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Abstract
The interplay between quantum-mechanical properties, such as coherence, and classical notions, such
as energy, is a subtle topic at the forefront of quantum thermodynamics. The traditional Carnot
argument limits the conversion of heat towork; herewe critically assess the problemof converting
coherence towork. Through a careful account of all resources involved in the thermodynamic
transformations within a fully quantum-mechanical treatment, we show that there exist thermal
machines extractingwork from coherence arbitrarily well. Suchmachines only need to act on
individual copies of a state and can be reused.On the other hand, we show that for any thermal
machinewithfinite resources not all the coherence of a state can be extracted aswork.However, even
bounded thermalmachines can be reused infinitelymany times in the process of work extraction from
coherence.

1. Introduction

Scientia potentia est, knowledge is power, the latin aphorism goes. This could not bemore true in
thermodynamics, where knowledge about the state of a system can be exploited to our advantage to extract work
from it [1, 2]. In quantummechanics states ofmaximal knowledge are called pure states. A peculiar feature of the
quantumworld is that, due to the superposition principle, even for such states there aremany questions that
cannot be answered sharply. In thermodynamics we are especially interested in energetic considerations and so
an odd place is taken by pure states that are a superposition of different energy states. This is because, despite the
fact that we possess full knowledge about the system, our possibility of predicting the outcome of an energy
measurement can be very limited.

In standard quantum-mechanical considerations this is not a issue, becausewe can always reversibly
transform a pure state into any other pure state by unitary dynamics. A basic task of thermodynamics, though, is
the book-keeping of all energyflows from and out of the system, and there is no reversible transformation
mapping a superposition of different energy states into an eigenstate while strictly conserving energy. Hence, we
are left towonderwhether the ‘scientia’ of having a pure state with quantum coherence can be converted into
‘potentia’ of extractedwork, while being limited by the law of energy conservation.

More precisely, we analysework extraction fromquantum coherence4, in the context of the theory of
thermodynamics of individual quantum systems, currently under development [3–16]. The aimof the theory is
to provide a suitable theoretical framework for our increasing ability tomanipulatemicro- and nanoscale
systems [17–21]. Such general framework could also help approaching related questions, such as the role of
quantum effects in biological systems [22–24] and the link between thermodynamics and quantum information
processing. Although this field has recently seen a great number of contributions,most of the previously
mentionedworks do not incorporate the possibility of processing a state in a superposition of energy eigenstates.
It was only relatively recently that the role of coherence in thermodynamics has been looked atmore closely
[25–34].
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In this paperwe first set the scene by presenting existing approaches to the problemofwork extraction from
the coherence of quantum systems.We argue that, within the regime of individually processed systems, the
current approaches fail to account for all the resources used during thework extraction protocol. The typical
assumption is to use a classical external field that experiences no back-reaction [35, 36]. However, this does not
allow for a full accounting of the thermodynamic cost ofmaintaining the field. Although this costmay be small
in a single use, it has to be accounted for since thework gainwill also be small. Hencewe propose an alternative
framework that aims for a careful book-keeping of resources.

In particular, we use the notion of a thermalmachine [37], a device of bounded resources that can be used to
manipulate thermodynamical systems and perform tasks such as work extraction. Our thermalmachine
incorporates the use of an ancillary system carrying coherence (henceforth called reference system), introduced
into the context of coherencemanipulation in thermodynamics in [26]. It also includes a battery systemwhere
work can be stored, or transferred to the reference when necessary. A crucial question addressed in this workwill
be how to use the thermalmachine in a repeatable way, i.e. without deteriorating it.Wemake use of an
important result of JohanÅberg, showing that reference systems can be used repeatedly tomanipulate
coherence [31]. However the reference needs to be repumped for themachine to continue to operate. Thework
cost of repumping needs to be taken into account, which canmean that the thermalmachinewill not be able to
extract all the available work from coherence. Nonetheless, wewill find that we can come arbitrarily close, by
choosing the amount of coherence resources carried by the reference system in themachine appropriately large.

On the other hand, for any given thermalmachine, wewill prove that one can never extract all the available
work.Wewill show that coherences of individual quantum systems can be exploited to enhance the
performance of work extraction protocols (both in the average and the single-shot sense), but not to the extent
that could be expected in the ‘classical’ limit.Moreover, thework extraction protocol we provide does not
deteriorate the thermalmachine.

2. Coherence andwork

2.1. Setting the scene
Let us start by introducing the framework that wewill use throughout this paper and collect the core
assumptions that our results rest upon.Wewant to study the allowed thermodynamic transformations by
explicitlymodelling any coherence resources being used. There are twoways inwhich coherence can enter the
thermodynamics of the systems under consideration. This can happen either explicitly, by transferring it from
an external systemwith quantum coherence (a trivial example being a swap operation between the system and an
ancillary coherent state); or implicitly, by allowing operations that do not conserve energy (e.g., ñ  +ñ∣ ∣0 ,
where theHamiltonian is given by = ñá∣ ∣H 1 1S ) or conserve it only on average (e.g., ñ  ñ + ñ∣ (∣ ∣ )1 0 2 2 ,
with = ñá + ñá∣ ∣ ∣ ∣H 1 1 2 2 2S ). Therefore, wewill only allow for those transformations that do not implicitly
introduce coherence:

Assumption 1. (Allowed transformations). The set of allowed transformations is given by all (strictly) energy-
preserving unitaries, i.e., unitaries that commutewith the total freeHamiltonian of the system. The use of all
ancillary systems should be explicitly accounted for5.

Wewill also take a closer look at an alternative approach in section 2.4.1 and explainwhywefind it not
satisfactory for the aims of the present work.

In this paperwe focus on the task of work extraction fromquantum systemswith coherence.We do not aim
here to settle the long-standing issue of what is an appropriate definition of work in quantum thermodynamics
(see, e.g., [38, 39]). For the scope of this paper wewill assume, for the sake of simplicity, that the following holds
for classical (incoherent) states:

Assumption 2. (Average work, incoherent states). Let rS be a quantum state of the systemdescribed by
HamiltonianHS, with rS being incoherent in the energy eigenbasis. Then, in the presence of a heat bath at
temperatureT, an average amount of work rá ñ( )W S equal to the change of free energy of a state can be extracted
from it:

r r r gá ñ = D -( ) ( ) ≔ ( ) ( ) ( )W F F F , 1S S S S

where s s s-( ) ≔ ( ) ( )F H kTSTr S , (·)S is the vonNeumann entropy and g = - Ze H kT
S S

S is a thermal state
withZS being the partition function of the system.

5
Aswewill see, thermal ancillas are the only ones that can be freely introducedwithout trivialising the problemofwork extraction.
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This formula, consistent with traditional thermodynamics, has been obtained usingwork extractionmodels
that differ in details, but agree on the result [9, 35]. For example, in [9] thework extraction protocol is based on
two elementary processes: level transformations (that change the eigenvalues of the systemHamiltonianHS) and
full thermalisationwith respect to the current systemHamiltonian (through thermal contact with a bath at
temperatureT). Averagework is then defined as the average change in energy during level transformations (the
‘unitary’ steps) and, if initial and finalHamiltonian coincide, equation (1) is recovered.Herewe focus on the
problemof extending equation (1) to quantum states with coherence. The results of the present paper apply to
any definition of work satisfying assumption 2.

The problemofwork extraction can also be studied in the so-called single-shot regime. Thismeans that one
is interested in single instances of thework extraction protocol, instead of average quantities. To explain this
more precisely, let us refer again to themodel introduced in [9] that we have summarised above. Extractedwork
can then be seen as a randomvariable,maximising the average of which yields equation (1). However, wemay
instead askwhat is themaximumamount of deterministic (i.e., fluctuation-free)work that can be extracted
during a single instance of the protocol, while allowing the failure probability ò. In [9] it was shown that for
incoherent states this quantity is given by  r g-( ) ( )F F0 S S , where 

r = -( )F kT Zlog0 S is a single-shot free
energy defined as follows. Given a subsetΛ of the indices { }i labelling the energy levels of the system, define

åL = b
ÎL

-( )Z e
i

Ei, where Ei are the eigenvalues ofHS. Then  å= L > -L ÎL{ ( ) }Z Z pmin : 1
i i , where

r= á ñ∣ ∣p E Ei i iS . This result is also in agreement with otherwork extractionmodels based on thermal operations
[7]. Hence, for the single-shot scenariowe can use the following assumption:

Assumption 3. (Single-shot work, incoherent states). Let rS be a quantum state of the systemdescribed by
HamiltonianHS, with rS being incoherent in the energy eigenbasis. Then in the presence of a heat bath at
temperatureT, using a single-shot protocol one can extract a sharp amount of work Wss with failure probability
ò:

  r r r g= D -( ) ( ) ≔ ( ) ( ) ( )W F F F . 2ss S 0 S 0 S S

Once again, our aim is to extend equation (2) to quantum states with coherence and our results apply to any
definition of single-shot work satisfying assumption 3. For the sake of brevity in the remaining of this paper we
will only write ‘extractingwork equal to the free energy’, omitting ‘in the presence of a heat bath at temperature
T’; however, this is howour claims should be understood.

In thermodynamic considerations thermalGibbs states are the only ancillary states that can be introduced
without the need for careful accounting. In fact, one can show that using energy-preserving unitaries (in
accordancewith assumption 1), a thermal state is the only one that can be introduced for free without allowing
the production of every incoherent state [8]. Clearly, if this was possible, then from assumptions 2and 3 one
could extract infinite amount of work, thus trivialising the theory.Hence, themost general thermodynamic
transformations that can be performedwithout using extra resources are given by:

(i) adding a bath system in a thermal state gE with arbitraryHamiltonianHE andfixed temperatureT,

r r g g bÄ = =b b- - ( ) ( )kT, e Tr e , 1 ; 3E E
H H

S S
E E

(ii) performing any global unitary that conserves total energy, i.e., that commutes with the total free
Hamiltonian of the system and baths, in accordance with assumption 1;

(iii) discarding any subsystem.

The set of quantummaps acting on a system that arise from combining the transformations described above is
knownunder the name of thermal operations [3, 26].

2.2.Work-locking
The aimof this work is to beginwith a system initially in a state with coherence rS, andfinishwith a thermal state
gS, while optimally increasing the free energy of a battery (storage) system. The initial and final battery states, rB

and r¢B, should be incoherent, so that using assumptions 2and 3we can achieve the coherence towork
conversion that we are looking for. Schematically:

r r g rÄ  Ä ¢ ( ). 4S B S B

3
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Without the use of an ancillary resource state the above transformation is given by a thermal operation.Note
that thermal operations commutewith the dephasing channel  [26] that removes all coherence from a
quantum state

 ås sP P( ) ≔ ( )Tr ,
i

i i

wherePi are the projectors on the energy eigenspaces of the systemunder consideration.Hence, we get that if
the transformation described by equation (4) is possible, also the following one is:

 r r g rÄ  Ä ¢( ) .S B S B

This implies r rD D( ) ( ( ))F FB S , because F is non-increasing under thermal operations. From assumption
2we then have r rá ñ á ñ( ) ( ( ))W WS S . A similar argument gives also  r r( ) ( ( ))W W ;ss S ss S note that in
both cases the bound is achievable because dephasing is a thermal operation. This phenomenonwas observed
before [7, 10] andwas called ‘work-locking’ in [28].Work-locking highlights that, despite contributing to the
free energy of the state, quantum coherence does not contribute towork extraction: it is ‘locked’. It also shows, in
agreementwith [31], that the standard formula r rá ñ = D( ) ( )W FS S applied to every state (also the ones with
coherence), implicitly assumes the access to an external source of coherence. In this paper we revise the problem
of extractingwork from coherence, clarifying the role of this external source of coherence. To summarise

Central question.Towhat extent can equations (1) and (2) be extended to arbitrary quantum states with
coherence, while explicitly accounting for coherence resources (ancillary systems)?

2.3.Different thermodynamic regimes
With an increasing interest in the thermodynamics of non-equilibriumquantum systems, an important
distinction tomake is between ‘single-shot’ statements, which are valid for every run of the protocol, and ‘many-
runs’ statements, valid in the case of a large numberM of runs. In the asymptotic regime  ¥M one is focused
on studying average quantities (like average extractedwork), which is justified by the fact that the fluctuations
around the average can bemade negligible in the limit of a large number of runs of the protocol (which is often
the situation of interest in the study of heat engines). On the other hand, although the expected amount of
extractedwork can be studied in a single-shot regime [35], it potentially carries little information about the
system at hand due to the large fluctuations of non-equilibrium thermodynamics [9]. Instead, the focus in the
single-shot regime is typically on probabilistic work extraction protocols that guarantee precise and sharp
amount of workwith afinite probability of success or someminimumamount of guaranteedwork [5, 7, 9, 11].
On top of this classificationwe can also differentiate between ‘individual processing’ scenarios, inwhich a single
(possibly nanoscale) systemundergoes a thermodynamic process on its own; and ‘collective’ scenarios, inwhich

>N 1copies of a state are processed together (the  ¥N limit is considered in [26]).
This classification of the thermodynamic regimes inwhichwork extraction can be analised is presented in

figure 1. Thework-locking described in the previous section is a feature appearing in the regime of individually

Figure 1.Thermodynamic regimes.Work extraction protocols can be investigated in different thermodynamic regimes. These can be
classified by the number of systems that are processed at each run of the protocol (individual versus collective) and the number of
times the protocol is repeated (single-shot versusmany-runs). The green background indicates that in a given regime themaximal
amount of work that can be extracted is consistent with traditional thermodynamics.
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processed quantum systems.On the other hand, allowing for collective processing of the systems or for an
ancillary quantummemory, one can ‘unlock’work fromquantum coherence (see appendix A for a short
description of this point). For arbitrary collective processes, one only needs to use a sublinear amount of
coherence in the reference system,meaning that its consumption does not contribute to the averagework
consumed or produced in the  ¥N limit [26]. In this limit coherence plays no role as, e.g., forN identical
qubits r r»Ä Ä( ) ( ( ))F FN N , with a deficit scaling as N Nlog [28]. Hence, in this paperwe are interested in
the thermodynamics of individual quantum systems (N= 1, the upper half of figure 1).

2.4. Individual processing regime
2.4.1. Average energy conservation
In [35] sharp energy conservation, as expressed by the unitary dynamics commutingwith the totalHamiltonian
Htot, was replacedwith the condition that such dynamics only keeps thefirstmoment á ñHtot constant. Under this
weaker condition it was shown that an amount of energy equal to the free energy difference rD ( )F S can be
extracted on average from a system in an arbitrary quantum state rS.

The elegance and appeal of this is that it recovers a clear thermodynamicmeaning for the free energy of an
individual quantum system.However, several problematic issues can be raised. Firstly, if one is interested in
analyzing the class of allowed quantumoperations, then in the average-energy scenario this set depends on the
particular state one is processing, which is conceptually less appealing and technically problematic from a
resource-theoretic perspective.

Secondly, restricting energy considerations to the firstmoment analysis can hide arbitrarily large energy
fluctuations described by highermoments, that are not explicitlymodeled, butmay be highly relevant. To see
this consider a unitaryUave mapping a state y ñ ñ + ñ∣ ≔ (∣ ∣ )0 2 202 to ñ∣1 , which preserves energy on average
(here ñ∣n is the energy eigenstate corresponding to energy n). Sincemicroscopically all processes are ultimately
energy-conserving,Uave must be realised through a joint energy-preserving unitaryU involving y ñ∣ 02 and some
ancillary state rA, e.g., the state of the battery

y y r rñá Ä = ñá Ä ¢(∣ ∣ ) ∣ ∣†U U 1 1 .02 02 A A

In any such process the energy fluctuations of the ancillary systemmust increase. Specifically, denoting byH the
Shannon entropy of the outcomes of an energymeasurement one gets a strict inequality: r r¢ >( ) ( )H HA A (see
appendix B for details). As an example consider the ancillary systemprepared in the energy eigenstate ñ∣m , so
that an energymeasurement would give a sharp outcome. Then, while the system is transformed from y ñ∣ 02 into
ñ∣1 , the ancillamust be transformed into a superposition of energy eigenstates + ñ + - ñ(∣ ∣ )m m1 1 2 .

Hence an energymeasurement would showfluctuations in the final state of the ancilla. It is important to note
that the protocol that extracts work from coherence within the framework of average energy conservation [35],
necessarily creates such extra fluctuations, however these are not explicitlymodeledwithin the formalismused.
Aswewill see it is exactly due to thesefluctuations that our protocols require work to be invested in restoring the
ancillary state.

Finally, as the fluctuations created by operations that conserve energy only on average remain outside the
formalism, one cannot properly account for the fluctuations in the extractedwork outside the asymptotic
regime.

2.4.2. Repeatable use of coherence resources
As alreadymentioned in section 2.2, in the presence of energy conservation andwithout additional coherence
resources, work-locking prevents us from extractingwork from the coherence of individual quantum systems.
One could then staywithin the framework of strict energy conservation, but allow for the use of an extra source
of coherence.We refer to this extra system as the reference.

At one extreme one could allow for the use of an infinite source of coherence (an ‘unbounded’ reference
frame [40, 41])6, that entirely negates the constraints and experiences no back-reaction from its use on the
quantum system. As suggested in [28], in such casewe should be able to extract all thework from coherence.
However, onemightworry that this involves the accounting ‘¥ - = ¥c ’, with c being some finite resource
consumed from an infinitely large reference system. Indeed, the use of such an unbounded reference allows us to
simulate the operations from the previous section (conserving energy only on average) [41], and hide the arising
extra fluctuations in the infinitely big reference system. This semiclassical treatment is typical formany standard
approaches that assume the existence of a classical field experiencing no back-reaction from the system [35, 36]
andworkswell inmany circumstances. Howeverwe are interested in the regime inwhich the thermalmachine
itselfmay be amicroscopic quantum system.Hence, it seemsmore reasonable tofirstly consider the reference as
a quantum systemwithfinite coherence resources—a ‘bounded’ reference frame—and only then study the limit

6
Not to be confusedwith a reference described by aHamiltonian unbounded frombelow, which is unphysical.
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of an unbounded reference (recent works in this spirit and the discussion of semiclassical approaches can be
found, e.g., in [29, 38, 42]).

Definition 1. (Reference).We consider a reference (or coherence reservoir) given by an infinite-dimensional
ladder systemdescribed byHamiltonian å= ñá=

¥ ∣ ∣H n n n
nR 0

.We characterise the state rR of the reference

through two numbers, áDñ( ¯ )M, . Thefirst parameter, áDñ¯ , measures the coherence properties of the reference
and is given by

ráDñ = D D = D + D¯ ( ¯ ) ¯ ( ) ( )†Tr , 2, 5R

whereΔ is the shift operator åD = + ñá=
¥ ∣ ∣n n1
n 0

.We have that áDñ <¯ 1and the limit case áDñ =¯ 1 is called
unbounded or classical reference. The second parameter,M, describes the lowest occupied energy
state, r= á ñ >{ ∣ ∣ }M n n nmin : 0R .

Examples of a sequence of references that come arbitrarily close to a classical one are uniform superpositions of L
energy states when  ¥L or coherent states with arbitrarily large amplitude. The use of áDñ¯ andM as relevant
quality parameters will soon become clear.

Results from the field of quantum reference frames [40, 41, 43–45] suggest that the back-reaction
experienced by the reference will necessarily deteriorate it and consume the resources. However, if the usefulness
of the reference orfield is continually degraded during thework extraction process, we cannot claim that we are
presenting a protocol performingwork extraction from the state alone, as extra resources are consumed. Similar
problems arise if free energy is continually taken away from the reference.

In this paperwe propose the following approach.We allow for the use of additional coherence resources as
part of our thermalmachine, but demand that they are used repeatably in the following sense: the performance
of our reference-assisted protocol, while operating individually on the nth copy of the system,must be the same
aswhile operating on the +( )n 1 th copy, for all În . In other words, repeatabilitymeans that the reference’s
ability to perform the protocol never degrades, but crucially its state is allowed to change. Essentially thismeans
that despite that the free energy of the reference can fluctuate and its coherence properties change, it can be used
indefinitely to repeat the same protocol. To design such a protocol we employ the recent surprising result of [31]
that shows how a coherence resource can be used repeatably to lift the symmetry constraints imposed by energy
conservation7.However, as wewill see the protocol in [31] requires continuous injection of energy into the
reference (we donot allow theHamiltonian of the reference to be unbounded frombelow, as in [47]). Hence, it is
not immediately obvious that net thermodynamic work can be extracted from coherence.

Inwhat followswe introduce a general protocol that processes quantum systems individually and allow us to
extract work from their coherence.We then focus on two variations of it. The first one can come arbitrarily close
to extracting all the coherence as averageworkwith arbitrarily small failure probability, providedwemake the
coherence resources of the reference system in the thermalmachine large enough.However, if one does not have
access to arbitrarily large coherence resources, this variation of the protocol does not guarantee perfect
repeatability. Therefore, we examine a second variation that is perfectly repeatable even for bounded references.
We show then that the performance of work extraction in both the single-shot and asymptotic regimes is
enhanced only if the quality of the reference (defined further in the text) is above a certain threshold.

3. The protocol

Weanalysework extraction frompure qubit states with coherence

yñ = - ñ + ñ Îj-∣ ∣ ∣ ( ) ( )p p p1 0 e 1 , 0, 1 . 6i

Without loss of generality we can set = ñá∣ ∣H 1 1S andj = 0 (rotations about the z axis of the Bloch sphere
conserve energy). Our aim is to unlockwork from coherence through the repeatable use of a thermalmachine
containing a reference, while processing each copy of yñ∣ individually. In table 1 the results we obtainwithin this
framework are schematically comparedwith the ones obtainedwithin the frameworks presented in the previous
section for the paradigmatic example of a qubit in a ‘coherent Gibbs state’ gñ∣ given by:

gñ = - ñ + ñ∣ ∣ ∣ ( )r r1 0 1 , 7

with -( )r r1 , being the thermal distribution for the system, so that  g g gñá =(∣ ∣) S.

7
Thework [31] actually uses theword ‘catalysis’, butwe prefer to use theword repeatability/repeatable to avoid suggesting that there is no

change in the state of the reference. Recall that traditionally a catalyst is a system in a stateχ that enables r c s cÄ  Ä , despite r s
being impossible (see, e.g., [8, 46]). Repeatability, on the other hand, only requires the auxiliary system to be as useful at the end as it was at
the beginning, while its statemay change.
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The extraction of non-zerowork from yñ∣ then requires a thermalmachine containing a reference state rR

and implementing an energy-conserving unitaryV:

r y y r¢ = ñá Ä(∣ ∣ ) †V V ,SR R

satisfying the following:

(i) The system is pre-processed to a new state r r¢ = ¢( )TrRS SR that allows for better work extraction than from
the initial state yñ∣ .

(ii) The final reference state r r¢ = ¢( )TrSR SR can be processed into a state rR (perhaps using some of the
extractedwork) in such away that the repeatability requirement is satisfied.

(iii) No collective operations, at any stage of the protocol, are allowed onmultiple copies of yñ∣ and no quantum
memory (in the sense of appendix A) is used.

3.1. The explicit work-extraction protocol
Aprotocol satisfying the introduced requirements consists of the following steps (see figure 2):

(i) Pre-processing. The system yñ∣ interacts through an energy-preserving unitary V(U) with the reference rR.
The unitary acting on the joint system SR is chosen as in [31] to be:

å= ñá Ä ñá +
=

¥

( ) ∣ ∣ ∣ ∣ ( ) ( )V U V U0 0 0 0 , 8
l

l
1

Table 1. Individual processing protocols extracting work from gñ∣ . á ñW denotes the averagework that can be extracted
from the coherent thermal state gñ∣ and ò denotes the error probability of a single-shot work extraction from a given
state. A thermal state of the system is denoted by gS. Note that under operations strictly conserving energy, nowork
extraction protocol on gñ∣ can outperform awork extraction protocol on gS, as the two states are indistinguishable.

Single-shot Asymptotic

Average energy á ñ = DW F [35] á ñ = DW F [35]
conservation Largefluctuations [9]

Strict energy conservation  g gñ =(∣ ) ( )S , á ñ =W 0 [7, 10, 28]

Strict energy  gñ =(∣ ) 0 á ñ = DW F

conservationwith for unbounded reference for unbounded reference

resource used repeatably  g gñ <(∣ ) ( )S á ñ < DW F

for bounded reference for bounded reference

Figure 2.The basic protocol. The evolution of the system from the initial state yñ∣ to thefinal state is depicted on the Bloch ball, in blue
and red respectively. The evolution of the reference from the initial state (smaller blue blob) throughout the protocol (red blobs) is
depicted on the energy level ladder.
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with

å= á ñ ñá Ä - ñá -
=

( ) ∣ ∣ ∣ ∣ ∣ ∣V U n U m n m l n l m .l
n m, 0

1

Wechoose

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

- -

-
U

p p

p p

1

1
,

so thatU rotates the qubit system from yñ∣ to ñ∣1 .8

(ii) Work extraction. The system is now in a state r¢S and, due to work-locking (see section 2.2), is
indistinguishable from its dephased version in anywork extraction protocol. Sowithout loss of generality
we can use the dephased version

 r¢ = - ñá + ñá( ) ( )∣ ∣ ∣ ∣ ( )q q1 0 0 1 1 . 9S

Now, depending on the considered regime, single-shot or average (asymptotic)work can be extracted from
the dephased state and stored in the thermalmachine.

(iii) Repumping. The back-reaction changes the state of the reference into r¢R. Using part of the extracted work
(stored in the battery during the previous step)we can repump the reference to shift it up:

r r r¢   D ¢ D≔ ( )†, 10R R R

with the details of how to perform such operation given in appendix C.Wewill describe howoftenwe
perform the repumpingwhile analyzing different variations of the protocol.

(iv) Wecan repeat the protocol using rR and a fresh copy of yñ∣ .

3.2. Performance
During the pre-processing stage the joint unitaryV(U) approximately inducesU on the system:

r y y¢ » ñá = ñá(∣ ∣) ∣ ∣†U U 1 1 .S

The degree towhich the above equation holds depends on the quality of the reference as defined in [31]. In
particular, the systemfinal occupation in the excited state r= á ¢ ñ∣ ∣q 1 1S is given by

= - - - áDñ - -( )( ¯ ) ( ) ( )q p p p R1 2 1 1 1 , 112
00

where r= á ñ∣ ∣R 0 000 R and D̄ is the quality parameter fromdefinition 1. From equation (11) it is easy to see that
q 1when R 000 (i.e., when the reference quality parameter >M 0) and áDñ ¯ 1. Therefore,R00 and áDñ¯

are operationally well-defined quality parameters of the reference, because they directlymeasure the ability of
the reference to induce the unitaryU that wewant to performon the qubit. At the same time the reference
undergoes a back-reaction induced by the joint unitaryV(U). This is described by the followingKraus operators:

 = - - ñá + - - D = + - D( ) ∣ ∣ ( ) ( ) ( ) ( )†A p p p p A p p1 1 0 0 1 , 1 , 120 1

so that the reference state after performing the pre-processing stage is given by:

r r r¢ = + ( )† †A A A A . 13R 0 R 0 1 R 1

From equations (9) and (11) the only two parameters relevant for work extraction are the reference
population in the ground-state,R00, and the parameter áDñ¯ . Using theKraus operators specified by
equation (12), the change in áDñ¯ during the pre-processing stage (i.e., the difference between the final and initial
value of áDñ¯ ) can be computed and is found to be:

d áDñ = - + - -¯ ( )[( ) ( ) ] ( )p p p R p R1 1 2 Re , 1401 00

where as before r= á ñ∣ ∣R i jij R . A sufficient condition for áDñ¯ to stay constant is =R 000 , i.e., >M 0. Therefore,
if the initial state satisfies =R 000 exactly, performing the pre-processing stage does not change áDñ¯ , as noted in
[31].We require step(iii) of the protocol to ensure that rá  ñ =∣ ∣0 0 0R . If this is the case, at the end of the protocol

we are left with the reference described by the same quality parametersR00 and áDñ¯ as at the beginning, and the
reference rR is as good as rR within the protocol.

8
This interaction corresponds to amodified Jaynes–Cummingsmodel (with excitation-dependent coupling strengths). However, it can also

be approximately realisedwithin the standard Jaynes–Cummingsmodel using a reference in a coherent state añ∣ , with a∣ ∣ large enough (for
details see supplementarymaterial sectionV in [31]).
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Finally, because the state of the reference changes, its free energy can fluctuate.However, noticefirstly that
the reference hasHamiltonian bounded frombelow, so forfixed average energy it has afinite amount of free
energy. Secondly, repeatability requires that the reference can be used an arbitrary number of times and the
performance of the protocol never changes. It is then easy to see that on average the free energy of the reference
cannot be extracted as work, as this would be incompatible with repeatability. It can be shown that in theworst-
case scenario the free energy change in the reference fluctuates around zero (see appendixD formore details).
Moreover, thesefluctuations vanish in the limit of an unbounded reference áDñ ¯ 1, as then the entropy of the
reference stays constant, while its average energy increases. Therefore its free energymust increase at every step
of the protocol.

4. Fundamental limitations of coherence towork conversion

Howwell does the above approach do in terms of work extraction?Here, wefirst emphasise the limitations on
work extraction from coherence that arise due to the reference being bounded, i.e., whenwe have access to
limited coherence resources.More precisely, wewill explainwhy the use of a bounded reference does not allow
one to extract from a state with coherence the average amount of work equal to the free energy difference.

However, wewill then also show that one can construct a series of bounded reference states that come
arbitrarily close to extract the free energy yD ñ(∣ )F , with protocols arbitrarily close to perfect repeatability9.
Thus, wewill prove that in the limit of an unbounded reference all coherence can be converted intowork in a
repeatable way. The limit case does not generate any entropy in the reference system and, being a reversible
transformation, is optimal.

4.1. Limitations of bounded thermalmachines
In order to illustrate the limitations arising fromusing a bounded refererence wewill consider a particularmodel
of work extraction from coherence described in [35, 36]. It has been proved there that the free energy difference

rD ( )F S can be extracted from a system rS aswork if one allows for the use of operations that conserve the energy
only on average. Let us briefly recall the protocol used to achieve this. It is composed of two stages; first, given a
state rS, work is extracted from coherence. The resultant state is given by  r( )S (recall that  denotes the
dephasing operation in the energy eigenbasis). Second, work is extracted from the incoherent state  r( )S . In
accordancewith assumption 2, the latter process extracts  rD ( ( ))F S . Hence, the extraction of the full free
energy rD ( )F S from a state rS is equivalent to the possibility of extracting r r-( ) ( ( ))F FS S from the
coherence of rS. Notice that this quantity coincides with r( )kTA S , where r r r=( ) ( ∣∣ ( ))A SS S S is a known
measure of quantum coherence [48], and it quantifies the amount of free energy stored in coherence [28].
Hence, the amount of work that needs to be extracted on average from the coherence of a quantum state to
achieve the free energy extraction limit for arbitrary quantum states is

r r=( ) ( ) ( )W kTA . 15coh S S

Without loss of generality we canwrite any state rS aså y yñá∣ ∣p
n n n n with +p pn n1 . Let us also denote the

Hamiltonian of the systemby å= ñá∣ ∣H E E E
n n n nS . In the protocol that allows to extract work from coherence

in [35], the system rS interacts with aweight system in a gravitational field via the unitary

å y= ñá Ä Ge∣ ∣ ( )U E , 16
n

n nave n

where Gen
is the shift operator on theweight system that shifts it in energy by e y y= á ñ -∣ ∣H En n n nS .

AsUave does not strictly conserve energy, by assumption 1 it is not a free thermodynamic operation.One can
instead ask if it can be achieved by an energy-preserving unitary ( )V Uave on a larger system that exploits some
ancillary system rA (that includes a battery). In other words, we are looking for the energy-preserving unitary

( )V Uave such that

 r r r rÄ =( ) ≔ ( ( )( ) ( ) ) ( )† †V U V U U UTr . 17AS ave S A ave ave S ave

It is easy to show that due to the imposed constraints, the ancillary system rA must carry quantum coherence. In
fact, if rA were incoherent, then the left-hand side of equation (17)would be a time-translation covariant
quantummap (meaning that   =[ ], 0) [33], whereas the right-hand side is not.

Now the crucial point is that equation (17) cannot hold exactly unless rA contains an unbounded reference.
If rA is bounded, then the reduced evolution of rS is not exactly unitary and not all the energy change can be
identifiedwithwork. To prove this, one can compute the vonNeumann entropy of both sides of equation (17)

9
A similar result appears in [31], however it was based on using a reference systemdescribed by a doubly infinite ladderHamiltonian. This

left open the question if this limit is achievable by a systemwith a physically realisableHamiltonian.
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and notice that themutual information r =( )I 0SA . Note, however, that the only way this is possible is if
= Ä( )V U V Vave 1 2, and further wewould need =V U1 ave. But this is not possible, because from the fact that

( )V Uave is strictly energy-preserving we can prove thatV1 andV2must both be aswell. Hence, the right-hand
side of equation (17) cannot be a unitary if rA contains only a bounded reference frame. In fact, equation (17) can
only hold as a limit case of using a larger and larger coherence resource. In summary, assumptions 1–3 together
with identification of workwith energy change during unitary processes, imply that without an unbounded
reference thework extraction protocol from [35, 36] cannot extract an amount of work equal to rD ( )F S from a
state with coherence.

The strength of this point is that we do not even need to require the repeatability of the protocol using the
same ancillary system. In fact, the argument is rather general. In order to extract all the free energy from a state rS

one needs to transform it into a thermal state. This cannot be achieved by only changing the energy spectrumof
HS, but also requires the rotation of the energy eigenbasis, so that the system is incoherent at the end of the
transformation. This can be performed perfectly only with the aid of an unbounded reference frame, because it
involves unitaries that do not strictly conserve energy10.

4.2. Extractingwork arbitrarily close to the free energy difference
Akey fact about theCarnot efficiency is that, despite being achieved only by ideal heat engines that do not
actually exist inNature, we can get arbitrarily close to it through a sequence of real engines. In a similar spirit, we
now construct a sequence of bounded thermalmachines getting arbitrarily close to the coherence towork
conversion limit set by equation (15). Themain result of this Section can be summarised in a non-technical way
as follows:

Theorem1.There exists a sequence of bounded thermalmachines approaching the ideal coherence to work conversion
of equation (15)with arbitrarily high probability of success andwith an arbitrarily small change in the quality
parameters. The limit case is reversible.

As an immediate consequence of the fact that the limit case is reversible we have:

Corollary 1. Equation (15) provides the ultimate limit of coherence to average work conversion.

In the remaining part of this sectionwe givemore details about the result above, first of all specifying the
technical claim and then themain steps of the proof (the details of calculations can be found in appendix E).We
consider a sequence of reference states rR that approach a classical reference. Consider an arbitrary reference
state rR.Wewill describe it by two parameters áDñ( ¯ )M, according to definition 1.

Wewill now showhow to perform the protocol described in the previous section to extract from any pure
state yñ∣ an amount of work per copy arbitrarily close to the free energy difference yD ñ(∣ )F , while succeeding
with arbitrarily high probability and changing the quality of the reference only by a negligible amount. For
simplicity, define = - -( ) ( )f x x kTh x2 , where (·)h2 denotes the binary entropy. Theorem1 can be nowmade
technically precise as follows:

Theorem1’. Let rR be an arbitrary reference state described by áDñ( ¯ )M, . In the presence of a thermal bath at
temperatureT and ifM is large enough, there exists a protocol individually extracting fromM copies of yñ∣
(given by equation (6)) an average amount of work á ñM W , with

 yá ñ D ñ - - - áDñ - -(∣ ) ( ( )( ¯ )) ( )W F f p p O M2 1 1 .
1
3

The probability of success psucc of the protocol is

 - - - áDñ[ ( )( ¯ )]p p p1 2 1 1 ,M
succ

and it changes the quality parameters of the reference as follows:

d d= áDñ -¯M p0, 2 1 .succ

Before presenting the proof of this theorem, let usfirst comment on its scope. Note that the same result holds
when a reference áDñ( ¯ )M, is used a number of times ¢ <M M , as long as ¢ M 1 (this will be clear from the
proof). In the case inwhich ¢ >M M , we can apply the theorem everyM uses of the reference. The changes in
the quality parameters will eventually sumup, but the theorem gives a bound on them. Also, it will be clear from
the proof that the failure of the protocol implies a destruction of the coherence properties of the reference.

10
A useful point of view is also given by the theory of quantum reference frames and recoverymaps [41, 49].

10

New J. Phys. 18 (2016) 023045 KKorzekwa et al



Wenowprove theTheoremby constructing an explicit variation of protocol introduced in section 3.1 and
showing that it performs as stated in the theorem.Recall that by an energy conservingunitarywe can rotate yñ∣
around the z axis of theBloch sphere.Hence,without loss of generality, we can setj = 0 in equation (6).We then
perform steps (i) and (ii)of the protocol described in section3.1 M times, i.e., individually processing each ofM
copies of yñ∣ using a reference rR describedby áDñ( ¯ )M, . The choice of rR ensures that during this process the
reference statewill havenopopulation in the ground state, and so áDñ¯ will stay constant. Then, thefinal state of the
reference is describedwithprobability p1

Mby r r= †A AM M
R,1 1 R 1 , where = - - - áDñ( ( )( ¯ ))p p p1 2 1 11 .

Notice that having access to a reference describedbyparameters áDñ¯ andM such that - áDñ ( ¯ )M 1 0, the
probability p1

M canbemade arbitrarily close to 1. This happens because by taking áDñ¯ close enough to 1,we can get
arbitrarily close to unitary evolutionof a system state yñ∣ to a pure, incoherent state ñ∣1 . As thefinal state of the
system is almost pure, thefinal joint state of the systemand the reference factorises and an arbitrarily small amount
of entropy is generated (the back-reactionon the reference is given by theKraus operatorA1 alone).

Next, we repump the reference s+M̄ s M
4 3 times, where = -¯ ( )M M p1 , s = -( )Mp p1M and >s 0.

This guarantees that the reference has arbitrarily small population in states ñ ñ{∣ ∣ }M0 ... , so that by performing a
measurement we can project the reference to a state rR with support on the subspace spanned by ñ >{∣ }i i M with
arbitrarily high probability (sfixes the confidence level, see appendix E for details).More precisely, after
repeating steps (i) and (ii) of the protocolM times and repumping as explained above, the reference is described
by a state rR with probability

 - - - áDñ[ ( )( ¯ )] ( ) ( )p p p M1 2 1 1 , 18M
succ s

1 6

where  =( ) ( )x sxerf 2s and erf denotes the error function. Thefinal state is given by rR, described by
áDñ ( ¯ )M, , where  =M M and

  d áDñ áDñ - áDñ - -¯ ≔ ¯ ¯ ( ) ( )p p M2 1 2 1 . 19M
succ 1 s

1 6

Notice that by taking s large enough (butfinite)we canmake the factor  ( )Ms
1 6 in the previous two equations

arbitrarily close to 1,  »( )M 1.s
1 6 In the appropriately chosen limit áDñ ¯ 1and  ¥M the quality

parameters of the reference state are then unchangedwith probability 1. Let us also note that the costWE of the
measurement described above is bounded by ( )kTh p2 succ (see appendix E).

We have just shown that following the procedure abovewe can guarantee repeatability with arbitrary
confidence level. Hence, we nowproceed to proving that it also allows for extracting an average amount of work
per system arbitrarily close to the free energy difference yD ñ(∣ )F . To see this, note that after repeating the
protocol on M copies of yñ∣ we are left with M copies of a state  r¢( )S from equation (9)with q given by

equation (11), = - - - áDñ( )( ¯ )q p p1 2 1 1 . This state is diagonal in the energy eigenbasis and the average
work á ñW̃ extracted from it is given by  rD ¢( ( ))F S :

á ñ = + - - - áDñ - - - áDñ˜ ( )( ¯ ) ( ( )( ¯ )) ( )W kT Z p p kTh p p1 log 2 1 1 2 1 1 , 202

where as before (·)h2 denotes the binary entropy. By choosing M large enough, we can ensure that the extracted
work is arbitrarily peaked around the average given by the above equation (M can be bounded using the results
of [9]). This ensures thatwhenwe need to repump the reference, we actually have enoughwork to invest to do it.
The repumping costs s+M̄ s M

4 3 units of extractedwork and the costWE ofmeasurement is independent from
M . Hence, the net gain per processed copy of yñ∣ is given by

s
á ñ -

+ +
= á ñ - -˜ ( ¯ )

( ) ( )W
M s W

M
W O M , 21M E

4 3
1 3

where

yá ñ = D ñ - - - áDñ - - - áDñ(∣ ) ( )( ¯ ) ( ( )( ¯ )) ( )W F p p kTh p p2 1 1 2 1 1 . 222

Therefore, the deficit per copy scales as -M 1 3 and by choosing M large enough it can bemade arbitrarily small.
Moreover, the previous equation gives us the relation between the quality of the reference and the average
extractedwork, showing that yá ñ  D ñ áDñ   ¥ - áDñ (∣ ) ¯ ( ¯ )W F M Mas 1, , 1 0.

Weconclude that it is possible, with arbitrarily large success probability, to extract an amount of work
arbitrarily close to the free energy change froma pure state with coherence in energy eigenbasis, while processing
it individually and properly taking account of all the resources used, i.e., ensuring arbitrarily exact repeatability.

5. Extractingworkwith perfect repeatability and bounded thermalmachines

In the previous sectionwe have shown how to extract as work all free energy of a pure quantum state with
coherence.However we allowed for
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(i) The limit case of an unbounded thermalmachine, áDñ¯ 1.

(ii) An asymptotic protocol individually processing a large number M of copies of the system.

These assumptionsmay be too strong if the reference itself is amicroscopic system involved in the
thermodynamic processing and exclude the applicability to single-shot scenarios.What if we onlywant to
process a small number of systems? This requires us to go beyond the results of the previous section.

Moreover, even if we onlywant to release the first of the two assumptions, i.e., put a bound on the coherence
properties of the reference, we are still left with open questions. In this case the general result stated by theorem1
is applicable, however thework extraction protocols presented always entail a failure probability - p1 succ that
can lead to a complete destruction of the coherent properties of the reference. Even if this probability is relatively
small, wemay not bewilling to take this risk. Also, the reference inevitably deteriorates, even if by a small amount
bounded by equation (19). A crucial question is then: Are therework extraction protocols with áDñ <¯ 1 such
that d áDñ =¯ 0 and =p 1succ ? In other words, canwe extract work from coherence using a protocol that never
fails and gives back the thermalmachinewith exactly the same quality parameters, even if the reference is
bounded?

In this sectionwe construct such protocols for both average and single-shot work extraction. These ensure
perfect repeatability, but the price we pay is that the average amount of extractedwork is strictly smaller than the
free energy difference and it is only possible for áDñ¯ above a certain threshold value D̄crit. In the case of single-
shotwork extractionwe show similarly that there exists a threshold overwhich the reference allows us to
outperform the single-shot protocol with no coherence. For clarity of the discussion, we focus on the
paradigmatic case of the class of states gñ∣ introduced in equation (7).

5.1. Averagework extraction
In absence of an external source of coherence nowork can be extracted from the state gñ∣ on average [10, 28].
However, if we allow for a repeatable use of the reference, positive work yield can be obtained. In order to achieve
this, during step (ii) of the protocol we perform averagework extraction from the state  r¢( )S specified by

equation (9). As r¢( )S is diagonal in the energy eigenbasis, the results of [9, 10] apply. Therefore, the average
work yield is given by the free energy difference  rD ¢( ( ))F S . To ensure perfect repeatability we repump the

reference at each run, so that if rá ñ =∣ ∣0 0 0R , then rá ¢¢ ñ =∣ ∣0 0 0R , and the reference quality parameters do not
change. The repumping requires a unit of work, so that thework extracted on average during one run of the
protocol is

á ñ = + - -( ( )) ( )W q kT Z h qlog 1. 23S 2

The connection between the properties of the reference and thework yield is given by equation (23) together
with equation (11) (where =R 000 and =p r).

Infigure 3we showhowmuchwork á ñW can be unlocked through our protocol as a function of the quality
of the reference áDñ¯ and the thermal occupation r of the excited state. The graph shows that the quality of the
reference needs to be above a certain threshold in order to get positive averagework yield. As expected, the

Figure 3.Coherence boost to average work extraction from gñ∣ .Work can be unlocked from the coherence of the systemusing a thermal
machine that never deteriorates. The quality of themachine,measured by áDñ¯ , must be bigger than some threshold value (boundary
of the grey region) to ensure á ñ > (W r0 denotes the thermal occupation of the excited state, = + -( )r 1 e kT1 1). Over the threshold,
the higher the quality the greater is the averagework yield fromquantum coherence.
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advantage is themost significant for high r , because the states gñ∣ and gS differmost in this case or, in other
words, the amount of coherence to be unlocked is higher.

As alreadymentioned in section 2, in the asymptotic regime of individually processing large number of
copies of gñ∣ , the fluctuations in thework yield, equation (23), become negligible. Notice, however, that even if
á ñ >W 0wemay not be able to perform step (iii) every time, as thefluctuations around the averagemean thatwe
will not always have enoughwork to invest in the repumping. To resolve this problemwe can follow a strategy
analogous to the case of unbounded reference. That is, we repump after having extractedwork M times, where
M is sufficiently large to neglect the fluctuations around á ñW .11 The protocol will be repeatable up to an
arbitrarily small probability of failure, if the support of the reference initially starts high enough in the energy
ladder. It is important to stress, however, that the ‘failure’ in this case does not entail a destruction of the
coherence properties of the reference, as in section 4.2. It only requires the investment of extra work in order to
ensure perfect repeatability.

5.2. Single-shot work extraction
Finally, we proceed to a fully quantumand single-shot protocol for an individual quantum state. This version of
the protocol does not assume possessing an unbounded reference nor it requires asymptotic number of runs. In
absence of an external source of coherence we can perform  -deterministic work extraction from gñ∣ – as gñ∣ is
indistinguishable from gS, the results of [9] apply. Thismeans thatwe can extract kT Zlog S workwith failure
probability r or + kT Z1 log S with failure probability - r1 .We now show that exploiting the reference in a
perfectly repeatable way the failure probability for extracting kT Zlog S can be decreased—and the higher the
quality of the reference, the stronger the improvement.

During step (ii) of the protocol we perform  -deterministic work extraction from the state  r¢( )S specified

by equation (9), in accordancewith assumption 3.With probability q we extract + kT Z1 log S work andwith
probability - q1 our protocol fails. Aswe need one unit of work to repump the reference (see equation (10)),
the net gain is kT Zlog S.When the protocol fails (with probability q), the reference is returned in the state r¢R
and one has to invest one unit of work to ensure repeatability.

Infigure 4we present the decrease d in the failure probability  achieved by our protocol as compared to
work extraction from gS.We see that if the quality of the reference is high enough, the coherence content of gñ∣
can be exploited to provide an advantage in thework extraction. In the limit of a very high quality (unbounded)
reference, áDñ¯ 1, the failure probability can be sent to zero, i.e., thework extraction from gñ∣ becomes
deterministic.

Figure 4.Coherence boost to single-shot work extraction from gñ∣ . A thermalmachine, used in a repeatable way, can exploit the quantum
coherence of the system to decrease the failure probability in single-shot work extraction. Similarly to the case of averagework
extraction, the quality of themachine áDñ¯ must be over some treshold value to lead to any improvement (r denotes the thermal
occupation of an excited state). As áDñ¯ increases, the failure probability decreases from r to d-r , down to zero, i.e., to the point
when the single-shotwork extraction from the pure quantum state gñ∣ becomes fully deterministic.

11
One can think of alternative protocols as well, in which at every repetitionwe toss a coin to decide if we repump the reference or not.We

donot delve into this, but we expect tofind similar results.

13

New J. Phys. 18 (2016) 023045 KKorzekwa et al



6. Conclusions

In this workwe have addressed the following question:Howmuchwork can be extracted froma state that is a
superposition of energy eigenstates?We argued that this question, within the currently developed theory of
thermodynamics of individual quantum systems, is a subtle issue.We showed that the optimal coherence to
work conversion can be obtained only in the limit of accessing a reference systemwith unbounded coherence
resources. Although no real reference is unbounded (in the sameway inwhich no heat engines is ideal), we can
get arbitrarily close to the limit bymeans of a sequence of bounded thermalmachines.

The access to arbitrarily large resources should be questioned in the regime under study. Generally speaking,
recovering traditional thermodynamical results requires extra assumptions, which all entail some notion of
‘classicality’, so to effectivelymake coherence negligible: neglecting the energy fluctuations due to superposition;
assuming the existence of a source of coherence that experiences essentially no back-reaction; collectively
operating on infinitelymany copies of the system.

When the ‘classicality’ assumptions are dropped one after the other, the results are quantitatively different
from the thermodynamics of incoherent systems. Nevertheless, we find that the coherence between energy levels
can still enhance the performance of work extraction protocols. There exist perfectly repeatable processes
extracting on average a larger amount of work that could be extracted in the absence of coherence; and single-
shot protocols in which coherence improves the success probability of work extraction. Although these
protocols are better than the correspondent incoherent ones, they do not achieve the performance reached in the
classical limit.

We also point out that while dealingwithmicroscopic systems, the accounting of all the resources involved
in thermodynamic processes becomes a crucial and non-trivial task. In this regard, we underline the importance
of accounting for the resources whichmake up a thermalmachine, and the concept of repeatability, that
essentially captures the idea of using these extra resources without degrading them. In particular, the
considerations here suggest that a full theory of thermodynamics in the quantum regimewill require a better
understanding of the accounting of coherence resources, including those found in the thermalmachine. Some
lawswhich place restrictions on coherence have been introduced in [8, 28, 30, 32, 33], but we are still far from
having a full understanding.We hope to have convinced the reader that the question of the role of quantum
coherence in thermodynamic considerations does not admit an easy and immediate answer, and that it is only by
appropriately incorporating it into the theoretical framework that we can explore truly quantummechanical
effects.
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AppendixA. Collective processing regime

In the collective processing regimework can be effectively unlocked from coherence. This is achieved by
processingmany copies of a system state rS collectively and extractingwork from relational degrees of freedom
that live in decoherence-free subspaces [10, 26, 28, 41]. The intuitive explanation is that one copy of a state rS

with coherence can act as a reference for the other one, andwe have  r r¹Ä Ä( ) ( )S
2

S
2. In the case of finite

number of copies rÄN
S a non-zero amount of work is unlocked from the coherences, and in the limit of

processing collectively infinitelymany independent and identically distributed (i.i.d.) copies, the amount of
work per copy that can be extracted deterministically equals r g-( ) ( )F FS S .

Instead of collectively processingmany copies of a system, onemay also consider a black-box device B that
takes in individual quantum systems rS and at each round returns a thermalised state gS and an average amount
of work equal to r g-( ) ( )F FS S . Fromoutside the box it seemswe are dealingwith awork extraction protocol
that individually processes each state. However, the devious way inwhich the box achieves this is the following:

(i) The box B contains a large quantum memory consisting of N 1 copies of incoherent quantum states
sÄN

B , for which s r=( ) ( )F FB S .

(ii) Every time the box takes in a single copy rS it swaps this state into memory and instead performs work
extraction on one copy of sB. Hence it outputs on average r g-( ) ( )F FS S and a thermalised state gS.

14

New J. Phys. 18 (2016) 023045 KKorzekwa et al



(iii) After N uses its memory is filled with the coherent states rÄN
B and so it does large-N collective processing

and restores to sÄN
B with costs growing only sublinearly with N [26].

Although from the outside of the box this is identical to the individual processing regime, the collective,
relational processing of coherence is ‘hidden’ in the quantummemory.

Appendix B. Average energy conservation does not explicitlymodel energyfluctuations

Consider a system and an ancilla described byHamiltonians HS and HA, and prepared in states r randS A,
respectively. Assume also that the initial state of the system rS has coherence between energy eigenspaces. Now
consider a joint energy-conserving unitaryU , i.e., + =[ ]U H H, 0S A , inducing the following evolution:

r r r rÄ = ¢ Ä ¢( ) †U U ,S A S A

so that the final state of the system r¢S has no coherence in the energy eigenbasis and r r¢ = †V VS S for some
unitaryV that conserves average energy. The uncertainty of an energymeasurement on r¢A can be decomposed
as [50]:

r r r¢ = ¢ + ¢( ) ( ) ( ) ( )H S A , 24A A A

where s s s=( ) ( ∣∣ ( ))A S is the relative entropy between a state and its decohered version and H is the
Shannon entropy of the probability distribution of an energymeasurement. BecauseU commutes with the total
Hamiltonianwe have

r r r rÄ = ¢ Ä ¢( ) ( )A A .S A S A

As thefinal state of the system r¢S has no coherence we have r r r¢ Ä ¢ = ¢( ) ( )A AS A A . Using r r rÄ >( ) ( )A AS A A ,
one gets that r r¢ >( ) ( )A AA A . From the invariance of the vonNeumann entropy under unitary transformations,

r r¢ =( ) ( )S SA A . Sowe conclude from equation (24)

r r r r¢ > + =( ) ( ) ( ) ( )H S A H .A AA A

AppendixC.Details of the repumping stage

Although one could question the repumping stage described by equation (10), given thatD is not a unitary, we
note that this is actually not a problem. This is because such operation can be realised through a joint energy-
conserving unitary between aweight system in a state ñ∣1 and the reference in a state r¢R. The unitary is given by

( )V U in equation (8), wherewe take =U X , the Pauli X operator. Then

s s= Ä D + Ä D + ñá Ä ñá- +( ) ∣ ∣ ∣ ∣†V X 0 0 0 0 ,

where s = ñá+ ∣ ∣1 0 and s = ñá- ∣ ∣0 1 . As the reference has no population in the ground state, the final state of the
weight system is ñ∣0 and thefinal state of the reference is given by equation (10).

AppendixD. Free energy change of the reference

Denote byDF nR, the change in the free energy of the reference at the n th repetition of the protocol. The total
free energy change of the reference after M repetitions of the protocol satisfies

å r gD - "
=

( ) ( )F F F M,
n

M

n
1

R, R R

where gR is the thermal state of the reference. Hence, the average change in the free energy of the reference as
 ¥M is

åD D =¥
=

≔F
M

Flim
1

0.M
n

M

nR
1

R,
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Appendix E.Details of approaching free energy limit

Weprovide here the details of the repumping protocol.We start from a generic reference state rR such that

Çr ñ ¼ ñ = Æ( ) {∣ ∣ }Msupp span 0 , , ,R

where ñ∣i are eigenstates of the referenceHamiltonian.We impose the requirements Mp 1and
- ( )M p1 1, where p isfixed by equation (6).

We now compute the probability of the occurrence of theKraus A1on a generic reference state s. From
equation (12) and the fact that DD =† we obtain

s s s= - - - D( ) ≔ ( ) ( )( ( ¯ ))†p A A p pTr 1 2 1 1 Tr ,1 1 1

where recall thatD = D + D¯ ( )† 2. Define the state of the reference after performingwork extraction on n 1
qubits through the following recurrence formula

r r r+- -≔ ( )( ) ( ) † ( ) †A A A A , 25n n n
R 0 R

1
0 1 R

1
1

where r r=( )
R
0

R . Because rR has initially no support in thefirst M energy levels, we can extract work from M

qubits before there is any overlapwith the ground state. In other words, rá ñ = " Î∣ ∣ { }( ) n M0 0 0, 1 ,..,n
R . The

previous formula, togetherwith equation (14), implies that D̄ is conserved throughout the protocol. Hencewe
deduce that

r r= = - - - áDñ( ) ( ) ( ( )( ¯ ))†A A p p pTr 1 2 1 1 .M M M M
1 R 1 1 R

For notational convenience, wewill nowdrop the explicit dependence of p1on rR (initial state of the reference).
Using equation (25)wehave

r r r= + -( ) ( ) ( )( ) ( )p p1 , 26M M M M
R 1 R,1 1 else R

where  ( )M
else contains all strings of A0ʼs and A1ʼs different from the string consisting only of A1ʼs and

r r= †A A p .M M M
R,1 1 R 1 1

Wecannow compute A M
1 :

⎜ ⎟⎛
⎝

⎞
⎠å= - D

=

- ( ) †A
M

k
p p1 .M

k

M
M k k k

1
0

We see that A M
1 is binomially distributed in the number of lowering operationsD†. The average number of

lowerings is = -¯ ( )M M p1 and the standard deviation is s = -( )Mp p1M .We can perform a number of
repumpings as in equation (10) as detailed in appendix C. Let us denote this operation by  .We have chosen M
sufficiently large so that the confidence levels associated to sM are approximately gaussian.Hence, we can
repump the reference s+M̄ s M

4 3 times, which guarantees that the reference has arbitrarily small population in
states ñ ñ∣ ∣M0 ... with a confidence level controlled by >s 0 and increasing with M .More precisely, if PM is the
projector on the subspace spanned by ñ ¼ ñ{∣ ∣ }M0 , , and = -^P PM M ,

  r^( ( )) ( ) ≔ ( ) ( )P sM MTr erf 2 , 27M R,1
1 6

s
1 6

where òp
= -( ) ( )x terf

2
exp dt

x

0

2 denotes the error function.Now, using equations (26) and (27)

  r^≔ ( ( )) ( ) ( )( )p P p MTr . 28M
M M

succ R 1 s
1 6

This implies that in performing the two-outcomemeasurement ^{ }P P,M M wewould find the outcome ^PM with
probability given by equation (28).

Performing such ameasurement guarantees that the final state of the reference will have no support on a
subspace spanned by ñ ñ{∣ ∣ }M0 ... , similarly to the initial state. However, performing a selectivemeasurement has
a thermodynamic cost that we have to take into account.More precisely, such ameasurement can be performed
using an ancillarymemory qubit system A described by trivial Hamiltonian =H 0A . Then, taking the initial
state of A to be a pure state ñ∣0 , we can performoperation on the joint reference-ancillary state described by the
Kraus operators = Ä^M PM1 and s= ÄM PM x2 . This operation is energy conserving, as the Kraus
operators commutewith the totalHamiltonian +H HR A. Hence, it is free of thermodynamic cost. Now the
projectivemeasurement on states ñ ñ∣ ∣0 and 1 can be performed on the ancillarymemory system.Observing the
result 0will project the reference on a subspace ^PM , whereas observing the result 1will project the reference on
PM . The thermodynamic cost associatedwith this projectivemeasurement is the cost of erasing thememory
system afterwards. This is given by

= ( )W kTh p ,E 2 succ
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which can bemade arbitrarily small as p 1succ . Notice thatwe only needed to use a classicalmemory to record
themeasurement outcome, which is not in contrast with assumption (iii) of section 3. Also note that this cost has
to be paid only after extractingwork from M copies, hence the cost per copy scales as -M 1.

Define




r

r

r


^ ^

^ ^ 
≔

( )
( )

( )

( )

P P

P P
.M

M
M

M
M

M
R

R

R

Now, using the gentlemeasurement lemma [51, 52], equation (28) also implies

 r r - - ( ) ( )( ) p2 1 . 29M
R R succ

From equation (29), and the following characterisation of the trace norm (see [53])

 
r s r s- = -  ( ( ))Amax Tr

A0

wefind that

r r rD  D - - = D - -( ¯ ) ( ¯ ( )) ( ¯ )( ) p pTr Tr 2 1 Tr 2 1 ,M
R R succ R succ

where the last equality comes from the fact that áDñ¯ is conserved in the protocol, up to themeasurement. The
last equation can be rewritten as

r rD -  -( ¯ ( )) pTr 2 1 .R R succ

Exchanging the roles of rR and rR and introducing

d r ráDñ = D  - D¯ ( ¯ ) ( ¯ )Tr Tr ,R R

we conclude

d áDñ -∣ ¯ ∣ p2 1 .succ

Using equation (28), this bounds themaximumallowed change of the quality parameter of the reference.
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