

This is a repository copy of Validity and Responsiveness of Combined Inflammation and Combined Joint Damage Scores Based on the OMERACT Rheumatoid Arthritis MRI Scoring System (RAMRIS).

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139625/

Version: Accepted Version

Article:

Sundin, U, Østergaard, M, Glinatsi, D et al. (10 more authors) (2019) Validity and Responsiveness of Combined Inflammation and Combined Joint Damage Scores Based on the OMERACT Rheumatoid Arthritis MRI Scoring System (RAMRIS). Journal of Rheumatology, 46 (9). pp. 1222-1227. ISSN 0315-162X

https://doi.org/10.3899/jrheum.181064

© 2019 The Journal of Rheumatology. This is a pre-copyediting, author-produced PDF of an article accepted for publication in The Journal of Rheumatology following peer review. The definitive publisher-authenticated version Validity and Responsiveness of Combined Inflammation and Combined Joint Damage Scores Based on the "OMERACT Rheumatoid Arthritis MRI Scoring System (RAMRIS),Ulf Sundin, Mikkel Østergaard, Daniel Glinatsi, Anna-Birgitte Aga, Kim Hørslev-Petersen, Merete L. Hetland, Kristian Stengard-Pedersen, Peter Junker, Bo J. Ejbjerg, Paul Bird, Philip G. Conaghan, Siri Lillegraven, Espen A. Haavardsholm, The Journal of Rheumatology Feb 2019, jrheum.181064 is available online at: https://doi.org/10.3899/jrheum.181064

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Validity and Responsiveness of Combined Inflammation and Combined Joint Damage Scores based on the OMERACT Rheumatoid Arthritis MRI Scoring System (RAMRIS)

Author Name	ORCID ID
Ulf Sundin	https://orcid.org/0000-0003-1860-6150
Mikkel Østergaard	https://orcid.org/0000-0003-3690-467X
Daniel Glinatsi	https://orcid.org/0000-0003-0452-8200
Anna-Birgitte Aga	
Kim Hørslev-Petersen	https://orcid.org/0000-0002-5475-7610
Merete L. Hetland	https://orcid.org/0000-0003-4229-6818
Kristian Stengard-Pedersen	https://orcid.org/0000-0003-0779-8054
Peter Junker	https://orcid.org/0000-0002-2684-9964
Bo J. Ejbjerg	
Paul Bird	https://orcid.org/0000-0003-3314-3270
Philip G. Conaghan	https://orcid.org/0000-0002-3478-5665
Siri Lillegraven	https://orcid.org/0000-0003-3615-0134
Espen A. Haavardsholm	https://orcid.org/0000-0002-1427-4745

Key Indexing Terms

Rheumatoid Arthritis, Magnetic Resonance Imaging, Clinical Trials, Outcome Assessment, OMERACT

Departments/Institutions

Department of Rheumatology, Diakonhjemmet Hospital; Institute of Health and Society, University of Oslo, Oslo, Norway; Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup; Department of Clinical Medicine, University of Copenhagen, Copenhagen; King Christian 10th Hospital for Rheumatic Diseases; University of Southern Denmark, Institute of Regional Health Research, Graasten; Institute of Clinical Medicine, Aarhus University Hospital, Århus; Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense; Zealand University Hospital, Køge, Denmark; University of New South Wales, Sydney, Australia; Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds; NIHR Leeds Biomedical Research Centre, Leeds, UK.

Financial Support

This project has received no outside funding

Conflicts of interest

No conflicts of interests to report

Authors

U. Sundin, MD, Research Fellow, Department of Rheumatology, Diakonhjemmet Hospital, and Institute of Health and Society, University of Oslo, Oslo, Norway.

M. Østergaard, MD, PhD, DMSc, Professor, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, and the Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

D. Glinatsi, MD, PhD, Postdoctoral Researcher, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark.

A.B. Aga, MD, PhD, Senior Consultant and Postdoctoral Researcher, Department of Rheumatology, Diakonhjemmet Hospital Oslo, Norway.

K. Hørslev-Petersen, MD, DMSc, Professor, Senior Consultant, King Christian 10th Hospital for Rheumatic Diseases, and the Institute of Regional Health Research, University of Southern Denmark, Graasten, Denmark.

M.L. Hetland, MD, PhD, DMSc, Professor, COPECARE, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, and the Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

K. Stengaard-Pedersen, MD, DMSc, Professor Emeritus, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.

P. Junker, MD, DMSc, Professor, Department of Rheumatology, Odense University Hospital and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.

B.J. Ejbjerg, MD, PhD, Chief Consultant, Zealand University Hospital, Køge, Denmark.

P. Bird, BMed (Hons), FRACP, PhD, Grad Dip MRI, Associate Professor, University of NSW, Sydney, Australia.

P.G. Conaghan, MB, BS, PhD, FRACP, FRCP, Professor of Musculoskeletal Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom.

S. Lillegraven, MD, MPH, PhD, Postdoctoral Researcher, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway.

E.A. Haavardsholm, MD, PhD, Professor, Department of Rheumatology, Diakonhjemmet Hospital, and Institute of Health and Society, University of Oslo, Oslo, Norway.

<u>Correspondence</u>

Ulf Sundin, MD, Diakonhjemmet Sykehus, Diakonveien 12, 0370 Oslo, Norway. <u>Uffe.sundin@gmail.com</u>.

Running Head

Combined RA MRI Scores

Word count

1505/1500

Abstract

Objective

The OMERACT RA MRI scoring system (RAMRIS) is used in clinical RA trials. We have explored methods to combine the RAMRIS features into valid and responsive scores for a) inflammation and b) joint damage.

Methods

We used data from three large randomized early RA trials to assess five methods to develop a combined score for inflammation based on RAMRIS bone marrow edema, synovitis and tenosynovitis scores, and a combined joint damage score based on erosions and joint space narrowing. Methods included unweighted summation, normalized summation, and three different variants of weighted summation of the RAMRIS features. We used a derivation cohort to calculate summation weights to maximize the responsiveness of the combined score. Construct validity of the combined scores was examined by assessing correlations to imaging, clinical and biochemical measures. Responsiveness was tested by calculating the standardized response mean and the relative efficiency of each score in a validation cohort.

Results

Patient characteristics, as well as baseline and follow-up RAMRIS scores were comparable between cohorts. All combined scores were significantly correlated to other imaging, clinical and biochemical measures. Inflammation scores combined by normalized and weighted summation had significantly higher responsiveness in comparison to unweighted summation, with standardized response mean (95% CI) for unweighted summation 0.62 (0.51-0.73), normalized summation 0.73 (0.63-0.83), and weighted summation 0.74 (0.65-0.84). For the damage score, there was a trend towards higher responsiveness for weighted summation.

Conclusion

Combined MRI scores calculated by normalized or weighted summation of individual MRI pathologies were valid and responsive.

Introduction

Magnetic resonance imaging (MRI) allows detailed assessment of the synovial joint. In rheumatoid arthritis (RA), MRI is more sensitive than radiography for detecting bone erosions and cartilage loss (1-3), and can visualize the inflammatory lesions that precede joint destruction (4-8).

MRI features are frequently used as outcome measures in RA clinical trials (8, 9). Outcome Measures in Rheumatology (OMERACT) is an independent initiative to develop and validate outcome measures for clinical trials in rheumatic diseases (10, 11). The OMERACT RA MRI Scoring system (RAMRIS) outlines semi-quantitative scoring of five RA pathologies: bone erosions, joint space narrowing (JSN), synovitis, tenosynovitis and bone marrow edema in the wrist and metacarpophalangeal joints (2, 12, 13). However, the primary interest in clinical studies might be the total inflammatory activity or the progression of total structural joint damage.

The objective of this study was to develop and validate two combined MRI scores, one for inflammation and one for joint damage, derived from the five RAMRIS pathology scores, with emphasis on responsiveness and construct validity.

Materials and methods

Validation and derivation cohorts

We used data from the ARCTIC (14) trial as a derivation cohort for the combined scores. Performance of the scores was assessed in a validation cohort of pooled data from CIMESTRA (15) and OPERA (16). ARCTIC was a 24-month randomized clinical trial, studying ultrasound for treatment decision-making. Participants (n=230) were disease modifying anti-rheumatic drug (DMARD)-naïve early RA patients aged 18-75 years fulfilling 2010 ACR/EULAR criteria, with indication for DMARD-treatment. Both CIMESTRA and OPERA were randomized controlled trials. CIMESTRA studied treatment with methotrexate and intra-articular betamethasone in early RA, and the additional effect of adding cyclosporine to the regimen. OPERA studied the effect of adding adalimumab to methotrexate and intra-articular triamcinolone as first-line therapy in early RA. Participants (CIMESTRA n=160, OPERA n=180) were > 17 years, fulfilled the 1987 ACR criteria, and had moderate to severe disease activity.

Written informed consent was obtained from all participants. The trials were approved by the local ethics committees (approval reference numbers: ARCTIC: 2010/744; CIMESTRA: M-1959-98; OPERA: VEK-20070008).

Imaging

MRI of one hand (acquisition as outlined in the RAMRIS core set (12)) was performed together with conventional radiographs of hands and feet at baseline and 12 months in all three trials. A single reader (CIMESTRA/OPERA: DG, ARCTIC: US) blinded to treatment arm and clinical data scored the MRI images according to RAMRIS, with known chronological order. Reliability of scorings was overall very good (intra- and inter-reader comparisons for ARCTIC: appendix table 3, intra-reader for CIMESTRA/OPERA: previously published (17)). Radiographs were scored according to the van der Heijde-modified Sharp score. In ARCTIC, ultrasound was performed yearly for all patients according to a validated scoring system (18).

Clinical parameters

Tender and swollen joint counts, pain, patient and physician global, and C-reactive protein were registered at each visit. In ARCTIC, erythrocyte sedimentation rate was also analyzed. Physical function was assessed by the Health Assessment Questionnaire in CIMESTRA and OPERA, and by the Patient-Reported Outcomes Measurement Information 20 item short form in ARCTIC.

Calculation of combined scores

We categorized RAMRIS scores as either inflammation (synovitis, tenosynovitis, BME) or damage (erosions, JSN), and calculated the combined score for each category. Calculation was done using five different approaches, aiming to find which method would provide the most responsive combined score.

Approach 1. <u>Unweighted summation:</u> Combined scores were calculated by numerical summation of the RAMRIS scores for each category. These scores were used as reference. Additionally, we tested several methods for transformation of the RAMRIS scores, before summation:

Approach 2. <u>Normalized summation:</u> The RAMRIS scores differ in range and will therefore have a disproportionate part of the total score if summarized without transformation. To counteract this, scores were transformed to the same range before summation.

Approach 3. <u>Weighted summation</u>: Each RAMRIS score was transformed by a multiplication factor (weight). To maximize responsiveness, weights were calculated in a data driven approach to give the highest standardized response mean (SRM) to the resulting score in the derivation cohort. To make the system more adaptable, each RAMRIS score was divided into

three anatomical areas, which were weighted individually. The areas and corresponding weights are shown in the appendix, box 1.

Approach 4. <u>Adjusted weighted summation</u>: To simplify the weighting system, data-derived weights from approach 3) were rescaled to whole numbers according to rank. Adjustment of +/- 1 step was allowed to optimize performance (appendix box 1).

Approach 5. <u>Single site weighted summation</u>: As in 3), but weights were calculated for each individual bone, joint and tendon.

Statistical analysis

Baseline characteristics were described as proportions or median values as appropriate. Construct validity of the suggested combined MRI scores was tested by calculating the Spearman correlation coefficients to established disease measures. Responsiveness was tested by calculating the SRM $\left(SRM = \frac{mean \ score \ change}{SD_{mean \ score \ change}}\right)$ for the suggested combined scores, the RAMRIS scores, and radiographic parameters. Relative efficiency was computed for each combined score with unweighted summation as reference $\left(RE = \left(\frac{SRMi}{SRMref}\right)^2\right)$. Confidence intervals for SRM and relative efficiency were estimated by bootstrapping with 5000 replications. Only patients where all variables were available for baseline and the 12month visit were included. Data analyses were undertaken using STATA v.14 (StataCorp, College Station, USA).

Results

Patient characteristics

Data from 194 patients from the ARCTIC trial (derivation cohort), and 195 patients from CIMESTRA and OPERA (validation cohort) were used. A larger proportion of the patients in the derivation cohort were positive for anti-cyclic citrullinated peptide, (82% vs. 61.5%, p < 0.001), and disease activity variables were somewhat higher in the validation cohort (**appendix table 1**). Duration of symptoms at inclusion was longer in the derivation cohort (median 166 vs 91 days, p < 0.001). Otherwise, patient characteristics were comparable between the cohorts.

MRI parameters

Baseline scores for synovitis were slightly higher in the validation cohort. Median one-year changes of inflammatory scores were similar in both cohorts. Baseline median erosion scores were similar in both cohorts, while the JSN score was higher in the validation cohort. The median one-year change for both erosions and JSN were comparable between the cohorts (**appendix table 2**).

Construct validity

All combined scores were significantly correlated to other imaging, clinical and biochemical measures. MRI inflammation scores were most strongly associated to ultrasound inflammation parameters, while associations between MRI damage scores and radiographic measures were overall moderate (**table 1**).

<u>Responsiveness</u>

For inflammation, relative efficiency for normalized summation (approach 2), weighted summation (approach 3) and adjusted weighted summation (approach 4) were statistically significantly superior to unweighted summation (approach 1), when tested in the validation cohort (**figure 1**). Approaches 3 and 4 provided the numerically highest SRM values (**table 2**), however differences between approaches 2, 3 and 4 were not statistically significant. For damage, no approach was significantly superior to unweighted summation, although approach 4 provided the highest SRM values.

Discussion

We have developed and tested combined MRI scores capturing the principal pathogenic constructs of RA: inflammation and damage. For clinical trial settings, these two measures might be more important than the scores of the individual MRI lesions.

In previous studies, combined scores have been obtained through slightly differing methods (3, 17, 19). To ensure comparability between studies, and to avoid biased reporting, there is need for consensus regarding which method to use (20).

It could be argued that if responsiveness were the sole priority, it would be easiest to use only the most responsive single pathology; e.g. tenosynovitis in the present study. However, that would discard a large proportion of MRI information. By weighted summation, we could obtain responsive combined scores, while still covering the full spectrum of pathology. Approaches using complex weightings derived from data resulted in the numerically most responsive scores, but the gain was marginal compared to the simpler normalization approach.

The strengths of these analyses include the large datasets, with baseline and 1-year followup MRI data of 289 patients from three RCTs in early RA. By separating our data in derivation and validation cohorts, we were able to assess the validity and generalizability of our proposed combined scores with higher confidence than if only one dataset had been used. Limitations include the lack of opportunity to examine the discriminative properties of the combined scores, as none of the original trials showed significant group differences for clinical or MRI endpoints. A dataset with clinical differences between the treatment arms is needed to examine this. The SRM values of our scores were relatively low compared to a similar study (19). This might be explained by limited changes in RAMRIS scores during the follow-up, especially for joint damage. In conclusion, we found that combined MRI scores for inflammation and joint damage can be responsive and valid. Our data indicate that the responsiveness of combined scores for inflammation could be improved by using normalized or weighted summation of the RAMRIS pathologies, rather than unweighted summation. However, our results do not support promoting one of these approaches over another. For the combined damage scores, there was a trend favoring weighted summation, but results were inconclusive. The discriminative properties of the scores need to be tested in placebo-controlled clinical trials.

Acknowledgements

We thank Joe Sexton for help and advice on statistical calculations and support on using statistical software, and Lena Bugge Nordberg and Nina Paulshus Sundlisæter for help with the ARCTIC database. PGC is supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We also thank all investigators, study personnel and patients who have contributed to the clinical trials that this study is based on.

References

1. Dohn UM, Ejbjerg B, Boonen A, Hetland ML, Hansen MS, Knudsen LS, et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: Results from a longitudinal comparative mri, ultrasonography, ct and radiography study. Ann Rheum Dis 2011;70:252-8.

2. Ostergaard M, Bøyesen P, Eshed I, Gandjbakhch F, Lillegraven S, Bird P, et al. Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: Potential adjunct to the omeract ra mri scoring system. J Rheumatol 2011;38:2045-50.

3. Peterfy CG, Olech E, DiCarlo JC, Merrill JT, Countryman PJ, Gaylis NB. Monitoring cartilage loss in the hands and wrists in rheumatoid arthritis with magnetic resonance imaging in a multi-center clinical trial: Impress (nct00425932). Arthritis Res Ther 2013;15:R44.

4. Boyesen P, Haavardsholm EA, Ostergaard M, van der Heijde D, Sesseng S, Kvien TK. Mri in early rheumatoid arthritis: Synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression. Ann Rheum Dis 2011;70:428-33.

5. Conaghan PG, O'Connor P, McGonagle D, Astin P, Wakefield RJ, Gibbon WW, et al. Elucidation of the relationship between synovitis and bone damage: A randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum 2003;48:64-71.

6. Haavardsholm EA, Bøyesen P, Østergaard M, Schildvold A, Kvien TK. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: Bone marrow oedema predicts erosive progression. Ann Rheum Dis 2008;67:794-800.

7. Hetland ML, Stengaard-Pedersen K, Junker P, Ostergaard M, Ejbjerg BJ, Jacobsen S, et al. Radiographic progression and remission rates in early rheumatoid arthritis - mri bone oedema and anti-ccp predicted radiographic progression in the 5-year extension of the double-blind randomised cimestra trial. Ann Rheum Dis 2010;69:1789-95.

8. Peterfy C, Ostergaard M, Conaghan PG. Mri comes of age in ra clinical trials. Ann Rheum Dis 2013;72:794-6.

9. American College of Rheumatology Rheumatoid Arthritis Clinical Trials Task Force Imaging G, Outcome Measures in Rheumatology Magnetic Resonance Imaging Inflammatory Arthritis Working G. Review: The utility of magnetic resonance imaging for assessing structural damage in randomized controlled trials in rheumatoid arthritis. Arthritis Rheum 2013;65:2513-23.

10. Boers M, Kirwan JR, Tugwell P, Beaton D, Bingham CO, 3rd, Conaghan PG, et al. The omeract handbook. OMERACT; 2018 [updated 2018; cited 2018-09-03]; Available from: www.omeract.org/resources.

11. Boers M, Kirwan JR, Wells G, Beaton D, Gossec L, d'Agostino MA, et al. Developing core outcome measurement sets for clinical trials: Omeract filter 2.0. J Clin Epidemiol 2014;67:745-53.

12. Ostergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg B, et al. Omeract rheumatoid arthritis magnetic resonance imaging studies. Core set of mri acquisitions, joint pathology definitions, and the omeract ra-mri scoring system. J Rheumatol 2003;30:1385-6.

13. Glinatsi D, Bird P, Gandjbakhch F, Haavardsholm EA, Peterfy CG, Vital EM, et al. Development and validation of the omeract rheumatoid arthritis magnetic resonance tenosynovitis scoring system in a multireader exercise. J Rheumatol 2017;44:1688-93.

14. Haavardsholm EA, Aga AB, Olsen IC, Lillegraven S, Hammer HB, Uhlig T, et al. Ultrasound in management of rheumatoid arthritis: Arctic randomised controlled strategy trial. BMJ 2016;354:i4205.

15. Hetland ML, Stengaard-Pedersen K, Junker P, Lottenburger T, Ellingsen T, Andersen LS, et al. Combination treatment with methotrexate, cyclosporine, and intraarticular betamethasone compared with methotrexate and intraarticular betamethasone in early active rheumatoid arthritis: An investigator-initiated, multicenter, randomized, double-blind, parallel-group, placebo-controlled study. Arthritis Rheum 2006;54:1401-9.

16. Horslev-Petersen K, Hetland ML, Junker P, Podenphant J, Ellingsen T, Ahlquist P, et al. Adalimumab added to a treat-to-target strategy with methotrexate and intra-articular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The opera study: An investigator-initiated, randomised, double-blind, parallel-group, placebo-controlled trial. Ann Rheum Dis 2014;73:654-61.

17. Glinatsi D, Baker JF, Hetland ML, Horslev-Petersen K, Ejbjerg BJ, Stengaard-Pedersen K, et al. Magnetic resonance imaging assessed inflammation in the wrist is associated with patient-reported physical impairment, global assessment of disease activity and pain in early rheumatoid arthritis: Longitudinal results from two randomised controlled trials. Ann Rheum Dis 2017;76:1707-15.

18. Hammer HB, Bolton-King P, Bakkeheim V, Berg TH, Sundt E, Kongtorp AK, et al. Examination of intra and interrater reliability with a new ultrasonographic reference atlas for scoring of synovitis in patients with rheumatoid arthritis. Ann Rheum Dis 2011;70:1995-8.

19. Haavardsholm EA, Ostergaard M, Hammer HB, Boyesen P, Boonen A, van der Heijde D, et al. Monitoring anti-thfalpha treatment in rheumatoid arthritis: Responsiveness of magnetic resonance imaging and ultrasonography of the dominant wrist joint compared with conventional measures of disease activity and structural damage. Ann Rheum Dis 2009;68:1572-9.

20. Ostergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The omeract rheumatoid arthritis magnetic resonance imaging (mri) scoring system: Updated recommendations by the omeract mri in arthritis working group. J Rheumatol 2017.

Figure Legends

FIGURE 1: RELATIVE EFFICIENCY OF COMBINED SCORES FOR INFLAMMATION AND JOINT DAMAGE, VALIDATION COHORT. ERROR BARS REPRESENT 95% CI.

Tables and figures

TABLE 1: SPEARMAN CORRELATION COEFFICIENTS BETWEEN MRI COMBINED SCORES AND CLINICAL, RADIOGRAPHIC (CR) AND ULTRASOUND PARAMETERS, ALL COHORTS

Inflammation scores	DAS28	TJC28	SJC28	Pt.gl	Ph.gl	CRP	ESR*	PFTS*+	USPD*	USBM*
1. Unweighted Summation	0.32	0.14	0.42	0.12	0.32	0.40	0.24	-0.26	0.49	0.54
2. Normalized Summation	0.36	0.18	0.46	0.14	0.35	0.43	0.24	-0.25	0.52	0.55
3. Weighted Summation	0.27	0.13	0.38	0.11	0.29	0.33	0.17	-0.29	0.47	0.52
4. Adjusted Weighted Summation	0.30	0.15	0.42	0.11	0.31	0.37	0.19	-0.28	0.50	0.54
5. Single Site Weighted Summation	0.29	0.14	0.36	0.11	0.29	0.32	0.21	-0.26	0.46	0.48
Damage scores	CR Ero	osions	CR	JSN	CR	Total				
1. Unweighted Summation	0.4	43	0.3	33	0.	40				
2. Normalized Summation	0.4	41	0.3	32	0.	38				
3. Weighted Summation	0.4	43	0.3	34	0.	40				
4. Adjusted Weighted Summation	0.4	43	0.5	33	0.	40				
5. Single Site Weighted Summation	0.4	42	0.	37	0.	43				

*ARCTIC only. **‡** Negative correlation due to inverse scale of PROMIS T-score. Abbreviations: CR: Conventional Radiography, CR scored by van der Heijde modified Sharp score (hands, wrists and feet). CRP: C-Reactive Protein (mg/L). DAS: Disease Activity Score (28-joints, range 0-10). Pt/Ph.gl: Patient's/Physician's Global Assessment Visual Analog Scale (range 0-100). PFTS: PROMIS T-score. SJC: Swollen Joint Count (28 joints). TJC: Tender Joint Count (28 joints). USPD/BM: Ultrasound Power Doppler/B-Mode. All coefficients significant at the 0.05 level.

TABLE 2: STANDARDIZED RESPONSE MEA PATHOLOGIES, RADIOGRAPHIC (CR) AND (NS OF COMBINED SCORES, CLINICAL PARAMETERS (95%	INDIVIDUAL MRI 6 CI)
Inflammatory Measures	Derivation Cohort	Validation Cohort
1. Unweighted Summation	0.78 (0.70-0.85)	0.62 (0.51-0.73)
2. Normalized Summation	0.82 (0.74-0.90)	0.73 (0.63-0.83)
3. Weighted Summation	0.84 (0.76-0.92)	0.74 (0.64-0.84)
4. Adjusted Weighted Summation	0.84 (0.76-0.92)	0.74 (0.65-0.84)
5. Single Site weighted Summation	1.10 (0.99-1.21)	0.60 (0.50-0.70)
RAMRIS Synovitis	0.74 (0.65-0.83)	0.65 (0.54-0.76)
RAMRIS Tenosynovitis	0.81 (0.73-0.89)	0.76 (0.66-0.86)
RAMRIS Bone Marrow Edema	0.36 (0.29-0.42)	0.13 (0.02-0.24)
Damage Measures		
1. Unweighted Summation	0.35 (0.21-0.49)	0.43 (0.35-0.52)
2. Normalized Summation	0.29 (0.14-0.43)	0.44 (0.38-0.50)
3. Weighted Summation	0.43 (0.31-0.55)	0.40 (0.30-0.51)
4. Adjusted Weighted Summation	0.38 (0.25-0.51)	0.46 (0.36-0.56)
5. Single Site weighted Summation	0.58 (0.44-0.71)	0.41 (0.34-0.48)
RAMRIS Erosion	0.35 (0.26-0.45)	0.36 (0.27-0.45)
RAMRIS JSN	0.23 (0.10-0.35)	0.35 (0.30-0.40)
CR Erosion	0.52 (0.44-0.59)	0.19 (0.10-0.28)
CR JSN	0.35 (0.30-0.40)	0.20 (0.14-0.26)
CR Total	0.55 (0.48-0.61)	0.26 (0.19-0.34)
Abbreviations: RAMRIS: OMERACT RA MRIS	coring System. CR: Conventior	nal Radiography, CR Measures

FIGURE 1: RELATIVE EFFICIENCY OF COMBINED SCORES, VALIDATION COHORT

Error bars representing 95% CI

Appendix

APPENDIX TABLE 1: BASELINE CHARACTERISTICS							
	Derivation Cohort*	Validation Cohort**	p-value	CIMESTRA	OPERA		
Ν	194	195		123	72		
Age at baseline, median (IQR)	53 (42, 62)	53 (41, 62)	0.92	53 (42, 62)	54 (41, 62)		
Female Sex, n (%)	121 (62.4%)	129 (66.2%)	0.44	84 (68.3%)	45 (62.5%)		
Symptom Duration (days), median (IQR)	166.5 (85, 311)	91 (56, 133)	<0.001	98 (77, 147)	66.5 (42, 119)		
Pos. anti CCP Status, n (%)	159 (82.0%)	120 (61.5%)	<0.001	73 (59.3%)	47 (65.3%)		
TJC28, median (IQR)	6 (2, 11)	10 (6, 16)	<0.001	9 (5, 16)	10.5 (6.5, 16.5)		
SJC28, median (IQR)	5 (3, 10)	8 (4, 12)	<0.001	9 (4, 12)	7 (4, 12)		
Patient global, median (IQR)	48 (29, 67)	54 (31, 74)	0.025	51 (29, 72)	57.5 (41.5, 77)		
Physician global, median (IQR)	35 (23, 50)	57 (41, 68)	<0.001	58 (41, 68)	55 (41.5, 69)		
Joint pain VAS, median (IQR)	45 (27, 65)	50 (31, 70)	0.074	48 (28, 70)	52 (37, 73)		
CRP, median (IQR)	7 (3, 18)	18.3 (8, 40)	<0.001	19.6 (9, 41)	15 (7, 38)		
DAS28, median (IQR)	4.4 (3.6, 5.0)	5.3 (4.6, 5.9)	<0.001	5.2 (4.5, 5.9)	5.45 (4.8, 6)		
*Derivation cohort: ARCTIC. **Validation cohort:	CIMESTRA+OPEF	RA. P-value: Pro	bability of n	o difference betwe	een cohorts, tested		
by Mileover real our test for median values of	nd hy Deereen's chi	aquiara far prop	ortiona				

by Wilcoxon rank-*sum test for median values, and by Pearson's chi*-square for proportions. Abbreviations: Anti CCP: anti-cyclic citrullinated peptide. CRP: C-Reactive Protein (mg/L). DAS: Disease Activity Score (28-joints, range 0-10). SJC: Swollen Joint Count (28 joints). TJC: Tender Joint Count (28 joints). VAS: Visual Analog Scale (0-100).

APPENDIX TABLE 2A: BASELINE CONVENTIONAL RADIOGRAPHY (CR) AND MRI SCORES, MEDIAN VALUES (IQR)

	Derivation Cohort*	Validation Cohort**	p-value	CIMESTRA	OPERA
Ν	194	195		123	72
RAMRIS Synovitis	5 (3, 9)	8 (5.5, 11)	<0.001	8 (5, 11)	9 (6, 12)
RAMRIS Tenosynovitis	4 (2, 10)	4.5 (2, 11)	0.92	3 (1, 8)	9 (4, 14)
RAMRIS Bone marrow edema	1 (0, 5)	0 (0, 2)	<0.001	0 (0, 2)	0 (0, 3)
RAMRIS Erosion	1 (0, 3)	2 (0, 3)	0.98	1 (0, 3)	2 (1, 4)
RAMRIS JSN	15 (10, 20)	0 (0, 0)	<0.001	0 (0, 0)	0 (0, 0)
CR Erosion	3 (1, 5)	1 (0, 4)	<0.001	1 (0, 6)	1 (0, 2)
CR JSN	1 (0, 3.5)	0 (0, 3)	0.01	0 (0, 3)	2 (0, 3.5)
CR Total	4.5 (1.5, 9)	3 (0, 7)	<0.001	3 (0, 8)	3 (1, 6)
APPENDIX TABLE 2B: 1 YEAR CH	ANGE IN CR AND	MRI SCORES,	MEDIAN VA	LUES (IQR)	
	Derivation	Validation	n voluo		
	Derivation Cohort*	Validation Cohort**	p-value	CIMESTRA	OPERA
N	Derivation Cohort* 194	Validation Cohort** 195	p-value	CIMESTRA 123	OPERA 72
N RAMRIS Synovitis	Derivation Cohort* 194 -2 (-5, 0)	Validation Cohort** 195 -2 (-5, 0)	p-value 0.82	CIMESTRA 123 -2.5 (-5, 0)	OPERA 72 -2.5 (-4, 0.5)
N RAMRIS Synovitis RAMRIS Tenosynovitis	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0)	p-value 0.82 0.97	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0)	OPERA 72 -2.5 (-4, 0.5) -5 (-10, -1)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0)	p-value 0.82 0.97 0.36	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0)	OPERA 72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1)	p-value 0.82 0.97 0.36 0.32	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1)	OPERA 72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion RAMRIS JSN	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1) 0 (0, 1)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0)	p-value 0.82 0.97 0.36 0.32 0.011	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0)	OPERA 72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1) 0 (0, 0)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion RAMRIS JSN CR Erosion	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1) 0 (0, 1) 0.5 (0, 1)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0)	p-value 0.82 0.97 0.36 0.32 0.011 <0.001	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0)	72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion RAMRIS JSN CR Erosion CR JSN	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1) 0 (0, 1) 0.5 (0, 1) 0 (0, 0)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0)	p-value 0.82 0.97 0.36 0.32 0.011 <0.001 0.003	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0)	72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1) 0 (0, 0)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion RAMRIS JSN CR Erosion CR JSN CR Total	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1) 0 (0, 1) 0.5 (0, 1) 0 (0, 0) 0.5 (0, 1.5)	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 1)	p-value 0.82 0.97 0.36 0.32 0.011 <0.001 0.003 <0.001	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)	72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (-0.5, 1)
N RAMRIS Synovitis RAMRIS Tenosynovitis RAMRIS Bone marrow edema RAMRIS Erosion RAMRIS JSN CR Erosion CR JSN CR Total *Derivation cohort: ARCTIC. **Validation	Derivation Cohort* 194 -2 (-5, 0) -3 (-7, 0) 0 (-2, 0) 0 (0, 1) 0 (0, 1) 0 (0, 1) 0 (0, 0) 0.5 (0, 1.5) cohort: CIMESTRA	Validation Cohort** 195 -2 (-5, 0) -3 (-8, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 1) +OPERA. P-value:	p-value 0.82 0.97 0.36 0.32 0.011 <0.001 0.003 <0.001 Probability of	CIMESTRA 123 -2.5 (-5, 0) -2 (-6, 0) 0 (-1, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) no difference bet	OPERA 72 -2.5 (-4, 0.5) -5 (-10, -1) 0 (-2, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (-0.5, 1)

APPENDIX TABLE 3: RE	LIABILITY OF MRI READIN	GS IN ARCTIC.	
INTRA-CLASS CORREL	ATIONS, TWO-WAY MIXED	-EFFECTS MODEL, ABSOL	UTE AGREEMENT
Inter-reader	Baseline	1 year	Change
Synovitis	0.98	0.96	0.87
Tenosynovitis	0.97	0.94	0.90
Bone marrow edema	0.96	0.95	0.94
Erosion	0.92	0.97	0.94
JSN	0.60	0.43	0.61
Intra-reader	Baseline	1 year	Change
Synovitis	0.95	0.98	0.88
Tenosynovitis	0.94	0.97	0.88
Bone marrow edema	0.89	0.97	0.86
Erosion	0.98	0.95	0.81
JSN	0.93	0.92	0.95
Inter-reader comparisons: 12	2 patients scored separately by [D.Glinatsi and U.Sundin. Intra-rea	ader comparisons: 12
patients scored on separate	occasions by U.Sundin.		

APPENDIX BOX 1: ANATC	MICAL ZONES FOR APP	ROACH 3-4, AND WEIGH	ITS APPLIED BY APPRO	ACH 4.
Synovitis	Zone 1	Zone 2	Zone 3	Total
Joints	Radioulnar	CMC/IC	MCP 2-5	
	Radiocarpal			
RAMRIS max. score	6	3	12	21
Approach 4 weight	2	1	1	
Approach 4 max. score	12	3	12	27
				·
Tenosynovitis	Zone 1	Zone 2	Zone 3	Total
Tendons	Wrist extensor	Wrist flexor	Flexor tendon sheaths	
	compartment 1-6	compartment 1-3	2-5 at MCP-level	
DAMBIO	10		10	
RAMRIS max. score	18	9	12	39
Approach 4 weight	4	4	3	
Approach 4 max. score	72	36	36	144
D	7	7	7	Tatal
Bone marrow edema	Zone 1	Zone 2	Zone 3	Iotal
Ussicles	Radius	Irapezium	Distal metacarpais 2-5	
		Trapezoid	Proximal	
	Scaphold	Capitate	phalanges 2-5	
	Lunate	Hamate		
	Pisitorm	Proximal		
	Iriquetrum	metacarpals 1-5		
DAMBIO	10	07		
RAMRIS max. score	18	27	24	69
Approach 4 weight	1			00
Approach 4 max. score	18	27	24	69
Freeiene	Zana 1	Zene 2	Zene 2	Total
Frosions	Zone i	Zonez	i zone s	Iotal
Ossieles	Bodius	Tropozium	Distal motocornals 2 F	
Ossicles	Radius	Trapezium Trapezoid	Distal metacarpals 2-5	
Ossicles	Radius Ulna	Trapezoid Capitate	Distal metacarpals 2-5 Proximal	
Ossicles	Radius Ulna Scaphoid	Trapezium Trapezoid Capitate	Distal metacarpals 2-5 Proximal phalanges 2-5	
Ossicles	Radius Ulna Scaphoid Lunate Pisiform	Trapezium Trapezoid Capitate Hamate Provimal	Distal metacarpals 2-5 Proximal phalanges 2-5	
Ossicles	Radius Ulna Scaphoid Lunate Pisiform Triquetrum	Trapezium Trapezoid Capitate Hamate Proximal metacarnals 1-5	Distal metacarpals 2-5 Proximal phalanges 2-5	
Ossicles	Radius Ulna Scaphoid Lunate Pisiform Triquetrum	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5	Distal metacarpals 2-5 Proximal phalanges 2-5	
Ossicles	Radius Ulna Scaphoid Lunate Pisiform Triquetrum	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5	Distal metacarpals 2-5 Proximal phalanges 2-5	230
RAMRIS max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90	Distal metacarpals 2-5 Proximal phalanges 2-5 80	230
RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240	230
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240	230 510
RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3	230 510
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio-	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triguetral	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total 84
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints RAMRIS max. score Approach 4 weight	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52 2	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total 84
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52 2 104	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total 84 200
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52 2 104	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5	230 510 Total 84 200
Ossicles RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints RAMRIS max. score Approach 4 weight Approach 4 max. score	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52 2 104	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5 16 4 64	230 510 Total 84 200
RAMRIS max. score Approach 4 weight Approach 4 max. score Joint Space Narrowing Joints RAMRIS max. score Approach 4 weight Approach 4 max. score Weights for approach 4 were o (range 1-4). Adjustment of +/- */-	Radius Ulna Scaphoid Lunate Pisiform Triquetrum 60 3 180 Zone 1 Radio-Scaphoid Radio- Lunate Scapho-Lunate Lunato-Triquetral 16 2 32 btained by ranking and rescal	Trapezium Trapezoid Capitate Hamate Proximal metacarpals 1-5 90 1 90 Zone 2 Trapezium-Scaphoid Trapezoid-Scaphoid Trapezoid-Capitate Capitate-Scaphoid Capitate-Lunate Capitate-Hamate Hamato-Triquetral CMC 1-5 52 2 104	Distal metacarpals 2-5 Proximal phalanges 2-5 80 3 240 Zone 3 MCP 2-5 16 4 64	230 510 Total 84 200