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Abstract. We present a full-year online global simulation

of tropospheric chemistry (158 coupled species) at cubed-

sphere c720 ( ∼ 12.5 × 12.5km2) resolution in the NASA

Goddard Earth Observing System Model version 5 Earth sys-

tem model (GEOS-5 ESM) with GEOS-Chem as a chemi-

cal module (G5NR-chem). The GEOS-Chem module within

GEOS uses the exact same code as the offline GEOS-Chem

chemical transport model (CTM) developed by a large at-

mospheric chemistry research community. In this way, con-

tinual updates to the GEOS-Chem CTM by that community

can be seamlessly passed on to the GEOS chemical module,

which remains state of the science and referenceable to the

latest version of GEOS-Chem. The 1-year G5NR-chem sim-

ulation was conducted to serve as the Nature Run for observ-

ing system simulation experiments (OSSEs) in support of the

future geostationary satellite constellation for tropospheric

chemistry. It required 31 wall-time days on 4707 compute

cores with only 24 % of the time spent on the GEOS-Chem

chemical module. Results from the GEOS-5 Nature Run with

GEOS-Chem chemistry were shown to be consistent to the

offline GEOS-Chem CTM and were further compared to

global and regional observations. The simulation shows no

significant global bias for tropospheric ozone relative to the

Ozone Monitoring Instrument (OMI) satellite and is highly

correlated with observations spatially and seasonally. It suc-

cessfully captures the ozone vertical distributions measured

by ozonesondes over different regions of the world, as well as

observations for ozone and its precursors from the August–

September 2013 Studies of Emissions, Atmospheric Com-

position, Clouds and Climate Coupling by Regional Surveys

(SEAC4RS) aircraft campaign over the southeast US. It sys-

tematically overestimates surface ozone concentrations by

10ppbv at sites in the US and Europe, a problem currently

being addressed by the GEOS-Chem CTM community and

from which the GEOS ESM will benefit through the seam-

less update of the online code.

Published by Copernicus Publications on behalf of the European Geosciences Union.



4604 L. Hu et al.: GEOS-5 Nature Run with GEOS-Chem chemistry

1 Introduction

Integration of atmospheric chemistry into Earth system mod-

els (ESMs) has been identified as a next frontier for ESM

development (National Research Council, 2012) and is a pri-

ority science area for atmospheric chemistry research (Na-

tional Academies of Sciences, Engineering, and Medicine,

2016). Atmospheric chemistry drives climate forcing and

feedbacks, is an essential component of global biogeochem-

ical cycling, and is key to air quality applications. A growing

ensemble of atmospheric chemistry observations from space

needs to be integrated into ESM-based data assimilation sys-

tems. Models of atmospheric chemistry are rapidly evolv-

ing, and an atmospheric chemistry module within an ESM

must be able to readily update to the state of the science.

We have developed such a capability by integrating the God-

dard Earth Observing System with chemistry (GEOS-Chem)

chemical transport model (CTM) as a comprehensive and

seamlessly updatable atmospheric chemistry module in the

NASA GEOS ESM (Long et al., 2015). Here, we present the

first application and evaluation of this GEOS-Chem capabil-

ity within GEOS version 5 (GEOS-5) for a full-year global

simulation of tropospheric ozone chemistry at cubed-sphere

c720 (∼ 12.5 × 12.5km2) resolution. This simulation is now

serving as the Nature Run (pseudo-atmosphere) for observ-

ing system simulation experiments (OSSEs) in support of

the near-future geostationary satellite constellation for tro-

pospheric chemistry (Zoogman et al., 2017).

GEOS-Chem (http://geos-chem.org) is an open-source

global 3-D Eulerian model of atmospheric chemistry driven

by GEOS-5 assimilated meteorological data. It includes

state-of-the-science capabilities for tropospheric and strato-

spheric gas–aerosol chemistry (Eastham et al., 2014; Hu

et al., 2017), with additional capabilities for aerosol micro-

physics (Yu and Luo, 2009; Trivitayanurak et al., 2008). It

is used by over a hundred active research groups in 25 coun-

tries around the world for a wide range of atmospheric chem-

istry applications, providing a continual stream of innova-

tion (Hu et al., 2017). Strong version control and bench-

marking maintain the integrity and referenceability of the

model. The code is freely available through an open license

(http://acmg.seas.harvard.edu/geos/geos_licensing.html, last

access: 14 September 2018).

GEOS-Chem as used by the atmospheric chemistry com-

munity operates in an “offline” CTM mode, without explicit

simulation of meteorology. Meteorological data are inputted

to the model to simulate chemical transport and other pro-

cesses. The offline approach makes the model simple to use

and facilitates community development of the core chemi-

cal module that describes local chemical sources and sinks

from emissions, reactions, thermodynamics, and deposition.

Implementing the GEOS-Chem chemical module into ESMs

offers a state-of-the-science and referenceable representation

of atmospheric chemistry, but it is essential that the mod-

ule be able to automatically incorporate new updates as the

Figure 1. Schematic of GEOS-Chem chemical module used either

offline as a chemical transport model (CTM) or online in an Earth

system model (ESM), with interfaces managed through the Earth

system modeling framework (ESMF). The module is grid indepen-

dent, with individual computations done on atmospheric columns

at user-selected grid points. It computes local changes in concen-

trations with time (dn/dt) as a result of emissions (E), chemi-

cal production (P ), chemical loss (L), and deposition (D). Emis-

sions are handled through the Harvard-NASA EMission COmpo-

nent (HEMCO) to provide ESM users the option of only integrating

emissions.

offline model evolves. Otherwise, it would become quickly

dated and unsupported.

From a GEOS-Chem atmospheric chemistry user perspec-

tive, there are a number of reasons why an online simu-

lation capability is of interest. Users working on both cli-

mate and atmospheric chemistry modeling can use the same

module for both, thus improving the consistency of their ap-

proach. Some atmospheric chemistry problems involving fast

coupling between chemistry and dynamics, such as aerosol–

cloud interactions, require online coupling. As the resolution

of ESMs increases, use of archived meteorological data be-

comes more difficult and incurs increased error (Yu et al.,

2018), so online simulation can become more attractive. Fi-

nally, online simulations can take advantage of vast com-

putational resources available at climate modeling centers

to achieve very high resolution as illustrated in this paper.

Such high-resolution model outputs are particularly impor-

tant for air quality and human health applications (Cohen

et al., 2017) and for OSSEs to support the design of satellite

missions (Claeyman et al., 2011; Fishman et al., 2012; Yumi-

moto, 2013; Zoogman et al., 2014; Barré et al., 2016). A fu-

ture modus operandi for the GEOS-Chem community might

involve development in the offline model at coarse resolution,

and online simulations when high resolution is required.

Geosci. Model Dev., 11, 4603–4620, 2018 www.geosci-model-dev.net/11/4603/2018/



L. Hu et al.: GEOS-5 Nature Run with GEOS-Chem chemistry 4605

We have developed the capability to efficiently integrate

the GEOS-Chem chemical module into ESMs in a way that

enables seamless updating to the latest standard version of

GEOS-Chem. This involved transformation of GEOS-Chem

into a grid-independent and Earth system modeling frame-

work (ESMF)-compliant model (Long et al., 2015). The

exact same code is now used in stand-alone offline mode

(CTM) by the GEOS-Chem community and as an online

chemical module within GEOS-5 (Fig. 1). Using the ex-

act same code for both applications ensures that the chem-

ical module in the ESM keeps current with the latest well-

documented standard version of GEOS-Chem. An impor-

tant component is the Harvard-NASA EMission COmponent

(HEMCO; Keller et al., 2014), which allows GEOS-Chem

users to build customized layers of emission inventories on

any grid and with no editing of the GEOS-Chem source code.

HEMCO is now the standard emission module in GEOS-

Chem and is used in GEOS-5 as an independent module for

applications when full chemistry is not needed.

Here, we apply the GEOS-Chem chemical module within

GEOS-5 in a very-high-resolution (VHR) simulation of

global tropospheric ozone chemistry. The simulation is con-

ducted for 1 full year (2013–2014) at c720 cubed-sphere

resolution (∼ 12.5 × 12.5km2) with 158 coupled chemical

species. To the best of our knowledge, such a resolution

in a state-of-the-science global simulation of tropospheric

chemistry is unprecedented. Resolution not only increases

the quality of local information, e.g., for air quality, but it also

provides better representation of chemical non-linearities.

We compare the model outputs with coarse offline GEOS-

Chem CTM results and with independent observations for

tropospheric ozone and precursors as a test of fidelity and

increased power. We refer to this VHR simulation as the

GEOS-5 Nature Run with GEOS-Chem chemistry, or G5NR-

chem.

2 GEOS-Chem as an atmospheric chemistry module in

the GEOS ESM

An Eulerian (fixed frame of reference) CTM such as GEOS-

Chem solves the system of coupled continuity equations for

an ensemble of m species with number density vector n =

(n1, . . .,nm)T :

∂ni

∂t
= −∇ · (niU) + (Pi − Li)(n) + Ei − Di i ∈ [1,m] , (1)

where U is the wind vector including subgrid components

to be parameterized as turbulent diffusion or convection.

(Pi − Li)(n), Ei , and Di are the local chemical produc-

tion and loss, emission, and deposition rates, respectively, of

species i. Coupling across species is through the chemical

term (Pi − Li). In GEOS-Chem, as in all 3-D CTMs, Eq. (1)

is solved by operator splitting to separate the transport and

local components over finite time steps. The local operator,

dni

dt
= (Pi − Li)(n) + Ei − Di i ∈ [1,m] , (2)

includes no transport terms (no spatial coupling) and thus

reduces to a system of coupled ordinary differential equa-

tions (ODEs). It is commonly called the chemical operator

even though emission and deposition terms are included. The

transport operator,

∂ni

∂t
= −∇ · (niU) i ∈ [1,m] , (3)

does not involve coupling between chemical species.

Use of GEOS-Chem as chemical module in an ESM re-

quires only the code that updates concentrations over a given

time step for local production and loss as given by Eq. (2)

(Fig. 1). The CTM has its own transport modules to solve

Eq. (3) using archived meteorological inputs (offline), but

these are not needed in the ESM where transport is computed

as part of atmospheric dynamics (online).

The ESM chemical module is tasked with updating chem-

ical concentrations by integration of Eq. (2) on the ESM grid

and time step. Exchange of information between the chem-

ical module and other ESM modules can be done by var-

ious couplers such as ESMF (Hill et al., 2004). Our guid-

ing principle is that the CTM and the ESM chemical mod-

ule share the exact same code. This required restructuring

GEOS-Chem to a grid-independent form and making the

code compliant with the ESMF Modeling Analysis and Pre-

diction Layer (MAPL) coupler used by GEOS (Long et al.,

2015). The 1-D vertical columns are the smallest efficient

unit of computation for the chemical module because several

operations are vertically coupled, including radiative trans-

fer, vertically distributed emissions, wet scavenging, and

particle settling. In the now grid-independent GEOS-Chem

code, horizontal grid points are selected at runtime through

the ESMF interface. The chemical and emission modules

proceed to solve Eq. (2) on 1-D columns for the specified

horizontal grid points (Fig. 1). We managed to carry out this

major software transformation in GEOS-Chem in a way that

was completely transparent to CTM users (Long et al., 2015).

The exact same ESMF-compliant, grid-independent GEOS-

Chem code is now used both in the stand-alone CTM and

within GEOS. This enables seamless integration of future

new GEOS-Chem scientific developments into the GEOS

chemical module, which thus always remains current and ref-

erenced to the latest standard version of GEOS-Chem.

An important step in transforming GEOS-Chem to a grid-

independent structure was to reconfigure the emission mod-

ule. The emission module consists of multiple layers of

databases and algorithms describing emissions for differ-

ent species and regions, with scaling factors defining diur-

nal/weekly/seasonal/secular trends or dependences on envi-

ronmental variables. The databases are on different grids and

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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Figure 2. The 500 hPa ozone distribution on 1 August 2013 at 00:00 Z simulated by GEOS-5 with the GEOS-Chem chemical module at

cubed-sphere c720 (∼ 12.5 × 12.5km2) resolution.

time stamps, and may add to or supersede each other as con-

trolled by the user. The HEMCO module allows users to

choose any combination of emission inventories in NetCDF

format, on any grid and with any scaling factors, and ap-

ply them to any model grid specified at runtime (Keller

et al., 2014). HEMCO provides a complete functional sepa-

ration of emissions from transport, deposition, and chemistry

in GEOS-Chem. The purpose of this separation is that the

ESM may need emissions independently from atmospheric

chemistry, for example, to simulate species such as CO2 and

methane. HEMCO is thus configured as a stand-alone com-

ponent in the ESM, accessed separately through the ESMF

interface (Fig. 1).

Some care is needed when interfacing the GEOS-Chem

chemical module with fast vertical transport processes in

GEOS-5 involving boundary layer mixing (Lock et al., 2000;

Louis et al., 1982) and deep convection with wet scaveng-

ing. Here, we apply boundary layer mixing at every time step

in GEOS-5 with emissions and dry deposition updates from

GEOS-Chem but before applying chemistry. This avoids

anomalies in the lowest model layer when the timescale

for boundary layer mixing is shorter than the time step for

emissions. Deep convective transport of chemical species

including scavenging in the updrafts is performed by the

GEOS-Chem convection scheme driven by instantaneous di-

agnostic variables from the GEOS-5 convection component

(Molod et al., 2015). This takes advantage of the gas and

aerosol scavenging capability of the GEOS-Chem scheme

(Liu et al., 2001; Amos et al., 2012). Radon-222 tracer simu-

lation tests within GEOS-5 show that the GEOS-Chem con-

vection scheme closely reproduces the GEOS-5 convective

transport (Yu et al., 2018). As convection becomes increas-

ingly resolved at higher model resolution, the GEOS-5 sub-

grid convection parameterization (Moorthi and Suarez, 1992)

is invoked less frequently. As a consequence, an increasing

fraction of the washout in GEOS-Chem becomes character-

ized as large scale, as opposed to convective. No attempts

were made to offset the possible increase in washout effi-

ciency that may arise from this.

3 GEOS-5 Nature Run with GEOS-Chem chemistry

We perform a year-long (1 July 2013 to 1 July 2014) GEOS-

5 simulation with GEOS-Chem at cubed-sphere c720 (∼

12.5 × 12.5km2) horizontal resolution and 72 vertical levels

extending up to 0.01hPa. For initialization, we use 12 months

at c48 resolution (∼ 200×200km2) followed by 6 months at

c720 resolution. Figure 2 shows a snapshot of the simulated

500hPa ozone field, illustrating the fine detail enabled by the

very high resolution.

3.1 General description

The GEOS-5 Nature Run with GEOS-Chem chemistry

is performed with the Heracles version of GEOS-5 (tag

“M2R12K-3_0_GCC”). The finite-volume dynamics is run

in a non-hydrostatic mode with a heartbeat time of 300 s ap-

plied to the physics, chemical, and dynamics components.

Geosci. Model Dev., 11, 4603–4620, 2018 www.geosci-model-dev.net/11/4603/2018/
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Figure 3. Middle tropospheric ozone distribution at 700–400 hPa from the GEOS-5 Nature Run with GEOS-Chem chemistry (a), Ozone

Monitoring Instrument (OMI) satellite observations (b), and the offline GEOS-Chem CTM (c) for four seasons covering July 2013–

June 2014. The data are on a 2◦ × 2.5◦ grid. All data are smoothed by the OMI averaging kernels, using a single fixed a priori profile

so that variability is solely driven by observations. The OMI observations have been further corrected for a global mean positive bias of

3.6 ppbv (Hu et al., 2017). Both models are sampled along the OMI tracks. Numbers in the left and right columns are the mean model bias

± standard deviation. Gray shading indicates regions where OMI data are unreliable and not used (poleward of 45◦ in winter–spring and

poleward of 60◦ year round; see Hu et al., 2017).

The simulation is forced by downscaled meteorological data

from the lower-resolution Modern-Era Retrospective Analy-

sis for Research and Applications version 2 (MERRA-2) re-

analysis (Molod et al., 2015; Gelaro et al., 2017). The down-

scaling is performed by using the replay capability in GEOS,

which adds a forcing term to the model equations, constrain-

ing them to a specific trajectory to simulate the 2013–2014

meteorological year (Orbe et al., 2017). Downscaling appli-

cations filter the replay increments so that only the larger

scales of the flow are constrained, allowing scales finer than

the analysis to evolve freely. In this simulation, a wave num-

ber of 60 was chosen as the cutoff. The simulation is per-

formed in two segments, with the first with GEOS-Chem

turned off (“regular replay”). The analysis increment pro-

duced during the first run segment is saved and reused in the

subsequent run with GEOS-Chem turned on (“exact incre-

ment”). This two-segment process is computationally more

efficient, as it avoids rewinding and checkpointing the model

with full chemistry during the regular replay stage.

The chemical module is GEOS-Chem version v10-01 in

tropospheric-only mode. It is run “passively” in G5NR-

chem; thus, aerosols and trace gases do not influence the

meteorology. It includes detailed HOx−NOx–VOC–ozone–

BrOx–aerosol tropospheric chemistry with 158 species and

412 reactions, following Jet Propulsion Laboratory (JPL)

and International Union of Pure and Applied Chemistry (IU-

PAC) recommendations for chemical kinetics (Sander et al.,

2011) and updates for BrOx and isoprene chemistry (Par-

rella et al., 2012; Mao et al., 2013). The default GEOS-

Chem bulk aerosol scheme is used to simulate major com-

ponents for dust, sea salt, black carbon, organic carbon, sul-

fate, nitrate, and ammonium aerosols (Park et al., 2004; Fair-

lie et al., 2007; Jaeglé et al., 2011; Wang et al., 2014; Kim

et al., 2015). The Fast-JX scheme with approximate ran-

domized cloud overlap method and taking aerosol loading

into account is used to calculate photolysis frequencies (Bian

and Prather, 2002), as implemented by Mao et al. (2010).

Linearized stratospheric chemistry is used (McLinden et al.,

2000; Murray et al., 2012). The dry deposition calculation is

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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based on a resistance-in-series model (Wesely, 1989), as im-

plemented by Wang et al. (1998). Wet scavenging of aerosols

and gases is as described by Liu et al. (2001) and Amos et al.

(2012).

Emissions are calculated through HEMCO v1.1.008

(Keller et al., 2014). They are the default 2013–2014 emis-

sions for GEOS-Chem (see Table 1 in Hu et al., 2017), with

a few modifications. Open fire emissions are from the Quick

Fire Emissions Dataset (QFED) version 2.4-r6 (Darmenov

and Da Silva, 2015). US NOx emissions follow Travis et al.

(2016). Parameterizations for lightning NOx (Murray et al.,

2012) and mineral dust aerosol emissions (Zender et al.,

2003) have large dependencies on grid resolution and are

scaled globally following general GEOS-Chem practice to

annual totals of 6.5TgN for lightning and 840TgC for dust.

No adjustments are made to emission of biogenic volatile

organic compounds (VOCs) (MEGANv2.1; Guenther et al.,

2012; Hu et al., 2015b) and sea salt aerosol (Jaeglé et al.,

2011), both of which agree with GEOS-Chem emissions

within 15 %. GEOS-Chem uses in-plume chemistry of ship

emissions (PARANOx) to account for the excessive dilution

of ship exhaust plumes at coarse model resolution (Vinken

et al., 2011); this was disabled in the VHR simulation given

that the Nature Run resolution is fine enough to resolve the

non-linear chemistry associated with ship plume emissions.

A summary of the various emission sources used for the sim-

ulation is given in Table A2.

3.2 Computational environment and cost

The computations were carried out on the Discover super-

computing cluster of the NASA Center for Climate Simu-

lation. Overall, 1 day of simulation took approximately 2

wall-time hours, using 4705 compute cores with 45 % spent

on dynamics and physics, 24 % on chemistry, and 31 % on

input/output (I/O) (Table A1). The large I/O wall time is

due to bottlenecks in the MAPL software version used for

the simulation, with excessive reading and remapping of the

hourly high-resolution emission fields. This issue has been

addressed in newer versions of MAPL. As first shown by

Long et al. (2015), the chemical module has excellent scal-

ability even when running with thousands of cores. The per-

centage of the wall time spent on chemistry in G5NR-chem

(24 %) is much lower than in coarse-resolution simulations

that are typically done with only a small number of cores

(Eastham et al., 2018). The computational cost of chemistry

relative to dynamics/transport decreases as grid resolution

increases; thus, it is no longer the computing bottleneck in

ESM simulations.

4 Model evaluation

4.1 Observational datasets and offline CTM

The GEOS-5 Nature Run with GEOS-Chem chemistry sim-

ulation is intended to support geostationary constellation

OSSEs focused on tropospheric ozone and related satellite

measurements (Zoogman et al., 2017), and ozone is there-

fore our evaluation focus. We use 2013–2014 observations

that were previously compared to the GEOS-Chem CTM in-

cluding (1) global ozonesondes and Ozone Monitoring In-

strument (OMI) satellite data (Hu et al., 2017), (2) aircraft

data for ozone and precursors from the NASA Studies of

Emissions, Atmospheric Composition, Clouds and Climate

Coupling by Regional Surveys (SEAC4RS) campaign over

the southeast US (Travis et al., 2016), and (3) surface ozone

monitoring data over Europe and the US (Yan et al., 2016;

Grange, 2017). An important goal of the evaluation here is

to examine consistency between the GEOS-Chem chemical

module within the GEOS ESM c720 environment and the

offline GEOS-Chem CTM. Although the GEOS-Chem sim-

ulation is at coarser resolution and offline transport may in-

cur errors (Yu et al., 2018), it is extensively diagnosed by the

GEOS-Chem user community, including recently by Hu et al.

(2017) for global tropospheric ozone. Two GEOS-Chem

CTM v10-01 simulations are used for comparison to G5NR-

chem: a global simulation with 2◦ × 2.5◦ resolution, and a

nested simulation for North America with 0.25◦ × 0.3125◦

resolution. Both are driven by GEOS-5 Forward Processing

(GEOS-FP) (GEOS-5.7.2 and later versions) assimilated me-

teorological data. Some differences with G5NR-chem are to

be expected because of differences in the transport modules,

resolution, distribution of natural sources computed online

such as lightning NOx , and meteorological data from differ-

ent versions of the GEOS system (MERRA-2 vs. GEOS-FP).

All comparisons to observations use model output sampled at

the location and time of observations.

Observational datasets are described in the above ref-

erences. Briefly, global ozonesonde observations are ex-

tracted from the WOUDC (World Ozone and Ultraviolet

Radiation Data Centre; http://www.woudc.org, last access:

14 September 2018) and NOAA ESRL-GMD (Earth System

Research Laboratory – Global Monitoring Division; ftp://ftp.

cmdl.noaa.gov/ozwv/Ozonesonde/, last access: 14 Septem-

ber 2018). Ozonesonde stations are grouped into coherent

regions for model evaluation (Tilmes et al., 2012). OMI mid-

dle tropospheric ozone data at 700–400 hPa are from the

Smithsonian Astrophysical Observatory (SAO TROPOZ) re-

trieval (Liu et al., 2010; Huang et al., 2017) and are re-

gridded to 2◦ × 2.5◦ resolution to reduce retrieval noise.

The NASA SEAC4RS dataset for southeast US described by

Toon et al. (2016) is filtered following Travis et al. (2016)

to remove open fire plumes (CH3CN > 200 pptv), strato-

spheric air (O3/CO > 1.25 mol mol−1), and urban plumes

(NO2 > 4 ppbv). Hourly surface observations for ozone are

Geosci. Model Dev., 11, 4603–4620, 2018 www.geosci-model-dev.net/11/4603/2018/
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Table 1. Global tropospheric burdens.

GEOS-5 Nature Run with

GEOS-Chem chemistry GEOS-Chem CTMa Literature range

O3 burden (Tg) 348b 347b 320–370c

CO burden (Tg) 294 285 290–370d

Mean OH (1 × 105 10.2 12.5 9.5–12.7f

molecule cm−3)e

a Hu et al. (2017). b Calculated with a chemical tropopause as the 150 ppbv ozone isopleth. c Interquartile range of 50

models summarized in Young et al. (2018); limited observational estimates fall within that range. d Gaubert et al. (2016).
e Global mean air-mass-weighted OH concentration. f From 16 model results summarized in Naik et al. (2013).

Figure 4. Comparison of GEOS-5 Nature Run with GEOS-Chem chemistry to OMI 700–400 hPa ozone measurements for four seasons in

July 2013–June 2014, colored by the latitude of the observations. Each point represents the seasonal mean for a 2◦ × 2.5◦ grid cell. Black

dashed lines show the best fit (reduced major axis regression) with regression parameters given in the inset. Numbers on the bottom right are

the global mean model bias ± standard deviation. The 1 : 1 line is shown in red.

taken from the European Environment Agency database

(complied by Grange, 2017) and the US Environmental Pro-

tection Agency Air Quality System (http://aqsdr1.epa.gov/

aqsweb/aqstmp/airdata/download_files.html#Raw, last ac-

cess: 14 September 2018). Only “background” sites are con-

sidered in the analysis: for the US, this includes sites de-

fined by the EPA as “suburban” and “rural”; for Europe,

this includes sites categorized as “urban background”, “back-

ground”, and “rural” (see Fig. A2).

4.2 Global burdens

Standard global metrics for evaluation of tropospheric chem-

istry models include the global burdens of tropospheric

ozone, CO, and OH (Table 1). The global annual average

ozone burden in G5NR-chem amounts to 348Tg, consistent

with the GEOS-Chem CTM and the Tropospheric Ozone As-

sessment Report (Hu et al., 2017; Young et al., 2018). The

global burden of tropospheric CO of 294Tg is consistent

with the GEOS-Chem CTM and on the low end of the ob-

servationally based estimate of Gaubert et al. (2016). The

global mean OH concentration is lower than in the GEOS-

Chem CTM and more consistent with observational con-

straints (Prinn et al., 2005; Prather et al., 2012). The differ-

ences appear to be mainly driven by differences in the mete-

orological data.

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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Figure 5. Annual mean ozonesonde profiles in July 2013–June 2014 for representative global regions (Tilmes et al., 2012). Results from the

GEOS-5 Nature Run with GEOS-Chem chemistry (red) are compared to observations (black) and to the GEOS-Chem CTM (blue; 2◦ ×2.5◦

version in Hu et al., 2017). The models are sampled at the ozonesonde launch times and locations.

Figure 6. Mean vertical profiles of trace gas concentrations over the southeast US during the NASA Studies of Emissions, Atmospheric

Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign (August–September 2013; Toon et al., 2016).

Results from the GEOS-5 Nature Run with GEOS-Chem chemistry are compared to observations for ozone and NOx , CO, peroxyacetyl

nitrate (PAN), and formaldehyde (HCHO), and to the GEOS-Chem CTM (nested 0.25◦ × 0.3125◦ version in Travis et al., 2016). Model

results are sampled along the flight tracks at the time of flights.

Geosci. Model Dev., 11, 4603–4620, 2018 www.geosci-model-dev.net/11/4603/2018/
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Figure 7. Monthly median afternoon (12:00–16:00 LT) ozone concentrations (ppbv) for 2013–2014 at surface sites in the US and Europe,

with interquartile range shaded. Surface monitoring sites are grouped according to Fig. A2. Also shown are the GEOS-5 Nature Run with

GEOS-Chem chemistry (red) and the offline GEOS-Chem CTM (blue). Hourly model outputs are sampled for the locations and time of

observations at the surface (lowest) level.

4.3 Free tropospheric evaluation: OMI, ozonesonde,

SEAC4RS

Figure 3 compares the GEOS-5 Nature Run with GEOS-

Chem chemistry to OMI midtropospheric ozone. GEOS-

Chem CTM results from Hu et al. (2017) are also shown.

OMI data have been reprocessed with a single fixed a priori

profile (so that variability is solely due to observations), cor-

rected for their global mean bias relative to ozonesondes, and

filtered for high latitudes because of large biases (Hu et al.,

2017). Model outputs are sampled along the OMI tracks and

smoothed with the OMI averaging kernels. G5NR-chem cap-

tures well-known major features of the ozone distribution,

such as ozone enhancements at northern midlatitudes dur-

ing MAM and JJA, and downwind of South America and

Africa during SON. It shows no significant global bias rel-

ative to OMI and relative to the offline GEOS-Chem CTM.

The global mean seasonal biases are less than 2.7±3.2ppbv.

Spatial correlations for the four seasons on the 2◦ × 2.5◦

grid scale are high and show no significant latitudinal bias

(R = 0.81 − 0.93; Fig. 4).

Figure 5 further evaluates the simulated vertical distribu-

tion of ozone in comparison to ozonesonde data. There are

differences between G5NR-chem and the GEOS-Chem CTM

that could be due to a number of factors including differ-

ences in tropopause altitude and the distribution of lightning.

For example, although the annual total lightning NOx emis-

sion in G5NR-chem is scaled to that in GEOS-Chem CTM,

the lightning location is not constrained by satellite light-

ning flash data as the CTM is. Annual mean ozone biases

in G5NR-chem are generally less than 6ppbv in the lower

troposphere. There are some larger biases in the upper tropo-

sphere including differences with the GEOS-Chem CTM that

could be due to the spatial distribution of lightning. Overall,

G5NR-chem tends to improve the simulation of ozone ver-

tical profiles compared to the GEOS-Chem CTM, most dra-

matically at high southern latitudes.

Figure 6 compares the model to mean vertical profiles of

ozone and precursors measured over the southeast US dur-

ing the SEAC4RS aircraft campaign. Here, the GEOS-Chem

CTM results are from a nested 0.25◦ × 0.3125◦ simulation

by Travis et al. (2016). The lower ozone in the northern

midlatitude upper troposphere in G5NR-chem appears to be

due to a weaker lightning NOx source. G5NR-chem overesti-

mates ozone in the lower troposphere by 10ppbv, while such

bias is reduced in the GEOS-Chem CTM, even through both

show almost identical NOx levels. The lower HCHO over the

southeast US is due to weaker isoprene emission because of

lower temperatures. Both models underestimate CO in the

free troposphere but the bias is more apparent in the CTM,

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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likely due to differences in fire emissions, global OH fields,

or transport error in offline simulations (Yu et al., 2018).

4.4 Evaluation with surface observations over the US

and Europe

Figure 7 shows monthly median surface ozone concentra-

tions grouped by regions in the US and Europe. Here, hourly

data between 12:00 and 16:00 LT are used to remove the

known issue that models typically underestimate the ozone

nighttime depletion at surface sites (e.g., Millet et al., 2015).

G5NR-chem systematically overestimates surface ozone in

almost all months by about 10ppbv in all regions, while the

GEOS-Chem CTM has no or small bias in winter and spring,

but shows similar overestimates as in G5NR-chem during

summer and fall. In general, the GEOS-5 Nature Run with

GEOS-Chem chemistry better captures the observed season-

ality. Expanding the analysis to all hourly data does not affect

the systematic bias in G5NR-chem significantly but tends to

increases the summer–fall bias in the CTM (Fig. A5). Part

of the systematic bias is due to the subgrid vertical gradient

between the lowest model level and the measurement alti-

tude (60 m above ground vs. 10 m; Travis et al., 2017). Re-

cent model developments such as improved halogen chem-

istry, aromatic chemistry, and ozone dry deposition are ex-

pected to reduce the surface high bias (Schmidt et al., 2016;

Sherwen et al., 2016a, b, 2017; Silva and Heald, 2018; Yan

et al., 2018). These updates are being incorporated into the

GEOS-Chem version currently under development and will

be passed on to the GEOS-5 simulation as they become avail-

able.

5 Conclusions

We presented a 1-year global simulation of tropospheric

chemistry within the NASA GEOS ESM version 5 (GEOS-

5) at cubed-sphere c720 (∼ 12.5×12.5km2) resolution. This

demonstrated the success of implementing the GEOS-Chem

chemical module within an ESM for online simulations with

detailed chemistry. The GEOS-Chem chemical module on-

line within GEOS and offline as the GEOS-Chem CTM uses

exactly the same code. In this way, the continual stream of

chemical updates from the large GEOS-Chem CTM com-

munity can be seamlessly incorporated as updates to the

online model, which always remains state of the science

and referenceable to the latest version of the GEOS-Chem.

This 1-year simulation addressed an immediate need to gen-

erate the Nature Run for OSSEs in support of the geo-

stationary satellite constellation for tropospheric chemistry.

More broadly, implementation of the GEOS-Chem capabil-

ity opens up a new capability for GEOS to address aerosol–

chemistry–climate interactions, to assimilate satellite data of

atmospheric composition, and to develop global air quality

forecasts.

The 1-year GEOS-5 simulation at c720 resolution required

31 days of wall time on 4705 cores. Overall, 45 % of the

wall time was spent on model dynamics and physics, 31 %

on input/output, and 24 % on chemistry. Chemistry has near-

perfect scalability in massively parallel architectures because

it operates on individual grid columns; thus, it is no longer a

computing bottleneck in ESM simulations. Transporting the

large number of species involved in atmospheric chemistry

simulations may be a greater challenge.

We evaluated the GEOS-5 Nature Run with GEOS-Chem

chemistry for consistency with the offline GEOS-Chem CTM

at coarser resolution (2◦ × 2.5◦ global and 0.25◦ × 0.3125◦

nested over North America) as well as an ensemble of global

observations for tropospheric ozone and aircraft observa-

tions of ozone precursors over the southeast US. The model

shows no significant global bias relative to OMI midtropo-

spheric ozone data and the offline GEOS-Chem CTM. Eval-

uations with ozonesondes show reduced model biases for

high-latitude ozone. The GEOS-5 Nature Run with GEOS-

Chem chemistry systematically overestimates surface ozone

concentrations by 10ppbv all year round in the US and Eu-

rope but is able to capture the observed seasonality, while

the offline GEOS-Chem CTM reproduces observed surface

ozone levels in winter and spring but has similar biases in

summer and fall in all regions. Resolving this surface bias is

presently a focus of attention in the GEOS-Chem CTM com-

munity and future model updates to address that bias can then

be readily implemented into GEOS-5.

Code availability. GEOS-Chem CTM is available at

http://geos-chem.org/ (last access: 14 September 2018).

GEOS-5 is available at https://geos5.org/wiki/index.php?title=

GEOS-5_public_AGCM_Documentation_and_Access (last access:

14 September 2018).

Data availability. All model outputs are available for download

at https://portal.nccs.nasa.gov/datashare/G5NR-Chem/Heracles/12.

5km/DATA (last access: 14 September 2018) or can be accessed

through the OpenDAP framework at the portal https://opendap.

nccs.nasa.gov/dods/OSSE/G5NR-Chem/Heracles/12.5km (last ac-

cess: 14 September 2018).
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Appendix A

Figure A1. Same as Fig. 5 but for western US, equatorial South America, and Atlantic/equatorial Africa.

Figure A2. Surface monitoring sites in the US and Europe grouped by subregions as analyzed in the text. Background image © Natural Earth

(public domain license).

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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Figure A3. Probability distribution of afternoon (12:00–16:00 LT) ozone concentrations (ppbv) for 2013–2014 at surface sites in the US and

Europe.

Figure A4. Monthly median ozone concentrations (ppbv; all 24 h data) for 2013–2014 at surface sites in the US and Europe, with interquartile

range shaded. Surface monitoring sites are grouped according to Fig. A2. Also shown are the GEOS-5 Nature Run with GEOS-Chem

chemistry (red) and the offline GEOS-Chem CTM (blue). Hourly model outputs are sampled for the locations and time of observations at the

surface (lowest) level.

Geosci. Model Dev., 11, 4603–4620, 2018 www.geosci-model-dev.net/11/4603/2018/
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Figure A5. Probability distribution of ozone concentrations (ppbv; all 24 h data) for 2013–2014 at surface sites in the US and Europe.

Table A1. Computing resources for the GEOS-5 Nature Run with GEOS-Chem chemistrya.

Wall-time breakdown Wall time Compute cores Disk storage

Transport 45 % 31 days 4705 coresb 180 Tbc

Chemistry 24 %

Input 25 %

Output 6 %

a The simulation is from 1 July 2013 to 1 July 2014 in GEOS ESM with GEOS-Chem as a chemical module at

12.5 × 12.5 km2. The computation was carried out at NASA Discover supercomputing cluster. b The

simulation uses 337 14-core 2.6 GHz Intel Xeon Haswell compute nodes with 128 GB of memory per node

and an Infiniband FDR interconnect using the Intel compiler suite (v. 15.0.0.090) and MPT v. 2.11. c 158

species are simulated and transported by the GEOS ESM; among them, 29 species are saved out as hourly

outputs. Data are available at https://portal.nccs.nasa.gov/datashare/G5NR-Chem/Heracles/12.5km/DATA/

(last access: 14 September 2018).

www.geosci-model-dev.net/11/4603/2018/ Geosci. Model Dev., 11, 4603–4620, 2018
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Table A2. Emissions in the GEOS-5 Nature Run with GEOS-Chem chemistry.

Species Anthropogenica Aircraft Ship Volcanoesb Biomass Biogenic Soil and Lightningd Oceanic/ Dust f Annual emission

burning agriculturec sea spraye (Tg yr−1 or

TgC yr−1)g

EDGAR RETRO i Xiao et al. NEI 2011j MIXk AEICl HTAPh QFEDm MEGAN n

HTAP v2h 2008

NO X X X X X X X 117

CO X X X X X X 958

SO2 X X X X X X 129

SO4 X X X 2.93

Organic carbon X X X X X X 72.1

Black carbon X X X X X 10.3

NH3 X X X 60.5

≥C4 alkanes X X X X 32.1

Acetone X X X X X X 77.6

MEK X X X 4.09

CH3CHO X X X X X 20.9

C3H6 X X X X X 31.3

C3H8 X X X X 6.33

CH2O X X X X 4.58

Isoprene X 345

C2H6 X X 15.3

CHBr3 X 0.429

CH2Br2 X 0.0621

Br2 X 0.63

Sea salt A (0.1–0.5 µg) X 65.9

Sea salt C (0.5–4.0 µg) X 3990

DMS X 35.2

Dust1 (0.1–1.0 µg) X 103

Dust2 (1.0–1.8 µg) X 212

Dust3 (1.8–3.0 µg) X 271

Dust4 (3.0–6.0 µg) X 254

a Excluding aircraft and ships, which are listed separately. b http://aerocom.met.no/download/emissions/AEROCOM_HC/volc/ (last access: 14 September 2018). c Hudman et al. (2012). d Murray et al. (2012). e Jaeglé et al. (2011) and Fischer et al. (2012). f Zender et al. (2003). g TgC yr−1 for

≥C4 alkanes, acetone, methyl ethyl ketone (MEK), CH3CHO, C3H6, C3H8, isoprene, and C2H6. Tg yr−1 for the rest of the species. h http://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123 (last access: 14 September 2018). i RETRO monthly global inventory for the year 2000 (Schultz

et al., 2007) implemented as described by Hu et al. (2015a). j US EPA National Emission Inventory 2008 (http://www.epa.gov/ttn/chief/net/2008report.pdf; last access: 14 September 2018) and scaled to 2013 (https://www3.epa.gov/airtrends/; last access: 14 September 2018). k Asian anthropogenic

emissions (Li et al., 2014). l Stettler et al. (2011). m Quick Fire Emissions Dataset (QFED) version 2.4-r6 (Darmenov and Da Silva, 2015). n MEGANv2.1 (Guenther et al., 2012) implemented in GEOS-Chem as described by Hu et al. (2015b).
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