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Abstract: The affine formation maneuver control problem of a leader-follower type multi-agent systems with the directed
interaction graphs is studied in this paper. This paper firstly gives and proves a sufficient and necessary condition of achieving
the affine localizability. Then, under the (d + 1)-reachable condition of the given d-dimensional nominal formation with d + 1
leaders, a formation of agents can be reshaped in arbitrary dimension by only controlling these leaders. In the sequel, a novel
distributed control method for the followers with single-integrator dynamics is proposed to achieve the desired time-varying
maneuvers, and the global stability is also proved. Corresponding simulations are carried out to verify the theoretical results,
which show that these followers are tracking the time-varying references accurately and continuously.
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1 Introduction

This paper deals with the affine formation maneuver con-

trol problem for leader-follower multi-agent systems with

the directed interaction graphs to achieve the time-varying

maneuvers, and it is a new topic and has not been explored

sufficiently. This control task can be divided into two sub-

tasks: The first one is to select the number of leaders and

fully control the entire formation to achieve an desired affine

transformation from any initial configuration, thus it acts as

a shape control part; the second is to design a distributed

control approach for the followers to steer the whole forma-

tion to fulfil time-varying maneuvers continuously, thus it is

utilized to execute the desired maneuvers.

Since the affine transformation has a useful property to

represent a translation, rotation, scale, shear, or the com-

bination of them as a linear transformation in arbitrary di-

mensional space. Then the affine formation control approach

proposed in [1] is based on the affine transformation and can

fulfil the formation reshaped in arbitrary dimensional space

by only controlling a small number of agents. It provides

a powerful tool to drive the group of agents to achieve vari-

ous time-varying formation maneuvers. Therefore, the affine

formation maneuver control is important for a formation of

agents to react to the dynamical environment, for example,

to shrink the scale of the formation by the affine transfor-

mation to pass through a narrow passage. In order to show

the advantages of the affine formation control approach, the

existing approaches are compared. In the survey [2], the for-

mation control approaches can be classified into types based

on displacement, distance, and bearing under different target

formations of constant constraints. The displacement-based

method injects constraints into the inter-agent displacement

of the target formation. It is suitable to track a time-varying
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translation but not for a rotation or scale. As for the distance-

based method, each agent has its own local coordinate with

inter-agent distance and orientation being its constraints. A

time-varying translation or rotation can be achieved [3], but

it cannot be applied to a time-varying scale. Although the

bearing-based approach can track a time-varying translation

or scale [4], a time-varying rotation cannot be achieved. Re-

searchers in [1], [5], [6] have proposed many advanced meth-

ods to compensate these limitations recently. The appealing

similar formation in [5], [7] can achieve the translational,

rotational, and scaling formation maneuvers simultaneously,

but it is only confined in the planar.

The problem of the affine formation maneuver control un-

der an undirected graphical condition has been studied in

[8], but the directed case has not been solved yet. In the

real implementation, the interaction graph between agents

is usually oriented, thus the directed condition is more suit-

able. For the directed problem, there are following tasks to

be solved in this paper: 1) The undirected problem in [8]

needs strong connectivity of generic universal rigidity to ob-

tain the equilibrium set, but it is not suitable for real im-

plementation due to the limits of onboard power of agents.

Thus a loose precondition for the directed case needs to be

found in this paper; 2) In [8] there exists a stress matrix

is associated to the undirected graph, and this matrix has

the properties of both positive and negative weights, posi-

tive semi-definite and symmetric. Under a directed graphical

condition, a signed Laplacian is also defined with both pos-

itive and negative entries, but it does not satisfy the proper-

ties of positive semi-definite and symmetric. Thus the prop-

erty of the signed Laplacian should be studied and adapted;

3) The directed interaction graph usually means fewer con-

trol effects of the following agents, thus the distributed con-

trol protocol for these followers would be different from the

undirected case in [8] and needs to be redesigned.

The main contributions of this paper are twofold. First,

a sufficient and necessary condition corresponding to the



affine localizability with a directed interaction graph is given

and proved. If the condition is satisfied, and only giving

the references to these leaders can steer the whole group

to achieve the desired affine formation shapes in the arbi-

trary dimensions. Second, based on various types of mea-

surements, we propose the distributed control laws for these

agents with single-integrator dynamics, and the global sta-

bility is also proved. Through the simulations, we verify that

the proposed control laws can achieve time-varying affine

formation maneuvers.

Notations: R denotes the set of real numbers. 1n stands

for a n-dimensional vector of ones and Id represents a d× d
identity matrix. Denote ⊗ as the Kronecker product, and

diag(·) the diagonal matrix.

2 Preliminaries and Problem Statement

2.1 Directed Graph Theory

A directed graph G = (V, E) contains a node set V =
{1, 2, . . . , n} and an edge set E ⊆ V × V . If there exists

an ordered pair (j, i) ∈ E , then the node vj is said to be

the tail (where the arrow starts) of the edge, while node vi
is its head, and the node vj denotes the in-neighbour of vi
and the converse is called out-neighbour. Denote Ni as the

in-neighbour set of node vi, where Ni = {j : (j, i) ∈ E}.

Throughout this paper, it assumes that a directed graph does

not have any self-loop and is a fixed topology. In a directed

graph G, a path is an alternating sequence of node vi and

edge ei, and these nodes in the sequence are different.

Then some useful concepts are defined as follows. In a

directed graph G, a node v is set as κ-reachable (κ ≥ 2)

from a nonsingleton set U of nodes when there is a path

from a node in U to v after deleting any κ − 1 nodes ex-

cept v. A directed graph G is κ-rooted if there exists a

subset of κ nodes (roots), from which every other node is

κ-reachable. For a directed graph G = (V, E), a spanning

κ-tree rooted at R = {r1, r2, . . . , rκ} ⊂ V is a spanning

subgraph T = (V, Ē) that satisfies:

(i) every node r ∈ R has no in-neighbour;

(ii) every node r /∈ R has κ in-neighbours;

(iii) every node r /∈ R is κ-reachable form R.

(a) (b)

Fig. 1: Examples of 2-reachable and non 2-reachable

Fig. 1 shows the examples of κ-reachable, in Fig. 1(a) both

of the nodes v1 and v2 are 2-reachable form the root set U =
{u1, u2}, while in Fig. 1(b) the node v2 is not 2-reachable

form set U after removing v1. The directed graph in Fig. 1(a)

is 2-rooted, and it has a spanning 2-tree.

Finally, the notion of signed Laplacian for a directed graph

is introduced. A signed Laplacian Ls refers to a Laplacian

matrix associated to a graph with both positive and negative

real off-diagonal entries. The matrix Ls of a directed graph

is defined as follows

Ls(i, j) =







− ωij if i 6= j and j ∈ Ni,

0 if i 6= j and j /∈ Ni,
∑

k∈Ni

ωik if i = j.
(1)

where ω ∈ R may be a positive or negative real weight at-

tributed on the edge (j, i), and Ls is normally a nonsymmet-

ric matrix.

2.2 Problem Statement

Consider a group of n mobile agents in R
d and assume

d ≥ 2 and n ≥ d+ 2. Denote pi ∈ R
d as the point of agent

i, and the whole group of points p = [pT1 , p
T
2 , . . . , p

T
n ]

T ∈
R

dn of n agents constitute a configuration. These agents

exchange information by a directed graph G. The directed

graph G containing n nodes represents the interaction graph

of the group of agents, an edge (j, i) shows that agent i can

measure the relative position of agent j.

Denote the first nℓ of agents as the leaders and the rest

nf = n − nℓ as the followers. Thus the leaders’ subset is

Vℓ = {1, 2, . . . , nℓ} and the followers’ subset terms Vf =
V\Vℓ. The points of leaders are pℓ = [pT1 , p

T
2 , . . . , p

T
nℓ
]T

and those of followers are pf = [pTnℓ+1, p
T
nℓ+2, . . . , p

T
n ]

T re-

spectively, thus p = [pTℓ , p
T
f ]

T . The leaders do not interact

with the following agents, and do not need to access the in-

formation from these followers.

The affine transformation is a general linear transforma-

tion. The types may be a translation, rotation, scale, shear

or combinations of them, and there may exist some special

conditions of collinear or coplanar. A formation (G, p) is a

directed graph G with its vertex i of mapped to pi. Then

the nominal formation associated to G is defined as (G, r),
and r = [rT1 , r

T
2 , . . . , r

T
n ]

T = [rTℓ , r
T
f ]

T ∈ R
dn is constant

and named nominal configuration. The affine image of the

nominal configuration can be defined as

A(r) = {p ∈ R
dn : p = (In ⊗A)r + 1n ⊗ b,

∀A ∈ R
d×d, ∀b ∈ R

d},
(2)

where (A, b) is affine transformation.

Definition 1. (Affine Localizability) The nominal forma-

tion (G, r) is said to be affinely localizable if both of the fol-

lowing conditions are satisfied:

1) For any p = [pTℓ , p
T
f ]

T ∈ A(r) in R
d, where pf can be

determined by pℓ uniquely;

2) For G and p, there exists a signed Laplacian Ls ∈
R

n×n associated with G such that the equilibrium set

(Ls ⊗ Id)p = 0. (3)

The first condition is for the leader selection, and the sec-

ond one is about the directed graphical condition. Then, with

the definition of the signed Laplacian, it can obtain

Ls
1n = 0. (4)

The objective of affine formation maneuver control is to

drive the group of n agents to track the time-varying target

formation under a distributed control law ui of agent i.



Definition 2. (Target Formation) The time-varying target

formation has the expression of

p∗(t) = [In ⊗A(t)] r + 1n ⊗ b(t), (5)

where A(t) ∈ R
d×d and b(t) ∈ R

d are continuous of t and

time-varying, if the time-varying target can be tracked suc-

cessfully, p∗(t) is in A(r) for all t.

Since the leaders’ points have a one-to-one correspond-

ing to the affine transformation, the entire formation can

be achieved by controlling only the leaders. The leaders’

number is usually small, in this paper we assume the lead-

ers can be controlled by human pilots or intelligent plan-

ners and their points are equal to desired target formation,

i.e., pℓ(t) = p∗ℓ (t) for all t. Then, the control objective is

changed to drive these followers to achieve pf (t) = p∗f (t) as

t → ∞.

In this paper we will study the following two problems:

P1: What is the necessary and sufficient condition of

the nominal formation (G, r) such that a group of n agents

can achieve the affine localizability in arbitrary dimensional

space?

P2: If given a nominal formation (G, r) satisfying condi-

tions of the affine localizability, how to design the affine for-

mation maneuver control law of these followers with single-

integrator dynamics so as to drive them to maneuver con-

tinuously in the time-varying target formation in arbitrary

dimensional space?

3 Affine Localizability of Directed Graph

Both the leader selection and the directed graphical con-

dition of the affine localizability are given and proved in this

section.

To get the affine localizability, it needs to introduce a term

affine span S of the given point set {pi}
n

i=1 of n agents in

R
d, which denotes

S =

{
n∑

i=1

aipi : ai ∈ R for all i and

n∑

i=1

ai = 1

}

, (6)

where this span can always be translated to get a linear space,

and the dimension of the obtained linear space is just the

dimension of the affine span. If these scalars {ai}
n

i=1 of

not all zero ones can not satisfy that
∑n

i=i aipi = 0 and
∑n

i=i ai = 0, this condition is called as affinely independent.

Then, the configuration matrix can be defined as P ∈
R

n×d and denote corresponding augmented matrix P̄ ∈
R

n×(d+1) as

P (p) =






pT1
...

pTn




 , P̄ (p) =






pT1 1
...

...

pTn 1




 = [P (p),1n], (7)

where these points of {pi}
n

i=1 are affinely independent if and

only if the rows of P̄ (p) are linearly independent, thus there

exist at most d + 1 points and they are affinely independent

in R
d.

With the above definitions, two lemmas are given as be-

low.

Lemma 1. The point set {pi}
n

i=1 of n agents has d-

dimensional affine span if and only if n ≥ d + 1 and

rank(P̄ (p)) = d+ 1.

Lemma 2. [8] The affine image A(r) is a linear space of

dimension d2 + d if and only if {ri}
n

i=1 is d-dimensional

affine span.

Now an assumption of the nominal formation should be

given.

Assumption 1. Assume that the given nominal formation

(G, r) of n agents satisfies {ri}
n

i=1 has d-dimensional affine

span.

After obtaining these lemmas and assumption before, a

theorem of the necessary and sufficient condition to fulfil the

affine localizability can be deduced.

Theorem 1. Under Assumption 1, the affine localizability

of the given nominal formation (G, r) of n agents can be

achieved if and only if the leaders’ subset Vℓ has d+1 lead-

ers and every follower in Vf is (d+ 1)-reachable from Vℓ.

Proof. The proof is omitted here due to page limit.

From Theorem 1, the associated signed Laplacian Ls can

be rewritten as the following blocks

Ls =

[

0
(d+1)×(d+1)
ℓℓ 0

(d+1)×(n−d−1)
ℓf

Ls
fℓ

(n−d−1)×(d+1) Ls
ff

(n−d−1)×(n−d−1)

]

.

(8)

Because any p = [pTℓ , p
T
f ]

T ∈ A(r) satisfies (Ls⊗Id)p =
0, it can obtain that

L̄s
fℓpℓ + L̄s

ffpf = 0, (9)

where L̄s
fℓ = Ls

fℓ ⊗ Id and L̄s
ff = Ls

ff ⊗ Id.

Now, another assumption is given about the affine localiz-

ability of the nominal formation.

Assumption 2. Assume that the given nominal formation

(G, r) can achieve the affine localizability.

Till now, it can recall that the control objective is to

drive these followers to achieve pf (t) → p∗f (t) as t →
∞. In the light of above Theorem 1, it can find p∗f (t) =

−L̄s−1

ff L̄s
fℓp

∗
ℓ (t), although Ls

ff is nonsingular, its eigenval-

ues may not all locate in the right-half complex plane, and

there are fixed d+1 zero eigenvalues corresponding to roots

of the directed interaction graph G, thus it implies that Ls

may contain negative eigenvalues. A transformation method

should be found to make Ls to get all nonnegative eigenval-

ues. After being transformed, two blocks of L̄s
ff and L̄s

fl

corresponding matrices become L̃s
ff and L̃s

fl. Define the

tracking error of following agents as

δpf
(t) = pf (t)− p∗f (t) = pf (t) + L̃s−1

ff L̃s
fℓp

∗
ℓ (t). (10)

Then the control law ui(t), i ∈ Vf needs to be designed

for the followers to make δpf
(t) → 0 as t → ∞. The next

section will give the design process of the distributed control

approach to achieve affine formation maneuvers of single-

integrator multi-agent systems.

4 Affine Formation Maneuver Control Laws of
Single-Integrator Dynamics

In this section, the distributed affine formation maneuver

control laws based on different kinds of information flows



are proposed. The condition of single-integrator dynamics

agent model is considered: ṗi = ui, where ui is the control

input that needs to be designed.

1) Leaders with Zero Velocities If all of these leaders are

stationary, then the target formation is also stationary, the

following control law of these agents i ∈ Vf is proposed

ṗi = −di
∑

j∈Ni

ωij(pi − pj), (11)

where ωij may be positive or negative, di is the nonzero con-

trol parameter to be designed.

Then a theorem is given as below, which gives the sta-

bility of the proposed distributed control law. To prove this

theorem, a lemma is needed.

Lemma 3. [9] Let A be an n × n real matrix, all of its

leading principal minors are nonzero. Then there exist an

n×n diagonal real matrix D, all the roots of DA are positive

and simple.

Theorem 2. Under Assumptions 1-2, if the leaders have the

zero velocities ṗ∗ℓ (t), then the tracking error δpf
(t) of these

followers under the control law (11) converges globally and

exponentially fast to zero.

Proof. On the basis of Lemma 3, since the real matrix D ∈
R

n×n and D = diag(di), i ∈ V is diagonal and invertible,

it can imply that the null space of DLs is the same as the

one of Ls. Then these eigenvalues of DLs are not localized

in the left-half complex plane, which indicates that DLs can

obtain all positive real-part eigenvalues. In the sequel, the

solution to finding D is tackled.

Under Assumptions 1-2 such that Ls
ff satisfies nonsin-

gular, there exists a permutation matrix P such that all of

the leading principal minors of PLs
ffP

T are nonzero. Ac-

cording to Lemma 3, it can obtain that a diagonal matrix

D′ makes all of the eigenvalues of D′PLs
ffP

T localize in

the right-half complex plane. The permutation matrix P
has the proposition of P−1 = PT , thus D′PLs

ffP
T =

P (PTD′PLs
ff )P

T . From both sides of this equation, it

implies that D′PLs
ffP

T and PTD′PLs
ff have the same

eigenvalues. And PTD′P is also diagonal, then let D′′ =
PTD′P , and these diagonal entries of D corresponding to

zero eigenvalues as Id+1, the form of D has the expression

of

D =

[
Id+1 0
0 D′′

]

, (12)

where the zero vector has corresponding rows, and the fol-

lowing parts of this paper is the same for the reason of sim-

plification.

After premultiplying the diagonal D, these eigenvalues of

DLs have d + 1 zeros and the rest with positive real parts.

Denote this diagonal matrix D as the stabilizing matrix.

Since ṗ∗ℓ = 0, a matrix form of (11) can be expressed as
[
0

δ̇pf

]

= − [(DLs)⊗ Id]

[
0
δpf

]

. (13)

After partitioning DLs to blocks, it has a expression of
[

Id+1 0

0 D′′

][

0 0

Ls
fℓ Ls

ff

]

=

[

0 0

D′′Ls
fℓ D′′Ls

ff

]

.

(14)

In the sequel, denote L̃s
fℓ = (D′′Ls

fℓ) ⊗ Id and L̃s
ff =

(D′′Ls
ff ) ⊗ Id, then δ̇pf

= −L̃s
ffδpf

, it implies that there

exists a gradient-decent control law for the Lyapunov func-

tion V = 1/2δTpf
(GL̃s

ff + L̃sT
ffG)δpf

with a diagonal posi-

tive definite matrix G, and if and only if D′′Ls
ff contain all

positive eigenvalues, then the tracking error δpf
converges to

zero globally and exponentially fast.

2) Leaders with Constant Velocities If these leaders are

moving with nonzero constant velocities, then additional in-

tegral term is needed to compensate (11). A proportional-

integral control law of these agents i ∈ Vf is proposed

ṗi =− αdi
∑

j∈Ni

ωij(pi − pj)

︸ ︷︷ ︸

proportional term

− β

∫ t

0

di
∑

j∈Ni

ωij(pi(τ)− pj(τ))dτ

︸ ︷︷ ︸

integral term

,
(15)

where α and β are positive constant control gains to be de-

signed.

Then a theorem is given as below, which gives the stability

of the proposed distributed control law.

Theorem 3. Under Assumptions 1-2, if the leaders have the

constant velocities ṗ∗ℓ (t), then the tracking error δpf
(t) of

these followers under the control law (15) converges glob-

ally and exponentially fast to zero.

Proof. To prove this theorem, a new intermediate state ζ is

introduced and (15) can be rewritten as

ṗi = −αdi
∑

j∈Ni

ωij(pi − pj)− βζi,

ζ̇i = di
∑

j∈Ni

ωij(pi − pj).
(16)

Then a matrix form of (16) can be expressed as

ṗf = −αL̃s
fℓp

∗
ℓ − αL̃s

ffpf − βζ,

ζ̇ = L̃s
fℓp

∗
ℓ + L̃s

ffpf .
(17)

Differentiate (10) and substitute (17) can obtain

δ̇pf
= ṗf + L̃s−1

ff L̃s
fℓṗ

∗
ℓ

= −αL̃ffδpf
− βζ + L̃s−1

ff L̃s
fℓṗ

∗
ℓ .

(18)

The matrix combining the tracking error δpf
and the inter-

mediate state ζ can be formulated as

[
δ̇pf

ζ̇

]

=

[

−αL̃s
ff −βIdnf

L̃s
ff 0

] [
δpf

ζ

]

+

[

L̃s−1

ff L̃s
fℓ

0

]

ṗ∗ℓ .

(19)

Denote ϕ = [δTpf
, ζT ]T , M as the state matrix containing

α and β, the second term C of (19) is constant since ṗ∗ℓ is

constant, then (19) can be rewritten as

ϕ̇ = Mϕ+ C. (20)



Then ϕ can converge if and only if M is Hurwitz, it im-

plies that α, β are positive constant and L̃s
ff contain all pos-

itive eigenvalues. The infinite state of (19) can be written

as

[

−αL̃s
ff −βIdnf

L̃s
ff 0

] [
δpf

(∞)
ζ(∞)

]

+

[

L̃s−1

ff L̃s
fℓ

0

]

ṗ∗ℓ = 0.

(21)

where δpf
(∞) = 0 and ζ(∞) cancels the steady-state error

induced by ṗ∗ℓ .

3) Leaders with Time-Varying Velocities If the absolute

velocity of every agent can be measured, when leaders are

moving with time-varying velocities, a term collecting all

neighbouring information is needed, the following control

law of these agent i ∈ Vf is proposed

ṗi = −
1

γi
di

∑

j∈Ni

ωij [(pi − pj)− ṗj ], (22)

where γi = di
∑

j∈Ni
ωij and needs to satisfy γi 6= 0.

Observe (22) that the term di 6= 0 can be reduced, and it

can be simplified as

ṗi = −
1

γi′

∑

j∈Ni

ωij [(pi − pj)− ṗj ], (23)

where γi
′ =

∑

j∈Ni
ωij and needs to satisfy γi

′ 6= 0.

Then a theorem is given as below, which gives the stability

of the proposed distributed control law.

Theorem 4. Under Assumptions 1-2, if the leaders have the

time-varying and continuous velocities ṗ∗ℓ (t), then the track-

ing error δpf
(t) of these followers under the control law (23)

converges globally and exponentially fast to zero.

Proof. Multiply both sides of (23) can get

∑

j∈Ni

ωij(ṗi − ṗj) = −
∑

j∈Ni

ωij(pi − pj). (24)

Then (24) can be rewritten to a matrix form as

L̄s
ff δ̇pf

= −L̄s
ffδpf

. (25)

In the sequel, denote ηf = L̄s
ffδpf

, it implies that η̇f =

−ηf that if and only if L̄s
ff is nonsingular, then ηf con-

verges to zero globally and exponentially fast. If ηf = 0
then L̄s

ffpf + L̄s
fℓp

∗
ℓ = 0, it means that L̄s

ffδpf
= 0. Conse-

quently, δpf
can converge to zero if and only if L̄s

ff is non-

singular. It can obtain that γi
′ =

∑

j∈Ni
ωij for all i ∈ Vf .

Because L̄s
ff is nonsingular, then γi

′ for all i ∈ Vf is a diag-

onal entry of Ls
ff , which infers that γi

′ 6= 0.

Remark 1. To be specific, when the leaders have time-

varying velocities, the stabilizing matrix D is not necessary

to be designed, it implies that the control laws designed are

the same as the undirected graphical condition as [8].

5 Calculation of Signed Laplacian and Stabilizing
Matrix

In this section, it needs to find the algorithms to calculate

the signed Laplacian Ls and the stabilizing matrix D.

When a given nominal formation (G, r) satisfies Assump-

tions 1-2, from Theorem 1, it shows that a signed Laplacian

Ls with every weight ωij exists and satisfies det(Ls
ff ) 6= 0

and rank(Ls) = n − d − 1 if the directed graph G satisfies

every following agent of Vf is (d + 1)-reachable from the

leaders’ set Vℓ with d + 1 leaders. The given nominal con-

figuration is r = [rT1 , · · · , r
T
n ]

T , and (Ls ⊗ Id)r = 0. Then

the off-diagonal weight ωij can be computed by

∑

j∈Ni

ωij(rj − ri) = 0, i ∈ Vf . (26)

Due to the directed graph G has (d+1)-spanning tree, and

according to the definition of κ-spanning tree, there are ex-

actly d + 1 in-neighbours, which infers that (26) must have

a solution and can be solved by linear programming effi-

ciently. Then using Ls
1n = 0 such that all of these diagonal

entries of Ls can be calculated. Till now the whole entries of

Ls can be found and the solution of Ls is not unique.

Algorithm 1 Stabilizing matrix D calculation

Input: Ls
ff satisfying all nonzero leading principal minors.

Output: Stabilizing matrix D.

for i = 1, · · · , n− d− 1 do

Find di+d+1 to assign these eigenvalues of diag(dd+2, · · · ,

di+d+1)L
s
ff

(1∼i) in the right-half complex plane.

end for

return D = diag(1, · · · , 1, dd+2, · · · , dn).

The existence of the stabilizing matrix D is assured by

Lemma 3 and above solution of Ls. Give an algorithm above

to calculate D in an iterative way, where Ls
ff

(1∼i) denotes

the block of first i rows and columns of Ls
ff . This procedure

requires the centralized computation.

6 Simulations

In this section, the proposed distributed control laws are

verified through the simulations.

Fig. 2: Nominal formation of 7 agents

Given a nominal formation (G, r) of 7 agents with the
configuration matrix P (r) in R

2 as shown in Fig. 2. The
first three nodes denote the leaders and the rest four ones
are the following agents, the leader number meets 3 =
d + 1 and the directed interaction graph G is 3-reachable.
The rank of the calculated signed Laplacian Ls satisfies
4, and the designed diagonal stabilizing matrix is D =
diag(1, 1, 1,−1,−1,−1,−1).

L
s =












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



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 1.5 0.5 −1 0 0 0
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0 −1 0 0 2 1 −2
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


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






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Fig. 3: Trajectories with time-varying transitional, scaling, and shearing affine formation maneuvers

Fig. 4: Trajectories with time-varying rotational affine for-

mation maneuvers

These agents with single-integrator dynamics are intro-

duced, and the distributed control law of these following

agents is given in (23). The resulting trajectories of time-

varying affine formation maneuvers of these 7 agents are

shown in Fig. 3 and Fig. 4. It should be remaindered that

these leaders may occur the collinear condition during the

maneuvering process, but it does not affect the localizability

and stability of the affine formation. From these simulation

results, the affine formation maneuvers can fulfil the transla-

tion, scale, shear, and rotation continuously.

7 Conclusions

This paper solves a multi-agent affine formation maneuver

control problem of realizing the time-varying maneuvers via

directed interaction graphs in arbitrary dimensional space.

Each agent in the connected graph updates its own state via

a signed Laplacian with both positive and negative weights

of edges. The sufficient and necessary condition of achiev-

ing affine localizability of the directed interaction graph is

proved to be (d + 1)-rooted. A distributed affine formation

maneuver control approach based on the single-integrator

dynamics model is proposed and proved globally stable. Ac-

cording to designed control protocols, the time-varying ma-

neuvers such as a translation, scale, shear, and rotation can

be fulfilled when these references are only accessed by the

leaders. Tracking performance of these following agents is

accurate and continuous. In the future, the higher-order dy-

namics model of agents and the conditions for rigid forma-

tion need to be studied and tackled.
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