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ABSTRACT

The linear growth rate is commonly defined through a simple deterministic relation between the

velocity divergence and the matter overdensity in the linear regime. We introduce a formalism

that extends this to a non-linear, stochastic relation between θ = ∇ · v(x, t)/aH and δ. This

provides a new phenomenological approach that examines the conditional mean 〈θ |δ〉, together

with the fluctuations of θ around this mean. We measure these stochastic components using

N-body simulations and find they are non-negative and increase with decreasing scale from

∼10 per cent at k < 0.2 h Mpc−1 to 25 per cent at k ∼ 0.45 h Mpc−1 at z = 0. Both the

stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h−1,

compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves

as a rotation of the mean 〈θ |δ〉 away from the linear theory prediction −fLTδ, where fLT is the

linear growth rate. This rotation increases with wavenumber, k, and we show that it can be

well-described by second-order Lagrangian perturbation theory (2LPT) for k < 0.1 h Mpc−1.

The stochasticity in the θ–δ relation is not so simply described by 2LPT, and we discuss

its impact on measurements of fLT from two-point statistics in redshift space. Given that the

relationship between δ and θ is stochastic and non-linear, this will have implications for the

interpretation and precision of fLT extracted using models which assume a linear, deterministic

expression.

Key words: cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

The clustering of galaxies on Mpc scales in the Universe is a funda-

mental cosmological observable which allows us to constrain key

parameters of the � cold dark matter (�CDM) model and to look

for deviations from this standard model. Understanding the rela-

tionship between peculiar velocity flows and the large-scale mass

distribution is crucial to interpreting the clustering signal measured

in redshift space, where these velocities distort the clustering ampli-

tude along the line of sight (see e.g. Peacock et al. 2001; Guzzo et al.

2008; Blake et al. 2011; Reid et al. 2012; Beutler et al. 2014). In

this paper we investigate the assumptions of a linear and determin-

istic relation between the peculiar velocity and overdensity fields

at a range of scales and redshifts. We present a general formalism

where deviations from linearity and determinism can be viewed

separately in the two-point clustering statistics of the velocity di-

vergence auto and cross-power spectra. This approach represents

a new phenomenological tool based on a stochastic description of

non-linear effects.

⋆ E-mail: ejennings@kicp.uchicago.edu

One of the key aims of future galaxy redshift surveys (Cimatti

et al. 2009; Spergel et al. 2013; Eisenstein & DESI Collaboration

2015) is to measure this linear perturbation theory relation between

the density and velocity fields, referred to as the linear growth rate,

to less than 1 per cent precision using the redshift space clustering

statistics of different galaxy tracers. This level of accuracy has mo-

tivated a lot of work in developing a precise model for the two-point

clustering statistics either as the correlation function in configura-

tion space (e.g. Reid & White 2011; Bianchi, Chiesa & Guzzo 2015)

or the power spectrum in Fourier space (e.g. Peacock & Dodds 1994;

Scoccimarro 2004; Jennings, Baugh & Pascoli 2011; Seljak & Mc-

Donald 2011; Taruya, Nishimichi & Bernardeau 2013). Note that

many of these studies are based on a mix of assumptions of either

a linear and/or deterministic density–velocity relation.

Current models for the two-point clustering statistics in redshift

space that include perturbation theory expansions have been shown

to be an improvement over linear theory in modelling these redshift

space clustering statistics. Although all are limited to very large

scales k < 0.15 h Mpc−1 at low redshifts (see e.g. Scoccimarro 2004;

Jennings et al. 2011; Kwan, Lewis & Linder 2012) and moreover

may only apply to highly biased tracers (Reid & White 2011);

none of the models can recover the linear growth rate to a per

cent level accuracy on the scales which will be probed by future

Published by Oxford University Press on behalf of The Royal Astronomical Society 2015. This work is written by (a) US Government employee(s) and is in
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3408 E. Jennings and D. Jennings

galaxy surveys. If we are to limit our analysis of redshift space

distortions to large scales, where quasi-linear theory models apply,

then it is worthwhile investigating both where the assumptions of

a linear and deterministic relation between the density and velocity

fields breaks down and how well perturbation theory expansions

can recover these components.

This formalism involving the decomposition of the two-point

statistics into non-linear and stochastic components is both well de-

fined and consistent with a full perturbation theory expansion of all

the non-linear effects. The approach provides an alternative, more

phenomenological description of such non-linear effects. In con-

sidering either the galaxy–dark matter overdensity relation or the

velocity–overdensity relation, there is a general notion of stochas-

ticity which is often not well defined and or vaguely explained as

due to a non-linear coupling of modes. In this paper, our use of the

term stochasticity refers to the break-down of a deterministic rela-

tion that exists in the linear regime between the growing overdensity

field and the velocity divergence. We also discuss the connection be-

tween such a notion of stochasticity and mode coupling in standard

perturbation theory.

It is well known that the halo or galaxy overdensity field does not

trace the dark matter field faithfully and that the relation between

the two is generally described by a linear bias term which is scale-

independent and is different for different galaxy tracers (see e.g.

Dekel & Lahav 1999; Kravtsov & Klypin 1999). Recently there

is renewed interest in considering the stochasticity in this relation

on large scales (Seljak & Warren 2004; Bonoli & Pen 2009; Sato

& Matsubara 2013) where previously we would have assumed a

linear, deterministic relationship to hold. Also, as noted in Seljak

& Warren (2004), dominant perturbative corrections come from

mode coupling at wavelengths close to the wavelength of the mode

itself. Long wavelength modes sampled from a finite volume can

have significant fluctuations which would give rise to significant

fluctuations in second-order corrections.

There have been many studies that have compared the two-point

statistics of the matter and velocity divergence fields and found

them to be non-linear on large scales (k ∼ 0.1 h Mpc−1) which

are traditionally considered the linear regime (Scoccimarro 2004;

Percival & White 2009; Jennings et al. 2011, 2012; Crocce, Scocci-

marro & Bernardeau 2012; Jennings 2012). Jennings (2012) mea-

sured this non-linearity as the deviation of the velocity divergence

power spectra Pθθ := 〈θ (k)θ∗(k′)〉 and Pθδ := 〈θ (k)δ∗(k′)〉 from

linear perturbation theory predictions and found it to be at the level

of 20 and 10 per cent, respectively, at k ∼ 0.1 h Mpc−1. Note that

these non-linear features are at the level of the ensemble averaged

two-point statistics. In contrast, in this work we will examine the

velocity divergence–overdensity relation, θ–δ, in Fourier space at

each wavenumber where we can separate the notion of non-linear

and stochastic effects.

Bernardeau et al. (1999) investigated the statistical relation be-

tween the density and velocity fields in the mildly non-linear regime,

focusing on the conditional probability distribution P(θ |δ) of the

smoothed fields in configuration space. This study of the stochastic

relationship between the two fields used simulations of a small vol-

ume, (200 Mpc h−1)3, and low resolution, 1283 particles, by today’s

standards. Given the high resolution and large volume simulations

we have available today and our knowledge of how sensitive veloc-

ity statistics are to resolution effects (Pueblas & Scoccimarro 2009;

Jennings et al. 2011; Biagetti et al. 2014; Zheng, Zhang & Jing 2014;

Jennings, Baugh & Hatt 2015), it is important to revisit this study.

In this paper we explore a formalism that defines both a non-linear

and a stochastic relation between the velocity divergence and the

conditional mean value of this function at a given overdensity. We

also investigate the variance of the velocity divergence around this

relation as a function of scale, which defines a stochastic description

of non-linear effects.

The paper is laid out as follows: in Section 2 we describe the

N-body simulations and tessellation techniques used to measure

both the density and velocity divergence fields of dark matter and

haloes in this paper. In Section 3.1 we present the linear pertur-

bation theory relation between the density and velocity fields. In

Sections 3.2 we outline the main formalism in this paper which

defines the non-linearity and the stochastic relation between the

velocity divergence and overdensity fields and give expressions for

the two-point statistics. In Section 4 we present our results. The

measurement of the conditional mean relation and scatter about this

mean are presented in Sections 4.1 and 4.2 for dark matter and

in Section 4.3 for haloes. In Section 4.4 we relate the two-point

functions in this paper to both one loop standard perturbation and

second-order Lagrangian perturbation theory (2LPT) predictions.

In Section 5 we discuss the impact of a non-linear and stochastic

relation between the velocity and density fields on models for the

power spectrum in redshift space. In Section 6 we summarize our

results.

2 D E N S I T Y A N D V E L O C I T Y T WO - P O I N T

STATI STI CS FROM N- B O DY SI M U L AT I O N S

In Section 2.1 we present the details of the dark matter N-body

simulations and the MultiDark halo catalogue used in this work.

In Section 2.2 we outline the methods used to measure both the

velocity divergence power spectrum and the matter power spectrum

as a function of scale.

2.1 N-body simulations

We use the N-body simulations carried out by Li et al. (2012, 2013).

These simulations were performed using a modified version of

the mesh-based N-body code RAMSES (Teyssier 2002). Assuming

a �CDM cosmology, the following cosmological parameters were

used in the simulations: �m = 0.24, �DE = 0.76, h = 0.73 and a

spectral tilt of ns = 0.961 (in agreement with e.g. Sánchez et al.

2009). The linear theory rms fluctuation in spheres of radius 8

h−1 Mpc is set to be σ 8 = 0.769. The simulations use N = 10243

dark matter particles to represent the matter distribution in a compu-

tational box of comoving length 1500h−1Mpc. The initial conditions

were generated at z = 49 using the MPGRAFIC
1 code. The errors on

the power spectra in this work are calculated from the variance in

the two-point statistics from six simulations of the same cosmol-

ogy initialized with different realizations of the dark matter density

field.

We use the publicly available halo catalogues from the MultiDark

simulation (Riebe et al. 2011; Prada et al. 2012) which has a com-

putational box size of L = 1000 h−1Mpc on a side. These haloes

have been identified using the Bound-Density-Maxima algorithm

(Klypin & Holtzman 1997). The halo sample we use in this work

consists of all haloes with M ≤ 5 × 1012 h−1 M⊙ at z = 0 and 1.

The error on the halo power spectrum in a spherical shell of width

δk is estimated using the following formula derived by Feldman,

Kaiser & Peacock (1994):

σ

P
=

√

(2π)2

V k2δk

(

1 +
1

P n̄

)

, (1)

1 http://www2.iap.fr/users/pichon/mpgrafic.html

MNRAS 449, 3407–3419 (2015)
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Non-linear stochastic growth rates 3409

where n̄ is the number density and V is the volume. We measure

the linear bias, b, for this sample of haloes by fitting to the ratio

b =
√

〈δHδ∗
H〉/〈δLTδ∗

LT〉 on large scales k < 0.1 h Mpc−1, where δH

is the non-linear halo overdensity in Fourier space. Here 〈δLTδ∗
LT〉

is the z = 0 linear theory power spectrum generated using CAMB

with the same cosmological parameters used in the MultiDark

simulations.

2.2 Measuring the density and velocity fields

The non-linear matter and halo power spectra are measured from

the simulations by assigning the particles to a mesh using the cloud

in cell assignment scheme (Hockney & Eastwood 1988) on to a

5123 grid and performing a fast Fourier transform of the density

field. To compensate for the mass assignment scheme we perform

an approximate deconvolution following Baumgart & Fry (1991).

Measuring the velocity divergence field accurately from numeri-

cal simulations on small scales can be difficult if a mass-weighted

approach is used as in Scoccimarro (2004), Pueblas & Scoccimarro

(2009), and Jennings et al. (2011). Some volume-weighted measures

of the velocity field have also been developed (see e.g. Bernardeau

& van de Weygaert 1996; Colombi, Chodorowski & Teyssier 2007)

including the Delaunay tessellation field estimator (DTFE) method

(Schaap 2007; Cautun & van de Weygaert 2011).

In the mass-weighted approach, simply interpolating the veloc-

ities to a grid, as suggested by Scoccimarro (2004), gives the mo-

mentum field which is then Fourier transformed and divided by

the Fourier transform of the density field, which results in a mass-

weighted velocity field on the grid. One of the main problems with

this approach is that the velocity field is artificially set to zero in

regions where there are no particles, as the density is zero in these

empty cells. Pueblas & Scoccimarro (2009) also found that this

method does not accurately recover the input velocity divergence

power spectrum on scales k > 0.2 h Mpc−1 interpolating the veloc-

ities of 6403 particles to a 2003 grid. Using simulations of 10243

particles in a 1.5 h−1Gpc box, Jennings et al. (2011) found that the

maximum grid size that could be used was 3503 without reaching

the limit of empty cells.

In this paper the velocity divergence fields are measured from the

N-body simulations using the DTFE method (Schaap 2007; Cautun

& van de Weygaert 2011). This code constructs the Delaunay tessel-

lation from a discrete set of points and interpolates the field values

on to a user defined grid. For the Lbox = 1500 h−1 Mpc simulation,

we generate all two-point statistics on a 5123 grid. We have verified

that our results do not change when we increase the grid size to

10243, demonstrating that our two-point clustering statistics have

converged on the relevant scales in this paper. The velocity diver-

gence field is interpolated on to the grid by randomly sampling the

field values at a given number of sample points within the Delaunay

cells and then taking the average of those values. The resolution

of the mesh used in this study means that mass assignment effects

are negligible on the scales of interest here. Throughout this paper

the velocity divergence is normalized to a dimensionless quantity

=−∇ · v/(aH), where v is the peculiar velocity, H is the Hubble

parameter, and a is the scalefactor.

It has recently been shown that there exists a non-negligible

velocity bias on large scales between the halo and dark matter

velocity fields. This is a statistical manifestation of sampling effect

which increases with decreasing number density (see e.g. Biagetti

et al. 2014; Zheng et al. 2014; Jennings et al. 2015). We use haloes

of mass M ≤ 5 × 1012 h−1 M⊙ from the MultiDark simulation

which have a number density of n̄ = 1.23 × 10−2 (Mpc h−1)−3 at

z = 0 so that the velocity bias is negligible on the relevant scales

discussed in this paper. Note that certain methods of measuring

either the velocity or velocity divergence field, e.g. the nearest grid

point method, can induce extra sampling effects in addition to the

statistical bias mentioned above (see e.g. Zhang, Zheng & Jing

2015); the DTFE method does not suffer from the same sampling

effects (Schaap 2007) and will not impact our analysis which is

restricted to scales k < 0.45 h Mpc−1.

3 T H E D E N S I T Y– V E L O C I T Y F I E L D

R E L AT I O N

3.1 Linear theory

At large scales the Universe is homogeneous and the fluctuation

fields δ(x, t) = ρ(x, t)/ρ̄ − 1, v(x, t),	(x, t) are small compared

to the smooth background contributions. A Eulerian approach to

density fluctuations relies on a truncation of the full Vlasov equation

and the imposition of an equation of state. Under the assumption of

zero shear, the linear regime is then described by the continuity and

Euler equations,

∂δ(x, τ )

∂τ
+ ∇ · v(x, τ ) = 0 (2)

∂v(x, τ )

∂τ
+ aHv(x, τ ) = −∇	(x, τ ) , (3)

where dt = adτ . The linear theory growth rate, fLT is defined as the

logarithmic derivative of the overdensity field, and is dependent on

the cosmological parameters,

fLT(�m, ��) :=
dlnδ

dlna
. (4)

The growing mode solution for δ(x, t) admits a product form

in which it separates as δ(x, t) = D(t)δ(x, 0), where D is the

linear growth factor. For this product form the linear growth

rate becomes the logarithmic derivative of the growth factor,

fLT(t) = dlnD(t)/dlna.

Together with the linear continuity equation, we find that the

velocity divergence and overdensity fields are simply related as

θ (x, t) :=
∇ · v(x, t)

aH
= −fLT(�m, ��)δ(x, t), (5)

where we define θ as the velocity divergence in units of (aH) and

v(x, t) is the comoving peculiar velocity. Since we are within the

linear regime, this relation carries over trivially to Fourier space,

where θ (k, t) = −fLTδ(k, t). Put another way, the linear regime is

special in that it admits the introduction of a linear growth rate

fLT(�m, ��) that is independent of the scale at which we measure

the perturbations.

However, we do not expect this relation to hold once the den-

sity fluctuations in the fields become large, and non-linear growth

starts to generate mode-coupling. In what follows we shall analyse

to what extent it is possible to sensibly extend the central relation

(equation 5) beyond the linear regime, and to provide meaningful

insights into bulk characteristics that arise from non-linearities. We

find that the relation is modified in essentially two ways: first one

finds a growth factor that is scale-dependent due to non-linearities,

and secondly we find that the deterministic one-to-one relation be-

tween θ and δ is weakened to a stochastic relation. In Section 4.4

we describe how these results are understood from the perspective

MNRAS 449, 3407–3419 (2015)
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3410 E. Jennings and D. Jennings

of perturbation theory, and in Section 5 discuss implications for

redshift space distortions.

3.2 A non-linear stochastic relation between the density and

velocity fields

Random fields in cosmology are used to represent a single real-

ization of the dark matter distribution within a given cosmology.

As these fields evolve under gravity, non-linearities give rise to a

growth in structure which induces correlations between different

scales. The full non-linear equations of motion in Fourier space are

given by

1

aH
∂τ δ(k, τ ) + θ (k, τ ) = −

∫

d3k1A(k1, k − k1)θ (k1)δ(k − k1)

(6)

∂τ θ (k, τ ) + aHθ (k, τ ) +
3

2
�maHδ(k, τ )

= −
∫

d3k1B(k1, k − k1)θ (k1)θ (k − k1) , (7)

where we have the mode-coupling functions

A(k1, k2) =
(k1 + k2) · k1

k2
1

B(k1, k2) =
|k1 + k2|2(k1 · k2)

2k2
1k

2
2

. (8)

The terms on the right-hand side of both equation (6) and (7) en-

code the non-linear evolution of the fields (see e.g. Bernardeau et al.

2002, for a review). Computing the perturbative components for

these non-linear contributions is an ongoing challenge, and the com-

plexity increases rapidly with higher order terms (see e.g. Crocce

& Scoccimarro 2006, 2008). In what follows we construct a phe-

nomenological approach to describe the breakdown of the linear

theory relationship in simple terms.

As mentioned, the departure point from linear theory that pro-

vides our focus is the relationship between the overdensity field

and the velocity divergence. To illustrate this breakdown the up-

per (lower) left panel of Fig. 1 shows the scatter in the ratio of

Re[θ (k)/δ(k)] and Im[θ (k)/δ(k)] as a function of wavenumber, k,

measured from the simulations at redshift z = 0.

Figure 1. The upper and lower-left panels show the ratio of Re(θ (k)/δ(k)) (Im(θ (k)/δ(k))) as a function of wavenumber, k, measured from the simulations at

z = 0. The joint pdf P(log|θ |2, log|δ|2) is plotted in the top-right panel. The ratio of the magnitudes |θ |2/|δ|2 for each mode is plotted in the lower-right panel

as a function of scale. In all panels the linear theory prediction for the θ–δ relation is shown as a red dashed line.

MNRAS 449, 3407–3419 (2015)
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Non-linear stochastic growth rates 3411

Significant scatter exists in the Fourier modes about the linear

theory relation (red dashed line), and which increases as a function

of scale. In the lower-right panel of this figure we also plot the

ratio of the magnitudes |θ (k)|/|δ(k)| as a function of scale, which

demonstrates that this scatter is not due to an arbitrary phase dif-

ferences between the modes, and which could have cancelled when

computing the two-point statistics of the fields. The scatter in the

θ–δ relation is also shown in the upper-right panel of Fig. 1, where

we plot the PDF of the logarithm of |θ2| and |δ2|.
First, we introduce a conditioned velocity divergence quantity

〈θ |δ〉 that is derived from the conditional distribution P(θ |δ). More

explicitly, we define 〈θ (k, t)|δ〉 :=
∫

Dθ P (θ |δ)θ (k, t) for the con-

ditional expectation value of θ . The resultant term has a dependence

on the particular overdensity that is realized. In the linear regime a

direct relation exists between θ and δ, and corresponds to a delta

function distribution in P(θ , δ) for which P(θ |δ) is perfectly sharp,

or ‘deterministic’, and encodes the relation θ = −fLTδ. However

we can extend this to a more general scenario that drops this sharp

relation in favour of a stochastic one. We define a growth rate

fδ(�m, ��, k), in momentum space, as

fδ(�m, ��, k) := −
1

δ(k, t)
〈θ (k, t)|δ〉θ |δ. (9)

Here the generalized growth rate now has an explicit dependence

on the overdensity field that is being conditioned on, in addition

to a potential scale dependence. Importantly, in the linear regime

this function coincides with the linear growth rate fLT, but more

generally becomes a stochastic quantity for which moments can be

computed.

To estimate the non-linear distortions to the effective growth rate,

it is instructive to compute the following moments:

f̂ :=
〈〈θ |δ〉δ〉

〈δ2〉
=

−〈fδδ
2〉δ

〈δ2〉
(10)

f̃ 2 :=
〈〈θ |δ〉〈θ |δ〉〉

〈δ2〉
=

〈

f 2
δ δ2

〉

δ

〈δ2〉
, (11)

where by definition, 〈δ〉 = 0. Here 〈 · 〉δ denotes an ensemble average

with respect to the probability distribution function P(δ); however,

from now on we will omit the subscript from any ensemble average

notation, for simplicity. In the linear regime we automatically have

that |f̂ | = |f̃ | = fLT(�m, ��), as expected.

In addition to these non-linear distortions to f, we recall that the

essential connection between θ and δ gradually becomes diluted to

a stochastic one. This can be quantified through the fluctuations of

θ (k) about the conditional expectation. In particular, we consider

the following random field

α(k, t) := θ (k, t) − 〈θ (k, t)|δ〉 (12)

whose variance provides a suitable measure, and is given by

σ 2
α =

〈α2〉
〈δ2〉

=
〈θ2〉 − 〈〈θ |δ〉2〉

〈δ2〉
. (13)

Again if the linear continuity equation, equation (5), holds then

σ α = 0 and stochastic relation vanishes. Section 4 contains a closer

examination of the non-linear moments in equations (10) and (11),

and the magnitude of α measured from the N-body simulations as

a function of both scale and redshift.

More generally it is seen that the quantity f̂ is related to the

expected velocity divergence at a particular scale through the

relation

〈θ〉 = −
∫

d3k1A(k1, k − k1)

×
[

f̂ 〈δ(k1)δ(k − k1)〉 + 〈α(k1)δ(k − k1)〉
]

, (14)

which follows from the full non-linear continuity equation. A par-

allel relation for f̃ can be obtained, and from the Euler equation we

find

〈θ̇〉 = −
∫

d3k1

[

B(k1, k − k1)(f̃ 2〈δ(k1)δ(k − k1)〉 + 〈α(k1)α(k − k1)〉)

−A(k1, k − k1)(f̂ 〈δ(k1)δ(k − k1)〉 + 〈α(k1)δ(k − k1)〉)
]

,

(15)

where α quantifies the deviation from a deterministic relation be-

tween θ and δ and we have used the fact that 〈θ (k2)θ (k1)〉 =
〈〈θ (k1)|δ〉〈θ (k2)|δ〉〉 − 〈α(k1)α(k2)〉.

The quantities f̂ and f̃ are readily extracted from simulations,

for which we restrict the analysis of velocity and overdensity fields

to large scales to avoid issues associated with the measurement of

the velocity field in an unbiased way (Pueblas & Scoccimarro 2009;

Jennings et al. 2011).

As a side note, it is common to address the degree of stochasticity

between two random functions X and Y by measuring the cross-

correlation coefficient r = 〈XY 〉/
√

〈|X|2〉〈|Y |2〉 as a function of

scale. This is a different notion of stochasticity to the one discussed

in this paper, and relates to either a bias between the two fields at the

level of the two-point functions, 〈|Y |2〉 = b2pt〈|X|2〉 or a more spe-

cific local bias Y = blocalX. As pointed out by Dekel & Lahav (1999),

the bias between the two-point statistics follows from a local deter-

ministic bias, and is the square of the local bias but the converse does

not necessarily follow. In this case the cross-correlation coefficient

is a measure of r = b2pt/blocal and is not necessarily unity. Here the

bias blocal could represent the familiar bias between the mass and

halo/galaxy overdensity or we could view it as the linear growth

rate in the overdensity–velocity divergence relation in linear theory.

As pointed out by Seljak & Warren (2004), the cross-correlation

coefficient can be close to unity despite fluctuations about a local

bias being large.

3.3 Decomposition of two-point functions

It is also instructive to decompose the two-point functions

〈θ (k1)δ(k2)〉 and 〈θ (k1)θ (k2)〉 into contributions coming from the

non-linear corrections and stochasticity in the θ–δ relation. The

two-point function for α(k, t) in equation (12) decomposes as

〈α(k, t)α∗(k′, t)〉 = 〈〈θ (k, t)|δ〉〈θ∗(k′, t)|δ〉〉 − 〈θ (k, t)θ∗(k′, t)〉 .

From this the two-point functions of interest – the auto and cross-

power spectra between the conditional mean of 〈θ |δ〉 and δ – can

be expressed as

〈θ1δ
∗
2〉 = f̂12〈δ1δ

∗
2〉 + 〈α1δ

∗
2〉

= 〈〈θ1|δ〉δ∗
2〉 + 〈α1δ

∗
2 〉 (16)

〈θ1θ
∗
2 〉 = f̃ 2

12〈δ1δ
∗
2〉 + 〈α1α

∗
2〉

= 〈〈θ1|δ〉〈θ2|δ〉〉 + 〈α1α
∗
2〉. (17)
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3412 E. Jennings and D. Jennings

Here we employ the short-hand notation Xi for one-point quantities

X(ki) and Yij for two-point quantities Y (ki, kj ). Note that f̂ and f̃

are now evaluated as two-points functions. This separates out the

non-linear and stochastic components, as defined in Section 3.2 in

a natural way, and emphasizes the different dependence on stochas-

ticity for the auto-correlation and cross-correlation spectra. Also

note that this approach is in contrast to previous studies (Scoc-

cimarro 2004; Percival & White 2009; Jennings et al. 2011, 2012;

Crocce et al. 2012; Jennings 2012) which compare the ensemble av-

eraged statistics Pθδ = 〈θ1δ
∗
2 〉 and Pθθ = 〈θ1θ

∗
2 〉 with Pδδ = 〈δ1δ

∗
2〉

as a function of scale. In Section 4 we present the measurements of

these two-point functions and test the decomposition into non-linear

and stochastic components given in equations (16) and (17).

4 R ESU LTS

We now provide a more detailed account of how the quantities in-

troduced in the previous section behave in practice. The values of f̂

and f̃ are computed in Section 4.1 at different scales, and compared

with linear theory. The deviation of θ from the conditional mean

〈θ |δ〉 is addressed in Section 4.2, both as a function of scale and

redshift. We verify that the decomposition of the two-point statis-

tics into non-linear and stochastic parts as defined in Section 3.2

is reproduced within the simulation and we present the measured

two-point statistics in each case.

It turns out that haloes display these features more dramatically

than dark matter, and this is discussed in Section 4.3, where we mea-

sure 〈θ |δ〉 and the associated two-point functions for haloes with

masses M ≤ 5 × 1012 M⊙ h−1 from the MultiDark simulations. An

obvious question is: To what degree are these features reproduced by

existing perturbative results, and do the decompositions presented

simply correspond with a particular perturbative order? To this end,

in Section 4.4 we compare our results with standard perturbation

theory to third-order and second-order Lagrangian perturbation the-

ory predictions for the two-point functions 〈θθ〉 and 〈θδ〉.

4.1 Non-linear growth functions f̂ and f̃

The degree to which the moments given in equations (10) and (11)

in Section 3.2 differ from fLT are a measure of the deviations from

linearity, and provide effective non-linear growth rates. In Fig. 2

we plot these two moments, f̂ and f̃ , as a red solid (for fLT), blue

dot–dashed and black dashed lines, respectively, measured from the

non-linear dark matter density field in the simulations at z = 0.

Note that the two moments f̂ and f̃ that are plotted are the average

of six N-body simulations initialized with different realizations of

the matter density field at early times. The variance of f̃ from these

six simulations is shown as a grey shaded region.

We find a notable difference between the three growth rates,

and even on large scales, such as k < 0.1 h Mpc−1, neither f̂ nor

f̃ correspond to the linear theory growth rate fLT. We find that

the ratio of the two-point functions
√

〈θθ〉/〈δδ〉 and 〈δθ〉/〈δδ〉 do

converge to the linear theory result fLT on much larger scales k <

0.02 h Mpc−1 in agreement with previous work (Scoccimarro 2004;

Percival & White 2009; Jennings et al. 2011, 2012; Crocce et al.

2012; Jennings 2012). Taking the decomposition of each of these

two-point functions given in equations (16) and (17) into account

this implies that on large scales the ratio of the stochastic two-

point functions 〈αδ〉 and 〈αα〉 to 〈δδ〉 is at a minimum 10–15 per

cent of fLT at k < 0.1 h Mpc−1. We demonstrate that both of these

decompositions are valid in Section 4.2.

Figure 2. The first moments of f̂ and f̃ , given in equations (10) and (11),

measured from the simulations at z = 0 are shown as a blue dot–dashed and

black dashed lines, respectively. The linear theory growth rate is shown as a

red solid line in this figure. The variance in f̃ measured from six realizations

of the same cosmology is shown as the grey shaded region.

4.2 The stochastic relation between θ and δ

In Fig. 3 we plot the conditional expectation 〈θ |δ〉 as an orange

dashed line. This is the average over six realizations, measured

from the simulations by simply binning in Re δ(k) and finding the

mean Re θ (k) at z = 0 at the two scales k = 0.1 h Mpc−1 (left-

hand panel) and 0.2 h Mpc−1 (right-hand panel), while the linear

theory relation between δ and θ is plotted as a red line. The real

component of the Fourier modes measured from one simulation at

each wavenumber are shown as black dots. At each scale k there

is significant scatter between the Fourier modes measured from

the simulations, and 〈θ |δ〉 differs from linear perturbation theory

predictions of θ = −fLTδ. It is also clear from these two panels that

the difference between 〈θ |δ〉 and −fLTδ increases with increasing k

into the non-linear regime.

There are two notable effects which are evident from Fig. 3.

First, the non-linearity we are describing with the conditional mean

〈θ |δ〉 manifests as an approximate rotation about the linear theory

prediction (orange dashed line in Fig. 3 compared to the solid red

line) which is linear in δ but with a scale-dependent coefficient

i.e. 〈θ |δ〉 ∼ −fLTδ + c(k)δ, where c is an increasing function of

scale. In Section 4.4 we show that this functional dependence can

be explained on large scales by 2LPT. The second thing to note from

these plots is that the stochastic scatter around 〈θ |δ〉 is non-zero and

increases with increasing wavenumber k. At both scales we find

that for δ > 0( < 0) the mean relation 〈θ |δ〉 is larger (smaller) then

the linear theory prediction, corresponding to an effective growth

factor that is larger than linear theory.

The corresponding plot at z = 0.4 is shown in Fig. 4 for the

same two scales. At higher redshifts we see the same trend with

〈θ |δ〉 behaving as a rotation away from −fLTδ for linear theory.

This difference increases with increasing wavenumber although

this difference is smaller than at z = 0 due to increased non-linear

growth at later redshifts as expected. We also note a reduction is

MNRAS 449, 3407–3419 (2015)
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Non-linear stochastic growth rates 3413

Figure 3. The conditional expectation 〈θ (k)|δ〉 (orange dashed line) at k = 0.1 h Mpc−1 (left) and k = 0.2 h Mpc−1 (right) at z = 0, together with the linear

theory relation between δ and θ (red line) and the real Fourier modes (black dots) measured from a �CDM simulation (Lbox = 1500 Mpc h−1) at z = 0. In the

right-hand panel we show the conditional expectation 〈θ |δ〉LPT from second-order Lagrangian perturbation theory as a cyan dot–dashed line. The inset panel

shows the ratio of the two-point function 〈〈θ |δ〉〈θ |δ〉〉/〈θθ〉LPT measured from the simulations at z = 0 as a function of scale as a blue solid line.

Figure 4. The conditional expectation 〈θ (k)|δ〉 (orange dashed line) at k = 0.1 h Mpc−1 (left) and k = 0.2 h Mpc−1 (right) at z = 0.4, together with the linear

theory relation between δ and θ (red line) and the real Fourier modes (black dots) measured from a �CDM simulation.

the range of δ values at z = 0.4 compared to z = 0. An identical

number of modes have been used at each scale and redshift.

The decomposition of the two-point functions 〈θδ〉 and 〈θθ〉 into

non-linear and stochastic parts, as in equations (16) and (17), is

readily verified numerically. In Fig. 5 we plot the ratios of the RHS

of equations (16) and (17) to 〈θ1δ2〉 and 〈θ1δ2〉 as red dashed and

green dot–dashed lines, respectively. We find these ratios are unity

which verifies the decompositions in equations (16) and (17) from

the simulations. This result is non-trivial as all of the two-point

statistics have been measured independently from the simulations

i.e. 〈〈θ |δ〉δ〉 is an ensemble average over the mean θ given δ (orange

dashed line in Fig. 3) times δ. This is in contrast to 〈θδ〉 which is

the ensemble average over each θ and δ (black dots in Fig. 3).

In Fig. 5 we also plot the ratios 〈〈θ |δ〉〈θ |δ〉〉/〈θθ〉 and

〈〈θ |δ〉δ〉/〈θδ〉 measured from the simulations at z = 0 as black

dashed and blue dot–dashed lines, respectively. The shaded regions

in this plot represent the variance amongst six realizations of the

same cosmology. We find that the stochastic components contribute

∼10 per cent to the two-point function 〈θ1θ2〉 while it contributes

about a 1 per cent to 〈θ1δ2〉 at k < 0.2 h Mpc−1. The stochastic

component of the velocity divergence auto power increases to ap-

proximately 25 per cent by k = 0.45 h Mpc−1. In the upper and

lower panels of Fig. 6 we show similar power spectra ratios to those

in Fig. 5 at z = 0.4 and 1, respectively. We find that the stochastic

component of the velocity divergence power spectrum is slightly re-

duced at higher redshifts as there is less non-linear growth present

at earlier times which would induce a larger variation in θ from

〈θ |δ〉.

4.3 Behaviour of 〈θ |δ〉 and α for dark matter haloes

In Fig. 7 we show the conditional expectation 〈θ (k)|δ〉 as a purple

dashed line, measured at k = 0.1 h Mpc−1 (left-hand panel) and

0.2 h Mpc−1 (right-hand panel) from the MultiDark simulations

MNRAS 449, 3407–3419 (2015)
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3414 E. Jennings and D. Jennings

Figure 5. The ratio of the two-point functions in equations (16) and (17) to

〈θ1δ2〉 and 〈θ1θ2〉 measured from the simulations at z = 0 are shown as red

dashed and green dot–dashed lines, respectively. The ratios of the two-point

functions 〈〈θ1|δ〉δ2〉/〈θ1δ2〉 and 〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 are shown as a blue

dot and black dashed lines, respectively. The shaded cyan and grey regions

show the variance of these ratios measured from six simulations.

using haloes with masses M < 5 × 1012 M⊙ h−1. The real Fourier

modes ReθH(k) and ReδH(k) are shown as grey dots in both panels.

We plot the linear theory prediction θH = −fLT/bδH, where b is

the linear bias on large scales as a red solid line. The red dotted

lines either side of the linear theory prediction represent a ±10 per

cent error in the linear bias. For this halo sample, we find that the

linear bias is b ∼ 0.81 ± 0.09 and is reasonably linear on scales k

≤ 0.2 h Mpc−1 (see also e.g. Jennings et al. 2015).

It is clear that there is significant scatter about the mean 〈θ (k)|δ〉
and that this conditional expectation differs from the linear theory

prediction by an approximate rotation. If we compare these results

with Fig. 3 in Section 4.2 for the dark matter we see that at the

same redshift, the deviation of 〈θ (k)|δ〉 from the linear theory pre-

diction and the scatter about the conditional mean given by α, is

much larger for the halo sample then for the dark matter at both k

scales. Note these two simulations have slightly different cosmolo-

gies, for example �m = 0.24 (0.27) in the dark matter (MultiDark)

simulations, which may account for some of these differences.

In Fig. 8 we plot the ratio of the two-point function

〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 measured at z = 0 and 1 for the same halo

sample as black dashed and purple dot–dashed lines, respectively.

The shaded tan region represents the error on the measured power

spectra given in equation (1) in Section 2.1. We have also verified

that the decomposition of the two-point functions into non-linear

and stochastic parts, as given in equations (16) and (17), holds for

the halo two-point functions. We have omitted this from Fig. 8 for

clarity. Therefore any deviation from unity in this figure indicates the

magnitude of the stochastic component. We find that the stochastic

component of the two-point function 〈θ1θ2〉 is significant and ap-

proximately a constant fraction (∼15 per cent) at k < 0.25 h Mpc−1

at both z = 0 and 1. The differences between the halo sample and

the dark matter distribution, in how the conditional mean deviates

Figure 6. The ratio of the two-point functions in equations (16) and (17) to

〈θ1δ2〉 and 〈θ1δ2〉 measured at z = 0.4 (top panel) and at z = 1 (lower panel)

are shown as red dashed and green dot–dashed lines, respectively. The ratios

of the two-point functions 〈〈θ1|δ〉δ2〉/〈θ1δ2〉 and 〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 are

shown as a blue dot and black dashed lines, respectively. The shaded cyan and

grey regions show the variance of these ratios measured from six simulations.

from the linear theory predictions and the scatter around that mean

as a function of wavenumber, cannot be only due to a difference

in cosmological parameters. As shown in Fig. 8 we find that the

velocity divergence auto power spectrum has a larger stochastic

component in the halo sample compared to the dark matter at both

redshifts.

4.4 The relation to standard and Lagrangian perturbation

theory

In this section we connect the formalism presented in Section 3.2

to perturbation theory methods. First we consider standard pertur-

bation theory predictions for both the velocity divergence auto- and

MNRAS 449, 3407–3419 (2015)
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Non-linear stochastic growth rates 3415

Figure 7. The conditional expectation 〈θ (k)|δ〉 (purple dashed line) measured using haloes with M < 5 × 1012 M⊙ h−1 in the MultiDark simulation at

k = 0.1 h Mpc−1 (left) and 0.2 h Mpc−1 (right) at z = 0. The linear theory relation θH = −fLT/bδH, where b is the linear bias on large scales is shown as a red

solid line. The red dotted lines either side of the linear theory prediction represent a ±10 per cent error in the linear bias. The real Fourier modes measured

using this halo catalogue at each wavenumber are shown as grey dots.

Figure 8. The ratio of the two-point function 〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 mea-

sured at z = 0 and 1 using haloes with M < 5 × 1012 M⊙ h−1 from the

MultiDark simulation are shown as black dashed and blue dot–dashed lines,

respectively. The shaded tan region represents the error on the measured

power spectra given in equation (1) in Section 2.1.

cross-power spectra, 〈θθ〉 and 〈θδ〉, computed up to third order (see

e.g. Bernardeau et al. 2002, for a review). The non-linear veloc-

ity divergence auto P (k) computed from third-order perturbation

theory is given by

〈θθ〉PT(k) = P (k) + P22(k) + 2P13(k), (18)

where P (k) denotes the linear power spectrum and the scale-

dependent functions P22 and P13 are given by

P22(k) = 6P (k)

∫

d3qG3(k, q)P (q) (19)

P13(k) =
∫

d3q[G2(k − q, q)]2P (k − q)P (q) , (20)

where the kernel G2 is given by

G2(k, q) =
μ2

2
+

1

2
k̂ · q̂

(

k

q
+

q

k

)

+
4

7

(

k̂i k̂j −
1

3
δij

) (

q̂i q̂j −
1

3
δij

)

, (21)

where μ2 = 26/21 and the angle averaged G3 kernel is given in e.g.

equation (69) in Scoccimarro (2004). A similar expression for the

velocity divergence cross-power spectrum to third order can also be

found in (Scoccimarro 2004).

In order to compare the formalism in this paper, which decom-

poses the velocity divergence two-point statistics into non-linear

and stochastic elements as given in Section 3.2, with perturbation

theory methods we simply calculate the individual power spectra

in equation (18) and compare them with the measure two-point

velocity divergence statistics. In Fig. 9 we show the ratio of the

one loop perturbation theory predictions for the velocity divergence

cross- and auto-power spectra to 〈θδ〉 and 〈θθ〉, measured from

the dark matter-only simulations at z = 0, as a grey dot–dashed

and black dashed lines, respectively. The pink and cyan error bars

show the variance in these ratios from six simulations with differ-

ent realizations of the initial density field. The ratios of P11 + P22

calculated from one loop perturbation theory for the both cross- and

auto-power spectrum to 〈θδ〉 and 〈θθ〉 are shown as blue solid and

orange dot–dashed lines, respectively.

By comparing Figs 5 and 9 we can see that at the level of third-

order perturbation theory that the standard perturbation theory pre-

diction and the formalism in this paper deviate substantially and

no simple identification can be made. Even on large scales, k <

0.05 h Mpc−1, where the perturbation theory predictions match the

measured power spectra from the simulations to ∼5 per cent we can-

not simply relate the mode coupling terms P13, which are negative,

to the stochastic power spectra 〈αα〉 and 〈αδ〉.
Next we consider 2LPT predictions for the θ–δ relation (Gra-

mann 1993; Bouchet et al. 1995; Melott, Buchert & Weib 1995;

MNRAS 449, 3407–3419 (2015)
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3416 E. Jennings and D. Jennings

Figure 9. The ratio of the one loop perturbation theory prediction for the

velocity divergence cross- and auto-power spectra (equation 18) to 〈θδ〉 and

〈θθ〉 measured from the dark matter-only simulations are shown a grey dot–

dashed and black dashed lines, respectively. The pink and cyan error bars

show the variance in these ratios from six simulations with different realiza-

tions of the initial density field. Similar ratios of P11 + P22 calculated from

one loop perturbation theory for the both cross- and auto-power spectrum

are shown as blue solid and orange dot–dashed lines as given in the legend.

Bouchet 1996; Kitaura et al. 2012). Lagrangian perturbation theory

represents an alternative framework to the Eulerian approach, and

the non-linear analysis is based around the trajectories of individual

fluid elements. Of central importance is the displacement field �(q),

which provides a mapping from initial Lagrangian coordinates q to

final Eulerian coordinates x given by x(τ ) = q + �(q, τ ) (see e.g.

Bouchet 1996; Bernardeau et al. 2002, for a review). The linear

solution for the equations of motion coincide with the Zel’dovich

approximation,

∇q · � (1) = −D(τ )δ(1)(q) , (22)

where δ(1)(q) is the linear density field and D is the linear growth

factor normalized to unity at z = 0. In contrast, the second-order

correction to the displacement field (see e.g. Melott et al. 1995)

takes into account tidal gravitational effects as

∇q · � (2) =
1

2
D2

∑

i �=j

(

�
(1)
i,i �

(1)
j,j −

[

�
(1)
i,j

]2
)

, (23)

where �
(1)
i,j = ∂�i/∂qj and D2 is the second-order growth fac-

tor given by D2 ≈ −3/7D2�1/143
m . The Lagrangian potentials φ(1)

and φ(2) are defined such that ∇2φ(1)(q) = δ(1)(q) and ∇2φ(2)(q) =
δ(2)(q). The 2LPT expressions for the position become

x(q) = q − D∇qφ
(1) + D2∇qφ

(2) , (24)

while the dimensionless velocity divergence is given by

θ = −DfLT∇2
qφ

(1) + D2f2∇2
qφ

(2) , (25)

where fLT is the linear theory growth rate and f2 = dlnD2/dlna is

the logarithmic derivative of the second-order growth factor, f2 ≈
2�6/11

m . The gradient terms are given by

∇2
qφ

(1) = δ(1)(q) (26)

∇2
qφ

(2) =
∑

i>j

(

φ
(1)
,ii φ

(1)
,jj −

[

φ
(1)
,ij

]2
)

, (27)

where φ
(1)
,ii = ∂

2φ/∂qi∂qj . These equations imply that given a ro-

bust estimate of the linear overdensity δ(1) then we can obtain a

corresponding non-linear velocity divergence θ from 2LPT.

To compare the conditional mean 〈θ |δ〉 measured from the sim-

ulations in Fourier space with 〈θ |δ〉LPT, where θ is the Fourier

transform of the 2LPT prediction in equation (25), we estimate the

linear density field δ(1) from the non-linear matter field δm in real

space as given by Neyrinck, Szapudi & Szalay (2009), δ(1) = log(1

+ δm) − 〈log(1 + δm)〉. The quantity φ(2)(k) can be obtained by

Fourier transforming φ(1)(k),ij into real space, computing the sum

and then transforming back. Alternatively one can Fourier transform

equation (27) directly, and then obtain the total 2LPT prediction for

θ (k).

In the right-hand panel of Fig. 3 we plot the conditional expecta-

tion 〈θ |δ〉LPT, which has been evaluated by the same method as de-

scribed in Section 4.2 using the 2LPT prediction for θ (k), as a cyan

dot–dashed line. From this figure it seems that the rotation of the

conditional mean away from the linear theory prediction is captured

well by 2LPT at k = 0.2 h Mpc−1. In the inset panel of Fig. 3, we

also show the ratio of the two-point function 〈〈θ |δ〉〈θ |δ〉〉/〈θθ〉LPT

measured from the simulations at z = 0 as a function of scale as a

blue solid line. On scales k < 0.1 h Mpc−1, we can see that the ratio

is very close to unity indicating that the non-linear effects in the for-

malism of this paper can be described by 2LPT which incorporate

the effects of tidal gravitational fields on large scales. Recall that

the full two-point function 〈θθ〉 can be written as sum of non-linear

and stochastic components. Our results indicate that the stochastic

component, which is approximately 15 per cent of the velocity di-

vergence auto power spectrum at z = 0 and k = 0.1 h Mpc−1 is

not described by the predictions of 2LPT. At smaller scales k >

0.1 h Mpc−1, we find that the θ–δ relation is still well-described by

the combined action of a non-linear rotation together with stochas-

tic spread, however the predictions of 2LPT no longer adequately

describe the regime.

5 R E D S H I F T SPAC E D I S TO RT I O N S

We begin in Section 5.1 by briefly reviewing the theory of redshift

space distortions and models that depend on the linear growth rate

fLT and which are currently in use. In Section 5.2 we highlight the

problems associated with having a well-defined notion of the linear

growth rate in a redshift space distortion model in the presence of a

non-linear and stochastic θ–δ relation.

5.1 Redshift space distortion models

Inhomogeneous structure in the Universe induces peculiar motions

which distort the clustering pattern measured in redshift space on

all scales. This effect must be taken into account when analysing

three-dimensional data sets that use redshift to estimate the radial

coordinate. Redshift space effects alter the appearance of the clus-

tering of matter, and together with non-linear evolution and bias,
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lead the measured power spectrum to depart from the simple pre-

dictions of linear perturbation theory. The comoving distance to a

galaxy, s, differs from its true distance, x, due to its peculiar ve-

locity, v(x) (i.e. an additional velocity to the Hubble flow). The

mapping from redshift space to real space is given by

s = x + uzẑ, (28)

where uz = v · ẑ/(aH ) and H(a) is the Hubble parameter. This as-

sumes that the distortions take place along the line of sight, denoted

by ẑ, and is commonly referred to as the plane parallel approxima-

tion.

On small scales, randomized velocities associated with the mo-

tion of galaxies inside virialized structures reduce the power. The

dense central regions of galaxy clusters appear elongated along the

line of sight in redshift space, which produces the ‘fingers of God’

effect in redshift survey plots. For growing perturbations on large

scales, the overall effect of redshift space distortions is to enhance

the clustering amplitude. Any difference in the velocity field due

to mass flowing from underdense regions to high-density regions

will alter the volume element, causing an enhancement of the ap-

parent density contrast in redshift space, δs(k), compared to that in

real space, δr(k) (see Hamilton 1998, for a review of redshift space

distortions).

Assuming the line-of-sight component of the peculiar velocity is

along the z-axis, the power spectrum in redshift space is given by

(Scoccimarro 2004)

δD(k) + Ps(k) =
∫

d3r

(2π)3
e−ik·r〈eikzV [1 + δg(x)][1 + δg(x′)]〉 (29)

where δg = bδ is the galaxy overdensity which we shall assume is

related by a linear bias, b, to the matter overdensity, V = uz(x) −
uz(x′) and r = x − x′. We are also assuming that there is no velocity

bias between the dark matter and galaxies for simplicity.

Decomposing the vector field into curl and divergence free

parts, and assuming an irrotational velocity field, we can rewrite

kzuz = −(k2
z/k

2)θ (k) = −μ2θ (k) where θ (k) is the Fourier trans-

form of the velocity divergence defined in equation (5). Expanding

the exponential term and only keeping terms up to second order

in the variables δ and θ , the power spectrum in redshift space Ps

becomes

δD(k − k′)Ps(k) = b2〈δ(k)δ∗(k′)〉 − 2μ2b〈θ (k)δ∗(k′)〉

+ μ4〈θ (k)θ∗(k′)〉. (30)

If we assume the linear continuity equation holds we can rewrite

this as

δD(k − k′)Ps(k) = 〈δ(k)δ∗(k′)〉
[

b2 + 2bfLTμ2 + f 2
LTμ4

]

= δD(k − k′)P (k)
[

b2 + 2bfLTμ2 + f 2
LTμ4

]

, (31)

which is the Kaiser (1987) formula for the power spectrum in red-

shift space in terms of the linear growth rate fLT, the linear bias b,

and the power spectrum P(k).

Commonly used models for the redshift space power spectrum

extend the Kaiser formula by assuming that the velocity and density

fields are uncorrelated and that the joint probability distribution

factorizes as P(δ, θ ) = P(θ )P(δ). Examples include multiplying

equation (31) by a factor which attempts to take into account small-

scale effects, invoking either a Gaussian or exponential distribution

of peculiar velocities. A popular phenomenological example of this

which incorporates the damping effect of velocity dispersion on

small scales is the so-called dispersion model (Peacock & Dodds

1994),

Ps(k, μ) = Pg(k)(1 + βμ2)2 1

(1 + k2μ2σ 2
p /2)

, (32)

where Pg is the galaxy power spectrum, σ p is the pairwise velocity

dispersion along the line of sight, which is treated as a parameter to

be fitted to the data, and β = fLT/b.

The linear model for the redshift space power spectrum can be

extended by keeping the non-linear velocity power spectra terms

in equation (30). For example Scoccimarro (2004) proposed the

following model for the redshift space power spectrum in terms of

Pδδ , the non-linear matter power spectrum,

Ps(k, μ) =
(

Pδδ(k) + 2μ2Pδθ (k) + μ4Pθθ (k)
)

× e−(kμσv )2

, (33)

where Pθθ = 〈θθ〉, Pδθ = 〈δθ〉 and σ v is the 1D linear velocity

dispersion given by

σ 2
v =

1

3

∫

Pθθ (k)

k2
d3k. (34)

In linear theory, Pθθ and Pδθ take the same form as Pδδ and depart

from this at different scales. Using a simulation with 5123 particles

in a box of length 479h−1Mpc, Scoccimarro (2004) showed that

this simple ansatz for Ps(k, μ) was an improvement over the Kaiser

formula when comparing to the results of N-body simulations in

a �CDM cosmology. Clearly the inclusion of these non-linear ve-

locity divergence terms gives rise to an improved model of redshift

space distortions in the non-linear regime.

In non-linear models for the power spectrum in redshift space

there is a degeneracy between the non-linear bias, the difference

between the clustering of dark matter and haloes or galaxies, and

the scale-dependent damping due to velocity distortions on small

scales. This degeneracy will complicate any measurement of the

growth rate using redshift space clustering information on small

scales. In this work we have restricted our analysis of the θ–δ

relation to large scales for the halo sample where the approximation

of a linear bias is valid. Note also that non-linearities in the bias

between the haloes and dark matter field affect the μ2 component

but not the μ4 coefficient if there is no velocity bias present.

5.2 Modeling redshift space distortions with a non-linear

stochastic θ–δ relation

First, the expansion in equation (30) does not assume that θ and

δ are uncorrelated (P(δ, θ ) = P(θ )P(δ)) but instead only retains

terms which are second order in θ and δ. We can rewrite equation

(30) in terms of the main formalism in this paper which describes

a non-linear, stochastic relation between θ and δ. Using equations

(16) and (17) with the adapted notation 〈θ (k)θ (k′)〉 = 〈θ1θ2〉 etc.

we can write

δD(k − k′)Ps(k) = b2〈δ(k)δ∗(k′)〉

− 2bμ2[〈〈θ1|δ〉δ2〉 + 〈α1δ2〉]

+ μ4[〈α1α2〉 + 〈〈θ1|δ〉〈θ2|δ〉〉]. (35)

There are a small number of papers that have used perturbation

theory to find an analytic formula for the conditional mean 〈θ |δ〉
(see e.g. Chodorowski 1998; Bernardeau et al. 1999). Guided by

the results in Section 3.2 where 〈θ |δ〉 appears as a rotation from the

linear perturbation theory prediction which increased with increas-

ing wavenumber k, we consider the following simple expression for
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〈θ (k)|δ〉 = −fLTδ(k) + c(k)δ(k). Putting this into equation (35) we

obtain the expression

δD(k − k′)Ps(k) = 〈δ1δ
∗
2〉

(

b2 − 2bμ2

[

−fLT + c(k) +
〈α1δ2〉
〈δ1δ

∗
2〉

]

+μ4

[

(fLT − c(k))2 +
〈α1α2〉
〈δ1δ

∗
2〉

])

. (36)

A key point that this highlights is that the coefficients in front

of the μ2 and μ4 terms no longer have a simple relation. They

receive different contributions from non-linearity and stochasticity,

and cannot be simply written as fNLμ2 + f 2
NLμ4. If the relation

between θ and δ is deterministic (〈α1δ2〉 = 0 and 〈α1α2〉 = 0)

then, as shown in Section 4.4, 2LPT provides a good description

of the non-linear rotation of the conditional mean 〈θ |δ〉 away from

the linear perturbation theory predictions at k < 0.1 h Mpc−1. The

stochastic components 〈α1δ2〉 and 〈α1α2〉 are non-zero at z = 0, 0.4

and z = 0 on large scales, as can be seen from Figs 5 and 6, and

comprise approximately 10 per cent of the velocity divergence auto

power spectrum on large scales k < 0.1 h Mpc−1.

It is common practice to try to extract a measurement of the

linear growth rate, fNL, using the μ2 and μ4 dependence of the mea-

sured galaxy power spectrum in redshift space, and either the model

in equation (32) or models which include the velocity divergence

auto- and cross-power spectra. If however there is a non-linear

and stochastic relation between θ and δ then the correspondence

between the coefficients of μ2 and μ4, and fNL becomes more com-

plex.

Ideally a perturbative expansion which captures all the non-

linearities in equations (6) and (7) would give an accurate pre-

diction for the velocity divergence and higher point statistics and

their correlations with the matter overdensity. This would include

the stochastic terms in the formalism in this paper which are pro-

duced by non-linear effects. Without this exact expansion, it is not

straightforward to make an explicit connection between the quantity

of interest, fNL, and parameters in current phenomenological mod-

els for two-point clustering statistics in redshift space, which either

assume that θ and δ are related by a linear, deterministic relation,

or are based on perturbation theory expressions to a given order for

the θ–δ relation.

6 SU M M A RY A N D C O N C L U S I O N S

Up and coming galaxy redshift surveys aim to measure the linear

growth rate to an accuracy of ∼1 per cent. This growth rate is com-

monly obtained from a deterministic relation between the velocity

divergence and the matter overdensity fields that follows from lin-

ear theory. Here we have explored a formalism that defines both a

non-linear and a stochastic relation between the velocity divergence

and overdensity field, θ = ∇ · v(x, t)/aH and δ, which is based on

an extension of linear theory to a relation in terms of the conditional

mean 〈θ |δ〉, together with fluctuations of θ around this non-linear

relation.

Using N-body simulations of dark matter particles that follow the

gravitational collapse of structure over time, we measure both the

non-linear and stochastic components and verify that this decom-

position of the two-point clustering statistics is reproduced within

the simulation. We find that the net effect of the non-linearity mani-

fests itself as an approximate rotation of 〈θ |δ〉 away from the linear

theory prediction −fLTδ, and which increases as a function of scale.

The scatter about this mean value corresponds to stochasticity, or

variance, of θ around 〈θ |δ〉 and which is non-zero on all scales.

The stochastic contribution to the velocity divergence auto-power

spectrum is approximately 10 per cent at k < 0.2 h Mpc−1 at z = 0.

The stochastic component of the velocity divergence auto power

increases to approximately 25 per cent by k = 0.45 h Mpc−1.

We examine two scales in detail, k = 0.1 and 0.2 h Mpc−1, and

find that the scatter around the mean value 〈θ |δ〉 is non-zero and

increases with increasing wavenumber k. At both scales we find

that for δ > 0( < 0) the mean relation 〈θ |δ〉 is larger (smaller)

then the linear theory prediction. We find that both of these trends

for the stochastic relation and non-linearity are visible at higher

redshifts, z = 0.4 and 1 but with a reduced level of stochasticity

overall due to less non-linear growth at high redshifts. Using a halo

sample with M ≤ 5 × 1012 M⊙ h−1 from the MultiDark simulation

we find that both the stochasticity and non-linearity in the θ–δ

relation are larger for haloes compared to the dark matter. We find

that the stochastic component of the two-point function 〈θθ〉 is

significant and approximately a constant fraction (15 per cent) at k

< 0.25 h Mpc−1 at both z = 0 and 1.

The relation with perturbative methods was also explored, and

a computation of the velocity divergence auto 〈θθ〉 and cross 〈θδ〉
power spectra using one loop standard perturbation theory reveal

that at this level the standard perturbation theory prediction and the

formalism in this paper are not equivalent. Even on large scales, k <

0.05 h Mpc−1, where the perturbation theory predictions match the

measured power spectra from the simulations to ∼5 per cent there

is no simple correspondence between the mode coupling terms P13,

which are negative, to the stochastic power spectra 〈αδ〉 and 〈αα〉.
Using an expression for θ computed from 2LPT we find that the

rotation of the conditional mean 〈θ |δ〉 away from the linear theory

prediction is well described by the conditional expectation 〈θ |δ〉LPT

from 2LPT on scales k < 0.1 h Mpc−1. This indicates that the non-

linear components in the formalism can be described through the

inclusion of tidal effects of the gravitational field at second order.

The central features discussed also have an impact on the ex-

traction of the linear theory growth rate from models of two-point

functions in redshift space given the level of non-zero stochasticity

which we have measured. It is common practice to try to extract a

measurement of the linear growth rate using the μ2 and μ4 depen-

dence of the measured galaxy power spectrum in redshift space. We

highlight that, in the presence of either non-linearity or a stochastic

relation, the correspondence between the coefficients of μ2 and μ4,

and fLT is no longer so simple and a more involved treatment is

required.
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