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 68 

Abstract (129 words): Dogs were present in the Americas prior to the arrival of European 69 

colonists, but the origin and fate of these pre-contact dogs are largely unknown. We sequenced 71 70 

mitochondrial and seven nuclear genomes from ancient North American and Siberian dogs 71 

spanning ~9,000 years. Our analysis indicates that American dogs were not domesticated from 72 

North American wolves. Instead, American dogs form a monophyletic lineage that likely originated 73 

in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native 74 

American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog 75 

populations. Remarkably, the closest detectable extant lineage to pre-contact American dogs is the 76 

canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that 77 

lived up to 8,000 years ago. 78 

 79 

Main Text (2362 words): The history of the global dispersal of dogs remains contentious (1). In 80 

North America, the earliest confirmed dog remains have been radiocarbon dated to ~9,900 81 

calibrated years before present (cal BP) (Koster, Illinois; (2, 3)), approximately 6,000 years after the 82 

earliest unambiguous evidence of humans arriving in North America (4). While these early dogs 83 

were most likely not domesticated in situ (5), the timing of their arrival and their geographic origins 84 

are unknown. Studies of the control region of mitochondrial DNA have suggested that the pre-85 

contact American dog population was largely replaced following the introduction of European dogs 86 

after the arrival of Europeans, and Eurasian Arctic dogs (e.g., Siberian huskies) during the Alaskan 87 

gold rush (5–7). It remains possible, however, that some modern American dogs retain a degree of 88 

ancestry from the pre-contact population (8, 9). 89 

 90 

We sequenced complete mitochondrial genomes (mitogenomes) from 71 archaeological dog 91 

remains collected in North America and Siberia (Fig. 1a; Table S1) and analyzed these with 145 92 
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mitogenomes derived from a global dataset of modern and ancient canids (3). A phylogenetic tree 93 

constructed from the mitogenomes indicated that all sampled pre-contact dogs (spanning ~9,000 94 

years) formed a monophyletic group within dog haplogroup A (Fig. 1b; Fig. S3; Fig. S6), which we 95 

refer to as pre-contact dogs (PCD). This analysis indicated that the most closely related 96 

mitochondrial lineage to the PCD clade are ~9,000 year-old dogs from Zhokhov Island in Eastern 97 

Siberia (3) (Fig. 1b; Fig. S3; Fig. S6). In addition, molecular clock analyses suggest that all PCD 98 

dogs shared a common ancestor ~14,600 years ago (95% high posterior density [HPD]: 16,484-99 

12,965;  Fig. 1b; Fig. S6), which diverged from a shared ancestor with the Zhokhov Island dogs 100 

~1,000 years earlier (95% HPD:17,646-13,739; Fig. 1b; Fig. S6). Interestingly, these time frames 101 

are broadly coincident with early migrations into the Americas (10–12). 102 

 103 

To further investigate the evolutionary history of PCD, we generated low coverage nuclear genome 104 

sequences (~0.005-2.0x) from seven pre-contact dogs sampled in six locations in North America 105 

spanning ~9,000 years (Table S1). We analyzed these nuclear data alongside publicly available 106 

datasets including 45 modern canid whole genomes sampled from Eurasia and the Americas (Table 107 

S2)(13–16). A neighbor-joining tree constructed using single nucleotide polymorphism (SNP) 108 

revealed that, like the mitogenome phylogeny, PCD individuals clustered in a distinct monophyletic 109 

lineage that is more closely related to dogs than to either Eurasian or North American wolves (Fig. 110 

1c). Furthermore, our nuclear genome analysis indicated that the closest-related sister clade to PCD 111 

consists of modern Arctic dogs from the Americas (including Alaskan malamutes, Greenland dogs 112 

and Alaskan huskies) and Eurasia (Siberian huskies; Fig. 1c). Treemix (3) (Fig. 1d), outgroup f3-113 

statistics (Fig. S13) and D-statistics (Fig. S14; Fig. S15) also supported this phylogenetic structure. 114 

Combined, our mitochondrial and nuclear results indicate that PCD were not domesticated in situ 115 

from North American wolves, but were instead introduced by people into the Americas via Beringia 116 

from a population that was related to modern Arctic dogs. 117 

 118 

Studies of nuclear data have identified two modern clades of global dogs: an East Asian clade 119 

(including dingoes) and a Western Eurasian clade (including European, Indian, and African 120 

dogs)(9, 14, 16). These analyses placed modern Arctic dogs with either Western Eurasian (16, 17)  121 

or East Asian dogs (9, 14). Our analyses of nuclear data revealed a close relationship between 122 

Arctic dogs and PCD which together form a clade (PCD/Arctic) that is basal to both Western 123 

Eurasian and East Asian dogs and suggests the existence of a third monophyletic clade of dogs (Fig. 124 

1c). Though all three clades are well-supported, the relationships between them are ambiguous. For 125 

example, our outgroup f3-statistics analysis (Fig. S13) indicated that the PCD/Arctic clade is basal 126 

to the two other Eurasian dog clades. However, when excluding specific East Asian dogs that 127 

possess evidence of gene flow from European dogs (Table S7; (14)), East Asian dogs became the 128 

most basal clade in a neighbor joining tree, and the PCD/Arctic clade became the sister clade to 129 

Western Eurasian dogs (Fig. S11). Conversely, admixture graphs ((3); Fig. S25) and TreeMix (18) 130 

(Fig. 1d) suggested that the PCD/Arctic clade is closest to East Asian dogs and West Eurasian dogs 131 

are the most basal. Conflicting phylogenies based on nuclear data have been reported on numerous 132 

occasions (1, 14, 16), and these inconsistent topologies could result either from substantial post-133 

divergence gene flow among Eurasian dogs (Fig. 1c; Fig. S25; (3, 14)), or from a near simultaneous 134 

divergence of all three lineages. 135 

 136 

Our nuclear data indicates that modern Arctic dogs sampled from both Siberia and North America 137 

cluster in a distinct phylogenetic group that forms a sister taxon to PCD (Fig. 1c). This close 138 
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phylogenetic relationship between modern American Arctic dogs (Alaskan malamutes, Alaskan 139 

huskies and Greenland dogs) and modern Eurasian Arctic dogs (Siberian huskies; Fig. 1c; Fig. S11; 140 

Fig. S13) suggests that PCD are not the direct ancestor of modern American Arctic dogs. It is 141 

possible that modern American Arctic dogs are the descendants of dogs brought by the Paleo-142 

Eskimo (~6,000 years ago) or by the Thule (~1,000 years ago)(19). However, both mitogenomic 143 

and low coverage nuclear data from a late Paleo-Eskimo dog from Kodiak Island, Alaska (Uyak: 144 

AL3198; Fig. 1a; Table S1) indicate that this dog is more closely related to PCD than to modern 145 

American Arctic dogs (Fig. S10; Fig. S4). This suggests that modern American Arctic dogs are not 146 

the descendants of Paleo-Eskimo dogs and that Paleo-Eskimos likely acquired local dogs in North 147 

America or brought Siberian dogs that were genetically indistinguishable from PCD. Our sampling 148 

did not include dogs from sites associated with the Thule culture, so it is plausible that the modern 149 

American Arctic dogs included in our analysis, such as Alaskan malamutes and Greenland dogs, are 150 

the descendants of dogs introduced by the Thule. Alternatively, the modern American Arctic dogs 151 

that we sampled may be the descendants of recently introduced Eurasian Arctic dogs, many of 152 

which were introduced during the 19th-century Alaskan gold rush  and as sled dog racing stock (6). 153 

Regardless, modern American Arctic dog populations have complex histories with potential genetic 154 

contributions from both American and Eurasian Arctic dogs (3). 155 

 156 

Interestingly, genomic analyses of canine transmissible venereal tumor (CTVT) genomes indicated 157 

a close affinity with modern Arctic dogs (20). CTVT is a contagious cancer clone that manifests as 158 

genital tumors and spreads between dogs by the transfer of living cancer cells during mating. This 159 

clone first originated from the cells of an individual dog, the “CTVT founder dog”, which lived 160 

several thousand years ago, and still carries the genome of this individual (20). To investigate the 161 

relationship between the CTVT founder dog and PCD, we analyzed two CTVT genomes alongside 162 

a panel of modern and ancient canid genomes.  163 

 164 

In order to accomodate for the fact that CTVT is a cancer, and to limit the impact of somatic 165 

mutations, we confined our genotyping analysis to SNPs which mapped to genomic regions that 166 

have retained both parental chromosomal copies in CTVT (20), and excluded singleton SNPs 167 

exclusively called in CTVT genomes. Remarkably, CTVT clustered with PCD on neighbor-joining 168 

trees (Fig. 1c; Fig. S10; Fig. S11), a Bayesian tree (Fig. S12), Treemix (Fig. 1d) and admixture 169 

graphs (Fig. S25). This result is further supported by both outgroup f3 (Fig. S13) and D-statistics 170 

(Fig. S14; Fig. S15). These findings indicate that the CTVT founder dog is more closely related to 171 

PCD than to modern Arctic dogs. Multiple horizontal transfers of mitochondrial genomes from dog 172 

hosts to CTVT tumors has led to the replacement of the founder dog’s mitogenome (21, 22), thus 173 

we could not determine the mitochondrial haplogroup of the CTVT founder dog and we limited our 174 

analyses to the nuclear genome.  175 

 176 

To assess whether the CTVT founder dog lived prior to, or after dogs entered North America, we 177 

re-estimated its temporal origin by sequencing the nuclear genomes of two CTVT tumors, 608T and 178 

609T. 608T is a CTVT tumor from the skin of a ten-month-old puppy which was likely engrafted 179 

from its mother’s vaginal tumor (609T) during birth. We identified mutations with a clock-like 180 

mutational process which were present in 608T, but not detectable in 609T, and used these to derive 181 

a lower bound for a somatic mutation rate for CTVT (3). Applying this rate to the total burden of 182 

clock-like somatic mutation in the CTVT lineage (3), we estimated that the CTVT founder dog 183 
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lived up to 8,225 years ago (3). This time frame postdates the initial arrival of dogs into the 184 

Americas, raising the possibility that CTVT may have originated in a dog living in North America. 185 

 186 

To further assess this scenario, we quantified the degree of introgression between North American 187 

endemic canids (coyotes and North American wolves), PCD dogs, modern Arctic dogs, and the 188 

CTVT founder dog. Our analyses indicated that, unlike Arctic dogs, PCD dogs share number of 189 

derived alleles with coyotes and North American wolves, indicative of admixture (Fig. S16; Fig. 190 

S17). The CTVT founder dog also showed some weak evidence of coyote ancestry, but did not 191 

appear to possess admixture with North American wolves (Fig. S16; Fig. S17). Because coyotes are 192 

restricted to North America, this suggests that CTVT may have originated there. Since we did not 193 

ascertain the degree of coyote ancestry in ancient PCD-related dogs in Northern Siberia (such as the 194 

Zhokov Island dogs, Fig 1), however, this analysis does not establish the location in which CTVT 195 

originated. Furthermore, studies that used somatic mutations to reconstruct the phylogeography of 196 

the CTVT clone indicated a deep divergence in Asia and a recent introduction to the Americas (21). 197 

Altogether, these results suggest a scenario in which CTVT originated in Asia from a dog that was 198 

closely related to PCD, although we cannot exclude the possibility that the clone arose in America, 199 

then dispersed early into Asia before being reintroduced to America. 200 

 201 

The legacy of PCD in modern American dog populations is uncertain. It has been suggested that 202 

some North American wolves obtained a mutation leading to black coat color possibly via 203 

admixture with early American dogs (23). This allele was not present, however, in either of the two 204 

higher coverage ancient PCD dogs in this study (3) or in CTVT (20). Additional ancient genomes 205 

are necessary to determine if this allele was present in the PCD population.  206 

 207 

In addition, previous studies have argued that some modern American dog populations possess a 208 

genetic signature from indigenous American dogs (8, 9, 24). To test this hypothesis, we analyzed 209 

nuclear data obtained from more than 5,000 modern dogs (including American village dogs) 210 

genotyped on a 180K SNP array (9). We found 7-20% PCD ancestry in modern American Arctic 211 

dogs using f4 ratios (Alaskan husky, Alaskan malamute and Greenland dogs; Table S10&S11; 212 

Supplementary Material). This result, however, could reflect ancient population substructure in 213 

Arctic dogs rather than genuine admixture (Supplementary Material). Our f4 ratio analysis did not 214 

detect a significant admixture signal from PCD into any modern American dogs of European 215 

ancestry (Table S10). 216 

 217 

Our ADMIXTURE analysis detected varying degrees of PCD/Arctic ancestry in three individual 218 

Carolina dogs (0-33%; Fig. S20). This analysis, however, could not distinguish between PCD and 219 

Arctic ancestry, and we cannot rule out that this was result of admixture from modern Arctic dogs 220 

and not from PCD (3).The majority of modern American dog populations, including 138 village 221 

dogs from South America and multiple “native” breeds (e.g., hairless dogs and Catahoulas), possess 222 

no detectable traces of PCD ancestry (Fig. S20; Table S10; Fig. 2a), though this analysis may suffer 223 

from ascertainment bias. 224 

 225 

To further assess the contribution of PCD to modern American dog populations, we also analyzed 226 

590 additional modern dog mitogenomes, including 169 village and breed dogs that were sampled 227 

in North and South America (21). We identified two modern American dogs (a chihuahua and a 228 

mixed breed dog from Nicaragua) that carried PCD mitochondrial haplotypes (Fig. S5); consistent 229 
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with a limited degree of PCD ancestry (<2%) in modern American dogs. We also identified three 230 

East Asian dogs that carried a PCD haplotype, possibly as a result of ancient population 231 

substructure or recent dog dispersal (Fig. S5; (3)). Although greater degrees of PCD ancestry may 232 

remain in American dogs which have not yet been sampled, our results suggest that European dogs 233 

almost completely replaced native American dog lineages. This near disappearance of PCD likely 234 

resulted from the arrival of Europeans, which led to shifts in cultural preferences and the 235 

persecution of indigenous dogs (25). Introduced European dogs may also have brought infectious 236 

diseases to which PCD were susceptible. 237 

 238 

The first appearance of dogs in the North American archaeological record occurs ~6,000 years after 239 

the earliest evidence of human activity (4, 11). In addition, our molecular clock analysis indicates 240 

that the PCD lineage appeared ~6,500 years after North American human lineages (Fig. 1b)(10). 241 

These discrepancies suggest that dogs may not have arrived into the Americas alongside the first 242 

human migration. A recent human genetic study suggests that Northern Native American 243 

populations admixed with an East Siberian population ~11,500 years ago(12). This timing is 244 

compatible with both the archaeological record and our PCD divergence time estimate and suggests 245 

a scenario in which dogs were brought to the Americas several thousand years after the first people 246 

arrived. 247 

 248 

This initial dog population entered North America then dispersed throughout the Americas where it 249 

remained isolated for at least 9,000 years. Within the past 1,000 years, however, there have been at 250 

least three independent re-introductions of dogs. The first may have consisted of Arctic dogs that 251 

arrived with the Thule culture ~1,000 years ago (6). Then, beginning in the 15th century, Europeans 252 

brought a second wave of dogs that appear to have almost completely replaced indigenous dogs. 253 

Lastly, Siberian huskies were introduced to the American Arctic during the Alaskan gold rush (25). 254 

As a result of these more recent introductions, the modern American dog population is largely 255 

derived from Eurasian breeds, and the closest known extant vestige of the first American dogs now 256 

exists as a worldwide transmissible cancer. 257 

 258 
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modern dogs. Blue horizontal bars on nodes represent 95% High Density Posterior age. The grey 659 

shaded area represents the time frame during which people entered the Americas (10–12) c. A 660 

neighbor-joining tree built with whole genomes (3). d An admixture graph constructed with 661 

TreeMix (based on transversions; Supplementary Material) depicting the relationship between PCD 662 

(including the Port Du Choix [AL3194] and Weyanoke Old Town [AL3223] samples) and other 663 

dog and wolf populations. We only used Greenland dogs and Malamute (American Arctic dogs) for 664 

this analysis as these are the least admixed with Western Eurasian dogs (3). 665 

 666 

Figure 2 Legacy of pre-contact dogs in modern american dogs a. A map showing the locations 667 

of dog populations obtained from (9) and their degree of relatedness (D-statistics) with the ~4ky old 668 

Port au Choix dog (AL3194; see (3) and Fig. S14). Higher values (in red) represent closer 669 

relatedness. b. A map depicting the multiple introductions of dogs into the Americas.   670 
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