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ABSTRACT 
 
Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable 

once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to 

identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker 

and to assess its utility in predicting response to adjuvant zoledronic acid.   

 

We used quantitative proteomics (SILAC-MS), to compare protein expression in a bone-homed 

variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-

homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast 

cancer.  SILAC-MS showed that Dedicator of cytokinesis protein 4 (DOCK4) was upregulated 

in bone-homing BM1 cells, confirmed by Western blotting. BM1 cells also had enhanced 

invasive ability compared with parental cells which could be reduced by DOCK4-shRNA.   

In a training Tissue Microarray (TMA) comprising 345 patients with early breast cancer, 

immunohistochemistry followed by Cox regression revealed that high DOCK4 expression 

correlated with histological grade (p=0.004) but not oestrogen receptor status (p=0.19) or lymph 

node involvement (p=0.15). A clinical validation TMA used tissue samples and the clinical 

database from the large AZURE adjuvant study (n=689). Adjusted Cox regression analyses 

showed that high DOCK4 expression in the control arm (no zoledronic acid) was significantly 

prognostic for first recurrence in bone (HR 2.13, 95%CI 1.06-4.30, p=0.034).  No corresponding 

association was found in patients who received zoledronic acid (HR 0.812, 95%CI 0.176-3.76, 

p=0.790), suggesting that treatment with zoledronic acid may counteract the higher risk for bone 

relapse from high DOCK4-expressing tumours.  

 

High DOCK4 expression was not associated with metastasis to non-skeletal sites when these 

were assessed collectively. In conclusion, high DOCK4 in early breast cancer is significantly 
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associated with aggressive disease and with future bone metastasis and is a potentially useful 

biomarker for subsequent bone metastasis risk.  

 

 

Keywords: DOCK4; Bone metastasis; breast cancer; biomarker; proteomics 
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INTRODUCTION 

Despite substantial progress in early detection and treatment, breast cancer still accounts for 

15% of female cancer-related deaths, with skeletal metastasis occurring in over 70% of patients 

with advanced disease [1].  Relapse in bone typically occurs years after apparently successful 

treatment of early breast cancer and a period of tumour dormancy.  Bone-targeted agents such as 

bisphosphonates [2] and denosumab [3] are widely used to treat the skeletal complications of 

established bone metastases, but have also recently been the focus of several large adjuvant 

studies in early breast cancer to assess their potential to reduce the frequency of relapse in bone 

and subsequent breast cancer mortality.  The phase III AZURE trial (BIG01/04-

ISRCTN79831382) recruited 3360 patients with stage II/III breast cancer randomised (1:1) to 5 

years of standard adjuvant therapy alone (control) or standard therapy with zoledronic acid 

(zoledronate) [4].  Although there was no significant difference in invasive disease-free survival 

in the overall population, zoledronate improved disease outcomes for women who were >5 years 

postmenopausal at diagnosis and a meta-analysis of 26 randomised trials (N=18,766), 

demonstrated that bone recurrences (HR=0.72; 95%CI 0.60, 0.86, 2p=0.0002) and breast cancer 

deaths (HR 0.82; 95%CI 0.73, 0.93, 2p=0.002) were reduced by adjuvant bisphosphonates in 

post-menopausal women [5].  Breast cancer practice has changed as a result of these studies, but 

they also highlight the unmet need for biomarkers to identify patients with early breast cancer 

who are most at risk of developing bone recurrence, thus permitting tailoring of treatment to 

patients most likely to benefit and sparing patients who would not benefit, from potential 

complications [6]. 

 

Proteomic studies are yielding key information about breast cancer metastasis to bone [7–9] and, 

in a recent proteomics-based study, validated in 571 patients, we showed that the proteins 

CAPG and GIPC1 had both prognostic and predictive potential as biomarkers of bone 

metastasis [10].  In the current study, we hypothesized that proteins, identified by proteomics 
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and up-regulated in breast cancer cells which have a propensity to home to bone, would be 

potential biomarkers for metastasis and could play key mechanistic roles in the process of 

metastatic dissemination to bone.   

 
MATERIALS AND METHODS 
 
[EdQ: please provide city, state or province, country details for each supplier at first mention, 
including suppliers of software] 
 
[EdQ: for all primary antibodies please provide catalogue/clone number, dilution used, supplier, 
(with city, state or province, country details at first mention of supplier)] 
 

Proteomic studies (Further details to those below are given in the text and in supplementary 

material, Figure S1). 

Cell culture and SILAC (Stable Isotope Labelling by Amino acids in Cell culture)  

The human breast cancer cell line MDA-MB-231 (“PCC”, parental control cells, obtained 

originally from ATCC) and a bone-homing variant (“BM1”, bone metastatic cells) [11] (the 

latter supplied by Prof. Joan Massagué, Sloan-Kettering Institute, New York), were used in a 

‘classical’ SILAC experiment [12,13].  PCC and BM1 cells were cultured in ‘heavy’ SILAC 

medium and ‘light’ medium for ~10 doublings to ensure >95% isotope label incorporation 

(Heavy media), and all cells were used within 10 doublings. ‘Heavy’ SILAC media consisted of 

DMEM containing L-arginine (13C6, 
15N4) and L-lysine (13C6, 

15N2) (R10K8, DMEM-15, 

Dundee Cell Products, Dundee, UK) supplemented with dialysed (10 kDa molecular weight cut-

off [MWCO]) foetal bovine serum (D-FBS100, Dundee Cell Products, Dundee, UK).  ‘Light’ 

media was DMEM but without the heavy isotopes (R0K0) and with 10% dialysed (10 kDa 

MWCO) foetal bovine serum.  

 

LC-MS/MS  
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Equal amounts of protein (40 µg) from light- and heavy-labelled samples were combined, 

reduced, alkylated, and separated on a 1D SDS-PAGE gel.  LC-MS-MS was performed by 

Dundee Cell products, Dundee, Scotland, UK.  Ten slices of the gel-resolved proteins were cut 

and proteins were digested into peptides using trypsin.  Tryptic peptides were separated using a 

nanoflow LC-System coupled to an LTQ-Orbitrap mass spectrometer (ThermoFisher Scientific, 

Warrington, UK).   

Quantitation and bioinformatics analysis 

Quantitation was performed using the software Max Quant 

(http://www.maxquant.org/downloads.htm), with peptide ratios calculated for each arginine- 

and/or lysine-containing peptide as the peak area of labelled arginine/lysine divided by the peak 

area of non-labelled arginine/lysine for each single-scan mass spectrum.  Peptide ratios for all 

arginine- and lysine-containing peptides sequenced for each protein were averaged.  Data output 

from Max Quant were analysed further using Excel and R (v. 3.2, http://www.r-project.org/) to 

select differentially expressed proteins.  

Western blotting  

The differential expression of DOCK4, and confirmation of DOCK4 knockdown, was assessed 

in cell lysates using Western blotting and an infra-red (IR) immunodetection system (LI-COR 

Biosciences, Nebraska, USA), as well as by Enhanced ChemiLuminescence (ECL, Promega, 

Southampton, UK).  Primary antibodies used were:  DOCK4 (Abcam, Cambridge, UK: 

ab56743, mouse monoclonal, 0.1µg/mL); beta-tubulin (Abcam ab6046, rabbit polyclonal, 

1/5000 dilution).  Secondary antibodies were:  #925-68070 IRDye 680RD goat anti-mouse IgG 

(H+L), LI-COR Biosciences, 1/5000 dilution, for detection of DOCK4 in the 700 nm channel 

(red); #925-32211 IRDye 800CW goat anti-rabbit IgG (H+L), LI-COR Biosciences, 1/5000 

dilution, for detection of beta-tubulin in the 800 nm channel (green). For ECL secondary 

antibodies were Goat-anti-mouse-HRP (Abcam, ab 6789) and goat anti-rabbit-HRP (Abcam, 

Ab6721, both 1:2,500). Normalised densitometric data from six replicate runs of the fluorescent-

This article is protected by copyright. All rights reserved.
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antibody immunoprobed samples, (and three blots from the ECL-visualized samples), were 

tested for significance using Student’s t-test. 

 
Generation of cell lines with stable DOCK4 knockdown and 3D invasion assay 
 

DOCK4 expression was knocked down in the BM1 and PCC cell lines by lentiviral delivery of a 

validated shRNA targeting DOCK4 (shR), with the use of an empty vector (cv) as control [14]. 

Wild-type (wt) cells were also studied as a control.  Inclusion of a GFP marker protein within 

the lentiviral vectors enabled FACS separation of vector-bearing clones and subsequent culture 

of pure cell populations.  Infected cells were selected by FACS sorting 48 h after lentiviral 

infection.  Confirmation of knockdown of DOCK4 protein expression was carried out by 

Western blotting as described above.  Quantification of the blots was performed by 

densitometric scanning.  

To study the effects of reduced expression of DOCK4 protein in PCC and BM1, an invasion 

assay was carried out using the IncuCyte platform (Essen BioScience, Welwyn Garden City, 

UK) following the manufacturer’s instructions for a ‘scratch-wound’ procedure.  In brief, 

triplicate wells of an ImageLock 96-well plate (Essen BioScience 4379) were over-laid with thin 

Matrigel onto which wt, cv cells or shR treated cells of PCC (50 000 cells /well) and BM1 cell 

lines (100 000 cells/well) were seeded (50 000 cells/well and 100 000 cells/well, respectively), 

and a homogeneous scratch was created using the Incucyte WoundMaker tool when the cell 

monolayer was confluent. This system enables assessment of both cell invasion and migration 

ability in a single assay.  Cell invasion/migration was assessed by measuring the closure of the 

scratch introduced on the confluent cell monolayer.  Experiments were performed in triplicate 

using independent cultures of cells.  Data were analysed using IncuCyte software and Excel.  

 

Patients, samples and immunohistochemistry 

This article is protected by copyright. All rights reserved.
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All analyses on patient samples were performed with Ethics approval (Leeds training set, 

06/Q1206/180; AZURE validation set 55/03/182).   

Initial studies of DOCK4 expression were performed using a training TMA comprising 345 

specimens with defined tumour type, grade, ER, lymph node (LN) and overall survival (OS) 

data, from breast tumours diagnosed at the Leeds Teaching Hospitals NHS Trust (1987–2005).  

Samples were stained using a rabbit polyclonal DOCK4 antibody (1:100, Bethyl Laboratories 

Inc, Montgomery, TX, USA; A302-263A) and corroborated in a smaller cohort with a mouse 

monoclonal antibody (1:50, Abcam; Ab56743). Additional details are provided in 

supplementary material, Supplementary materials and methods. 

The main analyses for correlations with risk of bone metastasis were performed on TMAs 

constructed from primary tumours from a sub-set of patients within the overall AZURE trial (n 

= 689). Due to the relatively high prevalence of bone metastatic outcomes and the long follow-

up (median 84 months [interquartile range 66-93]), these TMAs provide an excellent resource 

for validation of protein biomarkers emerging from our proteomics studies.  Protein expression 

was assessed using the Bethyl DOCK4 antibody (A302-263A). DOCK4-specificity for this 

antibody was confirmed by immunohistochemistry using FFPE cell pellets from BM1 cells with 

and without DOCK4 knockdown (supplementary material, Figure S2). Full gel images for the 

antibodies using ECL as the visualization method with use of positive and negative control cell-

lines are included (supplementary material, Figure S3).  

 

Digital images of immunostained TMA cores were created using a digital scanner (Aperio Scan 

Scope XT, Milton Keynes, UK).  Cytoplasmic staining assessment in the invasive margins of 

primary breast tumours was carried out independently by two trained operators, blinded to 

outcome data, under the supervision of an experienced breast histopathologist (AMH) who also 

adjudicated discrepant scores. The level of agreement of the two scores was measured using 

Cohen’s kappa coefficient.  All scores were based upon intensity of staining and not the number 
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of positive cells.  Staining intensity was ranked based on a three tier ordinal categorical system 

used to rank the tumours based on intensity of cytoplasmic staining [15,16] where 1 = weak 

staining; 2 = moderate, easily perceived staining; 3 = strong/intense staining, i.e. the scoring was 

based on staining intensity only.  

 

Statistical analyses  

All immunohistochemical analyses followed REMARK guidelines [17]. Statistical analyses 

evaluated the associations between protein expression and relevant clinical and pathological 

variables (e.g. ER/PR/HER2 status) using Fisher’s Exact test (categorical variables) and the 

Kruskal-Wallis test (continuous variables), before assessing prognostic and predictive 

associations with time-to-event data (time to first distant recurrence, time to first skeletal 

recurrence, time to first non-skeletal recurrence) using Cox proportional hazards regression, the 

Kaplan-Meier estimate of the survival function and the log-rank test.  Time to first distant 

recurrence was defined as the time from the date of randomisation to the date of the distant 

recurrence.  In analyses, other types of events were censored, e.g. if a local recurrence occurred 

prior to any distant recurrence, the patient would be censored at the date of the local recurrence.  

Time to first skeletal recurrence and first non-skeletal recurrence were defined similarly.  Time 

to first skeletal recurrence irrespective of all other previous recurrences was also investigated.  

Time to event analysis was first performed within treatment arms to identify prognostic 

associations with the biomarkers.  The predictive heterogeneity of effect between treatment arms 

for time to distant events was assessed in multivariable analysis by including an interaction term 

in the Cox proportional hazard regressions for treatment arm and biomarker (while adjusting for 

systemic therapy plan, ER status and lymph node involvement).  All significance tests were two-

sided and were designated significant at the 5% level. 

 
 
RESULTS 

This article is protected by copyright. All rights reserved.
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Proteomic identification of proteins specifically associated with breast cancer bone 

metastasis   

Proteins identified in the ‘forward’ and ‘reciprocal’ labelling experiments (supplementary 

material, Figure S1) were aligned and the most robust, highest quality, data were extracted for 

analysis using the following stringent selection criteria:  protein identified in both datasets; ≥2 

so-called razor+unique peptides assigned to identifications (clarifies assignment of protein 

identification); equal numbers of peptides and razor+unique peptides assigned to identifications. 

This resulted in 2006 proteins taken forward for analysis out of a total of 2999 identified in the 

complete data set (Full proteomic data are available on the publicly accessible database ORDA 

(https://orda.shef.ac.uk/)).   

 

The aligned dataset was filtered further by using a 1.75-fold cut-off to distinguish change (up or 

down) in protein expression, resulting in 48 proteins up-regulated in BM1 relative to PCC cells 

(supplementary material, Table S1).    These were prioritized for further study using literature 

evidence of relevance to bone metastasis, the magnitude of the differential expression fold 

change and evidence (where available) of non-association with lung metastases, based on 

correlation with our other proteomic datasets that included a MDA-MB-231 variant which 

specifically homes to lung (10, 11).  This allowed us to identify proteins likely to be involved in 

breast cancer metastasis to bone.  Consequently, four proteins had potential for further 

consideration: Dedicator of cytokinesis protein 4 (DOCK4, fold-change 2.7), SerpinB2 (fold-

change 15.6), cell-division cycle protein 20 homolog (CDC20, fold-change 3.7), and pericentrin 

(fold-change 2.5).  While all four have published evidence linking them to breast cancer we 

focused on DOCK4 for further investigation and clinical validation based on its published role 

in cell migration including breast cancer cell migration, metastasis [18-21] and tumour 

angiogenesis (14), processes known to be integral to dissemination of tumour cells and 

This article is protected by copyright. All rights reserved.
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development of bone metastases. Moreover, DOCK4 functions as a guanine nucleotide 

exchange factor for the GTPase Rac1, a key regulator of motility [14,19,20] and localises at 

actin-rich protrusions in migrating breast cancer cells [19], whilst SNPs within the promoter 

region of DOCK4 have been detected in breast cancer [22]. 

 

Confirmation of DOCK4 upregulation in BM1 cells 

Analysis of DOCK4 expression levels by Western blotting in the BM1 and PCC cell-lines 

showed a 2-fold increase in DOCK4 expression within the bone homing BM1 cell line 

compared to parental PCC (Figure 1A,C). Increased expression of DOCK4 within BM1 cell 

total cell lysates was also confirmed using ECL-based visualization.    

 

DOCK4 is upregulated during breast cancer cell-motility 

There was significant knockdown of DOCK4 protein expression in the BM cell type following 

lentiviral delivery of DOCK4 shRNA (shR) compared with the empty vector (cv) control 

(Figure 1B,D).  In the wound healing assay, BM1 cells (control vector) had enhanced invasive 

and migratory  ability compared with the PCC cells, with 13% and 39% wound closure at 6 and 

12 h respectively, compared to 9 and 20% for PCC at 6 and 12 h (Figure 1E,F).  Invasion 

through Matrigel was reduced in cells with DOCK4 knockdown (shR) compared to control, with 

significant differences in wound closure observed for both cell types at 6 h and 12 h, and with a 

greater effect seen at 6 h.   

 

Association between DOCK4 expression and tumour grade in local breast tumour array 

DOCK4 expression was initially assessed in a local breast tumour array of 345 unselected breast 

tumours (88% ductal, 9% lobular, 3% other) with patient data available on tumour grade (18% 

Grade 1, 44% Grade 2, 38% Grade 3) oestrogen receptor (ER), and axillary lymph node (LN) 

involvement. Examples of typical staining patterns are shown in Figure 2. Analysis revealed a 
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significant association between DOCK4 expression and histological tumour type (p = 0.002) 

and tumour grade (p=0.004) with 86.4% Grade 3 and 77.3% grade 2 ductal carcinomas 

expressing moderate/high DOCK4 (as opposed to 62.5% grade 1 carcinomas), but no 

association with ER status (positive versus negative, p=0.185) or LN status (involved versus not 

involved, p=0.15).  These data suggested that DOCK4 expression was associated with tumour 

aggressiveness and further supported our selection of DOCK4 for clinical validation in the 

AZURE patient cohort. 

 

Clinical validation of DOCK4 expression in breast cancer patients in the AZURE study. 

Independent scoring of stained TMAs by two trained operators (JW and SR) under the 

supervision of AMH yielded a Cohen’s kappa coefficient value of 0.86, signifying excellent 

agreement.  Possible associations between clinical outcomes and immunohistochemistry scores 

for DOCK4 were tested for 689 patients in the AZURE study (330 control arm, 359 zoledronate 

arm).  Demographic data for these patients are similar to those of the whole AZURE population 

(Table 1).  DOCK4 had no significant associations with age, lymph node involvement, ER 

status, tumour grade (though this approached significance, p = 0.062), menopausal status, 

systemic therapy, chemotherapy and statin use.  HER2 status was not a mandated assessment 

but was available for 307 participants.  DOCK4 was significantly associated with HER2 status 

with a smaller proportion of patients with low DOCK4 being HER2 positive (P<0.001).  

However, adjustment for HER2 status had no impact on subsequent statistical analyses in either 

control or zoledronate arms.       

 

AZURE patients: Association of DOCK4 expression with distant event recurrence. 

Control arm. Initial analyses considered possible associations between DOCK4 expression 

(scored as 1, 2 or 3) and disease-free survival (DFS) for distant recurrence components of DFS. 

This article is protected by copyright. All rights reserved.
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Whilst we found no statistically significant association between DOCK4 and first event in non-

skeletal sites, taken as a group (p = 0.08, Figure 3A) or in any distant site (p = 0.475, Figure 3D) 

higher DOCK4 was significantly associated with increased risk of developing first event as 

skeletal recurrence whether only in bone (p = 0.043, Figure 3C) or in bone and other distant 

sites concurrently (p = 0.033, Figure 3B).   

 

Subsequently, dichotomised TMA expression scores were used where high DOCK4 expression 

(score of 3) was compared with low DOCK4 expression (score of 1 or 2).  Using these 

categories, Kaplan-Meier estimates of the survival function for time to distant recurrence 

confirmed that high DOCK4 is significantly prognostic for first distant recurrence involving 

bone only (HR 2.1; 95% CI 1.09, 4.15, p = 0.024, Figure 4A). For first distant event involving 

both skeletal and other site(s) concurrently, although the same trend was observed, the 

association did not reach significance (HR 1.6; 95%CI 0.88, 3.05, p = 0.113, Figure 4C).  

 

Where the first distant event was in non-skeletal sites (taken as a group), the corresponding 

dichotomised analyses (Figure 4E), suggested a non-significant reduced risk of non-skeletal 

events with high DOCK4 (HR = 0.2; 95%CI 0.03, 1.51, p = 0.12). In the dichotomised analyses, 

we found no association between high DOCK4 and first skeletal event, whether or not other 

distant events had occurred first, (HR = 1.3; 95%CI 0.73, 2.33, p = 0.373), suggesting that the 

inclusion of metastasis in other sites, before eventual spread to bone, counters the significant 

association seen with the bone only analyses. 

 

Zoledronate arm.  

In the zoledronate arm, dichotomised analyses revealed no association between DOCK4 and 

bone only distant events (HR 0.6; 95%CI 0.14, 2.62, p = 0.488, Figure 4B), ie the increased risk 

of bone-only first event posed by high DOCK4 in the control arm was abolished by zoledronate. 
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This suggests that DOCK4 may act as a predictive biomarker for prevention of bone metastases 

by zoledronate. This was confirmed by examining Kaplan-Meier plots for DOCK4 high and 

DOCK4 low comparing control and zoledronate patients for the various events (supplementary 

material, Figure S5). Figure S5B clearly shows the reduction in bone metastasis-only risk as a 

first event (HR 0.1; 95% CI 0.03, 0.5, p=0.003) in patients with high DOCK4 treated with 

zoledronate.  

For the first event involving bone and other sites concurrently, there was no significant 

association seen in the zoledronate group (Figure 4D). 

 

Cox proportional hazards regressions adjusted for systemic therapy plan, ER status, HER2 

status and lymph node involvement 

Control arm. Adjusted analyses (Table 2) confirmed that high DOCK4 expression was 

significantly prognostic for skeletal only events (HR 2.13, 95% CI 1.06, 4.30, p = 0.034).  

Similar analyses for first recurrence events involving the skeleton and other site(s) concurrently 

showed no significant association (HR 1.63, 95%CI [0.86, 3.12], p = 0.137; Table 2).  No 

significant association was found in these adjusted analyses for non-skeletal distant events when 

assessed collectively. Analysis of relationships to other individual metastatic sites was not 

possible with this data-set.  

 

Zoledronate arm.  The significant prognostic effect of DOCK4 for skeletal only metastases seen 

in the control arm patients was not observed in the zoledronate arm (HR 0.812, 95%CI [0.18, 

3.76], p = 0.790) (Table 2), suggesting again that the increased risk for skeletal metastasis in 

patients with high DOCK4 levels at baseline, may be counteracted by treatment with 

zoledronate.  This was tested formally by including an interaction term in the Cox proportional 

hazards regressions for treatment arm and DOCK4 level for time to first event, skeletal only.  

These analyses suggested a predictive effect for treatment with zoledronate (HR 0.12 95%CI 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
0.03, 0.56; likelihood ratio test p=0.063, [hazard ratio <1 indicates improvement with 

zoledronate]), though this did not reach significance. 

 

Overall survival and menopausal status 

As shown in Figure 4I,J and supplementary material, Figure S5I,J, although there appeared to be 

a trend towards high DOCK4 producing worse outcome, DOCK4, expression level did not 

impact significantly on overall survival in either the control or the zoledronate arms. When post-

menopausal and pre-menopausal patients were analysed separately, although similar 

associations with bone metastasis to the full group were observed, there was a loss of statistical 

significance and this may be due to the smaller numbers involved. 

 

DISCUSSION 

Breast cancer bone metastasis causes significant morbidity and biomarkers which can predict 

the development of bone metastases are badly needed. In this translational study, SILAC-MS-

based comparison of bone homing and non-homing cell variants and functional in vitro work, 

coupled with rigorous clinical validation enabled us to identify DOCK4 as a potential biomarker 

for this purpose.   

 

Our discovery science used MDA-MB-231 and its bone-homing variant BM1. The MDA-MB-

231 cell line is regarded as ‘gold standard’ for this type of research as it was derived from a 

pleural effusion of a breast cancer patient with widespread tumour metastasis, many years after 

resection of the primary tumour [23]. Furthermore, the validity of this approach has already 

been proven in our previous work in which the importance of the proteins CAPG and GIPC1 as 

biomarkers was discovered and subsequently clinically validated [10]. Here, we focused on 

DOCK4, a key guanine nucleotide exchange factor (GEF) regulating the activation of the small 
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GTPase Rac1 (19,20,24,25).  DOCK4-mediated activation of Rac1 has been demonstrated to 

promote actin reorganization and the formation of lamellipodia at the leading edge of breast 

cancer cells [19] as well as the formation of lateral filopodia, and blood vessel lumen 

morphogenesis within tumour angiogenesis [14].   

 

DOCK4 was expressed in parental MDA-MB-231 cells (PCC), but was more abundant in the 

bone-homing variant (BM1).  DOCK4 knockdown inhibited the migration of both PCC and BM 

cell-lines with inhibition being greater at 6 h than 12 h post assay-initiation, suggesting that 

DOCK4-mediated cell invasion may be important in the earlier stages of breast cancer cell-

migration. However, enhanced cell-migration and invasiveness resulting from high DOCK4 

expression is only one aspect of the bone-homing cells which makes them bone homing. In 

particular, c-MAF targets and other proteins elevated in the bone homing cells might drive the 

bone-homing phenotype as well as DOCK4. Our observation that, in patients, high DOCK4 is 

specifically associated with first distant metastasis in bone, may be linked to these factors, 

including those in the bone micro-environment. Notably, in this regard, the specific association 

of high DOCK4 with bone metastasis at any time, is lost once metastasis has occurred 

elsewhere. This presumably indicates the substantially altered metastatic environment 

influencing bone metastasis once non-bone metastases have occurred. Association with bone as 

first metastatic site is lost in zoledronate-treated patients suggesting that zoledronate treatment 

reduces the risk of bone metastasis to a level similar to that in non-high DOCK4 patients. 

 

This work has shown that DOCK4 has a similar prognostic and predictive profile to CAPG and 

GIPC1 for the prognosis of skeletal-only relapse within control arm patients.  DOCK4 was also 

similar to the previously discovered markers in not being predictive of non-skeletal recurrence 

events within control arm patients. Treatment with zoledronate abolished the association of high 

levels of all three of these proteins in development of skeletal-only metastasis.  
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DOCK4 expression is induced by the cytokine transforming growth factor-ȕ (TGFȕ) acting via 

the Smad pathway, and this is a key step in TGFȕ’s pro-metastatic effect [21]. GIPC1 is also a 

key scaffolding protein which functions to transmit signals from the TGFȕ-receptor and its co-

receptor endoglin to downstream Smad-phosphorylation [26]. TGFȕ is a regulator of numerous 

steps within metastasis including intravasation, extravasation and cancer-cell survival at distant 

organ sites [27]. The transcription factor c-MAF has recently been identified as a key regulator 

of breast cancer bone metastasis [28,29]. c-MAF expression is induced by TGFȕ and a recent 

patent application showed that DOCK4-expression correlates with MAF-expression within 

primary tumours [30]. Examination of our quantitative proteomic data set identified 36 proteins 

also present in the c-MAF gene set (a panel of 109 genes in total). Within the 36 proteins 

quantified by proteomics, 15 proteins displayed the same change (increase or decrease of 

expression within bone-homing cells compared to parental cells) as the relevant gene transcripts 

in response to c-MAF expression. DOCK4 may therefore be a component of a protein panel 

which responds to elevated c-MAF expression within bone homing breast cancer cells. 

 

As well as being a prognostic biomarker, our data also provide evidence that DOCK4 is a 

potential predictive biomarker in terms of the treatment effect of zoledronate for bone as first 

metastatic site, since the addition of zoledronate appears to reduce the risk of patients with high 

DOCK4 levels to that of patients with lower DOCK4 levels. There was also a substantial HR in 

favour of a treatment effect when an interaction term was included in the Cox proportional 

hazards regression, though this fell short of statistical significance and additional testing in a 

further patient cohort is needed before DOCK4 can be confirmed as a predictive biomarker. 
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Our current study is supported further through analysis of DOCK4 gene expression within a 

publicly available database where high DOCK4 transcript levels predicted distant bone 

metastatic spread of breast cancer (supplementary material, Figure S4)   

  

 

Interestingly, DOCK4 was not prognostic for DFS in terms of metastasis at non-skeletal sites, 

taken as a group (N=28). Indeed, data for the control arm in Figure 4 and Table 2 (and 

supplementary material, Figure S5) suggest that high DOCK4 may be associated with a 

reduction in the occurrence of non-skeletal metastasis, an effect which is not seen in the 

zoledronate arm. Whilst zoledronate is advantageous in terms of preventing skeletal metastasis 

in DOCK4 high patients, it may also remove a potentially advantageous effect for non-skeletal 

metastases.  Whilst our data do not point to any particular mechanistic explanation for this 

effect, it is possible that zoledronate may have effects other than on the skeleton and, in this 

respect, we note the negative impact of zoledronate on overall survival in pre-menopausal 

women recently reported, where in non-postmenopausal patients with MAF-positive tumours, 

zoledronate was associated with worse invasive-disease-free survival and overall survival [28]. 

Clearly, these factors need to be borne in mind in the consideration of DOCK4 as a predictive 

biomarker for zoledronate response in bone metastasis prevention.  Because our analyses 

included non-skeletal sites as a single group, they do not exclude the possibility of DOCK4 

association with a less common site for metastatic spread than the skeleton.  

 

There are some limitations to the current study. Although the number of patients available for 

analysis from the AZURE study considerably exceeds that required for statistical powering, 

there is currently no equivalent independent sample set available for further validation.  Also, 

breast cancer metastasis to bone involves numerous autocrine and paracrine signalling events 

[31], and these and the directionality and recruitment of key signalling pathways that migration 
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involves, is clearly not replicated within the invasion assay used in the current study.  More 

complex tools to assess this are not currently available. 

 

Further studies of the mechanistic role of DOCK4 in breast cancer bone metastasis and 

implications for pharmacological inhibition is justified by our work.  
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Legends to Figures 

Figure 1.  Expression of DOCK4 in BM and PCC cell lines and the effects of knockdown 

by shRNA.  (A–C)  DOCK4 was confirmed to be of higher expression in BM1 cell type by 

Western blotting (2.0-fold induction, p = 0.027), and 81% and 88% knock-down of DOCK4 

protein expression was achieved in PCC and BM1 cells, respectively.  Representative whole-gel 

lane images are shown.  wt = wild type (no vector); cv = control vector; shR = shRNA.  (E,F) 

Invasion / migration assay.  The ability of PCC and BM1 cells to move through Matrigel™ 

matrix was assessed using a scratch-wound assay. Significant differences between the control 

vector and DOCK4 knock-down cells were seen at the 6 h and 12 h time points.   
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Figure 2. Examples of immunostaining for DOCK 4 in TMA cores from patients in the 

AZURE study. 

Examples of protein expression intensity scores for DOCK4 protein as assessed using 

immunohistochemistry and visualised at magnification of 20X.  The scoring was based on the 

intensity of staining in the cytoplasmic compartment of the tumour cells only.  Scale bar = 200 

µm.   
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Figure 3. Association of DOCK4 with DFS events. Kaplan-Meier estimates of the relationship 

between expression of DOCK4 and (A) non-skeletal DFS events (B) skeletal DFS events (where 

other distant events may have been recorded at the same time);  (C) solely skeletal DFS events 

(where no other distant event was recorded at the same time) and (D) any DFS events (where 

first event was recorded at any distant site) in patients in the control arm of the AZURE trial (n 

= 434). P-value is from the logrank test for testing equality of survival functions. 

 

 

Figure 4. Univariate associations of distant recurrence outcomes with biomarker 

expression in control and zoledronate arms. (Estimates are from Cox proportional hazards 

regressions) Kaplan-Meier estimates of the survival function for time to distant recurrence (DR) 

and overall survival for control and zoledronate arms. Numbers 1 to 3 refer to the DOCK4 

staining intensity scores. These were dichotomised, ie DOCK4 low (1 and 2); DOCK4 high (3).  

Comparisons shown to be significant are also significant in analyses adjusting for the effect of 

systemic therapy plan, ER status and lymph node involvement. (A,B): Skeletal only; (C,D): 

skeletal and other; (E,F): Non-skeletal; (G,H): First skeletal irrespective of whether other distant 
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events have occurred previously (ie bone metastasis-free survival).  (I,J): Overall Survival (OS). 

P-values refer to the logrank test. For definitions of non-skeletal, skeletal and other and skeletal 

only see legend to Table 1. 
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Table 1. Characteristics of the patients whose tissue was assessed on TMAs in this study 
(as at baseline on the AZURE study) and first disease-free survival (DFS) events.  Non-
skeletal (first distant recurrence event does not include any skeletal component);  Skeletal and 
other (first distant recurrence event reported includes both skeletal and other sites of metastasis, 
as well as skeletal only); Skeletal only (first distant recurrence event only skeletal - this group is 
a subset of those classified as skeletal and other). 
 

Characteristic DOCK4 dataset Full AZURE trial population 
Zoledronate 

(n=359) 
Control 
(n=330) 

Zoledronate 
(N=1681) 

Control 
(n=1678) 

 
Age (years) Median (range) 

 
50 (26, 75) 

 
51 (32, 79) 

 
51 (20-89) 

 
51 (21, 89) 

 
Axillary lymph nodes - no. (%)     

0 4 (1.2) 4 (1.2) 29 (1.7) 32 (1.9) 
1-3 223 (67.6) 223 (67.6) 1041 (61.9) 1032 (61.5) 
≥4 103 (31.2) 103 (31.2) 604 (35.9) 608 (36.2) 

Tumour stage - no. (%)     
T1 115 (32.0) 116 (35.2) 542 (32.2) 523 (31.2) 
T2 196 (54.6) 163 (49.4) 851 (50.6) 867 (51.7) 
T3 37 (10.3) 43 (13) 227 (13.5) 228 (13.6) 
T4 11 (3.1) 8 (2.4) 58 (3.5) 59 (3.5) 

     
Histological grade - no. (%)     

1 26 (7.2) 23 (7.0) 145 (8.6) 140 (8.3) 
2 144 (40.1) 130 (39.4) 731 (43.5) 708 (42.2) 
3 187 (52.1) 174 (52.7) 765 (45.5) 787 (46.9) 

Not specified  3 (0.9)   
Missing 2 (0.6)    

ER status - no. (%)     
ER positive 255 (77.3) 255 (77.3) 1319 (78.5) 1316 (78.4) 
ER negative 80 (22.3) 72 (21.8) 349 (20.8) 355 (21.2) 
ER unknown 1 (0.3) 3 (9) 13 (0.8) 7 (0.4) 

PR status - no. (%)     
PR positive 126 (35.1) 102 (30.9) 725 (43.1) 698 (41.6) 
PR negative 63 (17.5) 73 (22.1) 382 (22.7) 424 (25.3) 
PR unknown 169 (47.1) 153 (46.4) 571 (34.0) 548 (32.7) 

Missing 1 (0.3) 2 (0.6)   
HER2 status - no. (%)     

HER2 positive 38 (10.6) 48 (12.7) 192 (11.4) 223 (13.3) 
HER2 negative 106 (29.5) 84 (26.0) 648 (38.5) 603 (35.9) 

HER2 unknown/not measured 209 (58.3) 197 (61.2) 831 (49.5) 843 (50.1) 
Missing 6 (1.7) 1 (0.3)   

Menopausal status - no. (%)     
Pre-menopausal 167 (46.5) 151 (45.8) 751 (44.7) 752 (44.8) 

≤ 5 years since menopause 53 (14.8) 54 (16.4) 247 (14.7) 244 (14.5) 
> 5 years since menopause 112 (31.2) 97 (29.4) 519 (30.9) 522 (31.1) 

Menopausal status unknown 27 (7.5) 28 (8.5) 164 (9.8) 160 (9.5) 
Planned systemic therapy - no. (%)     

Endocrine therapy alone 24 (6.7) 17 (5.2) 76 (4.5) 74 (4.5) 
Chemotherapy alone 79 (22.0) 72 (21.8) 362 (21.5) 360 (21.5) 

Endocrine therapy plus 
chemotherapy 

256 (71.3) 241 (73.0) 1243 (73.9) 1243 (74.1) 

Type of chemotherapy     
Anthracyclins - no. (%) 328 (91.4) 307 (93.0) 1567 (97.6) 1564 (97.6) 

Taxanes - no. (%) 48 (13.4) 41 (12.4) 390 (24.3) 385 (24.0) 
Timing of chemotherapy     

Neo-adjuvant 14 (3.3) 11 (3.3) 104 (6.5) 104 (6.5) 
Post-operative 345 (96.7) 319 (96.7) 1501 (93.5) 1499 (93.5) 

Statin use - no. (%) 19 (5.3) 15 (4.5) 97 (5.8) 101 (6.0) 
Type of first disease-free survival 
event - no. (%) 

    

Loco-regional recurrence 26 (7.2) 17 (5.2) 79 (4.7) 78 (4.7) 
Distant recurrence  68 (18.9)  74 (22.4) 332 (19.8) 341 (20.3) 

Distant and loco-regional 
recurrence 

5 (1.4) 3 (0.9) 18 (1.1) 21 (1.3) 

Death without prior recurrence 11 (3.1) 13 (3.9) 53 (3.2) 44 (2.6) 
First distant recurrence is 
nonskeletal - no. (%) 

    

 46 (12.8) 28 (8.5) 194 (11.5) 165 (9.8) 
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First distant recurrence includes 
skeletal and other - no. (%) 

    

 27(7.5) 49 (14.8) 156 (9.3) 197 (11.7) 
First distant recurrence is skeletal 
only - no. (%) 

    

 16 (4.5) 38 (11.5) 97 (5.8) 140 (8.3) 
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Table 2.  Cox regression analysis for associations between protein IHC and distant 

recurrence events by AZURE trial arm.  

Reference category in each multivariable model is DOCK4 low (1 or 2) Comparisons shown to 

be significant are also significant in analyses adjusting for the effect of systemic therapy plan, 

ER status, HER2 status and lymph node involvement. Time to first bone metastasis is defined as 

time to the first skeletal distant recurrence, irrespective of whether other distant recurrence has 

occurred earlier (ie bone metastasis-free survival).   For definitions of non-skeletal, skeletal plus 

other and skeletal only, see legend to Table 1. NB: n = number of events and N = number at 

risk. 

 
 

  Standard Treatment Standard Treatment + Zoledronic 
Acid 

  N 
(at 

risk) 

n 
(events) 

HR 
(95% CI) 

p-
value 

N 
(at 

risk) 

n 
(events) 

HR 
(95% CI) 

p-
value 

Nonskeletal 
distant 
recurrence 

Unadj 330 28 0.154 
[0.021,1.131] 

0.066 359 46 1.162 
[0.577,2.342] 

0.674 

 Adj 329 28 0.201 
[0.027,1.506] 

0. 118 353 46 0.999 
[0.478,2.086] 

0.997 

Distant 
recurrence 
including 
skeletal 

Unadj 330 49 1.642 
[0.883,3.052] 

0.117 359 27 0.96 
[0.363,2.535] 

0.934 

 Adj 329 49 1.634 
[0.855,3.121] 

0.137 353 26 0.999 
[0.336,2.967] 

0.998 

Skeletal 
only distant 
recurrence 

Unadj 330 38 2.121 
[1.085,4.148] 

0.028 359 16 0.595 
[0.135,2.619] 

0.493 

 Adj 329 38 2.133 
[1.058,4.304] 

0.034 353 16 0.812 
[0.176,3.756] 

0.79 

Bone 
metastasis 
at any time 

Unadj 330 62 1.302 
[0.728,2.328] 

0.374 359 49 0.81 
[0.38,1.728] 

0.586 

 Adj 329 62 1.344 
[0.734,2.46] 

0.338 353 47 0.882 
[0.387,2.012] 

0.765 
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