
This is a repository copy of Framing Climate Uncertainty: Frame Choices Reveal and 
Influence Climate Change Beliefs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/139473/

Version: Published Version

Article:

Kause, A orcid.org/0000-0002-0121-2406, Townsend, T orcid.org/0000-0001-7459-9798 
and Gaissmaier, W orcid.org/0000-0001-6273-178X (2019) Framing Climate Uncertainty: 
Frame Choices Reveal and Influence Climate Change Beliefs. Weather, Climate, and 
Society, 11 (1). pp. 199-215. ISSN 1948-8327 

https://doi.org/10.1175/WCAS-D-18-0002.1

© 2019 American Meteorological Society. This is an author produced version of a paper 
published in Weather, Climate, and Society. Uploaded in accordance with the publisher's 
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Framing Climate Uncertainty: Frame Choices Reveal and Influence
Climate Change Beliefs

ASTRID KAUSE

Centre for Decision Research, University of Leeds, Leeds, United Kingdom, and Harding Center for Risk Literacy,

Max Planck Institute for Human Development, Berlin, Germany

TARLISE TOWNSEND

Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan

WOLFGANG GAISSMAIER

Harding Center for Risk Literacy, Max Planck Institute for Human Development, Berlin, and

Department of Psychology, University of Konstanz, Konstanz, Germany

(Manuscript received 8 January 2018, in final form 3 November 2018)

ABSTRACT

The public debate around climate change is increasingly polarized. At the same time, the scientific con-
sensus about the causes and consequences of climate change is strong. This inconsistency poses challenges for
mitigation and adaptation efforts. The translation of uncertain numerical climate projections into simpler
but ambiguous verbal framesmay contribute to this polarization. In two experimental studies, we investigated
1) how ‘‘communicators’’ verbally frame a confidence interval regarding projected change in winter
precipitation due to climate change (N5 512) and 2) how ‘‘listeners’’ interpret these verbal frames (N5 385).
Both studies were preregistered at the Open Science Framework. Communicators who perceived the change
as more severe chose a concerned rather than an unconcerned verbal frame. Furthermore, communicators’
verbal frames were associated with their more general beliefs, like political affiliation and environmental
values. Listeners exposed to the concerned frame perceived climate change–induced precipitation change to
be more severe than those receiving the unconcerned frame. These results are in line with two pilot studies
(N 5 298 and N 5 393, respectively). Underlying general beliefs about climate and the environment likely
shape public communication about climate in subtle ways, and thus verbal framing by the media, policy-
makers, and peers may contribute to public polarization on climate change.

1. Introduction

Public polarization on climate change has intensified

over the past decade. This has been especially severe

in the United States, limiting climate change mitigation

efforts by one of the world’s largest emitters of green-

house gases (Dunlap et al. 2016). Other Western de-

veloped countries face an analogous but less marked

schism (McCright et al. 2016; Hornsey et al. 2016). The

way in which climate change information is communi-

cated to the public may contribute to these divides

(Brüggemann and Engesser 2017; Mossler et al. 2017;

Pidgeon and Fischhoff 2011). A particular challenge for

climate change communicators is to communicate the

uncertainty inherent in climate projections (Budescu

et al. 2012, 2014). Uncertain projections are often sum-

marized in ambiguous ways. For example, numeric

projections are translated into verbal expressions (e.g.,

replacing ‘‘more than 90% chance’’ with ‘‘very likely’’).

Such expressions are interpreted inconsistently across

individuals (Budescu et al. 2014; Visschers et al. 2009)

and contexts (Beyth-Marom 1982). These interpretations

may be associated with individuals’ underlying beliefs

and perceptions related to climate change (Budescu et al.

2014) and may vary according to the strength of their

prior beliefs (Benjamin et al. 2017). We examined

whether ‘‘communicators’’ who perceive climate change

impacts to be more severe are more likely to select ver-

bal frames that emphasize their severity concern, and

whether ‘‘listeners’’ exposed to such a frame highlightingCorresponding author: Astrid Kause, a.kause@leeds.ac.uk
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its severity in turn interpret such climate consequences to

be more severe.

a. Verbal frames for summarizing numerical

information

The same numerical information can be framed in

a variety of ways (Cacciatore et al. 2016; Scheufele and

Iyengar 2014). ‘‘Framing effects’’ most famously refer

to the phenomenon in which logically equivalent state-

ments (i.e., each statement necessarily entails the other)

that describe the same numerical information are in-

formationally nonequivalent, such that the choice of

frame influences the listener’s conclusions (Sher and

McKenzie 2006).

Seminal research in decision sciences illustrates that

preferences in a choice task depend on whether the

alternatives are framed as gains or losses. For instance,

a surgery with an 80% survival rate is perceived as more

acceptable than one associated with a 20% mortality

rate. When the two represent the same numbers but

expressed as certain versus uncertain, participants pre-

fer the safe option when the task is framed as a

gain (‘‘800 people saved’’) and the risky option when it

is framed as a loss (‘‘20% probability of 1000 people

dying’’). In other words, individuals’ willingness to ac-

cept risk is dependent on how the decision alternatives

are verbally framed (Tversky and Kahneman 1981).

Frame choices might implicitly leak information and

reveal a communicator’s underlying beliefs (McKenzie

and Nelson 2003; Tversky and Kahneman 1981). In

health decisions, this may be the surgeon’s underlying

preference regarding their patient’s treatment, when

the same statistical outcome is expressed in different

numerical formats (Marteau 1989; McNeil et al. 1982;

Wilson et al. 1987) or different verbal frames (Mandel

2014). In turn, a listener’s interpretation of two logically

equivalent but informationally distinct statements is

likely to match these underlying cognitions (Sher and

McKenzie 2006; Chong and Druckman 2007). Morton

et al. (2011) demonstrated a related effect in the con-

text of climate change: in the face of uncertainty about

the consequences of climate change, participants were

more willing to behave pro-environmentally when exposed

to a gain frame compared to a loss frame (see also Scannell

and Gifford 2013; Spence and Pidgeon 2010).

While psychological research on framing effects has

typically examined statements that are logically equiv-

alent (Sher and McKenzie 2006), framing has also been

defined more broadly in the sense of which elements are

selected or emphasized (Nelson et al. 1997). Indeed,

framing used in everyday parlance (Cacciatore et al.

2016) may often fail to satisfy the strict definition of

logical equivalence, raising questions about the choice

and effects of such frames. In the context of climate

change communication, we believe that frames that

summarize the same numeric information but are logi-

cally nonequivalent are of particular relevance, and

we will describe them subsequently.

b. Verbal frames summarizing uncertainty in climate

communications

In the academic literature, projections and related un-

certainties are often presented in the form of a mean es-

timate and two confidence interval bounds, a format

rarely found in communication by the media, policy-

makers, or other public figures. Rather, such information

may be summarized verbally, often via verbal frames like

‘‘as much as,’’ ‘‘not more than,’’ or ‘‘as little as.’’ For ex-

ample, an article in The Guardian, describing results from

the Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report, stated that ‘‘across Africa,

yields from rain-fed agriculture could decline by as much

as 50% by 2020’’ (Clarke 2012; IPCC 2014; see appendix

H). In climate communications, different verbal frames of

the same confidence interval bound may imply different

likelihoods of reaching this bound, and subtly express how

severe the communicator perceives the event to be. The

concerned frame ‘‘could decline by as much as 50%’’ may

imply higher concern and could, in turn, lead those who

receive this statement to perceive climate change conse-

quences as more severe. Conversely, the same results

could have been verbally framed in a less concerned

manner by saying that the ‘‘decline is very unlikely to be

greater than 50%.’’ The latter frame could thus result in

lower levels of perceived severity in recipients.

Furthermore, such communication often omits one

side of the interval (‘‘one-sided uncertainty interval’’;

Teigen 2008). The emphasized side of the uncertainty

interval may reflect the underlying ‘‘provisional refer-

ence point,’’ drawing the listener’s attention to that

same point. The language used to describe the reference

point, in turn, reflects the individual’s beliefs about the

outcome and the directionality of a statement (Teigen

2008): ‘‘More than X’’ implies that a projection is likely

larger than the reference point, whereas ‘‘less than X’’

implies that it is smaller.

Listeners’ interpretations of such statementsmay then

be influenced by verbal frames, along with their own

underlying beliefs and perceptions related to climate

change (Smithson et al. 2012; Teigen et al. 2007). Simi-

larly, the various verbal frames used in climate com-

munication to the public (see appendix H for further

examples). For example, ‘‘as much as X,’’ may empha-

size how extreme the outcome could be. Conversely,

phrasings such as ‘‘unlikely to be more than X’’—as in

the above example from The Guardian, and as used by
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the UK’s Met Office to communicate climate change

projections—may downplay the size of the outcome,

though they refer to the same numeric bound. Addition-

ally, expressions such as ‘‘unlikely’’ may further draw at-

tention toward a less severe outcome. These frames are

logically nonequivalent: ‘‘as much as X’’ does not neces-

sarily entail ‘‘unlikely to be more than X.’’ Yet they are

alternative summaries of the same numeric information—

the upper bound of an uncertainty interval. Thus, while

verbal frames of confidence intervals in climate change

communications may be easier to understand than

numbers, they provide room for selecting and pre-

senting information in line with communicators’ prior

beliefs (‘‘preference-based reinforcement’’; see Cacciatore

et al. 2016).

For studying framing effects in climate communica-

tion, we adopt a broader definition of these (Cacciatore

et al. 2016). Climate information is often framed dif-

ferently by different communicators, but these different

framings rarely fulfill the strict definition of being logi-

cally equivalent. Rather, they often represent different

ways of summarizing the same numerical information,

such as quantitative scientific statements about climate

projections (appendix H). Understanding what these

frame choices reveal about communicators and how

they influence listeners seems crucial to understanding

their contribution to polarization. In this study, we thus

examine a set of verbal frames that, while not logically

equivalent, are used in everyday communications to

summarize uncertain numeric estimates from climate

research—and which may both reflect the communica-

tor’s beliefs and influence the listener’s.

c. Underlying beliefs affect climate risk perceptions

Perceptions of climate change are associated with

political affiliation. For example, Dunlap et al. (2016)

report a 33–47-point difference in the percentage of

Democrats versus Republicans who believed that cli-

mate change is occurring, anthropogenic, and serious;

that there is scientific consensus on climate change; and

that the seriousness of climate change is exaggerated

in the media. Furthermore, political affiliation influ-

ences the interpretation of climate change information

(Carmichael et al. 2017; Hart et al. 2015). For instance,

Malka et al. (2009) showed that increasing knowl-

edge about the scientific findings regarding climate

change increased concern among Democrats and

Independents but not among Republicans. This re-

lationship was moderated by trust in scientists and

mediated by perceptions that climate change is anthro-

pogenic as well as by perceived scientific agreement

about a changing climate. ‘‘Motivated reasoning,’’ in

which individuals interpret information in ways that

reinforce their prior beliefs, may explain these results

(Hart and Nisbet 2012; Hart et al. 2015). Similar to po-

litical affiliation, environmental values are associated

with skepticism about climate change (Poortinga et al.

2011; Whitmarsh 2011).

d. Research question and hypotheses

Despite the ubiquity of confidence-interval communi-

cation in the context of climate change, the process of

selecting verbal frames for describing interval bounds is

not well understood. We investigate whether so-called

communicators who perceive climate change impacts to

bemore severe, andwho care about environmental issues

more generally, are more likely to choose a verbal frame

that may emphasize greater concern when describing the

upper confidence interval bound of a climate change

projection (study 1). In line with prior findings on framing

effects, we predict that the selected frame will be associ-

ated with levels of perceived severity of an event (pre-

diction 1). Furthermore, we investigate whether so-called

listeners who receive a frame that may be expressing

higher rather than lower concern for describing this

bound, in turn, expect the event to be more severe (study

2). We predict that their perceptions of the projected

change will be influenced by the verbal frame used for

communicating the confidence interval bound (pre-

diction 2). We selected two frames that are commonly

used to communicate climate change projections, al-

though they were not logically equivalent (and thus our

study differs from other studies on framing effects in this

respect). In both studies, we include assessments of po-

litical affiliation as well as environmental values, levels of

numeracy, and levels of education. We anticipate an in-

teraction between the participants’ political affiliation

and the frame to which they were exposed in study 2:

specifically, we predict that participants who identify as

Democrats will be more influenced by the more con-

cerned frame than those who identify as Republicans

(prediction 3).

We preregistered both studies on the Open Science

Framework. Study materials and power analyses were

based on two pilot studies conducted in 2013 (N 5 298

and N 5 393, respectively; see https://osf.io/3tr4h/).

Results of these studies provided initial support for the

aforementioned hypotheses. To allow the reader to as-

sess replicability, we report pilot results in appendixes

B–F. Datasets from themain studies are also available at

http://review.researchdata.leeds.ac.uk/512/.

2. Study 1

Study 1 assessed whether participants selected verbal

frames for describing an uncertain climate projection in
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line with their underlying levels of perceived severity of

climate change consequences.

a. Materials and methods

1) PARTICIPANTS

We recruited an online convenience sample from the

generalU.S. population viaAmazonMechanical Turk. In

advance of study 1, we conducted a power analysis

for linear logistic regression, based on the pilot data. To

detect an effect similar to the odds ratio of at least

1.44 observed in the pilot for the main independent

variable, a sample of N 5 509 participants was required.

To account for attrition, we increased this number toN5

598 participants. We excluded participants who did not

finish the questionnaire, answered ‘‘other’’ or ‘‘do not

know’’ on the political affiliation scale and did not give an

open-ended answer that would allow us to recategorize

them, or did not answer an attention check question

correctly. This resulted in an overall N 5 512. The aver-

age study duration was Mcommunicators 5 7.48min [stan-

dard deviation (SD) 5 5.81]. Table 1 provides a sample

description and results of statistical comparisons between

the final sample and excluded participants.

2) PROCEDURE AND MEASURES

Communicators received a brief explanation of why

climate projections can be uncertain. They were then

told that Greater London may experience heavier win-

ter precipitation due to climate change. They learned

that there was an 8 out of 10 chance that the change in

winter precipitation will be somewhere between an in-

crease of 3% and an increase of 33%, with the most

likely change being an increase of 15%. A graph

adapted from the Met Office’s 2009 United Kingdom

Climate Projections 2009 report (UKCP09) aimed to

improve understanding of this information (Fig. 1). We

chose this scenario because most American participants

are broadly familiar with London but lack extensive di-

rect experience with the city’s climate, limiting the effect

of prior knowledge and experience on their responses.

They were then asked to imagine explaining this

projection to a friend deciding whether to vote for flood-

resilient infrastructure in the city that would require

considerable government spending. To do so, partici-

pants chose one of two verbal frames summarizing the

projection, likely reflecting different levels of concern

(Table 2; appendix A). We selected the unconcerned

verbal frame ‘‘very unlikely to have increased more

than. . .’’ from the most recent set of climate projections

for theUnitedKingdom (Murphy et al. 2010), where it is

used to describe outcomes at the 10% and 90% interval

bounds. The concerned counterpart, ‘‘could have in-

creased by as much as,’’ was selected because the ‘‘as

much as’’ formulation is commonly used to summarize

numeric projections in climate change communications

to the public (see appendix H).

After selecting one of the framed statements, we mea-

sured participants’ perceptions related to severity of cli-

mate change consequences: A five-item scale included one

general assessment of perceived severity and four questions

concerned with more specific types of outcomes, based on

the 2010 Draft Climate Change Adaptation Strategy for

London (Greater London Authority 2010; Table 2). Re-

sponses across all five items were combined into a single

perceived severity scale (Cronbach’s a 5 0.90).

TABLE 1. Sample characteristics of study 1 and study 2, compared to excluded participants in each study. In each study sample,
participants were excluded because they did not complete questionnaires, did not answer the attention check correctly, or because we
could not categorize them on the political affiliation scale, based on their open-ended answer. When comparing the remaining com-
municators to those excluded, no statistical difference occurred with regard to any of the used measures (all p values . 0.6). Excluded
listeners did not differ in any of the other measures (all p . 0.3).

Study 1 Study 2

Final sample
(N 5 512)

Excluded
participants

Final sample
(N 5 385)

Excluded
participants

Mage (years) 36.23 (SD 5 11.25,
range 5 19–77)

38.67 (13) 37.22 (SD 5 12.43,
range 5 19–79)

37.75 (13.3)

Percentage male 57 27 55 20
Missing: 56 Missing: 45

Levels of education (%) High school or
lower: 13

High school or
lower: 12

High school or
lower: 12

High school or
lower: 9

College: 78 College: 39 College: 73 College: 41
Graduate school: 9 Graduate degree: 6 Graduate school: 15 Graduate school: 6

Missing: 44% Missing: 45
MPolitical_affiliation (SD) 3.39 (1.92) 3.42 (2.09) 3.50 (1.92) 2.79 (1.89)
MEnvironmental_values (SD) 3.69 (0.77) 3.64 (0.70) 3.67 (0.82) 3.77 (0.62)
MNumeracy (SD) 2.31 (1.24) 2.13 (1.19) 2.35 (1.19) 2 (1.12)
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Environmental values were assessed via the 15-item

New Ecological Paradigm scale (NEP; Dunlap et al.

2000) where each item is rated on a scale from 1

(‘‘strongly agree’’) to 5 (‘‘strongly disagree’’). For ex-

ample, participants were asked to rate statements such

as ‘‘When humans interfere with nature it often pro-

duces disastrous consequences’’ and ‘‘Despite our spe-

cial abilities humans are still subject to the laws of

nature.’’ Participants’ average answer across 15 items

was M 5 3.31 (SD 5 0.33). Cronbach’s a 5 0.91 in-

dicated sufficient internal reliability of the NEP scale

and was slightly higher than the validation sample (a 5

0.83; Dunlap et al. 2000). Political affiliation was as-

sessed on a seven-point scale ranging from 1 (‘‘strong

Democrat’’) through a midpoint of 4 (‘‘independent’’)

to 7 (‘‘strong Republican’’), as well as two additional

categories ‘‘do not know’’ and ‘‘other.’’ Based on their

explanations in an open-ended text field, participants

who indicated ‘‘other’’ were recategorized on the

Democrat–Republican spectrum (see Table 1; overall

M 5 3.38, SD 5 1.92). Numeracy was assessed with the

adaptive version of the Berlin Numeracy Test (BNT;

Cokely et al. 2012; see alsoKahan et al. 2012; Hart 2013).

The average numeracy score wasM5 2.31 (SD5 1.24),

which is slightly lower than in the validation sample

(M 5 2.60, SD 5 1.13; Cokely et al. 2012).1 The BNT

was followed by an attention check ensuring that par-

ticipants carefully read instructions; asking ‘‘Do you like

to do puzzles? This is an attention check, please answer

C) Other’’ including answer categories A–C. De-

mographic measures included age, gender (male, fe-

male, other), and education (some schooling only, high

school diploma or GED, some college, college degree,

some graduate school, graduate degree); see Table 1.

Results were analyzed in R, using the function glm( ) in

the ‘‘stats’’ package. Dominance analysis (Budescu 1993;

Azen and Traxel 2009) was conducted to rank the im-

portance of the predictors. Following LeBreton et al.

(2013) interaction terms were residualized. The Health

FIG. 1. Graphical display of the climate change projection used in both study 1 (communi-
cators) and study 2 (listeners), with accompanying text. The percentage displayed on the x axis
is equivalent to the amount of precipitation change. The area under the curve represents the
likelihoods or probabilities associated with different amounts of precipitation change. The
vertical lines indicate which amount of precipitation change is associated with the 10%, 50%,
and 90% probability levels of the probability density function. Participants received the fol-
lowing description: ‘‘The graph above makes predictions very similar to those made by the
UKCP09. It suggests that there is an 8 out of 10 chance that the change in winter precipitation
will be somewhere between: an increase of 2 percent and an increase of 33 percent. This is
represented by the area between the dashed lines. The central estimate is an increase in 15
percent, which corresponds to the highest point in the curve. Changes that correspond to lower
points on the curve are less likely to occur. The probability that the change in precipitation will
be less than 2 percent or higher than 33 percent is 2 out of 10. This corresponds to the area below
and above the dashed lines.’’

1Numeracy scores were distributed as follows. 1: 38%; 2: 21%;
3: 14%; 4: 28%, where 1 indicates very low numeracy and 4 very
high levels of numeracy. See also Cokely et al. (2012).
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Sciences and Behavioral Sciences Institutional Review

Board at the second author’s institution approved both

studies.

b. Results

Choices of verbal frames for summarizing uncertain

climate projections are associated with communicators’

underlying perceived severity of climate change: Com-

municators who perceived the consequences of pre-

cipitation change to be more severe were more likely to

choose the concerned frame (N 5 375) than the un-

concerned frame (N 5 137; Fig. 2a). This was in line with

our first prediction, and held when controlling for other

predictors and covariates in the logistic regression

(Table 3). Choice of the concerned frame was further

associated with a more democratic political affiliation2

and rather weakly with environmental values. Partici-

pants with lower levels of numeracy perceived conse-

quences as more severe and were also somewhat more

likely to choose a concerned frame (Table 3). Dominance

analysis (Azen and Traxel 2009) was used for assessing

relative importance of severity, compared to other pre-

dictors. Perceived severity generally dominated all other

predictors, accounting for 49% of the model’s overall fit.

Political affiliation was the second most important pre-

dictor, accounting for 30% of overall fit (appendix D).

A logistic regression model additionally including de-

mographics produced similar patterns. It further in-

dicated that communicators were more likely to choose

the concerned frame if they were male (b 5 0.55 [0.23],

p 5 0.02), if they perceived consequences as severe and

additionally were low in numeracy (severity3 numeracy:

b520.36 [0.14], p5 0.01), or if they additionally had high

pro-environmental values (severity3NEP: b5 0.32 [0.14],

p5 0.02). Including demographics slightly decreasedmodel

fit. This was indicated by the Bayesian information criterion

(BIC), which penalizes additional predictors. The BIC in-

creased from 615 to 652. To ensure the results were robust

to the inclusion of all participants, we predicted perceived

severity using similar models and the full dataset (N 5

598). This revealed similar patterns. Pilot results are de-

scribed in appendixes C, D, and F.

3. Study 2

Study 2 assessed whether two different verbal frames

for describing an uncertain climate projection influ-

enced listeners’ underlying levels of perceived severity

of climate change consequences.

a. Material and methods

1) PARTICIPANTS

Similar to study 1, the online convenience sample was

drawn from the general U.S. population and recruited

via Amazon Mechanical Turk. We conducted a power

analysis for linear regression, based on the pilot data. To

detect a small effect of f2 5 0.05 for our main predictor

(Cohen 1988), a sample of N 5 382 participants was

required. To account for attrition, N 5 456 participants

were invited to participate. We excluded participants

who did not finish the questionnaire, participants who

answered ‘‘other’’ or ‘‘do not know’’ on the political

affiliation scale and did not give an open-ended answer

that would allow us to recategorize them on this scale,

and participants who did not answer an attention check

question correctly (similar to study 1). The final sample

TABLE 2. Items used in both study 1 (communicators) and study 2 (listeners). The projection for precipitation change due to climate
change was retrieved from Murphy et al. (2010).

Verbal frames of confidence interval bound
‘‘A recent report predicts that climate change will increase winter precipitation in Greater London. By the 2050s, winter
precipitation . . .’’
1) ‘‘. . . could have increased by as much as 32%.’’ (concerned frame)
2) ‘‘. . . is very unlikely to have increased by more than 32%.’’ (unconcerned frame)

Perceived severity of consequences Rating scale
How severe do you think an increase in precipitation will be by
the 2050s in London?

1 (‘‘Not severe at all’’) to 7 (‘‘Extremely severe’’)

With what severity do you think London will experience these
potential consequences of flooding by the 2050s?
1) Loss of income and delayed economic development 1 (‘‘No severity at all’’) to 7 (‘‘Extreme severity’’)
2) Contamination and disease from flood and sewer water
3) Direct damage to property, infrastructure and utilities
4) Loss of life and personal injury

2The model from the main study but not of the pilot study fur-
ther indicated a three-way interaction between environmental
values, political affiliation, and levels of numeracy. As these results
were not interpretable and did not replicate findings from the pilot
study, we do not provide descriptive statistics here but report those
in appendix G.
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included N 5 385 participants. The average study du-

ration was Mlisteners 5 7.17min (SD 5 4.69). Sample

characteristics are described in Table 1, including sta-

tistical comparisons to excluded participants.

2) PROCEDURE AND MEASURES

The introductory text was similar to study 1. A total

of N 5 204 participants received a statement from a

London assembly member summarizing evidence from

a reputable source on projected changes in winter pre-

cipitation. The statement was equivalent to the con-

cerned frame of the uncertain projection in Table 2. A

total of N 5 181 participants received a statement

equivalent to the unconcerned frame in Table 2 (ap-

pendix A). Participants were randomly allocated to

experimental groups.

After receiving one of the framed statements, partic-

ipants were asked to rate the severity of consequences of

FIG. 2. Mean perceived severity of consequences of precipitation change (195% confidence interval) by
(a) communicators choosing the frame for summarizing an uncertain climate projection in study 1 and (b) listeners,
receiving different frames for the uncertain climate projection in study 2. See Table 2 for the five-item scale used for
measuring perceived severity of precipitation change.

TABLE 3. Logistic regression, predicting frame choice (concerned vs unconcerned) in study 1 (communicators). [Notes: BIC 5 615.
We categorized participants by reducing political affiliation to a one-dimensional seven-point left to right scale by placing those who
indicated ‘‘do not know’’ in the middle of the scale (i.e., 4), by placing those who indicated in the ‘‘other’’ category to vote green, socialist,
or communist on the left end of the scale (i.e., 1), and by placing those who indicated to vote constitutional, libertarian, or anarcho-
capitalist on the right end of the scale (i.e., 7). BIC (full model with all interactions and demographics) 5 652.]

Coefficient Standard error Wald statistic p

Intercept 1.04 0.11 9.14 ,0.01
Perceived severity 0.27 0.12 2.23 0.03
Political affiliation 20.26 0.12 22.27 0.02
Environmental values (NEP) 0.25 0.14 1.84 0.07
Numeracy 0.13 0.12 1.08 .0.25
Perceived severity 3 numeracy 20.21 0.12 21.73 0.08
Political affiliation 3 NEP 20.07 0.12 20.62 .0.25
Political affiliation 3 numeracy 20.16 0.12 21.31 0.19
Environmental values 3 numeracy 0.10 0.13 0.77 .0.25
Political affiliation 3 NEP 3 numeracy 0.26 0.12 2.14 0.03
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precipitation change on a five-item scale similar to study

1 (Table 2). Responses across all five items were com-

bined into a single perceived-severity scale (Cronbach’s

a 5 0.92). Listeners were also asked to make a per-

centage estimate about change via the following

question: ‘‘What percent change in annual winter pre-

cipitation would you expect in Greater London in the

2050s, in comparison with the previous decades?’’ (see

also Teigen et al. 2007). The measures assessing pro-

environmental values (M5 3.68, SD5 0.82; Cronbach’s

aNEP5 0.92), political affiliation (M5 3.50, SD5 1.92),

numeracy (M 5 2.35, SD 5 1.19),3 demographics, and

attention check were adopted from study 1. Answers on

perceived severity items and quantitative estimates

were analyzed in R, using the function lm( ) in the

‘‘stats’’ package.

b. Results

Verbal framing of an uncertain interval bound in-

fluences listeners’ perceptions of the projected change: In

line with the prediction and pilot results, listeners ex-

posed to the concerned verbal frame perceived the

consequences of precipitation change to be more severe

than those exposed to an unconcerned frame (Fig. 2b).

Further, higher environmental values predicted greater

perceived severity, whereas higher numeracy was asso-

ciated with lower perceived severity. Perceived severity

was also higher among participants who had both high

environmental values and high numeracy (frame

received 3 NEP 3 numeracy; Table 4). A full model

including all interactions and demographic variables as

main effects produced similar result patterns but re-

sulted in poorer fit to the data. This was indicated by

the BIC, which increased from 1074 to 1081. Findings

were robust when including all participants (N 5 456).

Further, results were similar to pilot results (appendixes

E and F).

Similarly in line with results of the pilot study, the

numeric estimate of the percentage precipitation change

in listeners was not affected by the verbal frame received

(average predictions in each group: Mconcerned_frame 5

29.37, SD5 13.43, andMunconcerned_frame 5 27.91, SD5

10.71; see Table 5). We predicted numerical estimates

with a linear regression model, similar to the model

applied to perceived severity of consequences. Partici-

pants tended to make higher estimates when they were

low in numeracy. A regression model including de-

mographic variables showed a similar pattern and ad-

ditionally indicated that older [b 5 20.20 (0.05), p 5

0.01] and more highly educated participants [b 5 20.10

(0.05), p 5 0.04] made lower estimates.

4. General discussion

When participants were asked to communicate an

uncertain projection on precipitation change due to

climate change, they selected a verbal frame that

matched their perceptions of the severity of future cli-

mate change consequences (study 1). Listeners exposed

to a concerned rather than unconcerned verbal frame

for the same projection in turn perceived the conse-

quences of precipitation change to be more severe

(study 2). These findings align with a set of pilot studies

conducted in 2013, and suggest that phrases commonly

used to frame numerical information from climate

sciences may reveal and influence individuals’ percep-

tions of climate change consequences. Importantly, the

alignment between underlying beliefs and selected

frame does not imply that it is exactly the prior beliefs

we assessed that caused frame selection, but merely

demonstrates that frame choices and these beliefs are

correlated. Our results also suggest that how verbal

summaries of numerical confidence intervals are framed

can influence perceptions. These framing effects of the

logically nonequivalent frames studied here are similar

to more traditional framing effects of logically equiva-

lent frames. These results are important because, in

everyday language, framing extends beyond the clean,

logically equivalent frames previously investigated in

the literature.

To assess the role of more general underlying beliefs

about climate change independent of personal experi-

ences, the scenario employed here focused on Greater

London. This likely reduced the probability that

U.S.-based participants themselves experienced climate

change consequences affecting the area. Experience of

climate change consequences has been shown to affect

perceptions and beliefs of climate change (Bruine de

Bruin et al. 2014) and may thus shape perceptions of

frames. For example, previous research suggests that

framing effects in the context of climate change may

depend on how ‘‘close’’ participants perceive the impact

to be (Spence and Pidgeon 2010; Scannell and Gifford

2013; McDonald et al. 2015), although this may not al-

ways lead to more accurate risk perceptions and adap-

tive behaviors (McDonald et al. 2015).

We found that political affiliation predicted frame

choice in study 1. This is in line with previous studies that

found associations between political affiliation and

3Numeracy scores were distributed as follows. 1: 38%; 2: 24%;
3: 17%; 4: 26%, wehre 1 indicates very low numeracy and 4 very
high levels of numeracy. See Cokely et al. (2012) for categorization
of participants according to answers in the adaptive version of the
Berlin Numeracy Test.
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belief in and perceived risk of climate change (Dunlap

et al. 2016; Hornsey et al. 2016). Pro-environmental

values were only weakly associated with frame choice,

while previous work suggested a relationship between

this measure and beliefs about climate change. How-

ever, the regression model included perceived severity,

which is strongly correlated with pro-environmental

values (r 5 0.49; p , 0.01), which might explain this

disparity.

In study 2, environmental values were associated with

perceived severity of precipitation change among listeners.

This is in line with literature indicating relationships

among values, political affiliation, and climate change

risk perceptions [see Corner et al. (2014) for a summary].

We did not observe an interaction between frame received

and political affiliation, which might have indicated that

the concerned frame might have influenced perceptions

of Democrats more than those of Republicans. Higher

numeracy did not reduce the impact of frames in study 2.

In other words, the highly numerate were equally likely to

express perceptions of severity that were in line with the

verbal frames to which they were exposed. In previous

TABLE 5. Linear regression, predicting quantitative estimates of precipitation change, dependent on frame received, environmental
values (NEP), political affiliation and levels of numeracy in study 2 (listeners). [Notes: BIC5 1146;R2 (adj.)5 0.10. See Table 3 in study 1
for the recategorization procedure of participants who indicated ‘‘do not know’’ or ‘‘other’’ on the political affiliation scale. BIC (full
model with demographics) 5 1147; R2 (adj.) 5 0.11.]

Coefficient Standard error t value p

Intercept 20.01 0.08 20.15 .0.25
Frame received 0.07 0.11 0.64 .0.25
Environmental values (NEP) 0.13 0.08 1.61 0.11
Political affiliation 20.07 0.08 20.84 .0.25
Numeracy 20.22 0.08 22.75 0.01
Frame received 3 NEP 20.03 0.11 20.29 .0.25
Frame received 3 political affiliation 0.08 0.11 20.67 .0.25
Frame received 3 numeracy 20.03 0.11 20.26 ..25
Political affiliation 3 NEP 0.08 0.07 1.21 0.23
Political affiliation 3 numeracy 0.07 0.08 0.79 .0.25
NEP 3 numeracy 0.06 0.09 0.74 .0.25
Frame received 3 NEP 3 political affiliation 20.03 0.09 20.31 .0.25
Frame received 3 NEP 3 numeracy 0.08 0.11 0.70 .0.25
Frame received 3 political affiliation 3 numeracy 20.05 0.11 20.48 .0.25
NEP 3 political affiliation 3 numeracy 0.01 0.07 0.20 .0.25
Frame received 3 NEP 3 political affiliation 3 numeracy 20.09 0.10 20.90 .0.25

TABLE 4. Linear regression, predicting perceived severity of consequences, dependent on frame received, environmental values, po-
litical affiliation, and levels of numeracy in study 2 (listeners). [Notes: BIC 5 1074; R2 (adj.) 5 0.24. See Table 3 in study 1 for the
recategorization procedure of participants who indicated ‘‘do not know’’ or ‘‘other’’ on the political affiliation scale. BIC (full model with
demographics) 5 1081; R2 (adj.) 5 0.20.]

Coefficient Standard error t value p

Intercept 20.20 0.07 22.74 0.01
Frame received 0.33 0.09 3.35 ,0.01
Political affiliation 20.02 0.05 20.31 .0.25
Environmental values (NEP) 0.45 0.05 6.12 ,0.01
Numeracy 20.21 0.07 22.93 ,0.01
Frame received 3 political affiliation 0.01 0.10 0.14 0.89
Frame received 3 NEP 20.07 0.10 20.71 .0.25
Frame received 3 numeracy 20.04 0.10 20.43 .0.25
Political affiliation 3 NEP 20.05 0.06 20.84 .0.25
Political affiliation 3 numeracy 0.02 0.08 0.19 .0.25
NEP 3 numeracy 0.01 0.08 0.06 .0.25
Frame received 3 political affiliation 3 NEP 0.03 0.09 0.38 .0.25
Frame received 3 NEP 3 numeracy 0.21 0.10 1.97 0.05
Frame received 3 political affiliation 3 numeracy 20.01 0.10 20.12 .0.25
Political affiliation 3 NEP 3 numeracy 20.01 0.07 20.20 .0.25
Frame received 3 political affiliation 3 NEP 3 numeracy 20.09 0.09 21.00 .0.25
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research, Peters et al. (2006) showed a relationship

between framing effects and numeracy. In that study,

however, the frames were logically equivalent, whereas

in ours they were not. This makes sense, as we would

not necessarily expect for numeracy to ‘‘protect’’

against framing effects when the expressions are not

logically equivalent. It may further indicate that, while

logically nonequivalent frames of the same numerical

information may influence listeners with varying

numeracy levels in the usual way, numeracy may no

longer be a moderator of these framing effects. Yet

interestingly, in study 1, the highly numerate generally

perceived the consequences of increased precipitation

to be less severe.

While the verbal frames influenced perceived severity

in study 2, quantitative estimates of changes in pre-

cipitation due to climate change did not differ between

experimental conditions. This also held true for pilot

study 2 and was the case even though these quantitative

estimates were moderately correlated with perceived

severity. This result differs from prior research showing

that the directionality of verbal frames affects numeric

estimates (Budescu et al. 2003; Teigen et al. 2007; Hohle

and Teigen 2018). Future research should thus in-

vestigate the way in which perceptions measured more

qualitatively (e.g., perceived severity of climate change

impacts, as used in the present research) are related

to more quantitative estimates (precise projections

of the impact), and how each in turn shapes support

for climate change mitigation and adaptation policy.

In everyday conversations, the type and strength of

frames used might vary. When summarizing a climate

projection, individuals might choose other verbal

frames than the ones studied here and specified in, for

example, the UKCP09 outlet (Murphy et al. 2010; see

appendix H). Asking participants in an open-ended

task to summarize a projection in their own words

would enable assessment of the variability and strength

of verbal frames used for climate change impacts in

conversations and public media outlets. Their choices

will likely be associated with their underlying beliefs

about climate change.

Furthermore, verbal probabilities may serve other

functions in social interaction than the ones described.

Communicators, when choosing a verbal frame express-

ing higher concern, might adhere to listeners’ preferences

for ‘‘worst case’’ scenarios (Teigen et al. 2007). More

generally, omitting numbers in climate projections might

indicate less responsibility when the projection turns out

to be wrong (‘‘fuzzy cover hypothesis’’; Erev and Cohen

1990) but still leave room for expressing underlying be-

liefs. Listeners, in turn, may perceive a verbal probability

statement as a way of protecting either the communicator

or the listener from a too-strong statement that may be

less well received but less frequent for simply expressing a

likelihood (‘‘face management’’; Juanchich et al. 2012).

5. Conclusions

Different verbal frames used in climate communica-

tions may reveal and influence how individuals perceive

climate change consequences. This suggests that these

verbal summaries of numeric information are neither

neutrally chosen nor neutrally interpreted (Scheufele

2014). As a result, verbal framing of uncertain pro-

jections (e.g., by the media, online blogs, policymakers,

and peers) likely reveals and influences public percep-

tions of climate change, contributing to polarization on

the issue: initially very subtle verbal nuances in climate

change communications express different levels of per-

ceived severity. Those levels might be amplified and

reinforced when propagated through chains of in-

dividuals, in particular when they share a similar view-

point (Moussaïd et al. 2015). This limits our ability to

achieve a basic level of agreement on scientific facts, and

it could continue to preclude necessary mitigation and

adaptation behaviors.

Our results, together with previous work on com-

munications of climate information, motivate several

recommendations for facilitating a more neutral com-

munication of uncertain intervals around climate change

projections. One is to accompany verbally described

probability levels with their numerical equivalents

(Budescu et al. 2014). This decreases variability in how

verbally described probability levels are interpreted and

likely also the influence of different verbal frames.

Furthermore, simple graphical formats may enhance

understanding (Galesic et al. 2016; Garcia-Retamero

and Cokely 2014; Joslyn et al. 2013; Stephens et al.

2012). These should reflect cognitive design principles

that enhance ease of understanding of graphs (Harold

et al. 2017). Empirical studies need to assess how well

climate information in different numerical and graphical

formats is understood by different target audiences

(Galesic et al. 2016; Harold et al. 2017). Such strate-

gies could produce a more accurate picture of projected

changes and associated uncertainties if they are un-

derstandable and simple enough to resonate with

beliefs of both listeners and communicators. Ideally, this

allows for a better informed and more neutral debate

about complex and uncertain scientific issues such as

climate change.
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study in an armchair conversation, telling one of the

authors (WG) that the media react with much more

interest if he states that some consequence of climate

change ‘‘could be as high as. . .’’ than when he states that

the same difference ‘‘is unlikely to be greater than. . .,’’

which are exactly the two verbal frames for the upper

end of a confidence interval that we used in the study,

and also is why we studied them in the first place.

Participants’ names were not collected. Each participant

was associated with a Mechanical Turk ‘‘Worker ID,’’

which was used only for participant compensation and to

ensure participant uniqueness. Worker IDs were un-

linked from survey data. The authors declare no con-

flicts of interest with respect to the authorship or the

publication of this article.

APPENDIX A

Study Materials as Used in Study 1 and Study 2

Thank you for participating in our study!

In this study, we examine how people think about

the effects of climate change on first-world countries.

For this purpose you will complete several simple cal-

culations, and interpret information presented in graphs

and short statements in the way thatmakesmost sense to

you. Your data will be collected completely anony-

mously using an online survey service. The researchers,

AmazonMechanical Turk, and the online survey service

will have no way of linking your data with your personal

identity.

The Max Planck Institute for Human Development

and the University of Konstanz are institutions that pro-

motes scientific research. Our work adheres strictly

to regulations governing protection of privacy. The

information requested in the study will be kept confi-

dential and archived and scientifically processed in ac-

cordance with the Data Privacy Act. Personal data will

not be passed on to any third parties. The data will be

used solely for research purposes and solely within or in

cooperation with both institutions. Personal contact data

and experimental datawill be stored separately from each

other andhandledwith utmost discretion. Participation in

the study is voluntary and you are able to end your par-

ticipation at any time. You can revoke your consent to

use your data at any time from that date forward.

The study will last approximately 20min. You will be

paid $2 for completing the study. If you leave the study

prior to completion, you will not receive payment.

I have read and accept the terms and conditions

listed above and consent to participate in this study

(prerequisite for participating in the study)

[ ] Yes

[COMMUNICATORS]

Please read the following information carefully before

moving on to the questions.

When thinking about what climate change means for

people, one question is how it will affect towns and cities.

Governments, businesses, individuals, and other groups can

use this information to devise plans for the future devel-

opment of their community. For example, if severe hurri-

canes are likely to occur more frequently near a particular

coastal city, that community might prepare by building

better levees, improving its evacuation plan, and so on.

The 2009 UK Climate Projections (UKCP09) use

available climate data to make predictions about the

effects of climate change on Great Britain.

Because no one knows exactly how policies, technol-

ogies, individual behaviors, and other factors will change

TABLE B1. Sample characteristics of pilot study 1 and pilot study 2. In each subsample, participants were excluded because they either did
not complete questionnaires or because in advance of our studies, they participated in pilot studies and were thus too familiar with the
experimental materials. In a next step, we excluded those who indicated ‘‘don’t know’’ or ‘‘other’’ on the political affiliation scale. When
comparing remaining to excluded communicators (pilot study1), no statistical differenceoccurredwith regard to age [t(30)5 0.04, p5 1]. The
overall level of educationwas lower [t(40)523, p5 0.01].With regard tomeasures used, they expressed slightly lower environmental values
[t(30)522, p5 0.05] but did not differ on any of the other measures (all p. 0.3). When comparing excluded listeners to remaining listeners
(pilot study 2), no statistical difference occurred with regard to age [t(20)5 0.5, p5 0.06]. The overall level of education was lower [t(100)5
210, p , 0.01]. With regard to measures used, excluded listeners did not differ in any of the other measures used (all p . 0.1).

Study 1: Communicators Study 2: Listeners

Final sample (N 5 298) Excluded participants Final sample (N 5 393) Excluded participants

Mage (years) 33.3 (SD 5 11) 33.4 (SD 5 11.1) 32.5 (SD 5 10.3) 33.05 (SD 5 9.23)
Percentage male 61 57 58 57
Levels of education (%) High school or lower: 14 High school or lower: 3 High school or lower: 13 High school or lower: 8

College: 73 College: 22 College: 76 College: 8
Graduate school: 13 Graduate school: 2 Graduate school: 11 Graduate school: 5

MEnvironmental_values (SD) 3.26 (0.70) 3.24 (0.69) 3.51 (0.66) 2.19 (1.21)
MPolitical_affiliation (SD) 3.12 (1.67) 2.07 (1.52) 3.20 (1.60) 2.00 (1.38)
MNumeracy (SD) 2.28 (1.17) 2.22 (1.05) 2.43 (1.16) 2.19 (1.21)
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in the coming decades, because some aspects of the

climate system are incompletely understood and be-

cause natural variability occurs in the climate system,

there is some uncertainty in these projections.

Consider the graph below as an example very similar

to predictions by the UKCP09. It suggests that by the

2050s, the amount of winter precipitation in Greater

London is likely to have increased in comparison to a

historical baseline—but by exactly how much it will in-

crease cannot be known beforehand.

Heavier and more frequent winter rainfall events could

lead to flooding, which could result in injuries and fatali-

ties, damage to property and infrastructure, disease spread,

delayed economic development, and other consequences.

The following statements put the above chart into

words. Imagine that you are explaining the prediction to a

friend. Your friend, who lives in London, is deciding

whether to vote for city infrastructure that is more

resilient to flooding. This would help the city adapt to the

effects of climate change, but would require significant

government spending. Which statement would you

choose?

‘‘A recent report predicts that because of climate

change, winter precipitation will increase in Greater

London. Compared to a historical baseline, by the 2050s,

winter precipitation

a. Could have increased by as much as 33%.’’

b. Is very unlikely to have increased by more than

33%.’’

[Measures–COMMUNICATORS]

With what severity do you think London will experi-

ence these potential consequences of flooding by the

2050s? (For each, a 7-point scale, ranging from ‘‘No

severity at all’’ to ‘‘Extreme severity’’.)

TABLE C1. Logistic regression, predicting frame choice (unconcerned vs concerned) in pilot study 1 (communicators). Notes: BIC 5

358. A dominance analysis indicated that perceived severity dominated all other predictors, accounting for 30% of the model’s overall fit
(see appendix D). Pro-environmental values were the second most important predictor, accounting for 17% of overall fit. For the pilot
data, we ran the same logistic regression on a larger sample, including communicators, who, when asked about their political affiliation,
indicated the category ‘‘don’t know’’ or ‘‘other.’’ In this larger sample,N5 21 participants (7%) did so. We categorized these participants
by reducing political affiliation to a one-dimensional seven-point left–right scale by placing those who indicated ‘‘do not know’’ in the
middle of the scale (i.e., 4), by placing those who indicated in the ‘‘other’’ category to vote green, socialist, or communist on the left end of
the scale (i.e., 1), and by placing those who indicated to vote constitutional, libertarian, or anarcho-capitalist on the right end of the scale
(i.e., 7). Including those participants in all reported analyses did not alter displayed results. BIC (full model with all interactions and
demographics) 5 399.

Coefficient Standard error Wald statistic p

Intercept 1.23 0.15 8.29 ,0.01
Perceived severity 0.36 0.16 2.33 0.02
Political affiliation 20.13 0.15 20.84 .0.25
Environmental values (NEP) 0.30 0.16 1.80 0.07
Numeracy 0.18 0.15 1.16 0.25
Perceived severity 3 numeracy 20.10 0.15 20.73 0.47
Political affiliation 3 NEP 20.04 0.16 20.27 .0.25
Political affiliation 3 numeracy 0.14 0.16 0.85 ..25
Political affiliation 3 NEP 3 numeracy 20.26 0.18 21.48 0.14
Environmental values 3 numeracy 20.09 0.16 20.55 ..25

TABLE D1. Dominance analysis results for logistic regression predictors in main and pilot study 1.

Predictor

Main study 1 Pilot study 1

Dominance
Standardized
dominance Rank Dominance

Standardized
dominance Rank

Perceived severity 0.03 0.49 1 0.02 0.30 1
Political affiliation 0.02 0.30 5 0.004 0.06 2
Environmental values (NEP) 0.0009 0.02 2 0.01 0.17 8
Numeracy 0.0004 0.01 7 0.01 0.12 4
Perceived severity 3 numeracy 0.002 0.03 4 0.01 0.06 7
Political affiliation 3 NEP 0.0001 0.002 8 0.0004 0.01 9
Political affiliation 3 numeracy 0.001 0.14 6 0.01 0.08 6
Environmental values 3 numeracy 0.0007 0.01 3 0.01 0.06 5
Political affiliation 3 NEP x numeracy 0.0001 0.001 9 0.01 0.14 3
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a. Loss of income and delayed economic development

b. Contamination and disease from flood and sewer

water

c. Direct damage to property, infrastructure and

utilities

d. Loss of life and personal injury

[LISTENERS]
Please read the following information carefully before

moving on to the questions.

When thinking about what climate change means for

people, one question is how it will affect towns and cities.

Governments, businesses, individuals, and other groups can

TABLE E1. Linear regression, predicting perceived severity of consequences, dependent on frame received, environmental values
(NEP), political affiliation, and levels of numeracy in pilot study 2 (listeners). Notes: BIC5 1123. We ran the same linear regression on a
larger sample, including communicators, who, when asked about their political affiliation, indicated the category ‘‘don’t know’’ or
‘‘other.’’ In this larger sample, N 5 14 participants (3.4%) did so. We categorized these participants by reducing political affiliation to a
one-dimensional seven-point left-to-right scale by placing those who indicated ‘‘do not know’’ in themiddle of the scale (i.e., 4), by placing
those who indicated in the ‘‘other’’ category to vote green, socialist, or communist on the left end of the scale (i.e., 1), and by placing those
who indicated to vote constitutional, libertarian, or anarcho-capitalist on the right end of the scale (i.e., 7). Including those participants did
not alter displayed results. BIC (full model with all interactions and demographics) 5 1169.

Coefficient Standard error Wald statistic p

Intercept 20.13 0.07 21.88 0.06
Frame received 0.23 0.10 2.34 0.02
Political affiliation 20.16 0.05 23.20 ,0.01
Environmental values (NEP) 0.17 0.05 3.47 ,0.01
Numeracy 20.31 0.07 24.20 ,0.01
Frame received 3 numeracy 0.15 0.10 1.55 0.12
Political affiliation 3 NEP 20.01 0.05 20.19 .0.25
Political affiliation 3 numeracy 20.04 0.05 20.70 .0.25
NEP 3 numeracy 0.10 0.05 2.05 0.04
Political affiliation 3 NEP 3 numeracy 0.04 0.04 0.99 .0.25

FIG. F1. Mean perceived severity of consequences of precipitation change (195% confidence interval) by
(a) communicators choosing a verbal frame for communicating an uncertain climate projection in pilot study 1 and
(b) listeners receiving different verbal frames for the uncertain projection in pilot study 2. In the pilot studies, mean
perceived severity of consequences following precipitation change was measured with a four-item scale, ranging
from 1 (‘‘No severity at all’’) to 7 (‘‘Extreme severity’’) (see Table 1). We included the fifth item measuring overall
perceived severity into the main studies in order to reduce ceiling effects observed here.
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use this information to devise plans for the future de-

velopment of their community. For example, if severe

hurricanes are likely to occur more frequently near a

particular coastal city, that community might prepare by

building better levees, improving its evacuation plan,

and so on.

In Great Britain, some are concerned that climate

change will lead to more winter precipitation. Heavier

and more frequent winter rainfall events could lead

to flooding, which could result in injuries and fatali-

ties, damage to property and infrastructure, disease

spread, delayed economic development, and other

consequences.

In 2010, London’s mayor consulted the elected

London Assembly on the issue of climate change.

Imagine that one assembly member, summarizing evi-

dence from a reputable source, stated:

[Concerned verbal frame]

1. ‘‘By the 2050s, annual winter precipitation inGreater

London could have increased by as much as 33%.’’

[Unconcerned verbal frame]

‘‘By the 2050s, annual winter precipitation in Greater

London is veryunlikely tohave increasedbymore than33%.’’

[Measures–LISTENERS]

If increased flood risk were judged to be of significant

concern, it might influence the design and updating of

infrastructure, the construction of new buildings, the

development of emergency response plans, and so on.

Please answer the following questions using the as-

sembly member’s statement and data alone. There is no

right answer—your gut instinct is what matters to us.

TABLEG1. Perceived severity of listeners in main study 1 by levels of environmental values, political affiliation, and levels of numeracy.
For the purpose of this display, participants’ average value on the NEP scale and continuous answers on the political affiliation scale were
binarized using a median split.

Levels of numeracy NEP Political affiliation Mean perceived severity (SE)

1 Low Republican 5.60 (—)
Democrat 5.05 (1.08)

High Republican 4.43 (0.13)
Democrat 5.0 (0.12)

2 Low Republican —
Democrat 3.80 (0)

High Republican 4.35 (0.21)
Democrat 4.88 (0.15)

3 Low Republican —
Democrat 5.10 (0.10)

High Republican 3.92 (0.27)
Democrat 4.59 (0.18)

4 Low Republican 4.27 (1.18)
Democrat 5.0 (—)

High Republican 3.90 (0.18)
Democrat 4.68 (0.12)

TABLE H1. Media quotations, illustrating the use of different verbal frames for summarizing uncertain numerical climate projections.

Media quote Reference

‘‘Study finds top fossil fuel producers’ emissions
responsible for as much as half of global surface
temperature increase (. . .)’’

https://www.ucsusa.org/press/2017/study-finds-top-fossil-fuel-
producers-emissions-responsible-much-half-global-surface#.WvH_Ly-
B3OQ; accessed on 17 May 2018

‘‘Researchers expected to find a 6 percent increase in Hurricane
Harvey rainfall totals, but instead found that climate
change increased those totals by at least 19 percent and
as much as 38 percent.’’

https://www.scientificamerican.com/article/global-warming-tied-to-
hurricane-harvey/

‘‘According to an IPCC report, if greenhouse gas emissions
remain unchecked, global sea levels could rise by as much

as 3 feet (0.9 meters) by 2100.’’

https://www.livescience.com/37057-global-warming-effects.html

‘‘It now rains considerably more in winter almost everywhere
in Germany; in some cases, precipitation volumes have
increased by as much as 30 percent in the cold season. In
contrast, summers in many Federal States have become dryer.’’

https://www.climaterealityproject.org/blog/how-climate-change-
affecting-germany
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1. What percent change in annual winter precipitation

would you expect in Greater London, in compari-

son with previous decades, in the 2050s? ____%

2. With what severity do you think London will

experience these potential consequences of

flooding by the 2050s? (For each, a 7-point scale,

ranging from ‘‘No severity at all’’ to ‘‘Extreme

severity’’.)

a. Loss of income and delayed economic development

b. Contamination and disease from flood and sewer

water

c. Direct damage to property, infrastructure and

utilities

d. Loss of life and personal injury

APPENDIX B

Sample Characteristics of Pilot Study 1 and

Pilot Study 2

Table B1 shows sample characteristics for pilot study

1 (communicators) and pilot study 2 (listeners).

APPENDIX C

Logistic Regression, Predicting Frame Choice

(Concerned vs Unconcerned) in Pilot Study 1

(Communicators)

Table C1 shows coefficients from a logistic regression

model, predicting frame choices in pilot study 1.

APPENDIX D

Dominance Analysis Results for Logistic Regression

Predictors in Main and Pilot Study 1

Table D1 shows dominance analysis results for the

main study and pilot study 1.

APPENDIX E

Linear Regression, Predicting Perceived Severity of

Consequences, Dependent on Verbal Frame

Received, Environmental Values (NEP), Political

Affiliation, and Levels of Numeracy in Pilot Study 2

(Listeners)

Table E1 shows coefficients from a linear regression

model, predicting perceived severity of consequences in

pilot study 2.

APPENDIX F

Mean Perceived Severity of Consequences in Study 1

(Communicators) and Study 2 (Listeners) by Verbal

Frame

Figure F1 shows mean perceived severity of conse-

quences in pilot study 1 (communicators) and pilot study

2 (listeners).

APPENDIX G

Mean Perceived Severity of Listeners in Main Study

1 by Levels of Environmental Values, Political

Affiliation, and Numeracy

Table G1 reports mean values of perceived severity

by levels of numeracy, environmental values (median

split), and political affiliation (median split).

APPENDIX H

Exemplary Media Quotations Using Different

Verbal Frames Used for Summarizing Numerical

Climate Projections

Table H1 provides examples for media quotations,

illustrating the use of different verbal frames for sum-

marizing uncertain numerical climate projections.
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