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THE DESIGN OF CONSERVATIVE FINITE ELEMENT DISCRETISATIONS FOR

THE VECTORIAL MODIFIED KDV EQUATION

JAMES JACKAMAN, GEORGIOS PAPAMIKOS, AND TRISTAN PRYER

Abstract. We design a consistent Galerkin scheme for the approximation of the vectorial modified Korteweg-
de Vries equation with periodic boundary conditions. We demonstrate that the scheme conserves energy
up to solver tolerance. In this sense the method is consistent with the energy balance of the continuous
system. This energy balance ensures there is no numerical dissipation allowing for extremely accurate long
time simulations free from numerical artifacts. Various numerical experiments are shown demonstrating the
asymptotic convergence of the method with respect to the discretisation parameters. Some simulations are
also presented that correctly capture the unusual interactions between solitons in the vectorial setting.

1. Introduction

Hamiltonian partial differential equations (PDEs) are a specific class of PDE endowed with physically
relevant algebraic and geometric structures [Olv93]. They arise form a variety of areas [She90], not least
meteorological, such as the semi-geostrophic equations [RN94], and oceanographical, such as the Korteweg-de
Vries (KdV) and nonlinear Schrödinger equations [MGO05]. The KdV and nonlinear Schrödinger equations
are particularly special examples, in that they are bi-Hamiltonian [Mag78]. This means they have two
different Hamiltonian formulations which, in turn, is one way to understand the notion of integrability of
these problems. Regardless, the applications and the need to quantify the dynamics of the general Cauchy
problem motivate the development of accurate long time simulations for reliable prediction of dynamics in
both meteorology and oceanography.

A difficulty in the design of schemes for this class of problems is that the long term dynamics of solutions
can be destroyed by the addition of artificial numerical diffusion. The reason for inclusion of this in a
given scheme is the desirable stability properties this endows on the approximation, however, this typically
destroys all information in the long term dynamics of the system through smearing of solutions.

Conservative schemes for Hamiltonian ordinary differential equations (ODEs) are relatively well under-
stood, see [CGM+12, LR04, HLW06, BL07, BC16, c.f.]. Typically numerical schemes designed for this
class of problem which have some property of the ODE built into them, for example conservativity of the
Hamiltonian or the underlying symplectic form, are classified as geometric integrators. In the PDE setting
symplectic structure preserving algorithms have also been developed [Rei00, BR01, COR08, CMR14]. Here
the PDEs are rewritten using their corresponding symplectic form, and the notion of structure preservation
is given in terms of a discrete (difference) conservation law involving differential forms. Typically these prob-
lems are solved using an Euler/Preissman box scheme, although space-time finite element methods under an
appropriate quadrature choice form a natural generalisation. Another promising mechanism to approximate
such problems is based on the Fokas transform [KPPS18] which experimentally has extremely good long
time properties as the scheme naturally inherits many of the properties of the PDE.

In this contribution we consider a system of equations that are a multidimensional generalisation of the
famous modified KdV equation

ut +
3

2
u2ux + uxxx = 0,
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where the subindices denote partial differentiation with respect to the corresponding independent variable.
This equation has numerous applications not least including fluid dynamics and plasma physics [AC91]. The
vectorial equation [MBSW02] appears frequently in the study of ocean waves and Riemannian geometry
[SW03, ANW11, Anc06]. The presence of the Korteweg third order term as well as the lack of sign in the
corresponding energy functional, further details given in §2, can cause issues in the numerical treatment of
this problem. The vectorial equation also has additional complications that do not arise in the scalar setting.
Indeed, the underlying conservation laws themselves have a vastly different structure, for example there is
no mass conservation in the vectorial case. Moreover, the corresponding Hamiltonian operator is a nonlocal
differential operator in the vectorial case.

In previous numerical studies of the scalar KdV and modified KdV equations [XS07, YS02, c.f.], it has been
observed that classical finite volume and discontinuous Galerkin (dG) schemes with “standard” numerical
fluxes introduce numerical artifacts. These typically appear through numerical regularisation effects included
for stability purposes that are not, however, adapted to the variational structure of the problem. The result
of these artifacts is an inconsistency in the discrete energy.

Hamiltonian problems are inherently conservative, that is, the underlying Hamiltonian is conserved over
time. Other equations, including those of integrable type, may have additional structures that manifest
themselves through additional conserved quantities. In particular, mass and momentum are such quantities.
In [BCKX13] and [KM15] the authors propose and analyse a dG scheme for generalised KdV equations.
The scheme itself is very carefully designed to be conservative, in that the invariant corresponding to the
momentum is inherited by the discretisation. This yields L2 stability quite naturally in the numerical scheme
and extremely good long time dynamics. In the scalar case one may also design schemes that conserve the
energy itself [Win80, JP18], however, it does not seem possible to design schemes to conserve more than two
of these invariants.

When examining the case of systems of Hamiltonian equations much less work has been carried out,
for example [BZ09] give a near conservative method for a system of Schrödinger–KdV type and [BDM07]
study a system of KdV equations. To the authors knowledge there has not been any work on the system
we study, nor such Hamiltonian systems in general. Our goal in this work is the derivation of Galerkin
discretisations aimed at preserving the underlying algebraic properties satisfied by the PDE system whilst
avoiding the introduction of stabilising diffusion terms. Our schemes are therefore consistent with (one
of) the Hamiltonian formulation of the original problem. It is important to note that our approach is
not an adaptation of entropy conserving schemes developed for systems of conservation laws, rather we
study the algebraic properties of the PDE and formulate the discretisation to inherit this specific structure.
The methods are of arbitrarily high order of accuracy in space and provide relevant approximations free
from numerical artifacts. To the authors knowledge this is the first class of finite element method for this
particular class of system to have these properties although similar techniques have proven useful in the
study of dispersive phase flow problems [GP15, GMP14].

The rest of this work is set out as follows: In §2 we introduce notation, the model problem and some of
its properties. We give a reformulation of the system through the introduction of auxiliary variables, these
are introduced to allow for a simple construction of the numerical scheme. In §3 we examine a temporal
discretisation of the problem that guarantees the conservation of the underlying Hamiltonian. In §4 we
propose a spatial discretisation based on continuous finite elements, state a fully discrete method and show
that it is conservative. Finally in §5 we summarise extensive numerical experiments aimed at testing the
robustness of the method particularly in long time simulations.

2. The vectorial modified KdV equation

In this section we formulate the model problem, fix notation and give some basic assumptions. We
describe some known results and history of the vectorial modified Korteweg-de Vries (vmKdV) equation,
highlighting the Hamiltonian structure of the equation. We show that the underlying Hamiltonian structure
naturally yields an induced stability of the solutions to the PDE system and give a brief description of how
to construct some exact solutions using a dressing method. We then show how the system can be written
through induced auxiliary variables which are the basis of the design of our numerical scheme.
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Throughout this work we denote the standard Lebesgue spaces by Lp(ω) for ω ⊆ R, p ∈ [1,∞], equipped

with corresponding norms ‖u‖Lp(ω). In addition, we will denote Hk(ω) to be the Hilbert space of order k of

real-valued functions defined over ω ⊆ R with norm ‖u‖Hk(ω).

The vmKdV equation is an evolutionary PDE for a real, d-vector valued function

(2.1)
u : R2 → Rd

(x, t) �→ u(x, t) =(u1 . . . , ud)
⊺

and is given by

(2.2) ut +
3

2
u · uux + uxxx = 0.

Here we are using “x · y” as the Euclidean inner product between two vectors, x and y and “|x|” as the
induced Euclidean norm of x.

A particular case of the vmKdV system occurs when d = 2, u = (u1, u2)
⊺
when (2.2) can be identified

with the complex modified KdV (mKdV) equation

(2.3) yt +
3

2
|y|2 yx + yxxx = 0

for the complex dependent variable y = u1 + iu2. Sometimes this is also called the Hirota mKdV equation
[Hir73]. When d = 1 we obtain the famous mKdV equation which has been studied numerically in the
context of Galerkin methods in [BCKX13, JP18].

Equation (2.2) admits both Lie and discrete point symmetries and has infinitely many conservation laws.
Indeed, under the action of the orthogonal group Od(R), which is the group of real d× d matrices such that
A⊺A = I,

(2.4) ũ = Au, for A ∈ Od(R)

equation (2.2) remains invariant. Moreover, vmKdV is invariant under the translations

(2.5) x̃ = x+ ǫ, t̃ = t+ γ

and under the scaling transformation

(2.6)
Ä
x̃, t̃, ũ

ä
=

(
eǫx, e3ǫt, e−ǫu

)
.

2.1. Proposition (Conservative properties of solutions). The vmKdV equation admits the following conser-
vation laws:

Dtf2(u) = Dxg2(u)

Dtf4(u) = Dxg4(u),
(2.7)

where the conserved densities are given by

f2(u) =
1

2
|u|2

f4(u) =
1

2
|ux|2 −

1

8
|u|4

(2.8)

and the corresponding fluxes are

g2(u) = |ux|2 − 2u · uxx − 3

4
|u|4

g4(u) =
1

8
|u|6 − |u|2 |ux|2 −

1

2
(u · ux)

2 − ux · uxxx +
1

2
|uxx|2 +

1

2
|u|2 u · uxx.

(2.9)

Proof To prove that the total time derivative of f2(u) and f4(u) are in the image of Dx we use the Euler
operator E = (E1, ..., Ed), where

Ei(f) =
∞∑

k=0

(−Dx)
k∂uikx

f, uikx
= uix...x︸︷︷︸

k

3



and the fact that KerE = ImDx, see [Olv93] for a proof. On the other hand in order to calculate the
corresponding fluxes g2 and g4 we apply the homotopy operator [Olv93] to Dtf2(u) and Dtf4(u) respectively.
The homotopy operator is given by

H(f(u)) =

∫ 1

0

d∑

i=1

Ii(f)(λu)
dλ

λ

where

Ii(f) =
∞∑

k=1

(
k−1∑

s=0

uisx(−Dx)
k−s−1

)
fuikx

.

�

2.2. Corollary. Let S1 be the unitary circle, i.e., [0, 1] with matching endpoints. Then from Proposition 2.1
it follows that, upon defining

(2.10) F2(u) :=

∫

S1

f2(u) dx

as the momentum functional and

(2.11) F4(u) :=

∫

S1

f4(u) dx

as the energy functional for periodic solutions we have

(2.12) DtF2(u) = DtF4(u) = 0.

Moreover this does not just hold for periodic solutions over S1. Indeed, one can consider the equation (2.2)
over R and require that solutions decay at infinity, for example Schwartz functions, and the result holds. A
particular example of such solutions are the much celebrated soliton and breather solutions. The conservation
laws also allow for the a priori control of the solution.

2.3. Proposition (Stability bound). Let the vmKdV system (2.2), defined over S1, be coupled with initial
conditions u0 satisfying F2(u0) = C2 < ∞ and F4(u0) = C4 < ∞ then u satisfies

(2.13) ‖ux(t)‖L2(S1) ≤
Å
4C4 +

C8
GNC3

2

2

ã1/2
,

where CGN is a constant appearing from the Gagliardo-Nirenberg interpolation inequality.

Proof In view of the definition of F4(u) we have that

‖ux‖2L2(S1) = 2F4(u) +
1

4
‖u‖4L4(S1)

= 2F4(u0) +
1

4
‖u‖4L4(S1) ,

(2.14)

through the conservativity of F4(u) given in Theorem 2.1. Now making use of the Gagliardo-Nirenberg
interpolation inequality there exists a constant CGN such that

(2.15) ‖u‖L4(S1) ≤ CGN ‖u‖3/4
L2(S1)

‖ux‖1/4L2(S1)
,

hence

1

4
‖u‖4L4(S1) ≤

1

4
C4

GN ‖u‖3L2(S1) ‖ux‖L2(S1)

≤ 1

32
C8

GN‖u‖6L2(S1) +
1

2
‖ux‖2L2(S1),

(2.16)
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through Young’s inequality. Substituting (2.16) into (2.14) we see

1

2
‖ux‖2L2(S1) ≤ 2F4(u0) +

C8
GN

32
‖u‖6L2(S1)

≤ 2F4(u0) +
C8

GN

4
F2(u)

3

≤ 2F4(u0) +
C8

GN

4
F2(u0)

3

≤ 2C4 +
C8

GNC3
2

4
,

(2.17)

using the conservativity of F2(u), concluding the proof. �

2.4. Remark (Hierarchy of conservation laws). Note that the vmKdV equation (2.2) admits an infinite
hierarchy of conserved quantities. For example, after F2(u) and F4(u) the next member of the hierarchy is

(2.18) F6(u) =

∫

S1

1

2
|u|6 + 10(u · ux)

2
+ |u|2 |ux|2 + 7 |u|2(u · uxx) + 4 |uxx|2 dx.

A generating function of the conserved densities for the vmKdV is constructed using its Lax representation
in [AP17].

Together with the Gagliardo-Nirenberg interpolation inequality one may derive a priori bounds of a similar
form to that given in Theorem 2.3 but in higher order norms. Indeed, for s ∈ N the conservation law F2s

naturally gives rise to a stability bound in Hs−1.

2.5. Remark (Stability for a vmKdV-type problem). The vmKdV-type equation given by

(2.19) ut −
3

2
u · uux + uxxx = 0

forms an interesting alternative equation of study to the vmKdV equation (2.2). The reason is that the
Hamiltonian is sign definite, that is

(2.20) F4(u) :=

∫

S1

1

2
|ux|2 +

1

8
|u|4 =

1

2
‖ux‖2L2(S1) +

1

8
‖u‖4L4(S1) dx,

hence the conservation of invariant immediately implies that, for any t > 0,

(2.21)
1

2
‖ux(t)‖2L2(S1) +

1

8
‖u(t)‖4L4(S1) =

1

2
‖ux(0)‖2L2(S1) +

1

8
‖u(0)‖4L4(S1) ,

guaranteeing stability of solutions without the necessity of the interpolation arguments of Proposition 2.3. We
expect that the space of exact solutions to these two equations are quite different and leave the quantificaiton
of solutions of this problem for future work. In this work we will focus on (2.2), the structure of solutions to
this problem and their numerical approximation.

2.6. Exact solutions to the vmKdV system. The vmKdV equation (2.2) is integrable and has already
drawn some attention [AP17, ANW11]. Its integrability properties were derived using the structure equation
for the evolution of a curve embedded in an n-dimensional Riemannian manifold with constant curvature
[SW03, Anc06, MBSW02]. The associated Cauchy problem can be studied analytically using the inverse
scattering transform [AC91, NMPZ84, FT07]. Due to the fact that it admits a zero curvature representation
(or a Lax representation, see [Lax76, c.f.]), i.e., it can be written in the following form:

(2.22) Ut − Vx + [U, V ] = 0,

where U = U(u;λ) and V = V (u;λ) are appropriate matrices in a Lie algebra having a polynomial depen-
dence on a spectral parameter λ ∈ C. One can construct, see [AP17], a Darboux matrix M [RS02, SM91]
that maps the pair (U, V ) to

(2.23) (U, V ) �→ (‹U,‹V ) = (MUM−1 +MxM
−1,MUM−1 +MtM

−1)

and ‹U = U(ũ;λ) and ‹V = V (ũ;λ). In other words ‹U and ‹V have the same structure as U and V respectively.
The transformation (2.23) implies a nonlocal symmetry u �→ ũ of the vmKdV, known as a Bäcklund trans-
formation. Such transformations that have applications in geometry [RS02] are characteristic of integrable
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equations. Starting with the trivial background solution u = 0 one can then recursively and algebraically
construct the soliton solutions of vmKdV equation (2.2). For example, when d = 2 a 1-soliton solution is
given by

(2.24) u =
2μ

cosh ξμ
E,

where μ ∈ R, ξμ = μ(x− cμ) − μ3t, for some shift cμ ∈ R and E is a constant unit vector. A 2-soliton
solution is given by

(2.25) u =
Fμ,ν

G
E1 +

Fν,μ

G
E2,

where E1 and E2 are constant unit vectors, μ, ν ∈ R with μ 	= ±ν and

(2.26) Fk,l = 2(l2 − k2)l cosh ξk

and

(2.27) G = (μ2 + ν2) cosh ξμ cosh ξν − 2μν sinh ξμ sinh ξν − 2μνE1 ·E2.

The 1-soliton (2.24) and 2-soliton (2.25) solutions, while elegant, are not the most general of their kind,
see [AP17] for details. Nevertheless, the exact solutions (2.24) and (2.25) are both perfectly adequate for
benchmarking our scheme which we shall use them for in §5. Such solutions can also be derived using Hirota’s
bilinear form [Hir04, ANW11].

Solitons are, however, a special class of solution for this problem with a very particular structure. In
general one cannot write down closed form solutions for this problem motivating the need for long time
accurate numerical schemes. We shall proceed by describing the Hamiltonian structure of the vmKdV
problem which forms the basis for the design of our numerical scheme.

2.7. Remark (Problem reformulation and motivation). The vmKdV system is Hamiltonian and thus it can
be written as

(2.28) ut = P(u)
δF4(u)

δu
,

where P(u) is a Hamiltonian operator, F4(u) is the corresponding Hamiltonian and δ·
δu denotes the first

variation with respect to u [Olv93]. For this specific problem the Hamiltonian operator acts on a real,
d-vector function y and takes the form [Anc06]

P(u)y := yx − u�
[
D−1

x (y ⊗ u− u⊗ y)
]
,(2.29)

where D−1
x is the formal inverse operator of Dx, ⊗ is the tensor product between vectors and � is an interior

product defined through

(2.30) x�(y ⊗ z) =(x · y) z.
This then induces a Poisson bracket

(2.31) {F,G} :=

∫

R

δF

δu
P(u)

δG

δu
dx,

a skew-symmetric bilinear form satisfying the Jacobi identity. In view of the skew-symmetry of P(u) we
have

(2.32) DtF4(u) = {F4(u), F4(u)} = 0.

Notice also that the vmKdV system can also be written as

(2.33) ut = {u, F4(u)}.
The main idea behind the discretisation we propose is to correctly represent the Hamiltonian operator

in the finite element space whilst preserving the skew-symmetry property of the underlying bracket. Indeed,
the proof of Proposition 2.1 motivates rewriting the vmKdV system by introducing auxiliary variables to
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represent different components of the Hamiltonian operator. We consider seeking the tuple (u,v,w) such
that

0 = ut + vx +w

0 = v − 1

2
|u|2 u− uxx

0 = w − |u|2 ux +(ux · u)u.

(2.34)

Notice that v = δF4(u)
δu and w = u�

[
D−1

x (v ⊗ u− u⊗ v)
]
. This form of w is extremely important as the

Hamiltonian operator given in (2.29) is nonlocal. The fact that it can be “localised” by removing the D−1
x

allows for the efficient approximation by Galerkin methods.
This reformulation also means that in the case both arguments of the Poisson bracket are the Hamiltonian

we may write

(2.35) 0 = {F4(u), F4(u)} =

∫

R

v ·(vx +w) dx.

It is exactly this structure that we try to exploit.

2.8. Remark (Relation to the scalar case). As already mentioned when d = 1, the problem reduces to the
mKdV equation. In this case w ≡ 0 and the mixed system coincides with that proposed in [JP18]. Energy
conservative schemes can be derived and proven to converge using the same techniques presented in that
work. For d > 1, w is not necessarily zero and represents the additional contribution arising from the
Hamiltonian operator described in Remark 2.7.

2.9. Proposition (The mixed system is conservative). Let u,v,w be given by (2.34) then we have that

(2.36) DtF4(u) = Dt

∫

S1

1

2
|ux|2 −

1

8
|u|4 dx = 0.

Proof Since the mixed system is equivalent to the vmKdV system the proof is clear through Proposition
2.1, however, for illustrative purposes we present it in full as it will become the basis for the design of our
numerical scheme. To begin note

DtF4(u) =

∫

S1

ux · uxt −
1

2
|u|2 u · ut dx

=

∫

S1

−uxx · ut −
1

2
|u|2 u · ut dx

=

∫

S1

−v · ut dx.

(2.37)

Now making use of (2.34)

DtF4(u) =

∫

S1

v ·(vx +w) dx

=

∫

S1

v ·w dx

=

∫

S1

Å
1

2
|u|2 u+ uxx

ã
·w dx.

(2.38)

Note that from (2.34) we can see that w · u = 0 and hence

DtF4(u) =

∫

S1

uxx ·w dx

=

∫

S1

uxx ·
Ä
|u|2 ux −(ux · u)u

ä
dx.

(2.39)

7



Now, through an integration by parts we have
∫

S1

|u|2 ux · uxx = −
∫

S1

Ä
|u|2 ux

ä
x
· ux

= −
∫

S1

2(u · ux)(ux · ux) + |u|2 uxx · ux dx

(2.40)

and hence

(2.41)

∫

S1

|u|2 ux · uxx = −
∫

S1

(u · ux)(ux · ux) .

In addition,
∫

S1

(ux · u)(u · uxx) dx = −
∫

S1

(ux · uu)x · ux dx

= −
∫

S1

(uxx · u)(u · ux) + 2(ux · ux)(u · ux) dx

(2.42)

and hence

(2.43)

∫

S1

(ux · u)(u · uxx) dx = −
∫

S1

(ux · ux)(u · ux) dx.

Substituting (2.41) and (2.43) into (2.39) concludes the proof. �

3. Temporal discretisation

For the readers convenience we will present an argument for designing the temporally discrete scheme
in the spatially continuous setting. We consider a time interval [0, T ] subdivided into a partition of N
consecutive adjacent subintervals whose endpoints are denoted t0 = 0 < t1 < . . . < tN = T . The n-th
timestep is defined as τn := tn+1 − tn. We will consistently use the shorthand yn(·) := y(·, tn) for a generic

time function y. We also denote yn+
1
2 := 1

2

(
yn + yn+1

)
.

We consider the temporal discretisation of the mixed system (2.34) as follows: Given u0, for n ∈ [0, N ]
find un+1 such that

0 =
un+1 − un

τn
+ vn+1

x +wn+1

0 = vn+1 − 1

2

Ä
|un|2 +

∣∣un+1
∣∣2
ä
un+

1
2 − u

n+
1
2

xx

0 = wn+1 −
∣∣∣∣u

n+
1
2

∣∣∣∣
2

u
n+

1
2

x +

Ç
u
n+

1
2

x · un+
1
2

å
un+

1
2 .

(3.1)

3.1. Remark (Structure of the temporal discretisation). The temporal discretisation given in (3.1) is not a
Runge-Kutta method. It resembles a Crank-Nicolson discretisation, however the treatment of the nonlin-
earity is different. It is formally of second order and is constructed such that it satisfies the next Theorem.
Although construction of higher order methods is possible they become very complicated to write down so
we will not press this point here.

3.2.Theorem (Conservativity of the temporal discretisation). Let {un}Nn=0 be a temporally discrete solution
of (3.1) then we have

(3.2) F4(u
n) = F4(u

0) ∀ n ∈ [0, N ].

Proof It suffices to show that

(3.3) F4(u
n+1)− F4(u

n) = 0
8



and then the result follows inductively. So

2
(
F4(u

n+1)− F4(u
n)
)
=

∫

S1

∣∣un+1
x

∣∣2 − |un
x |

2 − 1

4

∣∣un+1
∣∣4 + 1

4
|un|4 dx

=

∫

S1

(
un+1
x − un

x

)
·
(
un+1
x + un

x

)

− 1

4

(
un+1 − un

)
·
Ä∣∣un+1

∣∣2 un+1 +
∣∣un+1

∣∣2 un + |un|2 un+1 + |un|2 un
ä
dx

= −
∫

S1

(
un+1 − un

)
·
(
un+1
xx + un

xx

)

− 1

2

(
un+1 − un

)
·
Å∣∣un+1

∣∣2 un+
1
2 + |un|2 un+

1
2

ã
dx

= −
∫

S1

(
un+1 − un

)
· vn+1 dx,

(3.4)

through expanding differences, integrating by parts and using the scheme (3.1). Now, again using the scheme

2
(
F4(u

n+1)− F4(u
n)
)
=

∫

S1

τn
(
vn+1
x +wn+1

)
· vn+1 dx

=

∫

S1

τnw
n+1 · vn+1 dx

=

∫

S1

τnw
n+1 ·

Ç
1

2

Å∣∣un+1
∣∣2 un+

1
2 + |un|2 un+

1
2

ã
+ u

n+
1
2

xx

å
dx

=

∫

S1

τnw
n+1 · un+

1
2

xx dx,

(3.5)

in view of the orthogonality condition wn+1 · un+
1
2 = 0 following from the third equation of (3.1). Now we

may use the definition of wn+1 and the identities (2.41) and (2.43) to conclude. �

3.3. Remark (Conservation of other invariants). This discretisation does not lend itself to conservation of
other invariants, for example even the quadratic invariant F2 is not conserved under this scheme. A class of
Runge-Kutta methods that are able to exactly conserve all quadratic invariants are the Gauss-Radau family,
this is because they are symplectic. When one considers higher order invariants, it seems that schemes must
be designed individually and there is no class that can exactly conserve all.

4. Spatial and full discretisation

In this section we describe the discretisation which we analyse for the approximation of (2.2). We show
that the scheme has a constant energy functional consistent with that of the original PDE system.

4.1. Definition (Finite element space). We discretise (2.2) spatially using a piecewise polynomial continuous
finite element method. To that end we let S1 := [0, 1] be the unit interval with matching endpoints and
choose

(4.1) 0 = x0 < x1 < · · · < xM = 1.

Note that in the numerical experiments we take a larger periodic interval, however for clarity of presentation
we restrict our attention in this section to S1. We denote Km = [xm, xm+1] to be the m–th subinterval and

let hm := |Km| be its length with T = {Km}M−1
m=0 . We impose that the ratio hm/hm+1 is bounded from

above and below for m = 0, . . . ,M − 1. Let Pq be the space of polynomials of degree less than or equal to
q, then we introduce the finite element space

(4.2) V :=
{
Φ : Φ|Km

∈ P
q(Km) ∩ C0(S1)

}
.

Throughout this section and in the sequel, we will use capital Latin letters to denote spatially discrete
trial functions and capital Greek letters to denote discrete test functions.

9



4.2. Spatial discretisation. Before we give the discretisation let us first consider a direct semi-discretisation
of the mixed system (2.34), to find (U ,V ,W ) ∈ Vd × Vd × Vd such that

0 =

∫

S1

(U t + V x +W ) ·Φ dx

0 =

∫

S1

Å
V − 1

2
|U |2 U

ã
·Ψ+Ux ·Ψx dx

0 =

∫

S1

Ä
W − |U |2 Ux +(Ux ·U)U

ä
·Ξ dx ∀ (Φ,Ψ,Ξ) ∈ V

d × V
d × V

d.

(4.3)

One may run through the calculation in the Proof of Proposition 2.9 analogously to see that

(4.4) DtF4(U) =

∫

S1

V ·W dx,

whereby in the continuous case one uses the fact that v and w are orthogonal. In the discrete setting
there is no reason why this should be the case and, indeed, except in very special cases, it is not. This
necessitates a formulation that forces

∫
S1 V · W dx = 0 thus ensuring conservation of F4(U). We achieve

this through a Lagrange multiplier approach encapsulated by the following spatially discrete scheme, to seek
(U ,V ,W , P ) ∈ Vd × Vd × Vd × R/{0} such that

0 =

∫

S1

(U t + V x +W ) ·Φ dx

0 =

∫

S1

Å
V − 1

2
|U |2 U

ã
·Ψ+Ux ·Ψx dx

0 =

∫

S1

Ä
W − |U |2 Ux +(Ux ·U)U

ä
·Ξ dx

0 =

∫

S1

PV ·Ξ+ V ·WΠdx

U0 = I0u0, ∀ (Φ,Ψ,Ξ,Π) ∈ V
d × V

d × V
d × R/{0}

(4.5)

4.3.Theorem (Conservativity of the spatially discrete scheme). Let (U ,V ,W , P ) solve the spatially discrete
formulation (4.5) then

(4.6) DtF4(U) = Dt

∫

S1

1

2
|Ux|2 −

1

8
|U |4 dx = 0.

Proof An analogous argument to the Proof of Proposition 2.9 yields (4.4). To conclude pick Π = P and
Ξ = W to see that

(4.7) 2P

∫

S1

V ·W dx = 0,

as required. �

4.4. Remark (Compatibility of the scheme with the Poisson bracket). Notice that in view of Theorem 4.3
the spatial discretisation is compatible with the Poisson structure of the vmKdV system, indeed, using the
same formulation as (2.35) we have that the numerical scheme can be written as

(4.8) U t = {U ,F 4(U)} = −(π(V x) +W ) ,

where π denotes the L2 orthogonal projector onto V. In addition, the evolution of the Hamiltonian can be
described consistently

(4.9) DtF4(U) = {F4(U), F4(U)} = 0.

It is important to note that the evolution of other quantities, such as further invariants are not compatible
with this structure, for example

(4.10) DtF2(U) = {F2(U), F4(U)} 	= 0.
10



4.5. Remark (Discrete stability for the vmKdV-type problem). Applying the same numerical discretisation
techniques to the vmKdV-type equation (2.19) results in the spatially discrete numerical scheme to seek
(U ,V ,W , P ) ∈ Vd × Vd × Vd × R/{0} such that

0 =

∫

S1

(U t + V x +W ) ·Φ dx

0 =

∫

S1

Å
V +

1

2
|U |2 U

ã
·Ψ+Ux ·Ψx dx

0 =

∫

S1

Ä
W + |U |2 Ux −(Ux ·U)U

ä
·Ξ dx

0 =

∫

S1

PV ·Ξ+ V ·WΠdx

U0 = I0u0, ∀ (Φ,Ψ,Ξ,Π) ∈ V
d × V

d × V
d × R/{0}

(4.11)

and we are then able to show for

(4.12) DtF4(U) = Dt

Å
1

2
‖Ux‖2L2(S1) +

1

8
‖U‖4L4(S1) ,

ã
= 0

guaranteeing, for any t > 0,

(4.13)
1

2
‖Ux(t)‖2L2(S1) +

1

8
‖U(t)‖4L4(S1) =

1

2
‖Ux(0)‖2L2(S1) + ‖U(0)‖4L4(S1) .

4.6. Fully discrete scheme. Making use of the semi discretisations developed in §3 and §4 we consider a
fully discrete approximation that consists of finding a sequence of functions(
Un+1,V n+1,W n+1, Pn+1

)
∈ [Vn]

d ×[Vn]
d ×[Vn]

d × R/{0} such that for each n ∈ [0, N − 1] we have

0 =

∫

S1

Ç
Un+1 −Un

τn
+ V n+1

x +W n+1

å
·Φ dx

0 =

∫

S1

Å
V n+1 − 1

2

Ä
|Un|2 +

∣∣Un+1
∣∣2
ä
Un+1/2

ã
·Ψ+Un+1/2

x ·Ψx dx

0 =

∫

S1

Å
W n+1 −

∣∣∣Un+1/2
∣∣∣
2
Un+1/2

x +
Ä
Un+1/2

x ·Un+1/2
ä
Un+1/2

ã
·Ξ dx

0 =

∫

S1

Pn+1V n+1 ·Ξ+ V n+1 ·W n+1Πdx

U0 = π0u0, ∀ (Φ,Ψ,Ξ,Π) ∈ [Vn]
d ×[Vn]

d ×[Vn]
d × R/{0}

(4.14)

where π0 denotes the L2 orthogonal projector into V0. This is the direct discretisation of the mixed system
(2.34) with the temporal discretisation as that proposed in §3 with an additional equation for a unknown
real number that represents a Lagrange multiplier ensuring

∫
S1 V

n ·W n dx = 0 for all n.

4.7. Theorem (Conservativity of the fully discrete scheme). Let {Un}Nn=0 be the fully discrete scheme
generated by (4.14), then we have that

(4.15) F4(U
n) = F4(U

0) ∀ n ∈ [0, N ].

Proof It suffices to show that

(4.16) F4(U
n+1)− F4(U

n) = 0
11



and then the result follows inductively. To this end

2
(
F4(U

n+1)− F4(U
n)
)
=

∫

S1

∣∣Un+1
x

∣∣2 − |Un
x |2 −

1

4

∣∣Un+1
∣∣4 + 1

4
|Un|4 dx

=

∫

S1

(
Un+1

x −Un
x

)
·
(
Un+1

x +Un
x

)

− 1

4

(
Un+1 −Un

)
·
Ä∣∣Un+1

∣∣2 Un+1 +
∣∣Un+1

∣∣2 Un + |Un|2 Un+1 + |Un|2 Un
ä
dx

= −
∫

S1

(
Un+1 −Un

)
· V n+1 dx,

(4.17)

through expanding differences and using the second equation of (4.14). Now, using the first equation of
(4.14)

2
(
F4(U

n+1)− F4(U
n)
)
=

∫

S1

τn
(
V n+1

x +W n+1
)
· V n+1 dx

=

∫

S1

τnW
n+1 · V n+1 dx

= 0

(4.18)

using the fourth equation of (4.14) with Π = Pn+1 and Ξ = W n+1, concluding the proof. �

5. Numerical experiments

In this section we illustrate the performance of the method proposed through a series of numerical exper-
iments. The brunt of the computational work has been carried out using Firedrake [RHM+16]. We employ
a Gauss quadrature of order 4q, where q is the degree of the finite element space, to minimise quadrature
error introduced into the implementation. Indeed, at this degree all integrals are performed exactly with the
exception of the projection of the initial condition. The nonlinear system of equations are then approximated
using the PETSc [BAA+18, BGMS97] Newton line search method with a tolerance of 10−12 on each time
step. A combination of Paraview and Matplotlib have been used as a visualisation tool. The code written
for this purpose is freely available at [Jac17]. For each benchmark test we fix the polynomial degree q and
compute a sequence of solutions with h = h(i) = 2−i and τ chosen either so τ ≪ h, to make the temporal
discretisation error negligible, or so τ = h so temporal discretisation error dominates. This is done for a
sequence of refinement levels, i = l, . . . , L. We have previously used S1 as the unitary periodic domain. For
our numerical experiments, we have scaled the domain to [0,40] for computational convenience.

5.1. Definition (Experimental order of convergence). Given two sequences a(i) and h(i) ց 0 we define the
experimental order of convergence (EOC) to be the local slope of the log a(i) vs. log h(i) curve, i.e.,

(5.1) EOC(a, h; i) =
log
Ä
ai+1

ai

ä

log
Ä
hi+1

hi

ä .

5.2. Remark (Numerical deviation in F4). While the analysis shows that our scheme exactly preserves the
energy over arbitrarily long time, the implementation relies on linear and nonlinear solvers that inherently
require further approximation. The result of this is that the energy may deviate locally up to the tolerance
of the linear and nonlinear solvers which introduces the possibility of these errors propagating over time. In
our numerical tests we focus on studying the global deviation in time, F4(U

n)−F4(U
0), which includes any

propogation arising from solver or precision errors.

5.3. Test 1 - Asymptotic benchmarking of a 1-soliton solution. We take d = 2 and

(5.2) u0 =
2μ

cosh(μ(x− cμ))
E,

over the periodic domain S1 with E = (0.8, (1 − 0.82)0.5)⊺, μ = 1 and cμ = 20. The exact solution is
then given by (2.24). We take a uniform timestep and uniform meshes that are fixed with respect to time.
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Convergence results are shown in Figure 2 and conservativity over long time is given in Figure 1. Note that
for the 1-soliton solution we have W n ≡ 0 for all n in which case the Lagrange multiplier is not required as∫
S1 V

n ·W n = 0 trivially for all n.
For this test case we we also investigate how well the qualitative structure of the solution is captured. In

the spirit of [BDKM95] we investigate the amplitude error, phase error and shape error of a single soliton
over time. To that end, we define X as the set of Lagrange degrees of freedom for the triangulation T .

The amplitude error for Ui is then given by

(5.3) max
X

Ui −max
X

ui.

If the amplitude error is positive then the numerical soliton is larger than the exact solution, and vice versa.
Similarly we define the phase error as

(5.4) epi = argmax

X

Ui − argmax

X

ui,

where argmax represents the spatial coordinate associated to the maximum over X. If the phase error is
positive then the numerical approximation is moving faster than the exact solution, and vice versa. Note this
this discrete measure of the error cannot detect shifts in phase which are smaller than the distance between
degrees of freedom. The amplitude and phase errors for this test case can be seen in Figure 3 and Figure 4
respectively.

In [BDKM95] the shape error is defined to be miny∈S1 ‖ui(x+ y, tn)− Ui(x, tn)‖L2(S1) in each vector

component of the solution. Numerically we approximate this error by shifting the exact solution by the
distance of the phase error and computing the L2 error at fixed times, i.e., the discrete shape error is

∥∥ui(x+ epi, tn)− Ui(x, tn)
∥∥
L2(S1)

.

The shape error for this test can be seen in Figure 5.

Figure 1. Here we examine the conservative discretisation scheme with various polynomial
degrees, q, approximating the exact solution (2.24) with initial conditions given by (5.2).
We show the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum and
energy. In each test we take a fixed spatial discretisation parameter of h = 0.25 and fixed
time step of τ = 0.001. Notice that in each case the deviation in energy is smaller than
the solver tolerance of 10−12 and the deviation in momentum is bounded. In addition, as
the degree of approximation is increased the deviation in momentum becomes smaller, in
this case by around two orders of magnitude per polynomial order. The simulations are
simulated for long time to test conservativity with T = 100 in each case.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.

13



Figure 2. Here we examine the conservative discretisation scheme with various polynomial
degrees, q, approximating the exact solution (2.24) with initial conditions given by (5.2). We
show the errors measured in the L∞(0, tn; L

2(S1)) norm for each component of the system
and the EOC for test runs that benchmark both the spatial and temporal discretisation and
show that the scheme is of optimal order. We use eui

:= ‖ui − Ui‖L∞(0,tn;L2(S1)) for i = 1, 2,

the components of the solution u =(u1, u2)
⊺
and numerical approximation U =(U1, U2)

⊺
.

(a) Here q = 1 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(b) Here q = 2 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(c) Here q = 3 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(d) Here q = 2 and on every refinement level we choose a
coupling τ = Ch. Note that the time discretisation error here
dominates.

5.4. Test 2 - Asymptotic benchmarking of a 2-soliton solution. We take d = 2 and

(5.5) u0 =
Fμ,ν

G
E1 +

Fν,μ

G
E2,

with Fμ,ν given in (2.26) G given in (2.27). The parameters are E1 = (1, 0)⊺, E2 = (0, 1)⊺, μ =
√
2, ν =

√
3,

cν = 24.9, cμ = 25.1. The exact solution is then given by (2.6). We take a uniform timestep and uniform
14



Figure 3. We examine the difference in maximal amplitude of the solutions for various
polynomial degrees, q, compared to the exact solution (2.24) with initial conditions given
by (5.2). When the difference in amplitude is positive the numerical approximation is larger
than the exact solution, and when it is negative the numerical approximation is smaller.
We plot these difference for both vector components of the soliton independently. In these
simulations we take a fixed spatial discretisation parameter of h = 0.08 and a fixed time step
of τ = 0.05. We notice that the deviation in amplitude is bounded over time and decreases
with polynomial degree.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.

Figure 4. We examine the difference in speed between numerical solutions for various
polynomial degrees, q, and the exact solution (2.24) with initial conditions given by (5.2).
We track this difference by looking at the spatial coordinate of the maximal amplitude for
the numerical and exact solutions, and take the difference. We plot these differences for
both vector components of the soliton independently. In these simulations we take a fixed
spatial discretisation parameter of h = 0.08 and a fixed time step of τ = 0.05. We notice
that the phase error decreases over time, i.e., the numerical solution travels slower than its
exact counterpart.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.

meshes that are fixed with respect to time. Convergence results are shown in Figure 7 and conservativity
over long time is given in Figure 6. Note that for 2-soliton solution we have W n 	= 0 in general in which
case the Lagrange multiplier is required to ensure

∫
S1 V

n ·W n = 0 for all n and that the results of Theorem
4.7 hold.
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Figure 5. We examine the difference in the shape between numerical solutions for various
polynomial degrees, q, and the exact solution (2.24) with initial conditions given by (5.2).
Mathematically we can write the shape error as miny∈S1 ‖ui(x+ y, tn)− Ui(x, tn)‖L2(S1) for

each component of the solution. In these simulations we take a fixed spatial discretisation
parameter of h = 0.08 and a fixed time step of τ = 0.05. We notice that the shape error
does not propagate over long time and decreases as the polynomial degree increases.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.

Figure 6. We examine the conservative discretisation scheme with various polynomial
degrees, q, approximating the exact solution (2.25) with initial conditions given by (5.5).
We show the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum
and energy respectively. In each test we take a fixed spatial discretisation parameter of
h = 0.25 and fixed time step of τ = 0.001. Notice that in each case the deviation in energy
is smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
The simulations are simulated for long time to test conservativity with T = 100 in each
case.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.
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Figure 7. We examine the conservative discretisation scheme with various polynomial
degrees, q, approximating the exact solution (2.25) with initial conditions given by (5.5).
We show the errors measured in the L∞(0, tn; L

2(S1)) norm for each component of the system
and the EOC for test runs that benchmark both the spatial and temporal discretisation and
show that the scheme is of the correct order. We use eui

:= ‖ui − Ui‖L∞(0,tn;L2(S1)) for

i = 1, 2, the components of the solution u =(u1, u2)
⊺
.

(a) Here q = 1 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(b) Here q = 2 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(c) Here q = 3 and we fix τ = 0.00001. This is sufficiently
small that the spatial discretisation error dominates.

(d) Here q = 2 and on every refinement level we choose a
coupling τ = Ch. Note that the time discretisation error here
dominates.
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5.5. Test 3 - Dynamics of 2 and 3-soliton solutions.

Subtest 1. We take d = 2 and

(5.6) u0 =
Fμ,ν

G
E1 +

Fν,μ

G
E2,

with Fμ,ν given in (2.26) G given in (2.27). The parameters are E1 = ( 9
10 ,

√
19
10 )⊺, E2 = ( 1

10 ,
3
√
11

10 )⊺, μ =
√
2,

ν =
√
3, cν = 10, cμ = 13. Figure 8 shows some plots of the dynamics of the numerical approximation.

Subtest 2. We take d = 2 and

(5.7) u0 =
Fμ,ν

G
E1 +

Fν,μ

G
E2,

with Fμ,ν given in (2.26) G given in (2.27). The parameters are E1 = (1, 0)⊺, E2 = (0, 1)⊺, μ = −
√
2,

ν =
√
3, cμ = 9, cν = 13. Figure 9 shows some plots of the dynamics of the numerical approximation. We

also examine the difference in the amplitude and phase between the numerical and exact solitons in each
vector component before and after the soliton interaction in Table 1. The amplitude and phase errors are
calculated as described in the one soliton case.

Subtest 3. In addition to the 2-soliton interactions we also take the opportunity to examine the dynamics of
a 3-soliton interaction. We take d = 2 and

(5.8) u0 =
3∑

i=1

2μi

cosh(μi(x− cμi
))
Ei

with E1 = E3 =(1, 0)
⊺
,E2 =(0, 1)

⊺
, μ1 = 19

10 , μ2 = − 40
25 , μ3 = 13

10 and cμ1
= 4, cμ2

= 12, cμ3
= 21. Figure 10

shows the dynamics of the numerical approximation.

Figure 8. The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (5.6).
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Figure 9. The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (5.7).

Figure 10. The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (5.8).
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Table 1. The phase and amplitude errors committed by the conservative discretisation
scheme approximating the smooth solution (5.7). We display the minimal and maximal
errors both before and after the soliton interactions for various coupled temporal and spatial
discretisations and various polynomial degrees. We notice, as in the one soliton case, our
numerical solitons travel slower than their exact counterparts both before and after soliton
interactions, with the phase error generally increasing after the soliton interactions. Note
that when the phase error is measured to be zero this does not mean that the phase of the
numerical scheme is exact, only that the phase error is smaller than the distance between
the degrees of freedom, h

q , of our numerical approximation. The error in amplitude also

increases after the soliton interaction, but remains reasonably small and decreases with the
polynomial degree.

τ h Degree
Phase error for
t ∈ [0, 2.0]

Phase error for
t ∈ [6.0, 8.0]

Amplitude error
for t ∈ [0, 2.0]

Amplitude error
for t ∈ [6.0, 8.0]

min max min max min max min max

1 -3.2e-01 0.0e+00 -1.3e+00 -6.4e-01 -2.5e-01 3.2e-03 -2.6e-01 2.1e-02
2.0e-02 3.2e-01 2 -1.6e-01 0.0e+00 -1.6e-01 0.0e+00 -2.0e-02 8.8e-03 -3.9e-02 2.3e-02

3 -1.1e-01 0.0e+00 -1.1e-01 0.0e+00 -6.2e-03 4.3e-03 -1.4e-02 1.2e-02

1 -1.6e-01 0.0e+00 -4.8e-01 -1.6e-01 -7.0e-02 -3.8e-03 -7.6e-02 -6.1e-03
1.0e-02 1.6e-01 2 0.0e+00 0.0e+00 -8.0e-02 0.0e+00 -2.1e-03 1.2e-03 -4.4e-03 2.8e-03

3 -5.3e-02 0.0e+00 -5.3e-02 0.0e+00 -7.9e-04 7.7e-04 -2.3e-03 2.2e-03

1 -8.0e-02 0.0e+00 -8.0e-02 0.0e+00 -1.6e-02 -5.7e-04 -1.8e-02 -4.8e-03
5.0e-03 8.0e-02 2 -4.0e-02 0.0e+00 0.0e+00 0.0e+00 -2.2e-04 1.1e-04 -5.3e-04 3.7e-04

3 -2.7e-02 0.0e+00 -2.7e-02 0.0e+00 -1.2e-04 7.7e-05 -3.5e-04 2.7e-04

1 -4.0e-02 0.0e+00 -4.0e-02 0.0e+00 -3.5e-03 -5.9e-05 -4.9e-03 4.0e-05
2.5e-03 4.0e-02 2 -2.0e-02 0.0e+00 0.0e+00 0.0e+00 -2.6e-05 1.4e-05 -7.6e-05 3.6e-05

3 -1.3e-02 0.0e+00 -1.3e-02 0.0e+00 -1.9e-05 1.1e-05 -5.6e-05 3.5e-05

Phase and amplitude errors for the first vector component of the solution.

τ h Degree
Phase error for
t ∈ [0, 2.0]

Phase error for
t ∈ [6.0, 8.0]

Amplitude error
for t ∈ [0, 2.0]

Amplitude error
for t ∈ [6.0, 8.0]

min max min max min max min max

1 -3.2e-01 0.0e+00 -9.6e-01 -3.2e-01 -1.4e-01 -1.2e-02 -1.0e-01 -9.3e-03
2.0e-02 3.2e-01 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -5.0e-03 1.2e-03 -7.5e-03 3.9e-03

3 0.0e+00 0.0e+00 -1.1e-01 0.0e+00 -8.2e-04 7.2e-04 -2.9e-03 2.8e-03

1 -1.6e-01 0.0e+00 -3.2e-01 0.0e+00 -3.2e-02 -1.1e-03 -2.8e-02 -4.4e-03
1.0e-02 1.6e-01 2 -8.0e-02 0.0e+00 0.0e+00 0.0e+00 -4.0e-04 1.9e-04 -3.3e-04 2.9e-04

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -1.2e-04 7.0e-05 -3.5e-04 4.9e-04

1 -8.0e-02 0.0e+00 -8.0e-02 0.0e+00 -7.0e-03 -1.9e-04 -9.1e-03 1.6e-03
5.0e-03 8.0e-02 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -3.9e-05 1.8e-05 -1.4e-05 9.7e-05

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -1.9e-05 1.0e-05 -4.4e-05 8.0e-05

1 -4.0e-02 0.0e+00 -4.0e-02 0.0e+00 -1.5e-03 -2.0e-05 -2.1e-03 7.0e-05
2.5e-03 4.0e-02 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -7.6e-06 7.7e-06 -5.7e-07 2.7e-05

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -3.4e-06 2.1e-06 -5.6e-06 1.5e-05

Phase and amplitude errors for the second vector component of the solution.
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5.6. Test 4 - Propagation of solitary waves from smooth initial data. We take d = 2 and u0 =
(u0,1, u0,2) with

u0,1 = sin
( π

20
x
)

u0,2 = cos
( π

10
x
)
.

(5.9)

The solution here is smooth and solitary waves begin to form quickly into the simulation. Plots of the
solutions are given in Figure 13 as well as conservativity plots in Figure 11.

Figure 11. The conservative discretisation scheme with various polynomial degrees, q,
approximating the solution to (2.2) with initial conditions given by (5.9). We show the
deviation in the two invariants Fi, i = 2, 4, corresponding to momentum and energy respec-
tively. In each test we take a fixed spatial discretisation parameter of h = 0.25 and fixed
time step of τ = 0.001. Notice that in each case the deviation in energy is smaller than the
solver tolerance of 10−12 and the deviation in momentum is bounded. The simulations are
simulated for long time to test conservativity with T = 100 in each case.

(a) q = 1 (b) q = 2 (c) q = 3

Figure 12. The conservative scheme with various polynomial degrees, q, approximating
the solution to (2.2) with initial conditions given by (5.9). We now show the deviation in
the two invariants Fi, i = 2, 4, locally, that is, for each n, we measure

∣∣F4(U
n)− F4(U

n−1)
∣∣.

In each test we take a fixed spatial discretisation parameter of h = 0.25 and fixed time step
of τ = 0.001. Notice that in each case the deviation in energy is smaller than the solver
tolerance of 10−12 and the deviation in momentum is bounded. The simulations run over
long time to test conservativity with T = 100 in each case. This result should be compared
to the study of the global deviation

∣∣F4(U
n)− F4(U

0)
∣∣ given in Figure 11 which accumulates

in time through propogation of precision errors over time.

(a) q = 1 (b) q = 2 (c) q = 3
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Figure 13. Here we show the dynamics of the approximation generated by the conservative
discretisation scheme with polynomial degree q = 1 approximating the solution to (2.2) with
initial conditions given by (5.9). Notice that initially, dispersive waves emanate from the
discontinuity.
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5.7. Test 5 - Solution with discontinuous initial data. We take d = 2 and u0 =(u0,1, u0,2) with

u0,1 =

®
1 for x ∈ [10, 20]

0 otherwise.

u0,2 =

®
0 for x ∈ [20, 30]

1 otherwise.

(5.10)

The solution here is discontinuous in both components. This is a particularly tough scenario to simulate as
there is no guarantee of classical solutions. We align the mesh to the discontinuities so that the discrete energy
at the initial condition makes sense. Plots of the solutions are given in Figure 15 as well as conservativity plots
in Figure 14. The phenomena demonstrated in this experiment are related to the observations in [Gra16]
where, for the scalar KdV equation, arguments based on Whitham’s modulation theory are presented.

Figure 14. Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, approximating the solution to (2.2) with initial conditions given by (5.10).
We show the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum
and energy respectively. In each test we take a fixed spatial discretisation parameter of
h = 0.25 and fixed time step of τ = 0.001. Notice that in each case the deviation in energy
is smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
The simulations are simulated for long time to test conservativity with T = 100 in each
case.

(a) q = 1 (b) q = 2 (c) q = 3

6. Conclusions

In this work we have constructed a Galerkin approximation for the vmKdV equation that is consistent
with the underlying algebraic structure of the PDE. We have proven that both the semi-discretisations as
well as the fully discrete problems are conservative and numerically shown that this is true in practice.
In addition, we have given numerical evidence to suggest that the method is of optimal order, that is,
‖u−U‖L∞((0,T );L2(S1)) = O(τ2+hq+1). We expect methods designed in this fashion, which is quite generic,

to be successful in the simulation of geophysical fluid flows.
Extentions to this work will be carried out by exploring applications to further Hamiltonian systems,

a thorough error analysis, and exploiting the possibility of constructing schemes with multiple conserved
quantities.
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Figure 15. Here we show the dynamics of the approximation generated by the conservative
discretisation scheme with polynomial degree q = 1 approximating the solution to (2.2) with
initial conditions given by (5.10). Notice that initially, dispersive waves emanate from the
discontinuity.
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