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Abstract. Bromine radicals influence global tropospheric chemistry by depleting ozone and OH, and by oxidizing elemental 

mercury, sulfur species, and volatile organic compounds. Observations typically indicate a 50% depletion of sea salt aerosol 

(SSA) bromide relative to seawater composition, implying that SSA debromination could be the dominant global source of 

tropospheric bromine. However, it has been difficult to reconcile this large source with the relatively low BrO concentrations 

observed in the marine boundary layer (MBL). Here we present a new mechanistic description of SSA debromination in the 25 

GEOS-Chem global atmospheric chemistry model with a detailed representation of halogen (Cl, Br, and I) chemistry. We 

show, for the first time, observed levels of SSA debromination can be reproduced in a manner consistent with observed BrO 

concentrations. Bromine radical sinks from the HOBr + S(IV) heterogeneous reactions and from ocean emission of 

acetaldehyde are found to be critical in moderating tropospheric BrO levels. The resulting HBr is rapidly taken up by SSA and 

also deposited. We find that the source of bromine radicals is mostly from SSA in the MBL, but from organobromines in the 30 

free troposphere. Simulated BrO in the MBL is generally much higher in winter than in summer due to a combination of greater 

SSA emission and weaker radiation. Outstanding issues are the model underestimate of free tropospheric BrO, driven by the 

HOBr + S(IV) reactions, and uncertainty regarding HBr uptake by SSA. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1239

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 30 November 2018

c© Author(s) 2018. CC BY 4.0 License.



2 
 

1 Introduction 

Bromine radicals (BrOx ≡ Br + BrO) influence global tropospheric chemistry by depleting the main oxidants (OH and ozone) 

and by oxidizing elemental mercury, reduced sulfur species, and volatile organic compounds (VOCs) (Saiz-Lopez and von 

Glasow, 2012; Simpson et al., 2015). Tropospheric bromine radical chemistry is initiated by the production of reactive 

inorganic bromine (Bry) from sea salt aerosol (SSA) debromination, decomposition of organobromines primarily of marine 5 

origin (CHBr3, CH2Br2, and CH3Br), and transport from the stratosphere. Within the Bry family, bromine radicals cycle with 

non-radical reservoir species such as HBr, HOBr, BrNO2, BrNO3, Br2, BrCl, and IBr. Loss of Bry is by wet and dry deposition 

to the surface, mainly as HBr which is highly soluble in water. 

 

Sea salt aerosol (SSA) is thought to be the largest source of tropospheric bromine. Observations show extensive debromination 10 

of SSA relative to seawater composition (Sander et al., 2003; Newberg et al., 2005). Parrella et al. (2012) estimate a global Bry 

source of 1420 Gg Br a–1 from SSA debromination, as compared with 520 Gg a–1 from organobromines and 36 Gg a–1 from 

the stratosphere. Volatilization of bromide from SSA can take place by heterogeneous reactions with HOBr, HOCl, N2O5, 

ozone, and ClNO3 (Vogt et al., 1996; Hirokawa et al., 1998; Keene et al., 1998; Firckert et al., 1999; von Glasow et al., 2002a, 

b; Yang et al., 2005; Ordóñez et al., 2012; Saiz-Lopez et al., 2012; Long et al., 2014). A standing conundrum has been that 15 

observations of BrO in the marine boundary layer (MBL) do not show large enhancements relative to the free troposphere, 

where background concentrations are typically of the order of 1 ppt (Leser et al., 2003; Sander et al., 2003; Theys et al., 2011; 

Volkamer et al. 2015; Wang et al., 2015; Le Breton et al., 2017). Ozone observations in the MBL similarly do not show 

depletion that would be expected from high concentrations of BrO (de Laat and Lelieveld, 2000; Sherwen et al., 2016). This 

has led recent global models to exclude SSA debromination as a source of Bry (Schmidt et al., 2016; Sherwen et al., 2016). 20 

 

Here we present a new mechanistic description of sea salt debromination in the GEOS-Chem global 3-D model of tropospheric 

chemistry including detailed representation of halogens (Cl, Br, and I) (Sherwen et al., 2016). We find that we can reproduce 

the observed levels of SSA debromination while also being consistent with the relatively low BrO concentrations observed in 

the MBL. This is because the previously-recognized fast production of Bry from SSA debromination is offset by fast removal 25 

Br atoms by oxygenated organics emitted from the ocean (Millet et al., 2010) and by fast removal of HOBr by dissolved SO2 

(S(IV)) in cloud droplets (Chen et al., 2017). In addition, we find little influence of SSA on free tropospheric Bry because of 

efficient scavenging of both SSA and HBr. We examine the implications for the global budget of tropospheric bromine and 

tropospheric oxidants. 

2 Data and methods 30 

We use GEOS-Chem 12.0.0 (https://doi.org/10.5281/zenodo.1343547), which includes a detailed representation of ozone-

NOx-VOC-aerosol-halogen tropospheric chemistry (Sherwen et al., 2016). The model is driven by assimilated meteorological 

data for 2011–2012 from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1239

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 30 November 2018

c© Author(s) 2018. CC BY 4.0 License.



3 
 

produced by the NASA Global Modeling and Assimilation Office (Gelaro et al., 2017). The horizontal resolution of MERRA2 

is 0.5° × 0.625°, and is degraded here to 4° × 5° for input to GEOS-Chem. Dynamic and chemical time steps are 30 and 60 

minutes, respectively. GEOS-Chem stratospheric chemistry as described by Eastham et al. (2014) is linearized following 

Murray et al. (2012) to serve as boundary conditions for stratospheric input to the troposphere. The model is spun up for 1 year 

and we use simulation results for 2012. 5 

 

Tropospheric bromine chemistry in GEOS-Chem was first introduced by Parrella et al. (2012). Loss of Bry from the troposphere 

is mainly by deposition of HBr, which is highly water-soluble, unlike HOBr or BrO. Parrella et al. (2012) found that the acid-

catalyzed HOBr + Br– aqueous-phase reaction in clouds and aerosols was critical for recycling bromide and maintaining 

background tropospheric BrO at observed ~ 1 ppt levels: 10 

HOBr (aq) + Br– + H+ ® Br2 (g) + H2O         (R1) 

Br2 + hv ® 2 Br            (R2) 

Br + O3 ® BrO + O2           (R3) 

The most recent GEOS-Chem 12.0.0 includes a much broader consideration of heterogeneous bromine chemistry (Schmidt et 

al., 2016), coupling to other halogens (Sherwen et al. 2016), the HOBr + S(IV) reactions in clouds (Chen et al., 2017), and 15 

oceanic emission of acetaldehyde which reacts rapidly with Br atoms (Millet et al., 2010). 

 

Schmidt et al. (2016) and Sherwen et al. (2016) found that SSA debromination in GEOS-Chem caused excessive MBL BrO 

compared to observations. Chen et al. (2017) subsequently showed that the HOBr + S(IV) reactions in cloud water depletes 

BrO by competing with the HOBr + Br–/Cl– reactions: 20 

HOBr (aq) + HSO3
– ® H2O + BrSO3

–         (R4a) 

HOBr (aq) + SO3
2–® OH– + BrSO3

–         (R4b) 

BrSO3
– + H2O ® SO4

2– + Br– + 2H+         (R4c) 

followed by HBr deposition. Oceanic acetaldehyde emission also partitions Bry into HBr: 

Br + CH3CHO ® HBr + CH2CHO          (R5) 25 

This leads us to re-examine the impact of SSA debromination as a source of bromine radicals and the ability of the model to 

simulate relevant observations. 

 

Emission of SSA to the atmosphere is through air bubbles bursting at the ocean surface, and positively depends on wind speed 

(Monahan et al., 1986; Gong, 2003). The GEOS-Chem SSA simulation is based on Jaeglé et al. (2011) and separates fine (< 30 

0.5 μm radius) and coarse SSA as two separate transported species. The global dry SSA source in our simulation is 3140 Tg 

a–1. We emit bromide as part of fine and coarse SSA with a seawater ratio of 2.11×10−3 kg Br per kg dry SSA (Sander et al., 

2003; Lewis and Schwartz, 2004), since observations show that fresh SSA has a bromide content equals that of seawater (Duce 
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and Woodcock, 1971; Duce and Hoffman, 1976; Turekian et al., 2003). SSA alkalinity is depleted by uptake of HNO3 and 

SO2 (Alexander et al., 2005). 

 

Activation of SSA bromide takes place by heterogeneous reactions with HOBr, ozone, and ClNO3 once alkalinity has been 

titrated and SSA is acidified (Hirokawa et al., 1998; Keene et al., 1998; Fickert et al., 1999): 5 

Br– + HOBr (aq) + H+  ® Br2 + H2O         (R1) 

Br– + O3 (aq) + H+ ® HOBr + O2          (R6) 

Br– + ClNO3 (aq) + H+ ® BrCl + HNO3         (R7) 

We also consider parameterized SSA debromination by HOI (aq) following McFiggans et al. (2002), where HOI (aq) may be 

taken up from the gas phase or produced by hydrolysis of INO2 and INO3: 10 

0.15Br– + 0.85Cl– + HOI (aq) + H+ ® 0.15IBr + 0.85ICl + H2O      (R8) 

Inorganic oceanic iodine (HOI and I2) emissions are from Carpenter et al. (2013). Unlike for chloride, SSA debromination 

does not take place by acid displacement because of the much stronger acidity of HBr than HCl or HNO3 (Sander et al., 2003). 

On the contrary, uptake of gas-phase HBr can lead to bromine enrichment in SSA. 

 15 

Sander et al. (2003) introduced the dimensionless enrichment factor (EF) as a measure of SSA debromination. EF is computed 

from aerosol measurements as: 

𝐸𝐹 =
$[&'(]/+,-./012345627
([&'(]/[,-.])423:3;26

            (1) 

where aerosol [Na+] is assumed to be mainly from sea salt, a reliable assumption in the marine air. In GEOS-Chem we treat 

‘SSA’ as a chemically inert tracer, and account for sea-salt bromide as a separate species, therefore EF can be computed as: 20 

𝐸𝐹 =
([&'(]/[<<=])>>?	326A4AB
([&'(]/[<<=])>>?	21C44CAD

           (2) 

We sum [Br–] and [SSA] from both fine and coarse SSA to calculate EF. 

3 Results and discussion 

Figure 1 shows the annual mean SSA bromine enhancement factors (EF) in surface air computed by GEOS-Chem and 

compares to annual mean observations compiled by Sander et al. (2003) and from Newberg et al. (2005). We consider 6 island 25 

and 4 coastal sites with bulk aerosol EF measurements available for more than one year. The observations are for different 

years than the GEOS-Chem simulation, but we assume that interannual variability is a minor source of error. The mean GEOS-

Chem EF averaged over the sites is 0.68 ± 0.24 (± 1 standard deviation), compared with the observed value of 0.66 ± 0.32. 

Global annual mean EF in GEOS-Chem is 0.60 ± 0.34. SSA bromide over the Southern Ocean in the model is less depleted 

(EF ~ 0.9) than over the northern mid-latitudes (EF ~ 0.5), because GEOS-Chem SSA tends to retain its alkalinity over the 30 
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Southern Ocean (Alexander et al., 2005; Schmidt et al., 2016) thus preventing debromination via (R1) and (R6)–(R8). Similarly 

in the observations, mean EF is 0.78 ± 0.08 over the Southern Ocean compared with 0.42 ± 0.11 at northern mid-latitudes. 

 

GEOS-Chem EF values are larger than unity (bromine enrichment) over some regions of the Southern Ocean and tropics, 

where SSA emissions are high. In these regions, high alkalinity emitted with SSA is not fully titrated due to limited supply of 5 

acids, resulting in non-depleted SSA bromide. On top of that, uptake of HBr on SSA leads to larger-than-unity EF. The very 

large bromine enrichment over the northwest coast of North America is due to large influx of SSA and Bry combined with the 

short lifetime of coarse SSA against deposition, so that Bry mobilized from coarse SSA is transferred to fine SSA as HBr. EF 

values drop further inland as Bry is remobilized from the fine SSA. 

 10 

The model overestimates the observed EF over the Southern Ocean. This appears to reflect a seasonal bias. Figure 2 compares 

the simulated and observed seasonality at Cape Grim, Tasmania (Ayers et al., 1999; Sander et al., 2003). The observed EF is 

0.6–0.8 for most of the year, consistent with the model, but decreases to below 0.4 in summer while the model does not. The 

summer minimum in the observations has been attributed to increased SSA acidity (Ayers et al., 1999; Sander et al., 2003).  

Indeed, Figure 2 shows that SSA alkalinity in the model is titrated in summer due to the combination of weaker SSA emission 15 

(lower winds) and larger photochemical production of strong acids (H2SO4 and HNO3). This drives volatilization of Bry from 

SSA, but we find in the model that the resulting HBr mainly returns to SSA rather than deposits to the surface because SSA 

emission is still relatively high. Uptake of HBr by SSA in the model proceeds with an uptake coefficient γ = 1.3 × 10−8 exp(4290 

K / T) as recommended by IUPAC (Amman et al., 2013) but uncertainty is large, ranging from –90% to +860% at 278 K. 

 20 

Figure 3 shows the global budget and speciation of tropospheric Bry. This updates a similar figure (Fig. 1 therein) by Schmidt 

et al. (2016) to include SSA debromination, the HOBr + S(IV) reactions in clouds, oceanic emission of acetaldehyde, and full 

coupling with the other halogens. SSA debromination is the largest global source, mainly from (R1) and (R6) producing Br2 

and HOBr respectively. The dominant sink of Bry is uptake of HBr by SSA, rather than deposition, emphasizing the importance 

of competition between these two processes in determining the extent of SSA debromination. 25 

 

Inclusion of SSA debromination increases the tropospheric Bry load by 60% (9.9 Gg Br) and the global annual mean 

tropospheric BrO by 45% (0.09 ppt). Global tropospheric annual mean ozone and OH is reduced by 4.0% (1.3 ppb) and 2.3%, 

respectively. The principal global sink of Bry is uptake of HBr by SSA followed by SSA deposition. The dominant form of Bry 

is HBr (21% of Bry), unlike HOBr in Schmidt et al. (2016), due to the global effect of (R4) and (R5). Despite our inclusion of 30 

the SSA debromination source, the global mean tropospheric Bry mixing ratio is decreased to 1.9 ppt as compared with 3.0 ppt 

in Schmidt et al. (2016). This is caused by the larger fraction of Bry present as HBr and therefore removed efficiently by uptake 

by SSA as well as by deposition. The global mean tropospheric BrO mixing ratio is 0.28 ppt as compared with 0.48 ppt in 

Schmidt et al. (2016). The daytime mixing ratio is about twice that value since BrO is depleted at night. 

 35 
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Figure 4 compares simulated tropospheric BrO columns with Global Ozone Monitoring Experiment (GOME)-2 satellite 

observations from Theys et al. (2011) as a function of season and for different latitudinal bands. SSA debromination increases 

the global annual mean tropospheric BrO column in our model by 46%. The largest effect is at extratropical latitudes in winter 

and spring due to a combination of higher SSA emissions and more effective bromide recycling via (R1). We find in the model 

BrNO3 hydrolysis becomes relatively more important in HOBr generation in winter and spring when BrNO3 level is higher as 5 

a result of weaker photolysis. This leads to higher levels of HOBr, and therefore more effective recycling of bromide via (R1). 

Schmidt et al. (2016) previously found that their simulation including SSA debromination systematically overestimated the 

Theys et al. (2011) observations but we find the opposite because of (R4) and (R5) as discussed earlier. Chen et al. (2017) 

previously included (R4) and (R5) in GEOS-Chem with SSA debromination and found a mean low bias of 16% to 78% relative 

to the GOME-2 data depending on latitudes. Similarly, the global mean bias is –44% in our simulation. The biases at high 10 

latitudes can be reduced by including a detail chlorine chemistry (Wang et al., 2018), since high chloride in those regions 

accelerate HOBr recycling by serving as a catalyst. 

 

Figure 4 also shows tropospheric BrO columns measured in in Florida, USA (Coburn et al., 2011) and derived from mean 

aircraft vertical profiles over the tropical Pacific from the TORERO (Volkamer et al., 2015; Wang et al., 2015; Dix et al., 15 

2016) and CONTRAST (Koenig et al., 2017) campaigns. Values are consistent with the GOME-2 data of Theys et al. (2011). 

Figure 5 compares the simulated and observed vertical profiles. We see that the model low bias in the BrO column is mainly 

driven by the free troposphere, where SSA debromination plays little role and the Bry source is mainly from organobromines 

in the model. Schmidt et al. (2016) were far more successful at reproducing the observed vertical profiles but their simulation 

did not include the HOBr + S(IV) reactions. We find in a sensitivity simulation without the HOBr + S(IV) reactions that free 20 

tropospheric BrO increases by a factor of three (Figure 5). The confined impact of SSA debromination on lower-altitude BrO 

as shown in Figure 5 is generally seen in other regions and seasons as well. Exceptions are for the extratropical latitudes in 

spring and winter, which is also reflected in BrO columns (Figure 4). In this case, the impact of SSA debromination extends 

through the depth of the troposphere. The explanation is that only ~ 20% of Bry there is present as HBr, reflecting the low 

Br/BrO ratio when radiation is weak and hence the slower production of HBr by Br reactions (Figure 3). Bry has then a longer 25 

lifetime because non-HBr species are much less water-soluble (Parrella et al., 2012) and can be effectively transported to the 

free troposphere. 

 

Figure 6 shows the simulated global distribution of BrO concentrations in surface air in January and July. We attribute the 

elevated marine surface BrO in winter time to a combination of greater SSA emission and weaker radiation (lower Br/BrO 30 

ratio). However, we fail to find enough information in previous studies to verify the modeled seasonality in marine surface 

BrO. We are aware of only one site at Cape Verde (Read et al., 2008; Mahajan et al., 2010), which reports such seasonality, 

and they show a statistically insignificant difference between winter and summer time surface BrO. Daytime concentrations 

are twice the values shown in the Figure since BrO drops to near-zero at night. Observations are compiled in Table 1 with 

corresponding model values. The model is generally consistent with observations in showing daytime concentrations in the 35 
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range 0.5–2 ppt. The low level of BrO (~ 0.3 ppt) over the eastern tropical Pacific Ocean (Chen et al, 2016) observed during 

the TORERO flight campaign is driven by weak SSA emission in the austral summer. The CONTRAST flight campaign took 

more readings over a region (near Guam) with higher SSA emission and load compared with CAST, resulting in higher level 

of BrO. The high biases of modeled surface BrO during CONTRAST and CAST may be due to the underestimate of cloud 

and aerosol pH. By using online aerosol pH calculation and reflecting SSA contribution to cloud pH, Wang et al. (2018) found 5 

much lower BrO concentrations in tropical Pacific Ocean. Both model and observations show high values (1.9–3.0 ppt) at 

Tenerife Island and Cape Verde in the tropical Atlantic. We attribute this to the elevated inorganic iodine emissions (HOI and 

I2) in this region (Carpenter et al., 2013; Sherwen et al., 2016), which results in high Bry and BrO in turn by activating SSA 

bromide via (R8). Isolated hotspots near India (July) and the Caribbean (January and July) correspond to localized hotspots of 

SSA emissions. 10 

4 Conclusion 

We have shown through GEOS-Chem model simulations that global observations of sea salt aerosol debromination generating 

bromine radicals can be reconciled with the relatively low observed BrO concentrations in the marine boundary layer due to 

the presence of several rapid bromine sinks. Sea salt aerosol debromination in the model is driven principally by HOBr + Br– 

and O3 + Br– reactions, producing Br2 and HOBr respectively, but the subsequent bromine radical cycling is limited by fast 15 

conversion to HBr through reactions of Br atoms with aldehydes (including acetaldehyde emitted by the ocean) and the 

heterogeneous HOBr + S(IV) heterogeneous reactions. In spite of the rapid removal of bromine, we find that inclusion of SSA 

debromination has a significant effect on tropospheric chemistry, lowering global tropospheric annual mean ozone by 4.0% 

and OH by 2.3%. 
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Figure 1: Annual mean bromine enrichment factor (EF) of sea salt aerosol in surface air simulated by GEOS-Chem. Observations 
at 10 sites compiled by Sander et al. (2003) and from Newberg et al. (2005) are superimposed as circles. The simulation is for 2012 
and the observations are for different years. Color bar saturates at 2.0. Maximum modeled EF is 2.4. 5 
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Figure 2. Seasonal variation of sea salt aerosol (SSA) debromination at Cape Grim, Tasmania (40.7ºS, 144.7ºE). The top panel shows 
the monthly bromine enrichment factors (EFs) of SSA in surface air. Observations from Ayers et al. (1999) and Sander et al. (2003) 
for 1996–1998 are compared to GEOS-Chem model values for 2012. Shading gives the interannual standard deviation in the 
observed monthly mean EF values. The bottom panel shows the GEOS-Chem monthly SSA emission flux at Cape Grim and the 5 
SSA alkalinity. The SSA emission flux is for the oceanic fraction of the Cape Grim gridsquare. 
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Figure 3. Global annual mean tropospheric budget and cycling of reactive inorganic bromine (Bry) and sea salt aerosol (SSA) 
bromide. Results are from our GEOS-Chem simulation for 2012 including SSA debromination. Bry is defined as the ensemble of 
species inside the dashed box. Rates are in Gg Br a−1, masses in the boxes are in Gg Br, and numbers in brackets are mean mixing 
ratios (ppt). Read 2.8(4) as 2.8×104 Gg Br a−1. Arrows in black are for gaseous reactions, red for photolysis, purple for heterogeneous 5 
reactions in SSA, and green for other heterogeneous reactions taking place in cloud and sulfate aerosol. Sources and sinks of total 
inorganic bromine (Bry + SSA bromide) are in orange. Arrow thickness scales with its corresponding rate. 

  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1239

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 30 November 2018

c© Author(s) 2018. CC BY 4.0 License.



14 
 

 

Figure 4. Seasonal variation of zonal mean tropospheric BrO columns in different latitudinal bands. Monthly GOME-2 BrO 
observations are for 2007 and taken from Theys et al. (2011); shading represents one standard deviation about the monthly mean 
GOME-2 BrO columns. GEOS-Chem BrO columns are sampled at the GOME-2 local overpass time (09:00–10:00). Red lines are 
from our standard simulation including sea salt aerosol (SSA) debromination, blue lines are from a sensitivity simulation without 5 
SSA debromination. The black dashed line indicates observations for 2009–2011 reported by Coburn et al. (2011) in Florida, USA 
without seasonality information. Black crosses and stars represent average BrO columns measured during aircraft campaigns over 
the eastern tropical Pacific (Volkamer et al., 2015; Wang et al., 2015; Dix et al., 2016) and western tropical Pacific (Koenig et al., 
2017), respectively.  
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Figure 5. Vertical profiles of BrO concentrations over the tropical Pacific. Observations from the TORERO (Volkamer et al., 2015; 
Wang et al., 2015; Dix et al., 2016), CONTRAST (Chen et al., 2016; Koenig et al., 2017), and CAST (Le Breton et al., 2017) aircraft 
campaigns are compared to model values. Solid black lines indicate mean observed values in 1-km vertical bins and with standard 
deviations (shading). Dotted black line shows the median values as reported in Koenig et al. (2017). GEOS-Chem is sampled along 5 
the flight tracks at the time of the measurements. Model results are shown from our standard simulation including sea salt aerosol 
debromination (red lines), and sensitivity simulations not including SSA debromination (blue lines) and HOBr + S(IV) reactions 
(purple lines). Solid lines are mean values, dotted lines are median values. 
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Figure 6. GEOS-Chem mean BrO concentrations in surface air in January (top) and July (bottom). Locations of BrO observations 
in Table 1 are shown as symbols. Open circles are ground sites and solid lines are ship tracks. Flight tracks in the marine boundary 
layer (< 2 km) during the TORERO (Volkamer et al., 2015; Wang et al., 2015; Dix et al., 2016), CONTRAST (Chen et al., 2016), and 
CAST (Le Breton et al., 2017) aircraft campaigns are shown as pluses, crosses, and dots (gray), respectively. Daytime BrO 5 
concentrations are about double the values shown here since BrO drops to near zero at night. Color bar saturates at 13.8 ppt near 
India. 
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Table 1. Daytime mixing ratios (ppt) of BrO in the marine boundary layer a 

No. Location Time Observed b Simulated c Reference d 

Ground-based measurements 

1 Hawaii (20°N 155°W) Sep. 1999 < 2.0 0.63 1 

2 Crete (35°N 26°E) Jul.-Aug. 2000 < 0.7-1.5 0.73 1 

3 Mace Head (53°N 10°W) Apr.-Oct. e < 0.3-2.5 1.3 1, 2, 3 

4 Maine (43°N 71°W) Jul.-Aug. 2004 < 2.0 0.89 4 

5 Tenerife Island (29°N 17°W) Jun.-Jul. 1997 3.0 1.9 1 

6 Cape Verde (17°N 25°W) Nov. 2006-Jun. 2007 2.5 ± 1.9 2.8 5, 6 

Ship-based measurements 

7 Atlantic Ocean (30°N-37°N) Feb. and Oct. f ~ 1.0 0.91 7, 8, 9 

8 Atlantic Ocean (33°S-27°N) Oct. 2000 < 1.0-3.6 1.9 7 

Aircraft-based measurements 

9 Eastern tropical Pacific Ocean (TORERO) Jan.-Feb. 2012 0.26 ± 0.15 0.16 10, 11, 12 

10 Western tropical Pacific Ocean (CONTRAST) Jan.-Feb. 2014 0.63 ± 0.74 1.8 13 

11 Western tropical Pacific Ocean (CAST) Jan.-Feb. 2014 0.28 ± 0.16 1.0 14 

 

a Locations of measurements are shown in Figure 6. 
b Values reported as ranges, means, and means ± standard deviations depending on availability. The symbol “<” indicates that 
BrO is below the corresponding detection limit. 5 
c Mean values for the simulated model year of 2012. The observations are for different years. Model values are sampled at the 
location and time of year of the observations. 
d 1 Sander et al. (2003), 2 Saiz-Lopez et al. (2004), 3 Saiz-Lopez et al. (2006), 4 Keene et al. (2007), 5 Read et al. (2008), 6 
Mahajan et al. (2010), 7 Leser et al. (2003), 8 Martin et al. (2009), 9 Saiz-Lopez et al. (2012), 10 Volkamer et al. (2015), 11 
Wang et al. (2015), 12 Dix et al., (2016); 13 Chen et al. (2016), and 14 Le Breton et al. (2017) 10 
e from 1996, 1997 and 2002. 
f from 2000 and 2007. 
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