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Single-Trial EEG Classification Of Similar Errors

Christopher Wirth∗, Eric Lacey, Paul Dockree, and Mahnaz Arvaneh

Abstract— When humans recognise errors, either committed
by themselves or observed, error-related potentials (ErrP) are
produced in the brain. Recently, a few studies have shown that
it is possible to differentiate between the ErrPs generated for
errors of different direction, severity, or type (e.g. response
errors, interaction errors). However, in real-world scenarios,
errors cannot always be delineated by these metrics. As such,
it is important to consider whether errors that are similar
in all of the aforementioned aspects can be classified against
each other on a single-trial basis. In this paper, for the
first time, we consider two different response errors, which
are of equal severity and have no associated direction. This
study used electroencephalogram (EEG) data from a sustained-
attention based time-critical reaction task, where time pressure
caused subjects to commit two different errors. Using data
from 16 subjects, we applied time domain EEG features and
an ensemble of linear classifiers to separate these two error
conditions on a single-trial basis. We achieved a mean balanced
accuracy of 63.23% and, for most of these subjects, achieved
statistically significant (p < 0.05) separation of the two error
conditions. The ability to classify similar error conditions, such
as these, increases the scope of possible applications for EEG
error detection, and has the potential to improve brain-machine
interaction.

I. INTRODUCTION

Error potentials (ErrP) are produced in the brain when

a human observes an error, or recognises that they have

committed an error themselves [1]. These ErrPs can be

detected in electroencephalogram (EEG) signals, and can be

utilised as a part of a Brain-Computer Interface (BCI), either

for immediate error correction [2], or as a feedback function

for a reinforcement learning (RL) strategy [2], [3]. In the case

of RL, a system can work effectively as long as classification

exceeds chance level [2], [3].

Various different types of error condition are known to

elicit ErrPs. For example, ErrPs caused by a human respond-

ing incorrectly in a time-critical reaction task have been re-

ferred to as “response ErrP” [4], [5]; Other types of ErrP that

have been described in literature include “interaction ErrP”,

elicited when an action is not performed as expected by the

computer with which the human is interacting; “feedback

ErrP”, when a human is told that they committed an error

of which they were previously unaware; “observation ErrP”,

when a human observes an error committed by somebody

else; and those elicited by “execution errors”, when an action
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is not performed as expected; or by “outcome errors”, when

the desired outcome is not achieved [5]–[7].

Recently, a limited number of studies have shown that

it is possible to use single trial EEG to differentiate ErrPs

evoked by error conditions of different types [6], directions

[8], and severities [8], [9]. However, in some tasks, errors will

naturally exist that are the same “type” and severity as each

other, and are either errors in the same direction, or have no

associated direction at all. For example, consider a BCI with

integrated image processing. A user wishes to pick up a green

apple, but the BCI has to select the apple from an image that

also contains some other fruits. First, the system selects an

orange, but error classification tells it that this is the wrong

colour. It then tries a pear but is told this is the wrong shape.

These two errors could not be differentiated using existing

metrics, but being able to categorize them could improve

the effectiveness of the BCI’s learning strategy. As such, we

can see that classification of such similar error conditions

opens up the possibility of RL being applied to a BCI for

the performance of more potential tasks than ever before.

There are also other potential applications for this kind of

error classification, such as life-logging.

In this study, subjects were given a time-critical reaction

task, requiring sustained attention, in which two different

error conditions could occur. In one condition, subjects

reacted erroneously to the presentation of a blue dot. In

the other condition, they reacted erroneously to a dot that

was identical to the previous stimulus. These error conditions

were both directionless, and were of equal severity. As both

conditions were the result of the subject performing the

reaction task incorrectly, both would be classed as response

errors. To our knowledge, no two error conditions that are

similar in all of these aspects have previously been classified

against each other using single-trial EEG.

To tackle this challenge, we proposed extracting a small

number of highly discriminative time domain features from

fronto-central channels, to provide a low-dimensional feature

space. We then classified the data using a weighted vote of

linear classifiers. The effectiveness of the proposed algorithm

in classifying the two error conditions was evaluated using

data collected from 16 healthy adults.

II. METHODS

A. Experimental Design

Data for this investigation were taken from an Error

Awareness Dot Task carried out at Trinity College Dublin.

Subjects were asked to perform a Go/No-Go task, as shown

in “Fig. 1”. The subjects were shown succession of coloured

dots on a screen, and asked to press a button when each



Fig. 1. Go/No-Go task. Subjects should press a button, in a timely manner,
in response to each new dot, withholding only in the case of the two “no-
go” conditions: (A) a repeat of the previous colour (“repeat condition”) or
(B) any blue dot (“colour condition”). Awareness of errors (i.e. pressing
the button in the case of a no-go condition) should be acknowledged by a
second button press.

new dot appeared. There were two exceptions: for blue dots

(colour condition), or dots that were a repeat of previous

colour (repeat condition), the subjects should withhold the

button press. If they did press the button in either of those

scenarios, and realise their error, they should press a second

time in order to indicate their awareness of the error.

B. Participants

Data from 28 young participants (aged 18 to 35) were

used in this study. All participants reported no history of

psychiatric illness, head injury or photosensitive epilepsy,

had normal or corrected-to-normal vision, and had no history

of color-blindness. Written informed consent was provided

before testing began, and all procedures were approved by

the Trinity College Dublin ethics committee and in accor-

dance with the Declaration of Helsinki.

C. Data Acquisition and Preprocessing

64 channels of EEG were recorded at 2048Hz. 8 blocks

of epochs were collected per subject, with the exception

of two subjects, for whom 6 and 5 blocks of epochs were

collected, respectively. Each block consists of 200 epochs

where 40 were “no-go”. The data were resampled to 64Hz,

and bandpass filtered between 4Hz and 32Hz using zero-

phase filters. Epochs for both the colour condition (subject

pressed the button despite blue dot) and repeat condition

(subject pressed the button despite the current dot being the

same colour as the previous dot) were extracted from 0.15s

to 1s after the subject committed the error. These epochs

were then baseline corrected, using an interval from -0.2s

to 0s before presentation of the stimulus. Epochs were only

retained if the subject pressed the button again to indicate

that they were aware of the error. Artefact rejection was then

performed, removing any epochs with an amplitude range

(highest peak amplitude - lowest peak amplitude) greater

than 100µV. Finally, epoch signals were smoothed in the

time domain, using a moving mean with a window size of

5 time points (approximately 0.08s).

D. Data Visualisation

Time domain data were plotted for a number of channels

in the form of Grand Averages. The data were processed

as described in the previous subsection, with the exceptions

that the bandpass filter was between 0.4Hz and 32Hz, and

the time window was from -0.1s to 1s, relative to the error

being committed.

E. Proposed Error Classification Algorithm

1) Feature Extraction: One of the challenges of this study

was that the data contained only a small number of epochs

per condition. As such, a classifier using a very small number

of features was developed, in an attempt to avoid overfitting

to noise in the training data due to the so-called curse-of-

dimensionality.

EEG signals were taken from 9 fronto-central channels

(Fz, F1, F2, FCz, FC1, FC2, Cz, C1, C2). For each channel,

a single time point was selected on the basis of providing

the best correlation between the training data and their

associated class labels (i.e. colour/repeat condition) as the

feature representing that channel.

2) Training The Classifier: Each feature was then used

as the input of a one-dimensional threshold-based classifier.

The threshold was defined on the basis of providing the

best possible separation of the training data. To determine

the “best” separation, a maximin algorithm was employed,

minimizing the possible loss for the worst performing con-

dition. In other words, the threshold was defined such that

the minimum sensitivity achieved between the two error

conditions was maximized. This decision was taken in order

to encourage good performance for both conditions, as they

were considered to be equally important.

To find all potential thresholds, the midpoints between

each adjacent pair of unique training data points was com-

puted. For each of the candidate thresholds, the percentage of

colour condition points below the threshold, and repeat con-

dition points above the threshold, were computed. The lowest

of these two percentages was counted as the threshold’s

score in the “colour-condition-below-threshold” orientation.

The process was repeated with the threshold orientation

reversed (i.e. repeat condition below the threshold, colour

condition above). The threshold with the highest score (in

either orientation) would be selected, and its orientation

noted for the classification of future epochs. Specifically, the

algorithm for choosing a channel’s classification threshold,

based on the training data, was as follows:

x← trainingEpochV alueschannel
y ← trainingEpochClassLabels

xcol ← xselectedFeature,colourCondition

xrep ← xselectedFeature,repeatCondition

for each threshold do

colPctbelow,threshold ←
sum(xcol < threshold)

length(xcol)

repPctabove,threshold ←
sum(xrep > threshold)

length(xrep)

colPctabove,threshold ←
sum(xcol > threshold)

length(xcol)



repPctbelow,threshold ←
sum(xrep < threshold)

length(xrep)

end for

mm1← max(min(colPctbelow, repPctabove)
mm2← max(min(colPctabove, repPctbelow)
if mm1 > mm2 then

maximinchannel ← mm1
selectedThresholdchannel ← thresholdmm1

colourConditionBelowThresholdchannel ← T

else

maximinchannel ← mm2
selectedThresholdchannel ← thresholdmm2

colourConditionBelowThresholdchannel ← F

end if

To construct the ensemble classifier, the 9 trained single-

channel classifiers were then given a weighted vote. Weight-

ings were based on the maximin scores of each channel’s

classifier. The weight for a given channel was calculated

according to equation 1:

wchannel = max((maximinchannel − 0.5), 0)4 (1)

Scores were first reduced by 0.5, capped with a lower

bound of 0, to ensure that only channels with > 50% correct

classification of both conditions in the training data received

a vote. These scores were raised to the fourth power in

order to sufficiently accentuate the votes of better performing

channels, while only giving veto power to a single channel

if it had substantially outperformed all others.

3) Classifying New Data: With the ensemble classifier

trained, voting was carried out in order to classify any new

epoch. For each channel, the time domain data would be

extracted for the channel’s single selected time point. The

channel would then cast a vote: 0 for the colour condition

or 1 for the repeat condition. Note that which condition fell

below the threshold, and which was above, was decided in

the earlier threshold training. The votes were then multiplied

by each channel’s weight, and added together to provide an

overall score. If this score were greater than half the sum

of all weights, the epoch was classified as being from the

repeat condition. Otherwise, it was classified as being from

the colour condition.

This strategy was tested on all epochs, using leave-one-out

cross-validation. All analysis was carried out in MATLAB,

version R2017b.

III. RESULTS AND DISCUSSION

A. Condition Separability in Grand Average EEG signals

The signals of the two conditions were seen to be distin-

guishable in some channels, especially fronto-central ones.

“Fig. 2” shows the Grand Average time domain data for

channel Cz. The patterns for both conditions - an early

negativity, followed by positivity, resemble those seen in

other ErrP processing studies [4], [7]. After the error is

Fig. 2. Grand Average time domain data, channel Cz, bandpass filtered at
0.4Hz to 32Hz, smoothed using a moving mean with a window size of 5
time points (approximately 0.08s)

committed (t=0), the two conditions display similar error-

related negativities (ERN), but the following positive peaks

are of markedly greater amplitude in the colour condition

than the repeat condition. The offset between the two con-

ditions continues until the end of the epoch.

B. Single-Trial Classification

Not all subjects produced enough epochs to properly

gauge the success of any attempted classification. In fact,

after artefact rejection, a small number of subjects had

produced only 1 trial in each condition. Initially, however,

classification was attempted for all subjects with more than 3

artefact-free epochs per error condition. While classification

rates of > 50% were achieved for each condition in the

majority of subjects, a clear trend was found that there was a

greater likelihood of achieving this goal when a subject had

produced more epochs, as shown in “Fig. 3”.

As such, it was decided that it would be reasonable to

focus on subjects with more than 20 epochs per condition.

This left 16 subjects. Classification accuracy of greater

than 50% was achieved in each condition for 15 of these

subjects (94%). The best performance was found for subject

1, with accuracy of 82.61% in the colour condition and

80.00% in the repeat condition, giving a balanced accu-

racy of 81.30%. Mean classification rates across these 16

subjects were 62.28% in the colour condition, 64.17% in

the repeat condition. Mean balanced accuracy was 63.23%.

Classification accuracies for the colour condition and repeat

condition, as well as balanced accuracies, are reported for

the 16 subjects in Table I.

Right-tailed Fisher’s exact tests were performed on the

confusion matrices for each of these 16 subjects, to further

judge the statistical separability of the conditions. For 10 of

the subjects (1, 2, 3, 4, 6, 7, 8, 10, 13, 14), the p-value was

< 0.05.



Fig. 3. Rising “successful classification” rate (percentage of subjects
for whom > 50% classification was achieved for each condition) with
an increasing minimum-epochs-per-condition cutoff employed (correlation
coefficient 0.9418, p-value 4.5894e-20)

TABLE I

CLASSIFICATION ACCURACY FOR SUBJECTS WITH > 20 EPOCHS PER

CONDITION

Subject Colour Cond. Repeat Cond. Balanced Accuracy

1 82.61% 80.00% 81.30%

2 75.00% 80.95% 77.98%

3 61.11% 64.91% 63.01%

4 66.67% 73.08% 69.87%

5 40.00% 42.11% 41.05%

6 63.41% 63.46% 63.44%

7 66.67% 65.71% 66.19%

8 68.18% 73.33% 70.76%

9 52.00% 56.41% 54.21%

10 62.50% 61.22% 61.86%

11 55.56% 56.76% 56.16%

12 63.16% 53.13% 58.14%

13 72.41% 70.00% 71.21%

14 60.47% 63.64% 62.05%

15 51.52% 62.07% 56.79%

16 55.17% 60.00% 57.59%

Mean 62.28% 64.17% 63.23%

IV. CONCLUSIONS AND FURTHER WORK

For the first time, we have attempted single-trial EEG

classification of error conditions that could not have been

differentiated by error “type”, direction, or severity. Our

strategy was to select a small set of time-domain features

and use a weighted vote of threshold-based classifiers. In-

terestingly, our results showed that, for most of the subjects

who generated enough epochs per condition, we were able

to achieve statistically significant separation of the error

conditions.

It is encouraging to see that, even with as few as 6

epochs per condition, classification rates of greater than

50% were achieved for both conditions in two thirds of

subjects. This indicates that the small feature set may allow

a degree of robustness, even when very few training epochs

are available. However, the general trend appears to be that a

higher number of training epochs implies a higher likelihood

of successful classification. As such, we believe that this

work would benefit from further investigation, with more

data being generated per subject. Traditional methods such

as common spatial patterns (CSP), and linear discriminant

analysis (LDA) or support vector machines (SVM) were

found to be susceptible to overfitting to the existing data.

However, if enough epochs were generated, it may no longer

be necessary to use such a small feature set. It may, then,

be possible to achieve higher, or more consistently high,

classification accuracies with such methods.

Reinforcement learning – a useful application of error

detection in BCI – can effectively converge on optimal so-

lutions as long as classification rates are greater than chance

level [2], [3]. Thus, for many of our subjects, classification of

these very similar errors could be used in a learning system

to help improve the performance of a BCI.

This study opens a new door in enhancing brain-computer

interactions by requiring less mental workload from the user,

leading to a more intuitive and intelligent interaction.
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