including
289	phosphatidiylinositol 3-kinase (PI3K/AGE-1), 3-phosphoinositide-dependent kinase-1
290	(PDK-1) and serin/theonine-protein kinase (SGK-1) (Zhuang et al. 2014). SGK-1
291	phosphorylates and inactivates the FOXO transcription factor DAF-16, which can
292	block the transcription of targeted genes (Zhuang et al. 2014). TOR C1 and TOR C2
293	are different complexes in TOR signaling pathway, and they have different
294	coactivators, DAF-15 Raptor and RICT-1 Rictor. In this study, IPP and M1 can
295	decrease lifespan and reproduction of nematodes, which probably due to the induction

of severe change of genes required for aging and reproductive control, and even
alteration in signaling pathways. The results illustrated that daf-16, sgk-1, aak-2,

daf-15 and rict-1 genes decreased after exposed to IPP and M1.

299

298

300 4. Conclusions

IPP and its metabolite, M1, were selected to study their toxicity to the model 301 organism, Caenorhabditis elegans. The effect on lifespan, locomotion, reproduction 302 and AChE activity were investigated using different concentration of IPP and M1. 303 304 And the biodegradation pathway of IPP and M1 were also proposed through identifying their intermediates by LC/LC-MS. In order to discuss molecular 305 mechanism of reduction of lifespan and reproduction in nematodes, the expression 306 307 level of some genes related to three signaling pathways were illuminated. The data showed that both insulin/IGF-1 signaling pathway and TOR signaling pathway were 308 involved in the regulation of toxicity induction from IPP or M1 in nematodes. We also 309 310 hypothesized that IPP and M1 induced the toxicity on nematodes through same molecular mechanism, which will be helpful for better understanding the potential 311 damage on health of animals. 312

313

314 Acknowledgments

The research was financially supported by the grants "National Natural Science

Foundation of China" (Project No. 11275033) and "Natural Science Foundation of

Jiangsu Province, China" (Project No. BK20151185).

319	References
320	Avila, D., Helmcke, K., Aschner, M., 2012. The Caenorhabditis elegans model as a
321	reliable tool in neurotoxicology. Human Exp. Toxicol. 31, 236–243.
322	Cai, Z.Q., Ma, J.T., Wang, J., Cai, J.Y., Yang, G.H., Zhao, X.Y., 2016a. Impact of the
323	novel neonicotinoid insecticide Paichongding on bacterial communities in yellow
324	loam and Huangshi soils. Environ. Sci. Pollut. Res. 23, 5134-5142.
325	Cai, Z.Q., Rong, Y., Chen, J., Li, S.S., Wang, J., 2016b. Isolation: identification and
326	degradation characteristics of a novel cis-Nitromethylene Neonicotinoid
327	insecticide Paichongding-degrading strain P 4–7. J. Changzhou Univ. 28 (4),
328	87–92.
329	Cai, Z.Q, Rong, Y., Chen, J., Wang, J., Ma, J.T., Zhang, W.J., Zhao, X.Y., 2016c.
330	Effects of the novel cis-nitromethylene neonicotinoid insecticide Paichongding
331	on enzyme activities and microorganisms in yellow loam and Huangshi soils.
332	Environ. Sci. Pollut. Res. 23, 7786-7793.
333	Cai, Z.Q., Wang, J., Ma, J.T., Zhu, X.L., Cai, J.Y., Yang, G.H. 2015a. Anaerobic
334	degradation pathway of the novel chiral insecticide Paichongding and its impact
335	on bacterial communities in soils. J. Agri. Food Chem. 63, 7151–7160.
336	Cai, Z.Q., Zhang, W.J., Li, S.S., Ma, J.T., Wang, J., Zhao, X.Y., 2015b. Microbial
337	degradation mechanism and pathway of the novel insecticide Paichongding by a
338	newly isolated Sphingobacterium sp. P1-3 from soil. J. Agri. Food Chem. 63,
339	3823–3829.

340	Chen, J., Zhou, S.M., Rong, Y., Zhu, X.L., Zhao, X.Y., Cai, Z.Q., 2017.
341	Pyrosequencing reveals bacterial communities and enzyme activities differences
342	after application of novel chiral insecticide Paichongding in aerobic soils. Appl.
343	Soil Ecol. 112, 18-27.
344	Fu, Q.G., Wang, Y.C., Zhang J.B., Zhang H.X., Bai, C., Li, J.Y., Wang, W., Wang H.Y.,
345	Ye Q.F., Li, Z, 2013. Soil microbial effects on the stereoselective mineralization,
346	extractable residue, bound residue and metabolism of a novel chiral cis
347	neonicotinoid, Paichongding. J. Agri. Food Chem. 61(32), 7689-7695.
348	Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J., Aupinel, P., Aptel, J.,
349	Tchamitchian, S., Decourtye, A., 2012. A common pesticide decreases foraging
350	success and survival in honey bees. Science. 336, 348-350.
351	Ju, J.J., Ruan, Q.L., Li, X.B., Liu, R., Li, Y.H., Pu, Y.P., Yin, L.H., Wang, D.Y., 2013.
352	Neurotoxicological evaluation of microcystin-LR exposure at environmental
353	relevant concentrations on nematode Caenorhabditis elegans. Environ. Sci.
354	Pollut. Res. 20, 1823–1830.
355	Leung, M.C.K., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M.,
356	Meyer, J.N., 2008. Caenorhabditis elegans: an emerging model in biomedical
357	and environmental toxicology. Toxicol. Sci. 106(1), 5–28.
358	Li, Y.P., Li, Y.X., Wu, Q.L., Ye, H.Y., Sun, L.M., Ye, B.P., Wang, D.Y., 2013. High
359	concentration of vitamin E decreases thermosensation and thermotaxis learning
360	and the underlying mechanisms in nematode Caenorhabditis elegans. PLOS one.
361	8, e71180.

362	Sprando, R.L., Olejnik, N., Cinar, H.N., Ferguson, M., 2009. A method to rank order				
363	water soluble compounds according to their toxicity using Caenorhabditis				
364	elegans, a complex object parametric analyzer and sorteer, and axenic liquid				
365	media. Food Chem. Toxicol. 7, 722–728.				
366	Studziński, W., Gackowska, A., Gaca, J., 2017. Studies on the formation of				
367	formaldehyde during 2-ethylhexyl 4-(dimethylamino) benzoate demethylation in				
368	the presence of reactive oxygen and chlorine species. Environ. Sci. Pollut. Res.				
369	24(9), 8049-8061.				
370	Sulston, J.E., Brenner, S., 1974. The DNA of Caenorhabditis elegans. Genetics. 77,				
371	95-104.				
372	Tissenbaum, H.A., Guarente, L., 2001. Increased dosage of a sir-2 gene extends				
373	lifespan in Caenorhabditis elegans. Nature. 410, 227-230.				
374	Whitehorn, P.R., O'Connor, S., Wachers, F.L., Goulson, D., 2012. Neonicotinoid				
375	pesticide reduces bumble bee colony growth and queen production. Science. 336				
376	(6079), 351-352.				
377	Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J.,				
378	Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L.,				
379	Sarospataki, M., Saure, C., Edwards, M., Genersch, E., Knabe, S., Pywell, R.F.,				
380	2017. Country-specific effects of neonicotinoid pesticides on honey bees and				
381	wild bees. Science. 356 (6345), 1393-1395.				
382	Zabaloy, M.C., Gomez, E., Garland, J.L., Gomez, M.A., 2012. Assessment of				
383	microbial community function and structure in soil microcosms exposed to				
	18				

384 glyphosate. Appl. Soil Ecol. 61, 333-339.

- 385 Zhang, Q.M., Zhu, L.S., Wang, J., Xie, H., Wang, J.H., Wang, F.H., Sun, F.X., 2014.
- 386 Effects of fomesafen on soil enzyme activity, microbial population, and bacterial

community composition. Environ. Monit. Assess. 186, 2801–2812.

- 388 Zhang, Y., Lv, T., Li, M., Xue, T., Liu, H., Zhang, W., Ding, X., Zhuang, Z., 2015.
- 389 Anti-aging effect of polysaccharide from Bletilla striata on nematode
- Caenorhabditis elegans. Pharmacogn. Mag. 11, 449-54.
- Zhao, Y.L., Wu, Q.L., Tang, M., Wang, D.Y., 2013. The in vivo underlying
- 392 mechanism for recovery response formation in nano-titanium dioxide exposed
- 393 Caenorhabditis elegans after transfer to the normal condition. Nanomedicine.
- 394 10(1), 89-98.
- 395 Zhuang, Z., Zhao, Y., Wu, Q., Li, M., Liu, H., Sun, L., Gao, W., Wang, D., 2014.
- 396 Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis
- elegans and the underlying mechanism. PLOS one. 9(1), e85482.

399 TABLE AND FIGURE CAPTIONS

400

Figure 1. Effect of IPP and M1 on lifespan of C. elegans. (A. $10 \text{ mg } \text{L}^{-1}$; B. $5 \text{ mg } \text{L}^{-1}$;

402 C. 2.5 mg L⁻¹).

- **Figure 2**. Effect of IPP and M1 on locomotion, reproduction and AChE activity of C.
- 404 elegans. (A:Body bent frequency; B Head swing frequency; C: Number of progeny; D: AchE405 activity).
- **Figure 3**. Mass spectra of IPP and metabolites (M1, M2 and M3) .(a:IPP; b:M1; c:M2;
- 407 d:M3).
- 408 **Figure 4**. HPLC chromatograms with the retention time of degradation molecules
- **Figure 5**. Proposed pathways of IPP and M1 degradation in nematode C. elegans.
- 410 **Figure 6**. Expression level of some genes involved in signaling pathways in nematode
- 411 C. elegans.
- 412

445		

Figure 5.

