
This is a repository copy of Evolution of complex flowering strategies: an age- and 
size-structured integral projection model .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1394/

Article:

Childs, D.Z., Rees, M., Rose, K.E. et al. (2 more authors) (2003) Evolution of complex 
flowering strategies: an age- and size-structured integral projection model. Proceedings of 
the Royal Society B: Biological Sciences, 270 (1526). pp. 1829-1838. ISSN 1471-2954 

https://doi.org/10.1098/rspb.2003.2399

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Received 18 February 2003

Accepted 13 March 2003

Published online 11 August 2003

Evolution of complex flowering strategies:

an age- and size-structured integral projection model

Dylan Z. Childs1, Mark Rees1*, Karen E. Rose1, Peter J. Grubb2

and Stephen P. Ellner3

1Department of Biological Sciences and NERC Centre for Population Biology, Imperial College, Silwood Park,

Ascot SL5 7PY, UK
2Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
3Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853-2701, USA

We explore the evolution of delayed age- and size-dependent flowering in the monocarpic perennial

Carlina vulgaris, by extending the recently developed integral projection approach to include demographic

rates that depend on size and age. The parameterized model has excellent descriptive properties both in

terms of the population size and in terms of the distributions of sizes within each age class. In Carlina

the probability of flowering depends on both plant size and age. We use the parameterized model to predict

this relationship, using the evolutionarily stable strategy (ESS) approach. Despite accurately predicting the

mean size of flowering individuals, the model predicts a step-function relationship between the probability

of flowering and plant size, which has no age component. When the variance of the flowering-threshold

distribution is constrained to the observed value, the ESS flowering function contains an age component,

but underpredicts the mean flowering size. An analytical approximation is used to explore the effect of

variation in the flowering strategy on the ESS predictions. Elasticity analysis is used to partition the age-

specific contributions to the finite rate of increase (�) of the survival–growth and fecundity components

of the model. We calculate the adaptive landscape that defines the ESS and generate a fitness landscape

for invading phenotypes in the presence of the observed flowering strategy. The implications of these

results for the patterns of genetic diversity in the flowering strategy and for testing evolutionary models

are discussed. Results proving the existence of a dominant eigenvalue and its associated eigenvectors in

general size- and age-dependent integral projection models are presented.

Keywords: delayed reproduction; structured model; adaptive landscape

1. INTRODUCTION

Reproductive delays are a ubiquitous feature of plant and

animal life cycles, and explaining why organisms defer

reproduction is a classic problem in evolutionary biology

(Cole 1954). The main benefits of early reproduction

accrue through reductions in mortality and generation

time (Cole 1954; Bell 1980). In general, reductions

in mortality increase fitness, whereas reductions in

generation time increase fitness only under certain circum-

stances, and may have no effect on fitness in a density-

regulated population (Mylius & Diekmann 1995). The

costs of early reproduction are reduced fecundity and/or

quality of offspring (Bell 1980).

In plants, the study of reproductive delays is compli-

cated because plants vary continuously in size and there

is enormous variation in growth between individuals. This

means that the standard models, which assume growth is

deterministic, perform poorly when applied to plants

(Rees et al. 1999, 2000). To overcome these problems,

previous studies have used analytical approximations,

dynamic-state variable models or computationally expens-

ive individual-based models (Kachi & Hirose 1985; de

Jong et al. 1989; Wesselingh et al. 1997; Rees et al. 1999,

2000; Rose et al. 2002). Clearly, a mathematical frame-
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work that allows (i) individuals to vary continuously in size

and (ii) variation in growth is required. Integral projection

models allow both these essential features of plant popu-

lations to be modelled in an elegant framework, which is

easily parameterized using standard demographic data.

When combined with methods for calculating measures of

population growth, such as the net reproductive rate (R0)

and the finite rate of increase (�), and ideas from evol-

utionary demography, this approach provides a powerful

set of tools for exploring reproductive decisions in biologi-

cally realistic models (Cochran & Ellner 1992; Mylius &

Diekmann 1995; Caswell 2001).

The integral projection model was introduced by Eas-

terling et al. (2000) and subsequently developed for use

in studying monocarpic plants by Rees & Rose (2002).

The model eliminates the need to divide data into discrete

classes, without requiring any extra biological assumptions

(Easterling et al. 2000). Integral projection models have

many properties in common with matrix models; for

example, they allow the calculation of the stable size distri-

bution, the population growth rate �, and the sensitivities

and elasticities of �.

Integral projection models are appropriate for continu-

ously size-structured populations. However, in many plant

populations demographic rates are influenced by both size

and age (Werner 1975; Gross 1981; van Groenendael &

Slim 1988; McGraw 1989; Lei 1999; Karlsson & Jacobson

2001). In several monocarpic species, where long-term
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datasets are available, the probability of flowering is

determined by a plant’s size and age (Klinkhamer et al.

1987; Rees et al. 1999; Rose et al. 2002). This is parti-

cularly puzzling in species such as Carlina vulgaris where

all other demographic transitions are independent of plant

age (Rose et al. 2002). Under these circumstances, the

pay-off from flowering does not change as plants grow

older and so the probability of flowering should not be

influenced by plant age. Rose et al. (2002) suggest that

under these circumstances age-dependent flowering might

evolve because of temporal variation in mortality, because

the population is part of a metapopulation or as a way of

fine-tuning the flowering strategy. Additionally Rees et al.

(2000) show, using a dynamic-state variable approach,

that, when there is a finite time horizon (a maximum age),

resulting from successional change or senescence, then

there are fewer opportunities for growth as plants get

older, and this selects for smaller sizes at flowering in

old plants.

We present an extension to the integral projection

approach allowing demographic transitions to depend on

a plant’s size and age. We first outline the construction of

integral projection models for monocarpic plants with

size-dependent and age-dependent demographic rates,

and numerical methods for analysing them. The results

of Easterling (1998), proving the existence of a dominant

eigenvalue and associated eigenvectors, are then extended

to cover general size- and age-dependent integral projec-

tion models. We then summarize the size- and age-

dependent demography of C. vulgaris and use this to con-

struct a size- and age-structured integral projection model.

Using methods from evolutionary demography, we ana-

lyse the models to determine the evolutionarily stable

flowering strategy under a variety of constraints (Mylius &

Diekmann 1995).

2. MATERIAL AND METHODS

The integral projection model can be used to describe how a

continuously size-structured population changes over discrete

time (Easterling et al. 2000). The state of the population is

described by a probability density function, n(x,t), which can

intuitively be thought of as the proportion of individuals of size

x at time t. The integral projection model for the proportion of

individuals of size y at time t � 1, 1 year later, is then given by

n(y ,t � 1) = �
�

[ p(x,y) � f (x,y)]n(x,t)dx

= �
�

k(y ,x)n(x,t)dx. (2.1)

where k(y ,x), known as the kernel, describes all possible tran-

sitions from size x to size y , including births. The integration is

over the set of all possible sizes, �. The kernel is composed of

two parts, a fecundity function, f(x,y), and a survival–growth

function, p(x,y). To extend the model to include size- and age-

dependent demography we define na(y ,t) to be the probability

density function for individuals of size y and age a in year t.

The integral projection model then becomes

n0(y ,t � 1) = �m
a = 0

�
�

fa(x,y)na(x,t)dx a = 0,

na(y ,t � 1) = �
�

pa � 1(x,y)na�1(x,t)dx a � 0,

(2.2)
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where fa(x,y) is the fecundity function, pa(x,y) is the survival–

growth function of plants of size x and age a, and m is the

maximum plant age. These functions are referred to collectively

as the kernel component functions. For a numerical solution, it

is convenient to write the model in matrix form, which is

given by

n(y ,t � 1) = �
�

Kn(x,t)dx, (2.3)

where K is the matrix

K = �
f0(x,y) f1(x,y) % fm�1(x,y) fm(x,y)

p0(x,y) 0 0 0

0 p1(x,y) 0 0

�

0 0 pm�1(x,y) 0

� (2.4)

and n(y ,t) = (n0(y ,t),n1(y ,t),...,nm(y ,t))T. To solve these models

we use numerical integration methods (Easterling et al. 2000).

If each component function is evaluated at q equally spaced

quadrature mesh points, yi, and w is the quadrature weight

(difference between the yis), we can then approximate equation

(2.3) as

n(t � 1) = K̃Dn(t), (2.5)

where n(t) = (n0( y0,t),...,n0( yq,t),...,nm( y0,t),...,nm( yq,t))
T,

K̃ = �
f0( yi, y j ) f1( yi, y j ) % fm�1( yi, y j ) fm( yi, y j )

p0( yi, y j ) 0 0 0

0 p1( yi, y j ) 0 0

�

0 0 pm�1( yi, y j ) 0

� (2.6)

and D = diag(w). The K̃D matrix has the same form as Good-

man’s transition matrix, the properties of which have been care-

fully analysed (Goodman 1969; Law 1983). In Appendix A we

prove that, under biologically reasonable assumptions, the

model (equation (2.2)) has a dominant eigenvalue, �, that is

positive and strictly exceeds all others, and, when growing at a

constant rate, �, the population settles to a stable size–age distri-

bution, which is given by the right-hand dominant eigenvector.

To calculate R0, which is required for the evolutionary calcu-

lations, the general methods described in Caswell (2001) can

be used. However, a considerable saving in computer time and

memory can be achieved by collapsing the K̃D matrix to a Leslie

matrix. The key assumption required to collapse the K̃D matrix

is that the probability distribution of offspring sizes is inde-

pendent of adult size and age (Law & Edley 1990; see Appendix

A). We can then construct a Leslie matrix, the eigenvalues of

which are equal to those of K̃D, and calculate R0 using the stan-

dard age-based formula.

To apply the model we must specify the dependence of sur-

vival, growth and fecundity on size and age. We will present the

equations for C. vulgaris, which has only size- and age-depen-

dent flowering, but it is straightforward to extend the approach

to include size and age dependence of other demographic tran-

sitions. Specifically, we will write the fecundity function as

fa(x,y) = pes(x) pf,a(x)fn(x)fd(x,y), (2.7)

where pe is the probability of seedling establishment, s(x) is the
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probability of survival of an individual of size x, pf,a(x) is the

probability that an individual of size x and age a flowers, fn(x)

is the number of seeds produced, and fd(x,y) is the probability

distribution of offspring size, y , for an individual of size x. The

survival–growth function is given by

pa(x,y) = s(x)[1 � pf,a(x)]g(x,y), (2.8)

where g(x,y) is the probability of an individual of size x growing

to size y . The probability of flowering, pf,a(x), enters the survival

function because reproduction is fatal in monocarpic species.

To compare the model predictions with field data, we calcu-

late the stable flowering-size distribution, �(y), using

�(y) =

�m
a = 0

s(y) pf,a(y)�a(y)

�m
a = 0

�
�

s(y) pf,a(y)�a(y)dy

, (2.9)

where �a(y) is the stable size–age distribution.

(a) Population biology of C. vulgaris

Carlina vulgaris, a monocarpic thistle of base-rich soils (mainly

found on limestone or calcareous sand), is native to a wide area

in western, central and eastern Europe, and has been introduced

to North America and New Zealand. Under very favourable

growing conditions, Carlina individuals can flower in their

second year (Klinkhamer et al. 1991, 1996; Rees et al. 2000)

but, more commonly, reproduction is delayed by at least one

more year. Previous studies in The Netherlands (Klinkhamer et

al. 1991, 1996) have shown that the probability of flowering is

related to plant size and not to age; however, in the UK the

probability of flowering is related to both plant size and age

(Rose et al. 2002). Flowering occurs between June and August,

and the seeds are retained in the flower heads until they are

dispersed during dry sunny days in late autumn, winter or spring

(P. J. Grubb, unpublished data). Seeds germinate from April to

June, and there is little evidence of a persistent seed bank

(Eriksson & Eriksson 1997; de Jong et al. 2000).

Detailed descriptions of the study site and methods of analysis

are given in Rose et al. (2002). We briefly describe the main

results that are relevant to this article. The study spanned

16 years, and during this time the fates of over 1400 individuals

were followed. The length of the longest leaf was used to meas-

ure plant size and in all analyses this was transformed using

natural logarithms. Growth was strongly size-dependent and

well described by a simple linear model:

L(t � 1) = ag � bgL(t). (2.10)

Size this year predicted size next year (F1,507 = 667.52,

p � 0.0001), but there was no significant effect of age

(F1,507 = 0.32, p = 0.576); the parameter values were

ag = 1.21 (0.09) and bg = 0.71 (0.03), where the standard error

is given in parentheses. Generalized linear models of the prob-

abilities of mortality and flowering were constructed assuming

binomial errors and a logit link function (McCullagh & Nelder

1989). There was no effect on survival probability of plant size

(	2
1 = 0.98, p � 0.30) or age (	2

1 = 2.31, p � 0.10); the para-

meter value was logit(s(x)) = 0.34 (0.06). Plant size was the most

important predictor of flowering (	2
1 = 139.86, p � 0.0001),

with larger plants being more likely to flower than smaller ones.

There was an additional effect of age (	2
1 = 19.37, p � 0.001),

such that older plants were more likely to flower. The age effect

was still significant ( p � 0.001) after fitting year effects and

Proc. R. Soc. Lond. B (2003)

Table 1. Field data and model predictions.

(Values in parentheses are 95% confidence intervals.)

data model

average number of plants 74.4 (47.9, 101) 81.7

average size (mm) 32.8 (31.5, 34.1) 31.1

average age (years) 0.84–0.94 0.92

average size at flowering (mm) 52.0 (48.4, 55.6) 52.0

average age at flowering (years) 3.1 (2.7, 3.4) 2.8

allowing the size effect to be a smoothed function (generalized

active model; Wood 2001). In the fitted logistic model for

flowering, we will refer to the intercept, size slope and age slope

as 
0, 
s and 
a, respectively; parameter values are given in table

2. To understand what the logistic regression means biologically

it is necessary to distinguish between the threshold size for

flowering, i.e. the size a plant must exceed in order to initiate

flowering, and the size at flowering. These are different because

(i) plants that flower are larger than the threshold size for flower-

ing and (ii) there is variable growth between the time the

decision to flower is made and the time at which flowering is

recorded. However, we may interpret the fitted logistic model

as a cumulative distribution function describing the threshold

sizes for flowering. This implies that the probability density

function of threshold sizes for flowering for plants of age a is

described by a logistic distribution with mean and variance of

�(
0 � a
a)/
s and �2/3
2
s , respectively (Rees & Rose 2002).

The mean size of flowering individuals observed in a population

is obtained using equation (2.9). There was no relationship

between this year’s seed production and the number of recruits

in the following year, suggesting that the probability of recruit-

ment is density dependent (Rose et al. 2002); the mean number

of recruits was 39.8 per year. This decoupling of recruitment

from seed production was probably the result of establishment

being limited by the available microsites: more seedlings are

recruited when the turf was either short or opened up locally by

trampling cattle (P. J. Grubb, personal observation). Two seed-

sowing experiments, one in Sweden and one in Wales, support

the idea that recruitment is dependent on disturbance (Greig-

Smith & Sagar 1981; Lofgren et al. 2000). Thus, if there are

R recruits into the population, the probability of establishment

is given by

pe =
R

�m
a = 0

�
�

�
�

fa(x,y)na(x,t)dxdy

. (2.11)

Data were not available on the sizes of recruits derived from

plants of different sizes, but evidence from other systems sug-

gests a low maternal effect on recruit size (Weiner et al. 1997;

Sletvold 2002), and so the distribution of offspring sizes was

assumed to be independent of parental size; the parameter

values were mean = 3.09, variance = 0.28—logarithmic scale.

3. RESULTS

(a) Analysis of the kernel

Having produced a parameterized model, we can assess

the model’s descriptive properties by calculating the stable

size–age distribution and comparing this with the observed

data. This shows that there is good agreement between

the model and the observed size–age distribution (figure 1).
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Table 2. Evolutionarily stable flowering strategy in terms of the parameters of the flowering function and the average size and

age at flowering, assuming either that there are no constraints or that the slope of the flowering function, 
s, is constrained at

its estimated value.

(For reference the estimated values are also given; values in parentheses are 95% confidence intervals.)

parameter predicted values

size at flowering age at flowering


0 
s 
a (mm) (years)

unconstrained ESS �1010 278 0.01 50.1 2.1

constrained ESS �9.96 — 0.38 37.9 1.7

estimated value �12.05 (�9.84, �14.26) 2.64 (2.06, 3.22) 0.32 (0.18, 0.45) 52.0 (48.4, 55.6) 3.1 (2.7, 3.4)

100
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Figure 1. Observed (filled bars) and predicted (lines) stable size–age distributions for ages 0–5 years, (a)–( f ), respectively.

The bar width in each histogram was chosen using a kernel density estimation routine to make the plots maximally

informative.

We also calculated various measures of population size

and age structure, using the methods outlined in Rees &

Rose (2002), and, in all cases, the model predictions were

in excellent agreement with the field data (table 1). As

density dependence is explicitly modelled, we can calcu-

late the equilibrium population size, and again there is

excellent agreement between the model and the data

(table 1).

(b) Evolution of the flowering strategy

To calculate the evolutionarily stable flowering strategy

we need to specify not only how demographic rates vary

with size and age but also where in the life cycle density

dependence acts (Mylius & Diekmann 1995). In Carlina,

the probability of seedling establishment is density depen-

dent, while the effect of intraspecific competition is weak

(Rose et al. 2002). Under these conditions it can be shown

that the evolutionarily stable strategy (ESS) maximizes the

basic reproductive rate, R0 (Mylius & Diekmann 1995;

Rees & Rose 2002). We used a quasi-Newton algorithm

to maximize R0 and so characterize the ESS. Given the

evolutionarily stable flowering strategy we then use equ-

ation (2.9) to calculate the distribution of sizes at flower-

ing.

Allowing all three parameters to vary, we find that the

ESS tends towards a step function without an age compo-

nent (table 2). Specifically, the variance of the flowering-

Proc. R. Soc. Lond. B (2003)

threshold distribution tends to zero as 
s → � and


a → 0. This matches our expectations for a constant-

environment model in which the key demographic

processes of growth, survival and fecundity are all inde-

pendent of age. The flowering-size threshold in this case

(given by exp(�
0/
s)) tends to 37.8 mm, and the pre-

dicted average size at flowering is not significantly differ-

ent from the observed value (table 2). However, the

variance in the distribution of flowering sizes is much

smaller than that observed in the data (figure 2).

We also calculated the ESS assuming that the size-

dependent slope of the flowering function, 
s, was fixed.

We use this constraint to prevent the ESS from being a

step function. There are several reasons why it might be

impossible for plants to achieve a step function: (i) there

is variable growth between when the decision to flower is

made and when plant size is measured; (ii) plant size may

not be perfectly correlated with the threshold condition

for flowering; and (iii) there may be genetic variation in

the threshold condition. With 
s constrained the predicted

flowering strategy (
0, 
a) is similar to the observed strat-

egy, although the predicted size at flowering is consider-

ably smaller than that observed in the field (table 2). As

expected, because 
s is fixed, the variance in the size at

flowering is similar to that observed in the field (figure 2).

Interestingly, when we constrain 
s, the predicted flower-

ing strategy is both size-specific and age-specific.
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Figure 2. Observed distribution of flowering sizes (filled

bars) and predictions from the various models, calculated

using equation (2.9). The bold line is the fitted model, the

dotted line is from the unconstrained ESS model and the

solid thin line is from the constrained ESS model.

(c) Analytical approximation

To understand how different aspects of Carlina’s

demography influence the observed flowering size we

extend the 1-year look-ahead approach described in Rees

et al. (2000). The approach derives a switch value Ls: on

average, plants with L(t) � Ls are expected to flower,

while plants with L(t) � Ls are expected to continue grow-

ing. The switch value is determined by equating expected

seed production given the current size, Ls, with expected

seed production in the following year, taking growth and

mortality into account. It should be noted that the

approach is only approximate because it ignores opport-

unities for growth more than 1 year ahead. In this system,

the probability of survival is independent of size and age

such that the survival function can be written as

s(x) = exp(�d0). (3.1)

Growth is described by equation (2.10) and seed pro-

duction is given by

seed production = exp(A � BL(t)). (3.2)

Placing the component functions together we find that the

switch value, Ls, satisfies the equation

�exp(A � B(Ls � 
 f)) f(
 f)d
 f

= ��exp(�d0 � A�B(ag � bg(Ls � 
 f)) � 
) f(
 f) f(
)d
 fd
,

(3.3)

where f(·) is the normal probability density function, 
f
describes the between-individual variation in Ls, and 


describes the variation around the growth function. Evalu-

ating the integrals and solving for Ls we find

Ls =
ag � B� 2/2

(1 � bg)
�

d0

B(1 � bg)
�

�2
fB(1 � bg)

2
, (3.4)

where �2 is the variance about the growth equation (2.10).

The first and second terms describe the effects of growth

and mortality, respectively, on the mean switch size. The

Proc. R. Soc. Lond. B (2003)

first term is related to the arithmetic asymptotic average

size; this is given by

l =
ag � �2/2

1 � bg

. (3.5)

As expected, the switch value increases with increasing

asymptotic size and decreases with increasing mortality.

The dependence of the mean switch value, Ls, on variation

in the switching size is less intuitive: increasing variability

around the mean switch size selects for smaller switch

sizes, because the variance term, �2
f , which arises because

of nonlinear averaging, is always negative. There was

excellent agreement between the unconstrained ESS

flowering threshold size (37.8 mm), for which �2
f = 0, and

the predicted switch value, 36.7 mm, calculated using

equation (3.4). The 1 year look-ahead approach predicts

a lower switch value because it ignores growth more than

1 year ahead; however, the discrepancy is small because

of high size-independent mortality. Comparison of the two

approaches in the constrained case is complicated because

the ESS contains an age component. However, the 1 year

look-ahead approach correctly predicts that variance in the

threshold condition selects for smaller flowering sizes.

(d) Fitness and adaptive landscapes

In this system density dependence acts on the recruit-

ment stage and so evolution maximizes R0. A plot of R0

against the flowering strategy can be interpreted as an

‘adaptive landscape’ in the classical sense (Wright 1931).

Its topography is unaltered by the presence of a particular

resident, and an ESS is defined by a local maximum. At

equilibrium R0 = � = 1 and so � represents the rate of

invasion of new strategies into the resident population,

such that the surface for � represents a fitness landscape.

Its topography describes the strengths of selection acting

on alternative strategies (Metz et al. 1992; Rand et al.

1994). We computed the adaptive and fitness landscapes

for a wide range of 
0 and 
a, assuming 
s was fixed

(figure 3). When interpreting these graphs it must be

remembered that as 
0 gets smaller (more negative) so the

size at flowering increases. The adaptive landscape shows

that the ESS lies within the 95% confidence envelope for

the estimated parameters. Moving from left to right across

the adaptive landscape we see a dramatic increase in the

performance of the flowering strategy; this reaches a

maximum then declines to a plateau where all strategies

have equal R0. Clearly, flowering at sizes much larger than

the ESS results in a dramatic loss of fitness. This is a

consequence of high size-independent mortality (ca. 40%

of plants die each year). The plateau in the adaptive land-

scape, corresponding to large values of 
0, occurs because

all plants flower in their first year, and so have equal per-

formance (R0). Moving vertically across the adaptive land-

scape, we see much smaller changes in performance

(figure 3a). This is a direct result of growth and seed pro-

duction being determined by plant size rather than age.

The fitness landscape demonstrates that there would be

strong selection towards the ESS, as the fitness difference

between the estimated ESS and the predicted ESS is ca.

10% (figure 3b). In the vicinity of the estimated ESS there

is very weak selection for an age-dependent component to

the flowering strategy.
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Figure 3. The (a) adaptive and (b) fitness landscapes for

Carlina, calculated assuming that the resident population

uses the estimated flowering strategy. The large dot is the

estimated flowering strategy, and the ellipse is the 95%

confidence contour, calculated using the standard quadratic

approximation to the likelihood—assuming that the

likelihood is 	2-distributed with three degrees of freedom.

The small dot is the ESS prediction assuming 
s is fixed.

(e) Sensitivities and elasticities

The standard approach for understanding how various

parameters influence the fitness of rare mutants is to esti-

mate the elasticities of mutant fitness (Caswell 2001).

Elasticities can be used to measure the effect on � of pro-

portional changes in fa(x,y) and pa(x,y) and can be com-

puted using the methods described in Easterling et al.

(2000) (see Appendix A). As elasticities sum to unity, this

allows us to partition the contributions of fa(x,y) and

pa(x,y) to � of different age classes (figure 4a,b). This

shows that the survival–growth function has a larger influ-

ence on � than does the fecundity function (0.66 and 0.34,

respectively), and that the largest contributions to � come

from changes in the survival–growth function, pa(x,y), of

young plants.

4. DISCUSSION

We have extended the integral projection modelling

approach to include a discrete structuring variable such as

Proc. R. Soc. Lond. B (2003)

age, allowing us to explore the demography and evolution

of size- and age-structured populations using a set of stan-

dard numerical techniques. The analytical results

(Appendix A) justify the numerical methods used and

should prove useful in future studies where the distri-

bution of offspring sizes depends on parental size or age.

The ‘mixing at birth’ assumption is likely to be valid for

a wide range of species, particularly when the size distri-

bution of recruits is recorded several months after recruit-

ment occurs (Weiner et al. 1997; Sletvold 2002). In

contrast to age- and size-structured matrix models, where

parameterization is difficult (Law 1983), extending an

integral projection model to include the effects of age can

be done by including age as an additional covariate when

constructing the survivorship, growth or flowering func-

tions. This means that a standard statistical test can be

used to explore whether both size and age should be

included in the model (Venables & Ripley 1997). Hence,

this framework retains all of the power of traditional

matrix models while being easy to parameterize.

The parameterized model provides an extremely accur-

ate description of the number of individuals and the distri-

bution of sizes within each age class, the distribution of

flowering sizes, the average age at reproduction and the

average population size. Despite this, the ESS predictions

differ in either the mean or the variance from the observed

distribution of flowering sizes. These discrepancies force

us to conclude that important aspects of the selection

pressures acting on Carlina are not included in the model.

The analyses presented by Rose et al. (2002) strongly sug-

gest that temporal variation in demographic rates is a

missing component of the selective environment. In this

study, temporal variation in the intercept of the survival

and growth functions was found to select for larger sizes

at flowering. Curiously, the parameters of the constrained

ESS are not significantly different from the estimated

parameters of the flowering function, which suggests that

one needs to be careful when comparing the predictions

of evolutionary models with data, as different metrics may

produce different results. Clearly, any satisfactory model

needs to describe both the shape of the flowering function

and the distribution of sizes at flowering, and we cannot

assume that a model that is correct in one respect will be

correct in the other.

Why does the flowering function contain an age-depen-

dent term when the key demographic processes of growth

and survival are independent of age? First, it must be

acknowledged that the apparent age dependence could be

an artefact of using an indirect measure of plant size,

namely the length of the longest leaf. If older plants have

larger tap roots for a given longest-leaf length, then the

resources available for flowering to an older plant will be

underestimated, resulting in an apparent increase in the

probability of flowering with age. We know of no data on

age-dependent resource allocation and therefore cannot

discount this possibility, although Klinkhamer et al.

(1987) found that longest-leaf length was the best predic-

tor of total plant weight in Cirsium vulgare, a monocarpic

plant that also has size- and age-dependent flowering.

Allowing all three parameters to evolve results in an age-

independent flowering strategy, where the relationship

between the probability of flowering and size is a step

function, as expected. When we constrain the ESS so that
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Figure 4. Elasticity analysis for the kernel component functions. Elasticity values are summed over size for (a) fa(x,y ) and

(b) pa(x,y) for all age classes. Elasticity contour plots for (c) fa(x,y) and (d ) pa(x,y ) for age classes 0, 2, 4 and 6 years.

Contour plots show the 0.000 003 contour for each age class.

the flowering strategy cannot be a step function, the model

predicts that the ESS has an age-dependent component.

This conforms to the ‘fine-tuning’ hypothesis put forward

by Rose et al. (2002): this hypothesis argues that having

two control variables (e.g. size and age) is advantageous

as it allows extra control of the flowering strategy. How-

ever, the fitness of the age-dependent constrained ESS

when invading a resident strategy employing a purely size-

dependent constrained ESS is only 1.0010. Therefore,

there is very weak selection for age dependence via the

‘fine-tuning’ hypothesis and so this mechanism is unlikely

to be responsible for age dependence in Carlina. However,

a wide range of age-dependent strategies (0.0 � 
a

� 0.95) are marginally fitter (1.000 � � � 1.001) than the

purely size-dependent constrained ESS, suggesting that

age dependence is an approximately neutral trait. This is

consistent with the observation that in Dutch populations

of Carlina (Klinkhamer et al. 1991, 1996) the probability

of flowering is not related to plant age.

Age-dependent flowering could arise if there is variation

in the probability of flowering at a given size. Imagine a

population consisting of equal numbers of two flowering

strategies, one with a small threshold for flowering and the

other with a large threshold. As the cohort ages the plants

with the small thresholds flower earlier, leaving a cohort

with large thresholds that flower later. In this scenario the

probability of flowering would be age dependent, although

we would observe an increase in the size threshold for

flowering with age, the opposite of what is seen in Carlina

(see Rees & Long (1993) for a general discussion of this

phenomenon). Similar effects would occur if growth or

Proc. R. Soc. Lond. B (2003)

mortality varied consistently between individuals. No evi-

dence for consistent variation between individuals in

growth, flowering or survival was found in Carlina using

mixed models (Rose et al. 2002), making this expla-

nation unlikely.

When constraining 
s to the observed value we are

assuming that the variance in the flowering strategy is not

subject to selection. This seems reasonable providing that

the decision to flower is made some months before plant

size at flowering is recorded, growth during this period is

highly variable and there is little genetic variation in the

threshold size for flowering. The exact time the decision

to flower is made is not known in Carlina (Klinkhamer et

al. 1991); however, growth is highly variable suggesting

that the observed graded relationship between size and the

probability of flowering reflects, in part, variation in

growth between the time the decision to flower is made

and the time at which the size is recorded. In addition to

this, the control of flowering in Carlina depends on a com-

plex interaction between exposure to cold, day length and

size before and after winter (Klinkhamer et al. 1991). This

means that size will not be perfectly correlated with the

threshold condition for flowering and this too will tend to

make the relationship between the probability of flowering

and plant size shallower. However, it should be noted that

several studies have demonstrated that natural populations

harbour genetic variation in the threshold size for flower-

ing (Metcalf et al. 2003; Wesselingh & de Jong 1995; Wes-

selingh & Klinkhamer 1996; Simons & Johnston 2000),

which will be subject to selection, and this could lead to

an increase in 
s.
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Elasticity analysis has been used to partition contri-

butions to � from different kernel component functions,

age classes and sizes. Care must be taken when inter-

preting elasticity patterns because the fecundity and sur-

vival–growth functions both contain survival and

probability-of-flowering terms. In this system the survival–

growth functions make a greater contribution to � than do

the fecundity functions, because reductions in growth and

survival of a particular age class lessen the opportunities

for reproduction in subsequent years. In general, younger

plants contribute most to � because they represent a larger

proportion of the stable age distribution (figure 4a,b).

However, this underlying trend is tempered by the fact

that younger, and hence smaller, plants contribute rela-

tively few recruits to the next generation. Elasticity con-

tour plots for the fecundity functions demonstrate that

contributions to � through recruitment are most

important for large individuals, while � is influenced by

the survival of a wide range of sizes (figure 4c,d). Individ-

uals are, on average, larger as they grow older, and this is

reflected by a shift in the high-density regions of the elas-

ticity surfaces towards larger sizes for older age classes.

The technique for partitioning elasticities into age- and

size-dependent components can also be used for popu-

lations with purely size-dependent demography.

The shapes of the adaptive and fitness landscapes have

important implications for: (i) the patterns of genetic vari-

ation in threshold sizes for flowering found in natural

populations; and (ii) testing evolutionary models. In a

study of two monocarpic species by de Jong et al. (1989),

fitness increased rapidly with plant size, reached a

maximum, then very slowly declined for large threshold

sizes for flowering—in contrast to what we see for Carlina.

This means that a wide range of flowering strategies are

consistent with de Jong et al.’s model, and allowance must

be made for this when testing evolutionary predictions of

the model. Given de Jong et al.’s fitness landscape we

would predict that the distribution of flowering thresholds

would be highly asymmetric with a long tail to the right

(i.e. a wide range of plants would have flowering thresh-

olds larger than the optimum or ESS prediction). One

possible explanation for the difference between these stud-

ies is that in de Jong et al. (1989) large plants had high

survival (greater than 80%) and so the fitness penalties of

having a large threshold size for flowering were relatively

small. Understanding how systematic variation in demo-

graphic rates with age and size influences fitness land-

scapes is clearly an area that warrants further study. The

hybrid matrix–integral projection model should contribute

to these studies by facilitating the precise quantitative

assessment of a broad range of life-history strategies.

APPENDIX A: DYNAMICS OF THE AGE–SIZE

INTEGRAL PROJECTION MODEL

(a) The C. vulgaris model

The age–size integral projection model for C. vulgaris

has some special features that allow an elementary analysis

based on Leslie matrix theory: (i) all living individuals

have some probability of reproducing now or later; and

(ii) the size distribution of new offspring (age = 0) is the

same for all parents:

Proc. R. Soc. Lond. B (2003)

fd(x,y) = �0(y), (A 1)

where �0 is the probability distribution of offspring size

for all parents. Thus, as with its numerical approximation

by the K̃D matrix, the forward dynamics of the model

itself can be reduced to those of a Leslie matrix model.

For the sake of future age–size models in which equation

(A 1) will often not be true, we indicate in the second

section of this appendix how the assumptions implicit in

equation (A 1) can be relaxed without affecting the con-

clusions.

Assuming equation (A 1), after a possible initial transi-

ent of length m (the maximum age), all individuals of age

j � 0 are descended from an offspring cohort with size

distribution �0 and therefore have size distributions pro-

portional to � j(y), where

� j�1(y) = �
�

� j(x) p j(x,y)dx, � j�1 = � j�1/�
�

� j�1. (A 2)

The per capita fecundity of individuals of age j is then

F j = ʃ�ʃ�� j(x)f j(x,y)dxdy and the fraction surviving to

age j � 1 is P j = ʃ�ʃ�� j(x) p j(x,y)dxdy . The state of the

population at time t is specified by the vector of the total

numbers in each age class, N(t) = [N0(t),N1(t),%,Nm(t)],

which satisfies the Leslie matrix model,

N(t � 1) = �
F0 F1 % Fm�1 Fm

P0 0 % 0 0

0 P1 % 0 0

� � � � �

0 0 % Pm�1 0
�N(t). (A 3)

This is a primitive Leslie matrix (as two successive Fs are

positive), so it has a dominant eigenvalue giving the long-

term growth rate � � 0, and the population converges to

the size distribution resulting from the corresponding eig-

envector w, n j(x,t) � C�tw j� j(x), where the constant C

depends on the initial conditions. It is straightforward to

verify that this distribution is an eigenvector of the integral

model, with eigenvalue �.

The derivation of the eigenvalue-sensitivity formula for

the size-structured integral model (Easterling 1998) uses

only the existence of the left and right eigenvectors corre-

sponding to the dominant eigenvalue �, and therefore car-

ries over to the age–size model. The existence of a

dominant left eigenvector is guaranteed by general oper-

ator theory (see § c below).

(b) A more general age–size model

In general, for an age–size model to have a unique long-

term growth rate and a stable age–size distribution, it is

not sufficient for the age-transition Leslie matrix (which

has the form of equation (A 3)) to be primitive. First, as

in a Leslie matrix, we need to eliminate individual types

that have no chance of reproducing in the future, by build-

ing the model (and estimating the kernel) as if such indi-

viduals were already dead. Otherwise, an initial population

could die out or grow depending on whether it consists

entirely of post-reproductives. We therefore assume that

for all age–size values x j there exists a q � 0 and a new-

born size y0 such that k(q)
0, j( y0,x j) � 0, where k(n)

ij denotes
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the n-step-ahead transition kernel between ages j and i;

note that q � m (the maximum possible lifespan). For this

assumption to hold, the size range � may need to be

trimmed in an age-dependent manner, so we define � j to

be the range of possible sizes for an individual of age j.

Typically, each � j will be a closed interval, but nothing

changes if each � j is a finite union of closed intervals.

We also need some degree of ‘mixing’ in the size distri-

bution, to rule out situations where small parents produce

a small number of small offspring who grow up to be small

parents with low fecundity, while large parents have a

large number of large offspring, etc. In such cases, differ-

ent initial conditions could result in different population

growth rates. One simple possibility is mixing at birth: par-

ent size affects the distribution of offspring size but not

the range of possible sizes. Formally, in place of equation

(A 1), assume that there exists a continuous non-negative

function �0(y) on �0 and constants c � 0 and C � 0 such

that all age-specific offspring-size distributions satisfy

c�0(y) � fd,a(x,y) � C�0(y) (A 4)

for all age–size values x with non-zero present fecundity.

Then, as in the Carlina model, we can define a Leslie

matrix L0 by assigning the size distribution �0 to all off-

spring and computing their future prospects. Assume that

L0 is primitive (irreducible and aperiodic). From these

assumptions we can show that some iterate of the kernel

is u-bounded (Krasnosel’skij et al. 1989), which implies the

existence of a unique positive dominant eigenvalue and

corresponding eigenvectors (see § c below). Convergence

to a stable age–size distribution from generic initial con-

ditions then follows from the spectral decomposition for

compact operators, exactly as in Easterling (1998).

(c) Details

(i) Transition operator

To understand this section, one needs to know some

functional analysis. A density-independent integral projec-

tion model defines a linear operator T on an appropriate

function space of population-distribution functions—for

the age–size model with continuous kernels this is the

space C(X) of continuous functions on the set X con-

sisting of the m size ranges �0, �1,%,�m (each regarded

as sitting in its own copy of the real line) with Lebesgue

measure and topology inherited from the real line. The

natural space of population distribution functions is

L1(X), the space of age–size distributions with a finite

total population, but as the kernel components are

bounded and continuous it follows that T maps L1(X)

into C(X), so we can regard T as an operator on C(X).

X is a compact Hausdorff space and the kernel compo-

nents are all continuous, so T is compact (Dunford &

Schwartz 1988, p. 516). T clearly preserves the cone of

non-negative continuous functions in C(X), which is a

reproducing cone (Krasnosel’skij et al. 1989, p. 9). Any

iterate Tk will also have these last two properties.

(ii) Left eigenvectors

‘Left eigenvector’ in this context means an eigenvector

of the adjoint operator T∗. For any non-zero element in

the spectrum of a compact operator (in particular, for the

dominant eigenvalue), both the operator and its adjoint

have corresponding eigenvectors (Dunford & Schwartz

1988, p. 578), as required.
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(iii) u-Bounds

Upper and lower u-bounds under mixing-at-birth can

be constructed as follows. Let n(y ,0) = n0(y) be an initial

size distribution in C(X). By assumption, there exists a

future time, q, which may depend on n0, at which some

births occur. Since L0 is primitive, there exists some time

interval Q such that all entries in Lt
0 are strictly positive

for all t � Q. Hence, at time M = m � Q, the offspring of

the individuals born at time q include individuals of all

ages j = 0,1,2,%,m. These individuals were necessarily

born 0,1,2,%,m time-steps previously. We can therefore

define Nmin(n0),Nmax(n0) as the minimum and maximum

of the total numbers of offspring born in each of those

years, with Nmin(n0) � 0 and Nmax(n0) finite since the ker-

nel is bounded. Using equation (A 4) to bracket the actual

size distributions of offspring in those years, we then have

cNminu0(y) � n(y ,M) � CNmaxu0(y), (A 5)

where u0 = (I � T � T2 � … � Tm)�0.

This is exactly the definition of TM being u0-bounded.

TM therefore satisfies the assumptions of theorems 11.1(b)

and 11.5 in Krasnosel’skij et al. (1989) and consequently

has a unique dominant eigenvalue, which is positive and

equal to its spectral radius, with all other points in the

spectrum being strictly smaller in magnitude. The same is

therefore also true for T, as shown in the proof of theorem

A4 in Easterling (1998).
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