
This is a repository copy of Online sparse multi-output Gaussian process regression and
learning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139521/

Version: Accepted Version

Article:

Yang, L., Wang, K. and Mihaylova, L.S. orcid.org/0000-0001-5856-2223 (2019) Online
sparse multi-output Gaussian process regression and learning. IEEE Transactions on
Signal and Information Processing over Networks, 5 (2). pp. 258-272. ISSN 2373-776X

https://doi.org/10.1109/TSIPN.2018.2885925

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 1

Online Sparse Multi-Output Gaussian Process

Regression and Learning
Le Yang, Member, IEEE, Ke Wang, and Lyudmila Mihaylova∗, Senior Member, IEEE

Abstract—This paper proposes an approach for online training
of a sparse multi-output Gaussian process (GP) model using
sequentially obtained data. The considered model combines
linearly multiple latent sparse GPs to produce correlated output
variables. Each latent GP has its own set of inducing points to
achieve sparsity. We show that given the model hyperparameters,
the posterior over the inducing points is Gaussian under Gaussian
noise since they are linearly related to the model outputs. How-
ever, the inducing points from different latent GPs would become
correlated, leading to a full covariance matrix cumbersome to
handle. Variational inference is thus applied and an approximate
regression technique is obtained, with which the posteriors over
different inducing point sets can always factorize. As the model
outputs are non-linearly dependent on the hyperparameters,
a novel marginalized particle filer (MPF)-based algorithm is
proposed for the online inference of the inducing point values
and hyperparameters. The approximate regression technique
is incorporated in the MPF and its distributed realization is
presented. Algorithm validation using synthetic and real data is
conducted, and promising results are obtained.

Index Terms—Multi-output Gaussian Processes, Sparse ap-
proximation, online regression and learning, marginalized parti-
cle filter, Kullback-Leibler divergence.

I. INTRODUCTION

G
aussian process (GP) regression provides a flexible and

powerful non-parametric framework for Bayesian infer-

ence. It imposes a GP prior, which is an infinite-dimensional

Gaussian distribution, over the function to be modeled. It is

capable of capturing complex relationships between the input

data and (noisy) output data [1], [2]. The GP is completely

characterized by its mean and covariance functions. Their

parameters together with other model parameters such as the

measurement noise precisions are collectively called hyper-

parameters that also need to be learned from the training

data. GP regression has found diverse applications in indoor

localization [3]–[5], image processing and visual tracking [6],

[7], change point detection [8] and sensor (robotic) network

management [9], [10]. It has also been used for wireless

channel prediction/identification [11], [12] and state transition

dynamics modeling in Bayesian filtering [13]–[15].

Le Yang was with the School of Internet of Things (IoT) Engineering,
Jiangnan University, Wuxi 214122, China and is now with the Department of
Electrical and Computer Engineering, University of Canterbury, Christchurch
8020, New Zealand (e-mail: le.yang.le@gmail.com). Ke Wang is with the
School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland
(e-mail: k.wang.1@research.gla.ac.uk). Lyudmila Mihaylova is with the De-
partment of Automatic Control and System Engineering (ACSE), University
of Sheffield, Sheffield S1 3JD, U.K. (e-mail: l.s.mihaylova@sheffield.ac.uk).

Manuscript received December 23, 2017; revised September 8, 2018.
∗ Corresponding author

A. Multi-output Gaussian Processes

The standard GP model assumes a single output vari-

able only. However, in practice, multi-output functions arise

widely in geostatistics [16], robotics [17], sensor networks

[18], chemometrics [19], traffic flow forecasting [20] and

computational physics [21], [22], just to name a few. A

typical example of multi-output regression is the robot inverse

dynamics problem [17], [23]. Modeling the inverse dynamics

accurately is essential for e.g., computing the torques needed at

the joints of a robot arm to drive it along the planned trajectory.

The conventional approach for multi-output regression con-

sists of applying an independent GP to each output variable

(see e.g., [24], [25]). This is in general a suboptimal solution,

because the cross correlation among the output variables is not

taken into account. Simultaneously modeling multiple output

variables can improve prediction performance and enable the

recovery of missing data due to sensor failure and/or mal-

function [18], [26]. One straightforward way for generalizing

single-output GP regression to the multi-output case is to

directly make the GP priors for different output variables

correlated with one another [1]. An alternative method relies

on convolving the latent GPs with different kernels to produce

multiple outputs and introduce cross correlation among them

[27]–[29]. It is also popular to establish a multi-output GP

model by linearly combining the latent GPs [26], [30]–[33].

B. Complexity Reduction via Sparse Approximation

As in the single-output GP regression, the computational

cost of performing exact inference with multi-output GP

models would become prohibitive when the training data set is

large. This is mainly due to the need of inverting a large covari-

ance matrix. To reduce complexity, [19], [34] constrained the

covariance structure to establish a more parsimonious multi-

output model and speed up the computations. In [28], [29], the

sparse approximation [35] was integrated into the convolved

multi-output GP regression and two approximate inference

techniques were developed. They have very similar functional

forms as the partially independent training conditional (PITC)

[35] and fully independent training conditional (FITC) [35],

[36] approximations originally proposed for single-output GPs.

Both of them rely on a set of inducing points, also referred

to as inducing variables [36], [37] and basis vectors [38],

whose number is usually much smaller than that of the training

data points. The use of inducing points reduces the exact GP

inference to learning the posterior over the inducing points

and model hyperparameters, resulting in significant reduction

in the computational cost.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 2

The variational formulation of sparse approximation was

proposed in [39]–[43] and shown in [44] to outperform the

FITC approximation. It was introduced into multi-output GP

regression, which lead to the establishment of the collaborative

multi-output GP (COGP) model [26] and variational dependent

multi-output GP dynamic system (VDM-GPDS) [45]. The for-

mer combines multiple latent sparse GPs to produce correlated

outputs while the latter is based on the convolved multi-output

GP model.

The aforementioned sparse multi-output GPs are all trained

in a batch mode, i.e., both the posterior over the inducing

points and model hyperparameters are learned in an offline

manner using all the training data points.

C. Contributions

This paper has the following contributions:

• Online regression and hyperparameter learning. We pro-

pose an on-line approach for training the sparse multi-

output GP model that is a linear combination of latent

sparse GPs, each having its own inducing point set.

The joint learning of the posterior over the inducing

points and model hyperparameters using streaming data

is achieved with the newly developed marginalized par-

ticle filter (MPF). The MPF is adopted because the

training of the considered multi-output model can be

cast into a Bayesian filtering framework with a mixed

linear/nonlinear state-space model [46]. The use of MPF

leads to flexibility and to the marginalization of the

inducing points since they are the conditionally linear

states given the nonlinear states, the hyperparameters.

• Approximate model regression. We show that given the

hyperparameters, the posterior over inducing points is

Gaussian and the inducing points of different latent GPs

would become correlated with one another. This results

in a large and full covariance matrix. We approximate

the true posterior by applying the variational inference to

make different inducing point sets independent, reduce

complexity and enable efficient distributed implementa-

tion. The obtained approximate regression technique is

incorporated into the MPF for online model training.

• Performance verification. The design is validated using

both synthetic and real-world data and promising results

are obtained.

D. Related Works

We highlight the difference between our work and some

previous attempts on the online training of GP models. In [47],

a technique called sparse online GP (SOGP) was proposed for

training single-output GPs. It maintains a fixed-size active set

whose elements are selected from sequentially arriving data

and uses exact GP inference for model learning. The local GP

(LGP) technique [48], [49], on the other hand, partitions the

streaming data into non-overlapping groups, each of which is

exploited to train a separate single-output GP model. The LGP

learning is still based on exact GP inference and no inducing

point-based sparse approximations were considered.

To train sparse GPs with inducing points, online regres-

sion techniques were developed in [50] for FITC and PITC

approximations. They update the posterior over the inducing

points once a new measurement is available. However, there

is no learning of the model hyperparameters. In [38], the joint

posterior of the inducing points and model hyperparameters

was assumed to be Gaussian, and it applied a Gaussian filter

for inference. We extend this work to the multi-output case

but use a MPF to update the posterior of the model hyperpa-

rameters, thus eliminating the Gaussian posterior assumption.

The MPF-based regression and learning proposed in this work

is similar to the one developed in [51], [52] for updating the

joint posterior of the model prediction at given inputs and

hyperparameters. However, in [51], [52], sparse approximation

was not used and the model has a single output only. Moreover,

it requires the locations of the model predictions are known

before training, which could limit its application scope. The

considered sparse multi-output GP model is close to COGP

[26] that relies on offline inference. In this paper, we develop

a new approach that allows the online inference of both the

inducing point values and hyperparameters of the sparse multi-

output GP model.

The rest of the paper is organized as follows. Section

II describes the considered GP model. The proposed online

regression and learning algorithm is presented in Section III.

Experimental results using synthetic and real-world data are

given in Section IV. Section V concludes the paper. We shall

follow throughout this work the convention that bold lowercase

and uppercase letters denote column vectors and matrices.

II. SPARSE MULTI-OUTPUT GP MODEL

Consider the sparse multi-output GP model shown in Fig. 1.

It takes x ∈ R
D×1 as input, where D is the input dimension-

ality. The model has P outputs, each of which is a linear

combination of Q latent functions gj(x), j = 1, 2, ..., Q. The

ith model output yi(x) is equal to

yi(x) =

Q
∑

j=1

wi,j · gj(x) + ǫi, i = 1, 2, ..., P, (1)

where wi,j are the mixing coefficients, ǫi is a zero-mean

independent Gaussian noise of the i-th output channel with

precision βi, i.e., ǫi ∼ N (0, β−1

i). Note that the latent

functions gj(x) operate on the same input x and as such, there

are P input-output relationships to be modeled simultaneously.

Besides, the latent functions are shared among the outputs,

making the output variables correlated as in [26], [30]–[33].

In practical multi-output regression problems, output variables

are rarely linearly dependent. As a result, with the considered

GP model given in Fig. 1, at least Q = P latent functions are

needed to effectively capture the P input-output relationships.

It is a common practice in multi-output GP regression to use

multiple latent functions, e.g. [1], [26]–[33].

The latent functions gj(x) have independent GP priors

denoted as

gj(x) ∼ GP(mj(x), kj(x,x
′)), (2)

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 3

h1

�

Input

Latent

Sparse GPs

Output

�

x

hj hQ

g1(x) gj(x) gQ(x)

�

y1(x) yP(x)

Ɛ1 ƐP

w1,1

w1,Q

w1,j

Fig. 1. The considered sparse multi-output GP model.

where mj(x) is the mean function and kj(x,x
′) represents

the positive semi-definite covariance function. Among the

available choices, the zero mean function mj(x) = 0 and

stationary squared exponential (SE) kernel

kj(x,x
′) = α2

j · exp

(

−
1

2
(x− x′)TΛ−1

j (x− x′)

)

(3)

are widely used. Here, α2

j is the variance of the latent

function gj(x). The scaling matrix Λj is equal to Λj =
diag(λ1,j , λ2,j , ..., λD,j) whose diagonal elements λd,j , d =
1, 2, ..., D, are the characteristic length scales for the cor-

responding input dimensions. Other mean and covariance

functions are also available. For example, the mean function

can be the linear combination of a set of basis functions. There

are other stationary kernels including the covariance functions

of the Matérn class as well as non-stationary kernels such as

the neural network covariance function (see [1]).

The parameters of the mean and covariance functions to-

gether with the mixing coefficients wi,j and noise precisions

βi are the hyperparameters of the considered multi-output GP

model. With the zero mean function and SE kernel in (3), the

model hyperparameter vector would be

θ = [αT ,λT
1
,λT

2
, ...,λT

Q,w
T
1
,wT

2
, ...wT

Q,β
T]T , (4)

where α = [α1, α2, ..., αQ]
T , β = [β1, β2, ..., βP]

T , λj =
[λ1,j , λ2,j , ..., λD,j]

T and wj = [w1,j , w2,j , ..., wP,j]
T . The

vectors λj and wj collect the characteristic length scales and

mixing coefficients for the j-th latent function gj(x). The

model hyperparameter vector θ under other choices of the

mean and covariance functions can be defined similarly.

To achieve sparsity and efficiently deal with large scale

problems, we introduce a set of inducing inputs into each

latent GP. Let Zj = [z1,j , z2,j , ..., zM,j] collect the locations

of the M inducing points of the jth latent function, where

zk,j , k = 1, 2, ...,M , are indeed the inputs for the inducing

points gj(zk,j) and thus, they are D × 1 column vectors.

Moreover, define hj = [gj(z1,j), gj(z2,j), ..., gj(zM,j)]
T to

collect gj(zk,j). When every latent GP employs the zero mean

function, SE kernel and M inducing points, from (4), the

sparse multi-output GP model in consideration would have

in total P + (1 + P +D)Q+MQ unknowns.

Since gj(x) has a GP prior with mean function mj(x)
and covariance function kj(x,x

′), the prior distribution of hj

would be

p0(hj) = N (mj(Zj),Kj(Zj ,Zj)). (5)

The mean vector mj(Zj) is defined as

mj(Zj) = [mj(z1,j),mj(z2,j), ...,mj(zM,j)]
T . (6)

The elements of the covariance matrix Kj(Zj ,Zj) are equal

to

[Kj(Zj ,Zj)]k,l = kj(zk,j , zl,j), k, l = 1, 2, ...,M. (7)

Here, each latent function is assumed to have the same

number of inducing points. This assumption can be relaxed

without affecting the validity of the online sparse multi-output

GP training technique developed in the next section. It is also

worthwhile to point out that the sparse multiple-output GP

model considered in this work is slightly more general than the

COGP from [26]. In particular, in COGP, each output variable

has an individual latent GP. In the considered model, we can

easily create an individual latent GP for the i-th model output

by setting the i-th mixing coefficient of gj(x), wi,j , to 1 and

others to 0.

III. ONLINE REGRESSION AND LEARNING

In this section, a MPF-based algorithm for online regression

and learning of the sparse multi-output GP model described

in Section II is proposed. It is able to update in a recursive

manner the posterior over the inducing points and model hy-

perparameters using sequentially obtained data. The algorithm

development begins with deriving the predictive distribution of

the model outputs when the posterior over the inducing points

is Gaussian and the hyperparameters are given. By applying

the Kalman filter update [53] and variational inference, an

approximate regression method for updating the posterior over

the inducing points is then established. Finally, we present the

MPF that incorporates the developed approximated regression

method to achieve simultaneous inference of the inducing

points and model hyperparameters.

A. Model Prediction

Denote the posterior over the inducing points of the jth

latent sparse GP, hj , at previous time step as p(hj |D0:t−1).
Here, t = 1, 2, ..., and D0:t−1 represent, respectively, the time

index and the set containing all the training data received up

to t− 1. Assume hj follows a Gaussian distribution such that

p(hj |D0:t−1) = N (µ
hj

t−1
,C

hj

t−1
), j = 1, 2, ..., Q, (8)

where µ
hj

t−1
and C

hj

t−1
are the associated mean and covari-

ance1. It is further assumed that the inducing points from

different sparse latent GPs are conditionally independent to

each other. The above two assumptions come from that: 1) the

inducing points of different latent GPs, hj , have independent

1For t = 1, we set p(hj |D0:t−1) to be the prior distribution of hj , p0(hj),
given in (5).

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 4

Gaussian priors (see (5)) and 2) with the approximated regres-

sion method developed later in Section III.B, the posteriors of

hj at time t would remain to be Gaussian and conditionally

independent if they are independently Gaussian distributed at

time t− 1.

Define the composite inducing point vector

h = [hT
1
,hT

2
, ...,hT

Q]
T . (9)

As a result, its posterior distribution at time step t− 1 is

p(h|D0:t−1) =

Q
∏

j=1

p(hj |D0:t−1) = N (µh
t−1

,Ch
t−1

), (10)

where

µh
t−1

= [(µh1

t−1
)T , (µh2

t−1
)T , ..., (µ

hQ

t−1
)T]T , (11a)

Ch
t−1

= diag(Ch1

t−1
,Ch2

t−1
, ...,C

hQ

t−1
). (11b)

At the current time step t, we are interested in predicting the

model outputs for Nt inputs given p(h|D0:t−1) and the model

hyperparameters in θ. For this purpose, first define gt,j =
[gj(xt,1), gj(xt,2), ..., gj(xt,Nt

)]T to include the values of the

latent function gj(x) at the inputs Xt = [xt,1,xt,2, ..., xt,Nt
].

Stacking them yields gt = [gT
t,1,g

T
t,2, ...,g

T
t,Q]

T . Given the

inducing points h, the conditional distribution of gt is

p(gt|h) =

Q
∏

j=1

p(gt,j |hj). (12)

The above factorization comes from the fact that the latent

functions gj(x) have independent GP priors (see Section II).

Morever, because the joint prior of gt,j and hj is a finite

representation of the GP specified in (2), we have

p(gt,j |hj) = N (µ̃
gj

t , C̃
gj

t), j = 1, 2, ..., Q. (13)

The mean vector µ̃
gj

t and covariance matrix C̃
gj

t are, by the

conditional of multivariate Gaussian distribution [1],

µ̃
gj

t = mj(Xt) +Pt,j(hj −mj(Zj)), (14a)

C̃
gj

t = Kj(Xt,Xt)−Pt,jKj(Zj ,Zj)P
T
t,j , (14b)

where mj(Xt) = [mj(xt,1),mj(xt,2), ...,mj(xt,Nt
)]T . The

matrix Pt,j is defined as [1]

Pt,j = Kj(Xt,Zj)K
−1

j (Zj ,Zj). (15)

The definitions of Kj(Xt,Xt) and Kj(Xt,Zj) are very

similar to that of Kj(Zj ,Zj) given in (7). Therefore, they

are omitted here for brevity.

To derive the predictive distribution of the outputs of the

considered sparse multi-output GP model at Xt, we define

the composite model output vector as

yt = [yT
t,1,y

T
t,2, ...,y

T
t,Nt

]T . (16)

Here, yt,n = [y1(xt,n), y2(xt,n), ..., yP (xt,n)]
T collects the

P model outputs corresponding to a single input xt,n, n =
1, 2, ..., Nt. From (1), the conditional distribution of yt given

gt, the latent function values, can be expressed as

p(yt|gt) = N (Htgt,Λt). (17)

The covariance Λt is Λt = INt
⊗ Λ, where ⊗ denotes the

Kronecker product and INt
is a Nt × Nt identity matrix.

The matrix Λ is equal to Λ = diag(β−1

1
, β−1

2
, ..., β−1

P), as a

result of the independence between measurement noises from

different output channels. The PNt×QNt observation matrix

Ht is given by

Ht =











w1 ⊗ eT
1

w2 ⊗ eT
1

... wQ ⊗ eT
1

w1 ⊗ eT
2

w2 ⊗ eT
2

... wQ ⊗ eT
2

...
...

. . .
...

w1 ⊗ eTNt
w2 ⊗ eTNt

... wQ ⊗ eTNt
,











, (18)

where en is a Nt×1 column vector with its nth element being

1 and others being 0. The vector wj = [w1,j , w2,j ,wP,j]
T

contains the mixing coefficients of the jth latent sparse GP,

j = 1, 2, ..., Q, as defined in Section II.

The conditional distribution of the model outputs yt given

the inducing points h is equal to

p(yt|h) =

∫

p(yt|gt)p(gt|h)dgt. (19)

Putting (12) and (17), and carrying out the integration yield

p(yt|h) = N (µ̃y
t , C̃

y
t), (20)

where

µ̃
y
t = Ht[(µ̃

g1

t)T , (µ̃g2

t)T , ..., (µ̃
gQ

t)T]T (21a)

C̃
y
t = Ht · diag(C̃g1

t , C̃g2

t , ..., C̃
gQ

t) ·HT
t +Λt. (21b)

The predictive distribution of the model outputs yt can then

be found by marginalizing out h via

p(yt|D0:t−1) =

∫

p(yt|h)p(h|D0:t−1)dh, (22)

where the approximation p(yt|h,D0:t−1) ≈ p(yt|h) has

been applied. The above approximation indicates that the

current model outputs yt and the training data in D0:t−1 are

conditionally independent given the inducing points h. As a

result, the information from D0:t−1 is transmitted to yt only

through the posterior of h, p(h|D0:t−1). Because the number

of inducing points in h is generally much smaller than that

of the data points in the dataset D0:t−1, this is referred to

as the inducing point assumption or sparse approximation

(see [35]–[38], [50]). With sparse approximation, storing and

manipulating directly the training data for inference as in

standard GP [1] is no longer necessary, instead, we need

only to utilize the posterior of the inducing points. In future

works, it would be interesting to compare p(yt|D0:t−1) in (22)

with the true predictive distribution of the model outputs yt,

which can be derived from the joint distribution of yt and

D0:t−1. This could provide insights into the approximation

error introduced by the use of the inducing point assumption.

Substituting (10) and (20) into (22) and following the

computations in the prediction step of the standard Kalman

filter yield [53]

p(yt|D0:t−1) = N (µ̄y
t , C̄

y
t). (23)

The predicted model outputs at inputs Xt are given by the

mean vector

µ̄
y
t = Htµ̄

g
t . (24)

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 5

The prediction uncertainty is quantified by the covariance C̄
y
t

equal to

C̄
y
t = HtC̄

g
t H

T
t +Λt. (25)

µ̄
g
t and C̄

g
t are defined as

µ̄
g
t = [(µ̄g1

t)T , (µ̄g2

t)T , ..., (µ̄
gQ

t)T]T , (26a)

C̄
g
t = diag(C̄g1

t , C̄g2

t , ..., C̄
gQ

t), (26b)

where for j = 1, 2, ...Q,

µ̄
gj

t = mj(Xt) +Pt,j(µ
hj

t−1
−mj(Zj)), (27a)

C̄
gj

t = C̃
gj

t +Pt,jC
hj

t−1
PT

t,j . (27b)

Two important observations can be obtained from the above

development. First, according to (23), the model prediction

follows a Gaussian distribution. This is because the posterior

of the inducing points h is Gaussian, and from (14a) and

(21a), both the latent function values gt and model outputs

yt are indeed linearly related to h. Second, note from (27)

that computing the predicted latent function values gt,j and

their covariance requires knowledge pertaining to the jth latent

sparse GP only. This is due to the assumption that the inducing

points of different latent functions are conditionally indepen-

dent (see (10)) and the latent functions have independent GP

priors (see (12)). As a result, the model prediction can be

found by first evaluating (27) in parallel at the latent GPs and

then fusing the results using (24) and (25).

B. Approximate Model Regression

1) Exact Regression: With slight abuse of notations, as-

sume that at time step t, a set of Nt training data points

{(xt,n,yt,n)}
Nt

n=1
is received, where xt,n are the inputs but

yt,n are now the noisy observations. We are interested in de-

riving the updated posterior over the inducing points, denoted

by p(h|D0:t), using the posterior at the previous time step

p(h|D0:t−1) and newly obtained training data. Here, D0:t =
D0:t−1∪{xt,n,yt,n}

Nt

n=1
. Again, let Xt = [xt,1,xt,2, ...,xt,Nt

]
collect the Nt inputs at time t.

The updated posterior is, according to the Bayesian theorem,

p(h|D0:t) =
p(yt|h)p(h|D0:t−1)

p(yt|D0:t−1)
, (28)

where yt collects all the noisy observations at time step t
in a way similar to (16). To obtain (28), the approximation

p(yt|h,D0:t−1) ≈ p(yt|h) due to the inducing point assump-

tion has been applied (also see discussions under (22)).

To evaluate (28), we can put (10) and (20), and follow the

measurement update step of the standard Kalman filter [53] to

arrive at 2

p(h|D0:t) = N (µh
t ,C

h
t), (29)

where the mean vector µh
t and covariance Ch

t are given by

µh
t = µh

t−1
+Ch

t−1
PT

t H
T
t (C̄

y
t)

−1(yt − µ̄
y
t), (30a)

Ch
t = ((Ch

t−1
)−1 +PT

t H
T
t (C̃

y
t)

−1HtPt)
−1. (30b)

2Note that the inducing points h do not evolve stochastically over time.
Besides, the measurements yt are conditionally independent of the previously
collected training data D0:t−1 given h, due to the inducing point assumption.
As a result, the posterior mean and covariance of h given in (30) can be found
alternatively via applying the recursive least squares (RLS) technique [53].

Here µ̄
y
t , C̄

y
t and C̃

y
t are given in (24), (25) and (21b). The

matrix Pt is in the form

Pt = diag(Pt,1,Pt,2, ...,Pt,Q), (31)

where Pt,j is defined in (15).

The exact regression (29) can be considered as a general-

ization of the online regression technique developed in [38]

to the multi-output scenario. To gain more insights into the

result, we first express HtPt in the following block form

HtPt = [Gt,1,Gt,2, ...,Gt,Q] (32)

where from (18) and (31), Gt,j is equal to

Gt,j =











wj ⊗ eT
1

wj ⊗ eT
2

...

wj ⊗ eTNt











Pt,j , j = 1, 2, ..., Q. (33)

Putting (32) and substituting the definitions of µh
t−1

and

Ch
t−1

in (11) into (30a), we can write the posterior mean µh
t

at time step t as

µh
t = [(µh1

t)T , (µh2

t)T , ..., (µ
hQ

t)T]T , (34)

where µ
hj

t is the posterior mean of the inducing points of the

jth latent sparse GP, and it is equal to

µ
hj

t = µ
hj

t−1
+C

hj

t−1
GT

t,j(C̄
y
t)

−1(yt − µ̄
y
t). (35)

The above result indicates that updating the posterior mean of

hj can be performed individually at the jth latent function as

long as the term (C̄y
t)

−1(yt − µ̄
y
t) is available.

We next evaluate the posterior covariance Ch
t . By substi-

tuting (32) and (11b) into (30b), we can verify that Ch
t can

be expressed in the block form given in (36) on the top of the

next page. Here, C
hj

t is equal to, for j = 1, 2, ..., Q,

C
hj

t =
(

(C
hj

t−1
)−1 +GT

t,j(C̃
y
t)

−1Gt,j

)

−1

= C
hj

t−1
−C

hj

t−1
GT

t,j(C̃
y
t +Gt,jC

hj

t−1
GT

t,j)
−1Gt,jC

hj

t−1

(37)

where the matrix inversion lemma [54] has been used to

establish the second equality. C
hj

t−1
is the posterior covariance

of hj at the previous time step t−1 and C̃
y
t is defined in (21b).

It can be seen from (36) that Ch
t is a full matrix, although

the posterior covariance of h at the previous time step t− 1,

Ch
t−1

, is block diagonal (see (11b)). In other words, with the

exact regression (29), the inducing points from different latent

functions would eventually become correlated.

Manipulating the QM × QM full posterior covariance

matrix Ch
t is cumbersome. Specifically, this would render the

distributed computation of the covariances of the latent func-

tion predictions using (27b) infeasible, as it cannot utilize the

off-diagonal blocks of the posterior covariance of the inducing

points. Besides, by again applying the matrix inversion lemma

[54], we can rewrite (30b) as, after putting (21b) and (25),

Ch
t = Ch

t−1
−Ch

t−1
PT

t H
T
t (C̄

y
t)

−1HtPtC
h
t−1

. (38)

Even if (C̄y
t)

−1 is readily available, evaluating (38) still has a

complexity of O(Q2M2) and storing the off-diagonal blocks

of Ch
t is needed.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 6

Ch
t =













(Ch1

t)−1 GT
t,1(C̃

y
t)

−1Gt,2 · · · GT
t,1(C̃

y
t)

−1Gt,Q

GT
t,2(C̃

y
t)

−1Gt,1 (Ch2

t)−1 · · · GT
t,2(C̃

y
t)

−1Gt,Q

...
...

. . .
...

GT
t,Q(C̃

y
t)

−1Gt,1 GT
t,Q(C̃

y
t)

−1Gt,2 · · · (C
hQ

t)−1













−1

. (36)

2) Variational Approximation and Distributed Regression:

We apply the variational inference to approximate the exact

regression result in (29) using the following factorized distri-

bution

q(h|D0:t) =

Q
∏

j=1

p(hj |D0:t) (39)

such that the Kullback-Leibler (KL) divergence between

q(h|D0:t) and p(h|D0:t)

KL(q(h|D0:t)||p(h|D0:t)) =

∫

q(h|D0:t)log
q(h|D0:t)

p(h|D0:t)
dh

(40)

is minimized. Mathematically, q(h|D0:t) can also be found

by maximizing the evidence lower bound (ELBO) of the log

measurement likelihood log(p(yt|D0:t−1)), which is given by

[55]

Lt(θ) =

∫

q(h|D0:t)log
p(yt|h)p(h|D0:t−1)

q(h|D0:t)
dh. (41)

Here, the model hyperparameter vector θ is included in the

above definition to explicitly show that the ELBO Lt(θ) is

indeed dependent on θ.

Note from (29) and (39) that we are approximating a mul-

tivariate Gaussian distribution using a factorized distribution.

By generalizing the result in Chapter 10.1.2 of [56], we can

show that the factorized distribution q(h|D0:t) that minimizes

the KL divergence in (40) and at the same time, maximizes

the ELBO in (41) is a factorized Gaussian. In particular, the

individual factor p(hj |D0:t) is equal to [56]

p(hj |D0:t) = N (µ
hj

t ,C
hj

t), j = 1, 2, ..., Q. (42)

The mean vector µ
hj

t is equal to the one given in (35). In other

words, the posterior mean of the inducing points h obtained

via the exact regression (29) is correctly captured by the

approximate posterior q(h|D0:t). The covariance matrix C
hj

t

is given in (37). Subtracting C
hj

t from the marginal posterior

covariance of the inducing points hj , which can be obtained

via applying the partitioned matrix inversion formula [54] to

(36), would yield a positive semidefinite matrix. This indicates

that the approximate posterior q(h|D0:t) under-estimates the

covariance of the inducing points.

Substituting (42) into (39) yields the desired approximated

posterior over the inducing points that will be propagated to

the next time step

q(h|D0:t) = N (µh
t ,C

h
t) =

Q
∏

j=1

N (µ
hj

t ,C
hj

t), (43)

where µh
t is defined in (30a) and Ch

t is re-defined here as

Ch
t = diag(Ch1

t ,Ch2

t , ...,C
hQ

t). (44)

Note that with the developed approximate regression, the

inducing points from different latent sparse GPs would always

have independent Gaussian posteriors. Moreover, the posterior

covariance of hj can now be updated in parallel using

(37) once the matrix C̃
y
t becomes available to all the latent

functions. The complexity is decreased from O(Q2M2) to

O(QM2), thanks to removing the dependence among hj .

Substituting (10), (20), (39) and (42) into (41), we note

that all the distributions in the integral in (41) are Gaussian.

Therefore, the ELBO Lt(θ) can be shown to be equal to, after

applying the results from Appendix A of [1],

Lt(θ) = −
1

2
log|2πC̃y

t | −
1

2

Q
∑

j=1

log|C
hj

t−1
(C

hj

t)−1|

−
1

2
(yt −Htµ

h
t)

T (C̃y
t)

−1(yt −Htµ
h
t)

−
1

2
tr(PT

t H
T
t (C̃

y
t)

−1HtPt · diag(Ch1

t , ...,C
hQ

t))

−
1

2

Q
∑

j=1

tr((C
hj

t−1
)−1(µ

hj

t − µ
hj

t−1
)(µ

hj

t − µ
hj

t−1
)T)

−
1

2

Q
∑

j=1

tr((C
hj

t−1
)−1(C

hj

t −C
hj

t−1
)).

(45)

It has been pointed out below (42) that the variational

approximation in (39) tends to under-estimate the posterior

covariance (also see e.g., [56]). This could lead to the prema-

ture convergence of the approximate posterior q(h|D0:t). In

other words, q(h|D0:t) might no longer be updated after a few

iterations, which may result in degraded model prediction per-

formance because not all the training data are fully explored.

The above drawback can be mitigated by applying the back-to-

the prior (B2P) or uncertainty-injection (UI) technique [11]. In

this work, by taking into accout the properties of the adopted

variational approximation (see discussions under (42)), the UI

forgetting is used. Specifically, it does not change the posterior

mean µ
hj

t but it scales up the posterior covariance as

C
hj

t ←
1

λ
C

hj

t . (46)

The forgetting factor λ takes a value in the range [0.95, 1].

The developed approximate regression technique for the

sparse multi-output GP model is summarized in Algorithm

1. It performs the recursive updating of the posterior over

the inducing points using the newly obtained training data

{xt,n,yt,n}
Nt

n=1
, given fixed model hyperparameters θ. It can

be easily modified to handling missing data. In particular, we

just need to remove the rows in Ht corresponding to the

missing data points when executing the algorithm.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 7

It is also straightforward to establish a distributed realization

of Algorithm 1. Suppose there are Q end-point nodes and

a central node. The prediction of the latent function values

(lines 2-5 in Algorithm 1) can be carried out in parallel at

the end-point nodes. The predicted latent function values and

their covariance matrices, which are Nt × 1 and Nt × Nt,

are fused at the central node (lines 6-9 in Algorithm 1). The

obtained matrix C̃
y
t and vector (C̄y

t)
−1(yt − µ̄

y
t), which are

PNt×PNt and PNt×1, are sent back to the end-point nodes

for approximate regression (lines 10-13 in Algorithm 1). The

amount of data exchange mainly depends on the number of

training data points Nt.

Algorithm 1 The approximate model regression algorithm

1: procedure ApproxRegression(µh
t−1

,Ch
t−1

,Xt,yt,θ)

2: for j = 1, 2, ..., Q do ⊲ Latent GP prediction

3: Compute Pt,j and Gt,j using (15) and (33).

4: Compute µ̄
gj

t , C̄
gj

t and C̃
gj

t using (27) and (14b).

5: end for

6: Evaluate (24) and (25) to find µ̄
y
t and C̄

y
t .

7: Calculate (C̄y
t)

−1(yt − µ̄
y
t).

8: Find C̃
y
t using (21b).

9: Evaluate (45) to obtain the ELBO Lt(θ).
10: for j = 1, 2, ..., Q do ⊲ Approximate regression

11: Compute the posterior mean µ
hj

t using (35).

12: Compute the scaled posterior covariance C
hj

t us-

ing (37) and (46).

13: end for

14: return µh
t given in (30a), Ch

t defined in (44) and the

ELBO Lt(θ).
15: end procedure

C. MPF-based Model Regression and Learning

The model prediction and approximate regression algo-

rithms developed in the previous two subsections both assume

that the model hyperparameters are fixed. Nevertheless, train-

ing the considered sparse multi-output GP model requires that

besides the inducing point values, the model hyperparameters

also need to be learned from sequentially arriving data. The

inducing points are linearly related to the measurements yt

given the hyperparameters (see (21a) and the discussions at the

end of Section III.A). However, the hyperparameters are non-

linearly related to yt, which makes analytically deriving their

posterior intractable. The joint inference of the inducing points

and hyperparameters is thus a Bayesian filtering problem with

mixed linear/nonlinear state. We shall apply the MPF [46],

[57], also called the Rao-Blackwellized particle filter (RBPF),

to this filtering task to achieve online regression and learning

of the sparse multi-output GP model.

The MPF-based regression and learning algorithm is devel-

oped by following the approach in [57]. Specifically, at the

previous time step t − 1, the joint posterior of the inducing

points h and model hyperparameters θ can be factorized as

p(h,θt−1|D0:t−1) = p(h|θt−1,D0:t−1)p(θt−1|D0:t−1) (47)

where p(h|θt−1,D0:t−1) corresponds to the posterior of h in

(10) evaluated at θt−1. Here, θt−1 should be interpreted as

the estimates of the model hyperparameters. With the MPF,

the joint posterior in (47) is approximated empirically using a

set of K particles {µh,k
t−1

,Ch,k
t−1

,θk
t−1

, wk
t−1
}Kk=1

, which indeed

correspond to K different sparse multi-output GP models, as

p(h,θt−1|D0:t−1) ≈
K
∑

k=1

wk
t−1
N (µh,k

t−1
,Ch,k

t−1
)δ(θt−1−θk

t−1
)

(48)

where p(h|θk
t−1

,D0:t−1) = N (µh,k
t−1

,Ch,k
t−1

) according to (10)

has been utilized, δ(·) is the Dirac delta function and wk
t−1

are the particle weights satisfying
∑K

k=1
wk

t−1
= 1.

The temporal evolution of θt−1 follows

θt = aθt−1 + (1− a)θ̄t−1 + vt−1 (49)

which was originally proposed in [58]. This allows the explo-

ration of the hyperparameter space using the kernel smoothing

with shrinkage while yielding converged hyperparameter esti-

mates [58]–[60].

Here, a = (3b − 1)/(2b), with b ∈ (0.95, 0.99) and

θ̄t−1 =
∑K

k=1
wk

t−1
θk
t−1

is the empirical mean of θt−1.

The vector vt−1 is drawn from N (0, (1 − a2)Vt−1), where

Vt−1 =
∑K

k=1
wk

t−1
(θk

t−1
− θ̄t−1)(θ

k
t−1
− θ̄t−1)

T is the

empirical covariance matrix of θt−1. From (49), we can write

the conditional distribution of θt given θt−1 as

p(θt|θt−1) = N (aθt−1 + (1− a)θ̄t−1, (1− a2)Vt−1). (50)

The MPF algorithm updates the K particles at the current

time step t using Algorithm 2. It can be seen that once a

new set of training data {Xt,yt} is obtained, the MPF first

updates the hyperparameter estimates for each particle (line

3 in Algorithm 2). Then, the MPF refines the posterior of

the inducing points for each particle using the updated model

hyperparameters and the approximate regression technique

given in Algorithm 1 (line 4 in Algorithm 2). In this way, the

MPF achieves the joint inference of the inducing points and

model hyperparameters. Note that Algorithm 1 is run K times

in each iteration of the MPF, because it employs the empirical

approximation of the analytically intractable joint posterior of

the inducing points and model hyperparameters (see (48)).

Algorithm 2 The MPF-based online regression and learning

1: procedure MPF({µh,k
t−1

,Ch,k
t−1

,θk
t−1

, wk
t−1
}Kk=1

,Xt,yt)

2: for k = 1, 2, ...,K do

3: Draw sample θk
t from p(θt|θ

k
t−1

) defined in (50).

4: Run ApproxRegression(µ
h,k
t−1

,Ch,k
t−1

,Xt,yt,θ
k
t).

5: Weight updating using wk
t = exp(Lt(θ

k
t))w

k
t−1

.

6: end for

7: Weight normalization using wk
t ← wk

t /
∑K

k=1
wk

t .

8: Resample the particles and set wk
t = 1

K
if needed.

9: return {µh,k
t ,Ch,k

t ,θk
t , w

k
t }

K
k=1

.

10: end procedure

Note from line 5 of Algorithm 2 that different from

the standard MPF that uses the measurement likelihood

p(yt|D0:t−1) to update the particle weights, its lower bound,

the ELBO Lt(θ
k
t), is utilized instead in the proposed MPF.

This comes from adopting the variational approximation when

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 8

updating the posterior over the inducing points h (see (39)).

With particle resampling (line 8 in Algorithm 2), the ELBO

is indeed used in a similar way as in [61] for selecting the

particles, or equivalently speaking, choosing different sparse

multi-output GP models.

When implementing the MPF in the experiments, we em-

ploy the effective sample size (ESS)-based residual resampling

[62]. When the online training stops, the MPF algorithm

outputs the particle with the largest weight. This corresponds

to a sparse multi-output model whose hyperparameters are

given by θk
t of the output particle, while the mean and

covariance of its inducing points are given by µ
h,k
t and C

h,k
t

of the output particle 3..

In the presence of Q end-point nodes and a central node, the

MPF in Algorithm 2 can be realized in a distributed manner

as follows. Each end-point node performs the prediction and

approximate regression of the jth latent function for all the

K particles (see lines 2-5 and 10-13 in Algorithm 1). The

central node fuses the results from the end-point nodes, and

send back the updated hyperparameter estimates θk
t as well as

the mean and covariance of the inducing points if the particle

resampling is performed.

In the developed MPF-based training algorithm, the most

time-consuming part is the calculation of K−1

j (Zj ,Zj) in (15)

after the update of the model hyperparameters and (C
hj

t−1
)−1

for evaluating the ELBO (45). This is valid when the number

of training data points Nt is small such that PNt < M , where

M is the number of inducing points. Therefore, the proposed

online training technique has a computational cost of O(M3).

IV. EXPERIMENTS

In this section, we evaluate the performance of the MPF-

based algorithm proposed in Section III for the online regres-

sion and learning of the sparse multi-output GP model shown

in Fig. 1. Two sets of experiments are conducted, one using

synthetic data and the other using real data. In the experiments,

all the latent functions are assumed to have zero-mean GP

priors (i.e., mj(x) = 0) with stationary SE kernel (see (3)).

The number of particles is fixed at K = 20. The UI forgetting

factor is λ = 0.99. The performance metrics used are the root

mean square error (RMSE) and negative log-likelihood (NLL).

Initializing the proposed MPF-based training algorithm re-

quires determining K particles so that an empirically approx-

imated joint distribution of the inducing points and model

hyperparameters as in (48) can be established. For this pur-

pose, we emulate the practical scenario by buffering a few

training data sets that arrive first for algorithm initialization.

For the synthetic data-based experiments, the first 3 training

data set are stored while the real data-based experiments use

the first 80 training data sets for initial configuration. The

buffered data are fed to the stochastic gradient-based offline

training algorithm originally developed for the COGP [26]

to produce the desired K sparse multi-output GP models.

We modify the COGP training algorithm so that it no longer

3It is worthwhile to point out that the outputted θk
t is not necessarily the

maximum a posteriori (MAP) estimate of the model hyperparameter vector θ
[63], [64]

uses individual GPs for the output variables. The obtained K
particles are assigned a weight of 1

K
and they are in general

different from one another. This is because the COGP training

algorithm sets the locations of the inducing points to be the

inputs of randomly selected training data points. The above

initialization scheme is chosen because no information on the

initial distribution of the model hyperparameters are available.

As a result, we cannot initialize the proposed MPF-based

algorithm by sampling the initial distributions as in existing

MPF literature (see e.g., [57]).

All the experiments are conducted using MATLAB that runs

on a desktop with an Intel(R) Core(TM) i7-7700 3.60GHz

CPU and 16GB RAM.

A. Synthetic Data

First, we consider simultaneously modeling the following

two well-correlated bivariate functions [19]

f1(x1, x2) = 3cos(x1) + 4cos(2x2) (51a)

f2(x1, x2) = 2cos(x1) + 3cos(2x2). (51b)

For this purpose, we use the sparse multi-output GP model

with P = 2 outputs and Q = 2 latent sparse functions. Each

latent sparse GP has M = 60 inducing points, whose locations

are randomly selected from the region χ corresponding to the

Cartesian product [−4.5, 4.5]× [−4.5, 4.5].
We generate 60 training data sets first and each one of them

is then fed to the proposed MPF-based technique at a time

to train in an online manner the aforementioned multi-output

GP model. Every training data set contains 30 input-output

pairs. The inputs are selected randomly in the region χ. The

outputs are produced by first adding to the true function values

f1(x1, x2) and f2(x1, x2) independent zero-mean Gaussian

noises with standard deviations 0.5 and 0.4. Then, for the

first output, the values corresponding to the inputs from the

region [−4, 0] × [0, 4] are removed. For the second output,

missing values are created by eliminating those whose inputs

are from the region [0, 4] × [−4, 0]. We perform 50 Monte

Carlo ensemble runs.

In Fig. 2(a), we plot the predicted values for the function

f1(x1, x2) with x2 being fixed at 2 and the associated 99%

confidence interval. The results are produced using the trained

sparse multi-output GP model in a certain ensemble run. The

true function values are included for comparison. Recall that

for the function f1(x1, x2 = 2), its values in the region

x1 ∈ [−4, 0] are in fact unobserved. But the obtained multi-

output model is able to accurately reconstruct them, showing

that the proposed online training algorithm can effectively

exploit the correlation between the two bivariate functions to

be modeled. To illustrate this point, the function f1(x1, x2)
is modeled independently using a single-output GP with exact

inference. The obtained regression results are shown in Fig.

2(b). It can be seen that the function values of f1(x1, x2 = 2)
when x1 ∈ [−4, 0] are poorly recovered, which is somewhat

expected as they are missing in the training data. Figs. 2(c)

and 2(d) show the predicted values for the function f2(x1, x2)
with x1 set to 2. They are generated by our trained sparse

multi-output GP model and an independent single-output GP

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 9

targeting f2(x1, x2) only. The observations are very similar to

those from Figs. 2(a) and 2(b). Specifically, the unobserved

region x2 ∈ [−4, 0] is well reconstructed with the multi-

output model trained in an online manner using the algorithm

proposed in the previous section.

-5 0 5
x

2

-4

-2

0

2

4

6

f 2
(x

1
=

2,
 x

2
)

(c) Sparse Multi-output GP

-5 0 5
x

1

-6

-4

-2

0

2

f 1
(x

1
, x

2
=

2)

(a) Sparse Multi-output GP

-5 0 5
x

2

-4

-2

0

2

4

6

f 2
(x

1
=

2,
 x

2
)

(d) Independent GP

-5 0 5
x

1

-6

-4

-2

0

2

f 1
(x

1
, x

2
=

2)

(b) Independent GP

Fig. 2. Comparison of the true function values (solid line) with their predicted
version (dashed line) and 99% confidence interval (shaded area) in a certain
ensemble run. (a) Results for f1(x1, x2 = 2) from the sparse multi-output
GP. (b) Results for f1(x1, x2 = 2) from the independent single-output GP.
(c) Results for f2(x1 = 2, x2) from the sparse multi-output GP. (d) Results
for f2(x1 = 2, x2) from the independent single-output GP.

0 10 20 30 40 50 60
t

-0.3

-0.2

-0.1

0

0.1

0.2
(a) Signal Variances

log(α
1
)

log(α
2
)

0 10 20 30 40 50 60
t

3.8

3.85

3.9

3.95

4
(b) Noise Precisions

log(β
1
)

log(β
2
)

0 10 20 30 40 50 60
t

-1

-0.5

0

0.5
(c) Characteristic Length Scales

log(λ
11

)

log(λ
12

)

log(λ
21

)

log(λ
22

)

0 10 20 30 40 50 60
t

-1

0

1

2

3
(d) Mixing Coefficients

w
11

w
12

w
21

w
22

Fig. 3. Model hyperparameter learning over time in a certain ensemble
run. (a) Estimation of the latent function variances log(a1) and log(a2). (b)
Estimation of the noise precisions log(β1) and log(β2). (c) Estimation of the
characteristic length scales log(λ1,1), log(λ1,2), log(λ2,1) and log(λ2,2).
(d) Estimation of the mixing coefficients w1,1, w1,2, w2,1 and w2,2.

Fig. 3 shows the evolution of the model hyperparameter

estimates during the ensemble run that produces the results in

Fig. 2. At the beginning of the online model training process,

the hyperparameter estimates exhibit large variations. This is

because the initialized particles correspond to different multi-

output GP models and they may yield various ELBOs over

the same training data set (see (45)). This leads to different

particle weights according to line 5 and 7 of Algorithm 2.

TABLE I
AVERAGE RMSE AND NLL FOR THE TWO FUNCTIONS IN (51) WITH

UNOBSERVED REGIONS IN TRAINING DATA

.

Sparse multi-output GP Independent GP
RMSE for f1(x1, x2) 0.25± 0.12 1.64± 0.63
RMSE for f2(x1, x2) 0.23± 0.07 1.19± 0.45

NLL for f1(x1, x2) 0.39± 1.07 4.22± 3.36
NLL for f2(x1, x2) 0.27± 0.67 1.79± 1.41

TABLE II
AVERAGE RMSE AND NLL FOR THE TWO FUNCTIONS IN (51) WITHOUT

UNOBSERVED REGIONS IN TRAINING DATA

.

Sparse multi-output GP Independent GP
RMSE for f1(x1, x2) 0.13± 0.04 0.14± 0.03
RMSE for f2(x1, x2) 0.09± 0.02 0.11± 0.02

NLL for f1(x1, x2) −0.56± 0.27 −0.35± 0.56
NLL for f2(x1, x2) −0.76± 0.11 −0.76± 0.27

As the proposed MPF-based technique outputs the particle

with the largest weight, the hyperparameter estimates may

vary greatly as they could come from different particles over

time. After a few iterations, the MPF tends to converge and

the particles would have similar hyperparameter estimates,

due to the use of the hyperparameter evolution model (see

(49)). Similar observations have been obtained in [51], [52],

where the MPF-based training of the single-output GP model

is considered.

In Table I, we show the RMSE and NLL when modeling

the two bivariate functions in (51). The results are averaged

over the 50 Monte Carlo ensemble runs. The inputs of the test

data are the grid points of a 101 × 101 grid with uniformly

spaced x1 coordinates and x2 coordinates in the interval

[−4.5, 4.5]. We can see from Table I that in this experiment

with missing function values, the trained sparse multi-output

GP is superior to the independent GPs in terms of significantly

smaller prediction RMSE and NLL. This comes again from

the fact that independent single-output GPs fail to recover

the function values in the unobserved regions (see e.g., Figs.

2(b) and 2(d)). On the other hand, the trained multi-output

GP can effectively utilize the correlation between outputs to

reconstruct both functions in (51) well.

Next, the impact of the number of inducing points used

in the sparse multi-output GP model on the prediction per-

formance is examined. For this purpose, the experiment that

generates Table I is repeated with the number of inducing

points M set to be 30, 40, 50, 60, 70 and 80. We plot in

Fig. 4 as a function of M the obtained average RMSEs and

NLLs of the trained multi-output GP models in predicting

the two function in (51). It can be seen that the prediction

performance generally improves with M . This is somewhat

expected because the use of more inducing points leads to

better coverage of the input space by the multi-output GP

model.

We repeat again the experiment that produces the results in

Table I but no unobserved regions are assumed this time. The

obtained average RMSE and NLL for modeling the two well-

correlated functions in (51) are summarized in Table II. It can

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 10

20 30 40 50 60 70 80 90

M

0

0.5

1

1.5
R

M
S

E

(a) f1(x1,x2)

20 30 40 50 60 70 80 90

M

-5

0

5

10

15

N
LL

(b) f1(x1,x2)

20 30 40 50 60 70 80 90

M

0

0.5

1

1.5

R
M

S
E

(c) f2(x1,x2)

20 30 40 50 60 70 80 90

M

-5

0

5

10

15

N
LL

(d) f2(x1,x2)

Fig. 4. Prediction RMSE and NLL for f1(x1, x2) and f2(x1, x2) given
in (51) from the trained sparse multi-output GP model as a function of the
number of the inducing points M . (a) Averaged RMSE with the standard
deviation for f1(x1, x2). (b) Averaged NLL with the standard deviation for
f1(x1, x2). (c) Averaged RMSE with the standard deviation for f2(x1, x2).
(d) Averaged NLL with the standard deviation for f2(x1, x2).

TABLE III
AVERAGE RMSE AND NLL FOR THE TWO FUNCTIONS IN (52) WITHOUT

UNOBSERVED REGIONS IN TRAINING DATA

.

Sparse multi-output GP Independent GP

RMSE for f̃1(x1, x2) 0.12± 0.05 0.14± 0.02

RMSE for f̃2(x1, x2) 0.09± 0.04 0.11± 0.02

NLL for f̃1(x1, x2) -0.53± 0.40 -0.36± 0.36

NLL for f̃2(x1, x2) -0.74± 0.24 -0.74± 0.29

be seen that due to the absence of unobserved regions in the

training data, single-output GPs exhibit significantly enhanced

prediction performance. But they are still slightly inferior to

the trained multi-output GP model, possibly because the latter

can explore the correlation between the two functions to be

modeled to further improve the prediction performance.

Next, we introduce phase shifts into f2(x1, x2) to decrease

its correlation with f1(x1, x2). The resulting two bivariate

functions are now given by [19]

f̃1(x1, x2) = 3cos(x1) + 4cos(2x2), (52a)

f̃2(x1, x2) = 2cos(x1 + 1) + 3cos(2x2 + 1). (52b)

The experiment that generates Table II is repeated. The average

RMSE and NLL for modeling the two functions in (52) are

summarized in Table III. It can be seen that for weakly

correlated output variables and without unobserved regions

in the training data, the sparse multi-output GP continues to

perform slightly better than independent GPs.

B. Robot Inverse Dynamics Data

The robot inverse dynamics problem considered in [17],

[23] is a typical multi-output regression problem in robotics,

where the mapping from a 21-dimensional input space to a

7-dimensional output space needs to be modeled. The inputs

include 7 joint positions, 7 joint velocities and 7 joint accel-

erations, while the outputs correspond to 7 joint torques. The

original dataset contains 48,933 data points collected over a 7-

degree-of-freedom anthropomorphic robot arm. We use 40,000

data points for training and 4,400 data points for testing.

500 1000 1500 2000
Iterations

1

1.5

2

2.5

R
M

S
E

(a) Torque 4

500 1000 1500 2000
Iterations

50

100

150

200

N
LL

(b) Torque 4

500 1000 1500 2000
Iterations

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

R
M

S
E

(c) Torque 7

500 1000 1500 2000
Iterations

2.4

2.6

2.8

3

3.2

3.4

N
LL

(d) Torque 7

Fig. 5. Comparison of the prediction RMSE and NLL for torques 4 and 7 from
the trained sparse multi-output GP model (solid line) and COGP (dashed line).
(a) Averaged RMSE with the standard deviation for torque 4. (b) Averaged
NLL with the standard deviation for torque 4. (c) Averaged RMSE with the
standard deviation for torque 7. (d) Averaged NLL with the standard deviation
for torque 7.

First, we train a sparse multi-output GP model with P = 2
outputs and Q = 2 latent sparse GPs using the proposed

MPF-based technique in Section III to model torques 4 and 7

simultaneously. Each latent sparse GP has M = 500 inducing

points whose locations are randomly selected from the first 80

training data sets. At each time step, a set of 100 input-output

pairs that are randomly selected from the 40,000 training data

points is fed to the MPF-based training algorithm. In this

experiment, after initialization, it takes around 2 hours and

22 minutes on average for the proposed MPF-based algorithm

to process 1,800 training data set (i.e., 4.73s per data set).

The prediction RMSE and NLL of the trained sparse multi-

output GP are contrasted with those of COGP [26]. The

reasons behind we choosing COGP only for comparison are as

follows. First, the sparse multi-output GP model considered in

this paper is similar to COGP (see the discussions at the end of

Sections I and II). Second, it was shown [26], [45] that for the

robot inverse dynamics problem, COGP offers an estimation

performance close to other multi-output models such as the

multi-task GP [34] and VDM-GPDS [45]. In other words,

COGP can be considered as a representative of the multi-

output GP models that are trained in an offline manner. For all

the experiments in this subsection, the COGP is trained using

the stochastic gradient-based optimization from [26] with 1000

iterations and each iteration utilizing 200 input-output pairs

randomly chosen from the 40,000 training data points.

In this experiment, the realized COGP also has P = 2
outputs and Q = 2 shared latent sparse GPs, each of which

has M = 500 inducing points. Different from [26], it no

longer uses individual latent GPs for the two output variables.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 11

As COGP is an offline method, the locations of the inducing

points are randomly selected from the available 40,000 training

data points and they are fixed during the training process. We

perform 10 Monte Carlo ensemble runs.

The results are summarized in Fig. 5. We plot, as function

of the number of iterations (i.e., the number of data collections

obtained over time), the prediction RMSE and NLL for torques

4 and 7 from the trained sparse multi-output GP. For com-

parison, the results from COGP are also included. They are

independent of the number of iterations, as COGP is trained in

an offline manner. It can be seen that as the number of training

data sets increases, the prediction performance of the trained

sparse multi-output GP, especially the RMSE, would gradually

approach that of COGP. This is somewhat expected, because

with the sparse multi-output GP being exposed to more data

points, a better prediction model can be obtained.

On the other hand, for the 4th torque, COGP still offers

a smaller NLL than the sparse multi-output GP after 1,800

training data sets have been applied. This indicates that COGP

is more certain about its predictions. The performance degra-

dation might come from that the locations of the inducing

points for COGP are selected from all the 40,000 training data

points while for the sparse multi-output GP, they are chosen

from the first 8,000 data points. We repeat the experiment to

verify the above hypothesis. The newly obtained COGP has

inducing points whose locations are from the first 8,000 data

points. The average RMSE and NLL for the 4th torque now

increase to 2.02± 0.12 and 134.77± 16.25, which are higher

than those from the trained sparse multi-output GP after only

1,000 data sets have been used. Thus, it will be interesting

to investigate in future works adapting the locations of the

inducing points for further performance improvement.

In the second experiment, we study the effect of the number

of latent functions Q on the prediction performance. For this

purpose, the simulation that produces Fig. 5 is repeated but this

time, the use of Q = 3 and Q = 4 latent GPs is considered.

The obtained average prediction RMSE and NLL from the

learned sparse multi-output GP model and COGP with Q = 3
and Q = 4 latent functions are given in Tables IV and V. In

particular, the sparse multi-output GP model is trained using

the proposed MPF-based technique and 1,800 data sets, each

of which contains 100 input-output pairs. When Q = 3, it

takes around 3 hours and 52 minutes for the proposed MPF-

based algorithm to process 1,800 training data set (i.e., 7.73s

per data set). The training time is increased to 5 hours and 43

minutes (i.e., 11.43s per data set) when Q = 4.

Comparing the results in Tables IV and V with those in Fig.

5 where only Q = 2 latent GPs are adopted, we note that using

Q = 3 or 4 latent GPs leads to poorer predicton accuracy

for both the sparse multi-output GP model and COGP. The

performance degradation may be due to that using larger

number of latent functions increases the model complexity,

which could reduce the generalization capability of the trained

multi-ouput models.

In the third experiment, we attempt to learn simultaneously

torques 2, 3, 4 and 7, where torques 2 and 3 are negatively

correlated while torques 4 and 7 are positively correlated [45].

For this purpose, we train a sparse multi-output GP model

TABLE IV
AVERAGE RMSE AND NLL FOR TORQUES 4 AND 7 WITH Q = 3 LATENT

FUNCTIONS

Sparse multi-output GP COGP
RMSE for torque 4 3.17± 1.00 2.13± 0.11
RMSE for torque 7 0.63± 0.16 0.47± 0.02

NLL for torque 4 89.20± 27.70 119.78± 17.81
NLL for torque 7 3.17± 0.61 4.89± 0.71

TABLE V
AVERAGE RMSE AND NLL FOR TORQUES 4 AND 7 WITH Q = 4 LATENT

FUNCTIONS

Sparse multi-output GP COGP
RMSE for torque 4 3.08± 0.43 2.20± 0.09
RMSE for torque 7 0.70± 0.12 0.49± 0.02

NLL for torque 4 84.55± 30.18 132.50± 17.80
NLL for torque 7 3.26± 0.78 5.52± 0.91

with P = 4 output variables and Q = 4 latent GPs using

the proposed MPF-based algorithm. Each latent function has

M = 500 inducing points and 1,800 data sets is fed to the

training algorithm, each of which consists of 100 input-output

pairs randomly selected from the available 40,000 training data

points. For comparison, a COGP without individual latent GPs

for the output variables is trained [26]. It also has P = 4
output variables and Q = 4 latent GPs, each of which has

has M = 500 inducing points. We conduct five Monte Carlo

ensemble runs. Simulations show that the average training time

for the MPF-based algorithm is 5 hours and 57 minutes (i.e.,

11.9s per data set).

The obtained average prediction RMSE and NLL from

the trained sparse multi-output GP model and COGP are

summarized in Table VI. We can see that the learned COGP

provides better prediction performance for torques 4 and 7

but the trained sparse multi-output GP model is superior in

modeling torques 2 and 3. Moreover, comparing Tables V

and VI reveals that the prediction accuracy for torques 4

and 7 improves, although the two experiments both use 4

latent functions. This may be because in this experiment, four

torques are learned jointly with Q = 4 latent GPs while in the

previous experiment, only torques 4 and 7 are modeled and the

selected model might be too complicated to generalize well.

On the other hand, comparing Tables VI with Fig. 5 indicates

that modeling torques 4 and 7 together with torques 2 and 3 is

inferior in terms of prediction accuracy to they being modeled

TABLE VI
AVERAGE RMSE AND NLL FOR TORQUES 2, 3, 4 AND 7

Sparse multi-output GP COGP
RMSE for torque 2 2.56± 0.11 3.04± 0.04
RMSE for torque 3 1.63± 0.09 1.77± 0.05
RMSE for torque 4 2.27± 0.14 1.92± 0.13
RMSE for torque 7 0.50± 0.04 0.46± 0.02

NLL for torque 2 210.13± 22.04 245.18± 4.87
NLL for torque 3 42.64± 2.71 58.85± 2.82
NLL for torque 4 77.99± 5.93 72.64± 8.81
NLL for torque 7 6.76± 0.10 4.66± 0.57

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 12

-2 -1 0 1 2
Relative Prediction Error

0

2000

4000

6000

8000

10000

12000
F

re
qu

en
cy

(a) Torque 2

-2 -1 0 1 2
Relative Prediction Error

0

2000

4000

6000

8000

10000

12000

F
re

qu
en

cy

(b) Torque 3

-2 -1 0 1 2
Relative Prediction Error

0

2000

4000

6000

8000

10000

12000

F
re

qu
en

cy

(c) Torque 4

-2 -1 0 1 2
Relative Prediction Error

0

2000

4000

6000

8000

10000

12000

F
re

qu
en

cy

(d) Torque 7

Fig. 6. Histograms of the relative prediction errors for torques 2, 3, 4 and 7
from the trained sparse multi-output GP model. (a) Histogram of the relative
prediction errors for torque 2. (b) Histogram of the relative prediction errors
for torque 3. (c) Histogram of the relative prediction errors for torque 4. (d)
Histogram of the relative prediction error for torque 7.

separately using multi-output models with Q = 2 latent GPs.

It would be interesting to examine in future works the effect of

different model configurations on the prediction performance.

In Fig. 6, we plot the histograms of the relative prediction

errors for torques 2, 3, 4 and 7 from the trained sparse multi-

output GP model. The results from all the five Monte Carlo

ensemble runs are included and as a result, each subfigure

contains a total number of 5×4, 400 relative prediction errors

for a particular torque. It can be seen from Fig. 6 that the

histograms of the relative prediction errors for the four torques

in consideration are all bell-shaped. Besides, a large portion

of the relative prediction errors are close to zero, which

means that many prediction errors are small compared to the

true torque values. In other words, the four torques are well

predicted using the sparse multi-output GP model trained in

an online manner via the proposed MPF-based algorithm.

V. CONCLUSIONS

This paper demonstrated the feasibility of performing online

training of a sparse multi-output GP model using sequentially

arriving data. The considered GP model produces multiple

correlated outputs by linearly combining latent sparse GPs,

each of which uses a separate set of inducing points to

achieve sparse approximation. A novel MPF-based algorithm

that can perform joint inference of the inducing point values

and model hyperparameters was established. It incorporates a

newly developed approximate regression approach that updates

the posterior over the inducing points given the hyperpa-

rameters. The approximate regression method guarantees that

the inducing points of different latent sparse GPs are always

independent, which facilitates the distributed implementation

of the proposed MPF-based training algorithm. Experiments

using simulated and real data verified the effectiveness of the

developed training algorithm. Specifically, the trained sparse

multi-output GP can exploit the correlation between output

TABLE VII
SYMBOLS AND NOTATIONS

Symbol Explanation

D model input dimension
P number of model output variables
Q number of latent GPs
M number of inducing points for each latent GP

zk,j D × 1 location of inducing point g(zk,j) of latent GP j
Zj D ×M location matrix of inducing points of latent GP j,

Zj = [z1,j , z2,j , ..., zM,j]
hj M × 1 inducing point vector of latent GP j,

hj = [gj(z1,j), gj(z2,j), ..., gj(zM,j)]
T

mj(Zj) M × 1 prior mean vector of hj

Kj(Zj ,Zj) M ×M prior covariance of hj

h MQ× 1 composite inducing point vector,

h = [hT
1
,hT

2
, ...,hT

M]T

µ
hj

t−1
M × 1 posterior mean vector of hj at time t− 1

C
hj

t−1
M ×M posterior covariance of hj at time t− 1

µh
t−1

MQ× 1 posterior mean vector of h at time t− 1,

µh
t−1

= [(µh1

t−1
)T , (µh2

t−1
)T , ..., (µ

hQ

t−1
)T]T

Ch
t−1

MQ×MQ posterior covariance of h at time t− 1,

Ch
t−1

= diag(Ch1

t−1
,C

h2

t−1
, ...,C

hQ

t−1
)

xt,n nth input vector at time t, D × 1
Xt D ×Nt input matrix at time t,

Xt = [xt,1,xt,2, ..., xt,Nt
]

gt,j Nt × 1 output vector of latent GP j at time t,

gt,j = [gj(xt,1), gj(xt,2), ..., gj(xt,Nt
)]T

gt QNt × 1 composite output vector of latent GPs at time t,

gt = [gT
t,1,g

T
t,2, ...,g

T
t,Q]T

µ̃
gj

t Nt × 1 conditional mean vector of gt,j given hj

µ̄
gj

t Nt × 1 predictive mean vector of gt,j

µ̄
g
t QNt × 1 predictive mean vector of gt,

µ̄
g
t = [(µ̄g1

t)T , (µ̄g2

t)T , ..., (µ̄
gQ

t)T]T

C̃
gj

t Nt ×Nt conditional covariance of gt,j given hj

C̄
gj

t Nt ×Nt predictive covariance of gt,j

C̄
g
t QNt ×QNt predictive covariance of gt

C̄
g
t = diag(C̄g1

t , C̄
g2

t , ..., C̄
gQ

t)
mj(Xt) Nt × 1 prior mean vector of gt,j

Kj(Xt,Xt) Nt ×Nt prior covariance of gt,j

Kj(Xt,Zj) Nt ×M prior cross covariance between gt,j and hj

Pt,j Nt ×M matrix, Pt,j = Kj(Xt,Zj)K
−1

j (Xt,Xt)

Pt QNt ×QM matrix, Pt = diag(Pt,1,Pt,2, ...,Pt,Q)

yt,n P × 1 model output vector for input xt,n

yt PNt × 1 composite model output vector at time t

yt = [yt,1,yt,2, ...,yt,Nt
]T

Ht PNt ×QNt model observation matrix at time t
Λt PNt × PNt measurement noise covariance at time t

µ̃
y
t PNt × 1 conditional mean vector of yt given h

C̃
y
t PNt × PNt conditional covariance of yt given h

µ̄
y
t PNt × 1 predictive mean vector of yt

C̄
y
t PNt × PNt predictive covariance of yt

Gt,j PNt ×M matrix

variables to improve prediction accuracy in the presence of

missing values. Moreover, with more iterations, its perfor-

mance approaches that of the existing multi-output GP models

obtained via offline training using all the training data.

APPENDIX

The symbols and notations used are summarized in Table

VII.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 13

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and

anonymous reviewers for their comments that helped improve

this paper. The authors acknowledge the support from the

China Scholarship Council (CSC) for Le Yang and Ke Wang.

REFERENCES

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. Cambridge, MA: MIT Press, 2006.
[2] F. Pérez-Cruz, S. V. Vaerenbergh, J. Murillo-Fuentes, M. Lázaro-

Gredilla, and I. Santamaŕıa, “Gaussian processes for nonlinear signal
processing,” IEEE Signal Process. Mag., vol. 40, pp. 40–50, July 2013.

[3] H. Wymeersch, S. Maranò, W. M. Gifford, and M. Z. Win, “A machine
learning approach to ranging error mitigation for UWB localization,”
IEEE Trans. Communications, vol. 60, pp. 1719–1728, June 2012.

[4] B. Laufer-Goldshtein, R. Talmon, and S. Gannot, “Semi-supervised
source localization on multiple manifolds with distributed microphones,”
IEEE/ACM Trans. Audio, Speech and Language Process., vol. 25, pp.
1477–1491, April 2017.

[5] F. Yin, Y. Zhao, F. Gunnarsson, and F. Gustafsson, “Received-signal-
strength threshold optimization using Gaussian processes,” IEEE Trans.

Signal Process., vol. 65, pp. 2164–2177, April 2017.
[6] H. He and W.-C. Siu, “Single image super-resolution using Gaussian

process regression,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition (CVPR), 2011, pp. 449–456.
[7] A. Ranganathan, M.-H. Yang, and J. Ho, “Online sparse Gaussian

process regression and its applications,” IEEE Trans. Image Process.,
vol. 20, pp. 391–404, February 2011.

[8] Y. Saatçi, R. Turner, and C. E. Rasmussen, “Gaussian process change
point models,” in Proc. Int. Conf. Machine Learning (ICML), 2010, pp.
927–934.

[9] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor placements
in Gaussian processes,” in Proc. Int. Conf. Machine Learning (ICML),
2005, pp. 265–272.

[10] A. Carron, M. Todescato, R. Carli, L. Schenato, and G. Pillonetto,
“Multi-agents adaptive estimation and converage control using Gaussian
regression,” in Proc. European Control Conf. (ECC), 2015, pp. 2490–
2495.

[11] S. V. Vaerenbergh, M. Lázaro-Gredilla, and I. Santamaŕıa, “Kernel
recursive least-squares tracker for time-varying regression,” IEEE Trans.

Neural Networks and Learning Systems, vol. 23, pp. 1313–1326, August
2012.

[12] L. S. Muppirisetty, T. Svensson, and H. Wymeersch, “Spatial wireless
channel prediction under location uncertainty,” IEEE Trans. Wireless

Communications, vol. 15, pp. 1031–1044, February 2016.
[13] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using Gaus-

sian process prediction and observation models,” Autonomous Robots,
vol. 27, pp. 75–90, July 2009.

[14] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian
inference and learning in Gaussian process state-space models with
particle MCMC,” in Proc. Adv. in Neural Information Process. Syst.

(NIPS), 2013, pp. 3156–3164.
[15] Y. Wang, M. A. Brubaker, B. Chaib-draa, and R. Urtasun, “Bayesian

filtering with online Gaussian process latent variable models,” in Proc.

Conf. Uncertainty in Artificial Intelligence (UAI), 2013, pp. 849–857.
[16] M. Knotters, D. J. Brus, and J. O. Voshaar, “A comparison of kriging,

co-kriging and kriging combined with regression for spatial interpolation
of horizon depth with censored observations,” Geoderma, vol. 67, pp.
227–246, August 1995.

[17] S. Vijayakumar and S. Schaal, “Locally weighted projection regression
: An O(n) algorithm for incremental real time learning in high dimen-
sional space,” in Proc. Int. Conf. Machine Learning (ICML), 2000, pp.
1079–1086.

[18] M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R.
Jennings, “Towards real-time information processing of sensor network
data using computationally efficient multi-output Gaussian processes,”
in Proc. Int. Conf. Information Process. in Sensor Networks (IPSN),
April 2008, pp. 109–120.

[19] B. Wang and T. Chen, “Gaussian process regression with multiple
response variables,” Chemometrics and Intelligent Laboratory Systems,
vol. 142, pp. 159–165, March 2015.

[20] S. Sun, C. Zhang, and G. Yu, “A Bayesian network approach to traffic
flow forecasting,” IEEE Trans. Intelligent Transportation Syst., vol. 7,
pp. 124–132, March 2006.

[21] I. Bilionis, N. Zabaras, B. Konomi, and G. Lin, “Multi-output separable
Gaussian process: Towards an efficient, fully Bayesian paradigm for
uncertainty quantification,” J. of Computational Physics, vol. 241, pp.
212–239, May 2013.

[22] B. Zhang, B. Konomi, H. Sang, G. Karagiannis, and G. Lin, “Full
scale multi-output Gaussian process emulator with nonseparable auto-
covariance functions,” J. of Computational Physics, vol. 300, pp. 623–
642, Nov. 2015.

[23] K. Chai, C. K. I. Williams, S. Klanke, and S. Vijayakumar, “Multi-task
Gaussian process learning of robot inverse dynamics,” in Proc. Adv. in

Neural Information Process. Syst. (NIPS), 2009, pp. 265–272.

[24] J. Yuan, K. Wang, T. Yu, and M. Fang, “Reliable multi-objective
optimization of high-speed WEDM process based on Gaussian process
regression,” Intl. J. Machine Tools and Manufacture, vol. 48, pp. 47–60,
January 2008.

[25] T. Chen, K. Hadinoto, W. J. Yan, and Y. F. Ma, “Efficient meta-modelling
of complex process simulations with time-space-dependent outputs,”
Computers and Chemical Engineering, vol. 35, pp. 502–509, March
2011.

[26] T. V. Nguyen and E. V. Bonilla, “Collaborative multi-output Gaussian
processes,” in Proc. Conf. Uncertainty in Artificial Intelligence (UAI),
2014, pp. 643–652.

[27] P. Boyle and M. Frean, “Dependent Gaussian processes,” in Proc. Adv.

in Neural Information Process. Syst. (NIPS), 2005, pp. 217–224.

[28] M. Alvarez and N. Lawrence, “Sparse convolved Gaussian processes for
multi-output regression,” in Proc. Adv. in Neural Information Process.

Syst. (NIPS), 2009, pp. 57–64.

[29] ——, “Computationally efficient convolved multiple output Gaussian
processes,” J. of Machine Learning Research, vol. 12, pp. 1459–1500,
May 2011.

[30] Y. W. Teh, M. Seeger, and M. I. Jordan, “Semiparametric latent
factor models,” in Proc. Intl. Conf. Artificial Intelligence and Statistics

(AISTATS), 2005, pp. 330–340.

[31] B. M. Yu, J. Cunningham, G. Santhanam, S. Ryu, K. Shenoy, and M. Sa-
hani, “Gaussian-process factor analysis for low-dimensional single-
trial analysis of neural population activity,” in Proc. Adv. in Neural

Information Process. Syst. (NIPS), 2009, pp. 1881–1888.

[32] A. G. Wilson, D. A. Knowles, and Z. Ghahramani, “Gaussian process
regression networks,” in Proc. Intl. Conf. Machine Learning (ICML),
2012, pp. 599–606.

[33] T. V. Nguyen and E. V. Bonilla, “Efficient variational inference for
Gaussian process regression networks,” in Proc. Intl. Conf. Artificial

Intelligence and Statistics (AISTATS), 2013, pp. 472–480.

[34] E. Bonilla, K. M. Chai, and C. K. I. Williams, “Multi-task Gaussian
process prediction,” in Proc. Adv. in Neural Information Process. Syst.

(NIPS), 2008, pp. 153–160.

[35] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse
approximate Gaussian process regression,” J. of Machine Learning

Research, vol. 6, pp. 1939–1959, Dec. 2005.

[36] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” in Proc. Adv. in Neural Information Process. Syst.

(NIPS), 2006, pp. 1257–1264.

[37] ——, “Local and global sparse Gaussian process approximations,” in
Proc. Intl. Conf. Artificial Intelligence and Statistics (AISTATS), 2007,
pp. 524–531.

[38] M. Huber, “Recursive Gaussian process: On-line regression and learn-
ing,” Pattern Recognition Letters, vol. 45, pp. 85–91, August 2014.

[39] M. Titsias, “Variational model selection for sparse Gaussian process
regression,” School of Computer Science, University of Manchester,
Tech. Rep., 2009.

[40] ——, “Variational learning of inducing variables in sparse Gaussian
processes,” in Proc. Intl. Conf. Artificial Intelligence and Statistics

(AISTATS), 2009, pp. 567–574.

[41] M. Titsias and N. Lawrence, “Bayesian Gaussian process latent variable
model,” in Proc. Intl. Conf. Artificial Intelligence and Statistics (AIS-

TATS), 2010, pp. 844–851.

[42] J. Hensman, N. Fusi, and N. Lawrence, “Gaussian processes for big
data,” in Proc. Conf. Uncertainty in Artificial Intelligence (UAI), 2013,
pp. 282–290.

[43] Y. Gal, M. van der Wilk, and C. E. Rasmussen, “Distributed variational
inference in sparse Gaussian process regression and latent variable
models,” in Proc. Adv. in Neural Information Process. Syst. (NIPS),
2014, pp. 3257–3265.

[44] M. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding
probabilistic sparse Gaussian process approximations,” in Proc. Adv. in

Neural Information Process. Syst. (NIPS), 2016, pp. 1533–1541.

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 14

[45] J. Zhao and S. Sun, “Variational dependent multi-output Gaussian
process dynamic systems,” J. of Machine Learning Research, vol. 17,
pp. 1–36, Aug. 2016.

[46] T. Schön, F. Gustafusson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear/nonlinear state-space models,” IEEE Tran. Signal

Process., vol. 53, pp. 2279–2289, July 2005.
[47] L. Csato and M. Opper, “Sparse online Gaussian processes,” Neural

Computation, vol. 14, pp. 641–688, March 2002.
[48] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Local Gaussian process

regression for real time online model learning and control,” in Proc.

Adv. in Neural Information Process. Syst. (NIPS), 2008, pp. 1193–1200.
[49] ——, “Model learning with local Gaussian process regression,” Ad-

vanced Robotics, vol. 23, pp. 2015–2034, July 2009.
[50] H. Bijl, J. van Wingerden, T. B. Schön, and M. Verhaegen, “Online

sparse Gaussian process regression using FITC and PITC approxima-
tions,” in Proc. Intl. Federation Automatic Control (IFAC), 2015, pp.
703–708.

[51] Y. Wang and B. Chaib-draa, “A marginalized particle Gaussian process
regression,” in Proc. Adv. in Neural Information Process. Syst. (NIPS),
2012, pp. 1187–1195.

[52] ——, “An online Bayesian filtering framework for Gaussian process
regression: Application to global surface temperature analysis,” Expert

Systems with Applications, vol. 67, pp. 285–295, Jan. 2017.
[53] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation

Theory. Upper Saddle River, NJ, USA: Prentice Hall, 1993.
[54] L. L. Scharf, Statistical Signal Processing, Detection, Estimation and

Time Series Analysis. Reading, MA: Addison-Wesley, 1991.
[55] M. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An

introduction to variational methods for graphical models,” Machine

Learning, vol. 37, pp. 183–233, Nov. 1999.
[56] C. M. Bishop, Pattern Recognition and Machine Learning. New York,

NY: Springer, 2006.
[57] P. Li, R. Goodball, and V. Kadirkamanathan, “Estimation of parameters

in a linear state space model using a Rao-Blackwellised particle filter,”
IEE Proceedings on Control Theory Applications, vol. 151, pp. 727–738,
Nov. 2004.

[58] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” in Sequential Monte Carlo Methods in

Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York:
Springer-Verlag, 2001, pp. 197–223.

[59] N. Kantas, A. Doucet, S. Singh, and J. Maciejowski, “An overview of
sequential Monte Carlo methods for parameter estimation in general
state-space models,” in Proc. IFAC Symposium on System Identification,
2009, pp. 774–785.

[60] C. Nemeth, P. Fearnhead, and L. Mihaylova, “Sequential Monte Carlo
methods for state and parameter estimation in abruptly changing envi-
ronments,” IEEE Trans. Signal Process., vol. 62, pp. 1245–1255, March
2014.

[61] M. Beal and Z. Ghahramani, “The variational Bayesian EM algorithm
for incomplete data: With application to scoring graphical model struc-
tures,” in Bayesian Statistics 7, J. Bernardo, M. Bayarri, J. Berger,
A. Dawid, D. Heckerman, A. Smith, and M. West, Eds. Oxford: Oxford
University Press, 2003, pp. 453–463.

[62] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle fil-
ters: classification, implementation and strategies,” IEEE Signal Process.

Magazine, vol. 32, pp. 70–86, May 2015.
[63] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing

methods and recent advances in sequential Monte Carlo,” Proc. of the

IEEE, vol. 95, pp. 899–924, May 2007.
[64] S. Saha, Y. Boers, H. Driessen, P. Mandal, and A. Bagchi, “Particle based

MAP state estimation: A comparison,” in Proc. Intl. Conf. Information

Fusion (FUSION), 2009, pp. 278–283.

