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Abstract: Currently the fixed-point iteration method with initial guess 0 0.5m =  is officially 
recommended by the CIE MES2 system [CIE 191:2010] in order to compute the adaptation 
coefficient m  and the mesopic luminance .mesL  However, recently, Gao et al. [Opt. Express 
25, 18365 (2017)] and Shpak et al. [Lighting Res. Technol. 49, 111 (2017)] have numerically 
found that the fixed-point iteration method could be not convergent for large values of /S P . 
Shpak et al. suspected that, to achieve convergence, the /S P  ratio cannot be greater than 17. 
In this paper, a theoretical consideration for the CIE MES2 system is given. Namely, it is 
shown that the ratio /S P  be smaller than a constant 2 ( 18.1834)C ≈  is a sufficient condition 
for the convergence of the fixed-point iteration method. In addition, a new initial guess 
strategy, achieving faster convergence, is proposed. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The CIE MES2 system [1] was proposed in 2010 as an intermediate between the USP-system 
developed by Rea et al. [2] in 2004, and the Move-system developed by Goodman et al. [3] in 
2007. In the MES2 system, the spectral luminance efficiency function in the mesopic range 
from 20.005   cd m−  to 25.0   cd m−  is denoted by ( )mesV λ , and defined as 

 ( ) ( ) ( ) ( )1 ,mesM m V mV m Vλ λ− ′= +  (1) 

where m  is a coefficient of adaptation in the range 0 1,    ( )m M m≤ ≤  is a normalization 
constant such that ( )mesV λ  attains a maximum value of 1,  and ( )V λ  and ( )V λ′  are the CIE 
spectral luminous efficiency functions for photopic and scotopic visions, respectively. Hence 
the mesopic luminance 2 (in   )mesL cd m− , for a given light source with a spectral radiance 

( ) 2 1 (in    )E W m srλ − − , is given by 

 
( ) ( ) ( )

780

0 380

683
,mes mes

mes

L V E d
V

λ λ λ
λ

=   (2) 

where 0 555 .nmλ =  

If we let 
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 ( ) ( ) ( ) ( ) ( )
780 780

0

380 380

,       683 ,       1700 ,p sC V L V E d L V E dλ λ λ λ λ λ λ′ ′= = =   (3) 

and since ( )0 1V λ =  and ( )0 683 /1699 0.402 ,V λ′ = ≈  we have 

 ( ) ( )
( )
1

.
1

p s
mes

mL m L C
L m

m m C

+ −
=

+ −
 (4) 

Moreover, the mesopic luminance mesL , and the parameter m  are related by 

 ( )10 ,mesm a blog L= +  (5) 

where the values for the parameters a  and b  adopted by CIE [1] are 

 0.7670,             0.334.a b= =  (6) 
Thus, if we let 

 ( ) ( )
( )
1

0 ,1
1

m a
p s b

mL m L C
F m

m m C

−+ −
= −

+ −
 (7) 

then the coefficient of adaptation m , defined by (4) and (5), should be also the solution of the 
equation ( ) 0.F m =  

Recently, Gao et al. [4] have shown that, with the values for a  and b  given by (6), the 
equation ( ) 0F m =  may have either no solution or more than one, and, in agreement with 
Shpak et al. [5], they have recommended that the values for the parameters a  and b  should 
be better replaced by 

 10 5 1
1 ,                .

3 3

log
a b= − =  (8) 

Gao et al. [4] have shown that, with the new values for a  and b  given by (8), the 
equation ( ) 0F m =  has a unique solution between 0  and 1 , when the following condition is 
satisfied: 

 2 2 0.005  and                 .0 .5  s pL cd m L cd m− −> <  (9) 

Thus, in this paper we will use the values for a  and b  given by (8), together with the 
remaining equations of the CIE MES2 system. 

Note first that a  and b  given by (8), also satisfy 

 ( )1 // ,           0.005 10 5 0 .1 a ba b −= =  (10) 
Now from (4), we note that when 0,m =  we have ,mes sL L=  and when 1,m =  we have 

.mes pL L=  Hence, for the continuity of the luminance scale, from scotopic via mesopic to 
photopic visions, we should have: 

 2 ,            when      0.005  0     and     s mes sL cd m m L L−≤ = =  (11) 

 2when      5                     1     and    ,  .p mes pL cd m m L L−≥ = =  (12) 

Henceforth, in this paper all luminance units ( 2cd m− ) will be missed for simplicity. 
Let 

 ( ) ( )10 ,mesg m a blog L m= +     (13) 
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where ( )mesL m  is defined by (4). To compute the value ,m  satisfying ( ) ,m g m=  the CIE 

[1] has recommended the iteration method 

 ( )1 ,           for       0,1,n nm g m n+ = = …  (14) 

with 0 0.5,m =  until ‘convergence’ is achieved. The term ‘convergence’ in this algorithm (14) 
means that the iteration process is stopped when two consecutive values nm  and 1nm +  are 
close enough, i.e., the difference among them in absolute value is smaller than a prefixed 
small tolerance .ε  Therefore, when we have 

 1 ,n nm m ε+ − ≤  (15) 

the value 1nm +  is accepted as an approximation of the solution of the equation ( ).m g m=  
Note that, if the sequence { } 0

,n n
m

≥
 generated by the iteration method (14), converges to 

*m , then we have 

 ( ) ( ) ( )* *
1lim lim lim ,n n nn n n

m m g m g m g m+→∞ →∞ →∞
= = = =  (16) 

since g  is a continuous function. 
Hence, *m  is a fixed point of the function ,g  and this is the reason this iteration method 

is also named in the literature [6] as fixed-point iteration. 
It is clear that the function ,g  or the fixed-point iteration method, is dependent on both, 

pL  and the ratio / .s pL L  In this paper, the ratio / .s pL L  will be denoted in an abbreviated 
form as / ,S P  i.e., 

 / / .s pS P L L=  (17) 

Recently, Gao et al. [4] and Shpak et al. [5] have reported that the convergence of the 
fixed-point iteration method depends on the ratio / ,S P  and for large values of /S P  the 
method does not converge. Shpak et al. [5] suspected that, to achieve convergence, the ratio 

/S P  cannot be larger than 17. Since currently the fixed-point iteration method is officially 
recommended by the CIE MES2 system [1], and it may be also implemented in automatic 
devices, it is appropriate to provide a full theoretical consideration on the convergence of 
such method. This is the main goal of this paper. 

2. Convergence analysis for fixed-point iteration method 

We start quoting a result about a sufficient condition for the convergence of the fixed-point 
iteration method. 

Lemma 1: (Fixed-Point Theorem [6, page 62, Chapter 2]) 
Let f  be a continuous function defined on [ ], ,c d ⊂ R  such that ( ) [ , ]f x c d∈  for all 
[ , ]x c d∈ . Suppose, in addition, that , f ′  the derivative of ,f  exists on ( ), ,c d  and there is a 

constant (0,1 )k ∈  such that ( ) ,f x k′ ≤  for all [ , ]x c d∈ . Then, for any number 0x  in [ ], ,c d  
the sequence { } 0n n

x
≥

 defined by 

 ( )1 ,            1,n nx f x n−= ≥  (18) 

converges to the unique fixed point *x  of the function f  in [ , ]c d . 
Now, we provide another sufficient condition for the convergence of the fixed-point 

iteration method. 
Theorem 1: Let f  be a monotonically increasing and continuous function defined on 

[ ], ,c d ⊂ R  such that ( ) [ , ]f x c d∈  for all [ , ]x c d∈ . Then, for any 0x  in [ ], ,c d  the sequence 
{ } 0n n

x
≥

 defined by (18) converges to a fixed point * ,x  in [ ], ,c d  of the function f . 
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Proof: It is obvious that { } 0
[ , ]n n

x c d
≥

⊂ . If ( )0 1 0 ,x x f x= =  then 0nx x=  for all 1,n ≥  
and 0x  is a fixed point of the function .f  Now, suppose 0 1.x x<  In this case, it can be shown 
that the sequence { } 0n n

x
≥

 is monotonically increasing, and therefore has a limit [ ]* , x c d∈ . 
Due to the continuity of ,f  we have 

 ( ) ( ) ( )* *
1 1 lim lim lim ,n n nn n n

x x f x f x f x− −→∞ →∞ →∞
= = = =  (19) 

and *x  is a fixed point of .f  If 0 1 ,x x>  the sequence { } 0n n
x

≥
 is monotonically decreasing, 

and we get the same conclusion. 
Now, from Theorem 1, we have: 
Theorem 2: If / 1,S P ≤  then the fixed-point iteration method given by (14) is 

convergent. 
Proof: First, we note that when / 1,S P =  the fixed-point iteration method (14) is 

convergent. In fact, when / 1,S P =  we have ,mes pL L=  for any ,m  and therefore 

 ( ) ( )10 .pg m a blog L= +  (20) 

Thus, for any ( )0 0,1 ,m ∈  we have ( ) ( )1 10 ,n n pm g m a blog L−= = +  for all 1.n ≥  
Therefore, the sequence { } 0n n

m
≥

 converges to ( )10 ,pa blog L+  which is the unique fixed 
point of g  in [ ]0,1 .  

Now, suppose that / 1,S P <  and let 

 ( ) ( )( ) ( ) ( )1 / ,      and      1 .U m m m S P C W m m m C= + − = + −  (21) 

It is easy to check that ( )g m′  is given by 

 ( ) ( )
( ) ( )

1 /
.

10 

bC S P
g m

log U m W m

−
′ =  (22) 

Since / 1,S P <  and ( )U m  and ( )W m  are positive for ( )0,1 ,m ∈  we have ( ) 0g m′ >  
for all ( )0,1 ,m ∈  and therefore, g  is a monotonically increasing and continuous function on 
[ ]0,1 .  Moreover, since / 1,S P <  then 0.005 5,s pL L≤ < <  and therefore 

( ) ( )0 0 1 1,g g≤ < <  i.e., ( ) [0,1 ]g m ∈  for all [ ]0,1 .m ∈  And by Theorem 1, the fixed-point 
iteration method given by (14) is convergent. 

We note that Lemma 1 cannot be applied to prove Theorem 2, since ( )g m′  is greater than 
1,  when /S P  and m  are sufficiently small. 

Now, in order to investigate the convergence of the fixed-point iteration method when 
/ 1,S P >  we need the second derivative of the function ,g  given by 

 
( )
( ) ( )

( )2 2

1 /
( ) ,

10 

bC S P
g m Am B

log U m W m

−
′′ = +  (23) 

where 

 ( ) ( )( ) ( )( ) ( ) ( )2 1 / 1       and      / 1 / 1 .A C S P C B C S P C S P C C= − − = − + −   (24) 

Thus, it is clear that both A  and B  are linear functions of / ,S P  and therefore 
/wm B A= −  is a function of the ratio / ,S P  i.e., ( )/ .w wm m S P=  Fig. 1 shows the variation 

of the function ( )/w wm m S P=  (vertical axis) with ratio /S P  (horizontal axis). The dotted 
vertical line corresponds to / 1/S P C= . It can be seen that when / 1/S P C< , we have that 

( )/wm S P  is negative, and approaches to −∞  when /S P  approaches from bellow to 1/ C . 
However, when ( )/ 1/ ,   /wS P C m S P>  is positive and monotonically decreasing with 
respect to / ;S P  and ( )/wm S P  approaches to ∞  when /S P  approaches from above to 
1/ C . Furthermore, it can be easily seen that 
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 ( ) ( )/

2 1 2
1      and      lim / 1.

2 1w wS P

C C
m m S P

C C→∞

− −  = = <  − 
 (25) 

m
w

 

Fig. 1. The function ( )/ .
w

m S P  Vertical dotted line is / 1 /S P C= . 

With the expression of ( )g m′′  given by (23), we have: 
Theorem 3: If 1 / (2 ) /S P C C< ≤ − , then ( ) 0g m′′ ≥  for 0 1.m≤ ≤  If 

/ (2 ) /S P C C> − , then 

 ( )
( )
( )

( )

0           for          0 /

 0           for               /

0           for           / 1

w

w

w

m m S P

g m m m S P

m S P m

> ≤ <
′′ = =
< < ≤

 (26) 

Proof: Suppose that 1 / 1/S P C< <  . Then, from (24), we have 0A <  and 0B < . And 
from (23), it is obvious that ( ) 0g m′′ ≥  if, and only if, 0Am B+ ≤ , i.e., /m B A≥ − . Since 

/ 0B A− ≤ , we have ( ) 0g m′′ ≥  for 0 1.m≤ ≤  
For / 1/S P C= , it is clear from (24) that 0A =  and 0B < . Therefore, from (23), 
( ) 0g m′′ > . 
Now, suppose that 1/ / (2 ) /C S P C C< ≤ − . Then, from (24), we have 0A >  and 0B < . 

And from (23), it is obvious that ( ) 0g m′′ ≥  if and only if 0Am B+ ≤ , i.e., /m B A≤ − . 
Since ( )/ /wB A m S P− =  is a decreasing function of /S P , as it can be easily shown, we 
have 

 ( ) 2
/ / 1,w w

C
B A m S P m

C

− − = ≥ = 
 

 (27) 

and, again ( ) 0g m′′ ≥  for 0 1.m≤ ≤  
Finally, suppose / (2 ) /S P C C> − . Then, from (24), we have 0A >  and 0B < , and 

now, since ( )/ /wB A m S P− =  is a decreasing function of /S P , we get 

 ( ) 2
0 / / 1.w w

C
B A m S P m

C

− ≤ − = ≤ = 
 

 (28) 
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Therefore, since 0,A >  we have 0Am B+ <  for ( )0 / ,wm m S P≤ <  0Am B+ =  for 
( )/ ,wm m S P=  and 0Am B+ >  for ( )/ 1;wm S P m< ≤  and consequently ( )g m′′  is positive 

in ( ))0, /wm S P , negative in ( )( / ,1 wm S P  , and equal zero when ( )/ .wm m S P=  
By using Theorem 3 above, we can prove the following result about the derivative of the 

function g  given by (13). 
Theorem 4: Let 

 1
1 2

1

1
0.0582,      and      18.1834.

10

CCb
C C

log C

+
= ≈ = ≈  (29) 

If 21 /S P C< < , then ( ),g m′  given by (22), is negative for 0 1.m≤ ≤  Moreover, there 
exists a constant (0,1 )k ∈  such that ( ) ,g m k′ ≤  for 0 1.m≤ ≤  

Proof: From (22), we have 

 ( ) ( )
( ) ( )

1 /
,

10 

bC S P
g m

log U m W m

−
′ =  (30) 

where ( ) ( )( ) ( ) ( )1 / ,        and         1 .U m m m S P C W m m m C= + − = + −  Therefore, if 

21 /S P C< < , it is obvious that ( ) 0g m′ <  for 0 1.m≤ ≤  Moreover, from Theorem 3, if 
1 / (2 ) /S P C C< ≤ − , we have ( ) 0g m′′ ≥  for 0 1,m≤ ≤  and therefore ( )g m′  is an 
increasing function of .m  Thus, for 0 1,m≤ ≤  we have 

 ( ) ( ) ( ) ( )
( )

1 1
12 2

/ 1
 0 0.3601 1.

/

C S P C
g m g m g k

C S P C
′ ′

−
′ = − ≤ − = < = ≈ <  (31) 

Finally, from Theorem 3, if / (2 ) / ,S P C C> −  then ( )g m′  is increasing in 
( ))0, /wm S P , and decreasing in ( )( / ,1 . wm S P   Hence, we have 

 

( ) ( ) ( ){ } ( )
( ) ( ) ( )

( )
( ) ( )

( )

1
12

1 2
2

2
1

/ 1
max 0 , 1 max ,   / 1 /

/

/ 1
                      for     2 / / 1/

/       =

/ 1     for      1 / /

C S P
g m g g C S P h S P

C S P

C S P
C C S P C

C S P

C S P C S P

 − ≤ − − = − = = 
  

 −
− <

′ ′ ′

≤

 − <

(32) 

Figure 2 shows ( )/h S P  versus the ratio /S P  for / (2 ) / 3.9751S P C C> − ≈ . It is 
obvious that ( )/h S P  is an increasing function of the ratio / .S P  It can also be checked that 

( )2 1.h C =  Since 2/ ,S P C<  there exists ( ) 0 1 ,ε ε< <  such that 2/ .S P C ε< −  Thus, from 
(31), we have, for 0 1,m≤ ≤  

 ( ) ( ) ( ) ( )2 1 2 1 2/ 1 1 1,g m h S P h C C C C kε ε ε≤ ≤ − = − = − = <′ −  (33) 

and the proof is concluded. 
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h(
S/

P)

 

Fig. 2. The function ( )/h S P  for / (2 ) / 3.9751S P C C> − ≈ . 

Let g  be given by (13). Since 5,pL <  we have 

 ( ) ( ) ( ) ( )0 10 1 10 0         and       1  1.s pg g a b log L g g a b log L= = + = = + <  (34) 

Note that with the values for a  and b  given by (8), we have 10 5 1,a blog+ =  and 
therefore 0 1g ≤  when 5,sL ≤  and 0 1g >  when 5.sL >  From Theorem 4, if 21 / ,S P C< <  
then ( )g m  is a decreasing function of m . Therefore, there exists ( )0,1 ,Lm ∈  depending on 
the ratio / ,S P  such that ( ) 1.Lg m =  For ( )/ ,L Lm m S P=  it can be shown that 

 ( ) ( )
( ) ( )( )

/ 5 /
/  ,           for         5.

/ 1 5 / 1

p

L s

p

C S P L
m S P L

C S P C L

−
= >

+ − −
 (35) 

Figure 3 shows ( )/Lm S P  (solid curve), for some given pL  ( 3.0pL =  in black, and 
0.5pL =  in blue), versus / ,S P  between 5 / pL  and 2C . It is also shown 1g  (dotted line), 

and it can be seen that ( )/Lm S P  is less than 1,g  for a given .pL  

                                                                 Vol. 26, No. 24 | 26 Nov 2018 | OPTICS EXPRESS 31357 



m
L &

 g
1

 

Fig. 3. The functions ( )/
L

m S P  (solid curves) and 
1

g  (dotted lines) for /S P  between 
5 /

p
L  and 

2
C . Black and blue curves correspond to 3.0,

p
L =  and 0.5

p
L =  respectively. 

Now, we can state the following result regarding the function g . 
Theorem 5: Suppose a fixed 5,pL <  and 21 /S P C< < . Then, we have: 

(i)  If 5,sL ≤  then ( ) [ ] [ ]1 0, 0,1 ,g m g g∈ ⊆  for [0,1 ]m ∈ . 

(ii) If 5,sL >  then ( ) [ ] ( )1,1 / ,1 ,Lg m g m S P∈ ⊆     for ( )[ / ,1 ]Lm m S P∈ . 
Proof: Suppose that 21 /S P C< < . Then, from Theorem 4, g  is a decreasing function on 

[ ]0,1 , and therefore 0 1 0.g g> >  
If 5,sL ≤  then 0 1,g ≤  and ( ) [ ]1 0, [0,1 ],g m g g∈ ⊆  for [ ]0,1 .m ∈  
If 5,sL >  then 0 1,g >  and, since g  is a decreasing function on [ ]0,1 , there exists 

( )/ (0,1 )L Lm m S P= ∈  such that ( ) 1.Lg m =  By solving the equation ( ) 1,g m =  it can be 
found that ( )/L Lm m S P=  is given by (35). Moreover, we have 

 ( ) ( )
( ) ( )( )( )2

5 / 1
/ 0.

/ 1 5 / 1

p

L

p

C L
m S P

C S P C L

−
′ = >

+ − −
 (36) 

Therefore, for any fixed 5,pL <  Lm  is an increasing function of /S P  as shown by Fig. 
3, where the solid black curve corresponds to 3,pL =  and the solid blue curve corresponds to 

0.5.pL =  It can be seen that for 2/ ,S P C<  we have ( ) 1/ .Lm S P g<  For proving this, it is 
enough to show that ( )2 1,Lm C g≤  since Lm  is an increasing function of / .S P  If we define 
the function 

 ( ) ( ) ( )( ) ( )( )2 2 105 / 1 5 / 1  ,p p p pq L C C L CC C L a b log L = − − + − − +   (37) 

then, ( )2 1Lm C g≤  is equivalent to ( ) 0.pq L ≤  It is obvious that ( )5 0.q =  Moreover, since 
5,pL <  5,sL >  and 21 /S P C< < , we have 25 / 5.pC L< <  Now, we want to show that q  is 

an increasing function of pL  in the interval ( )25 / , 5C . Since 

 ( )
( ) ( )( ) ( )( )10 2

2

5 1  1 5 / 1
,

10

p p

p
pp

C C a b log L b CC C L
q L

L logL

   + − + + − − ′  = −  (38) 
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it is clear that ( ) 0pq L′ ≥  if, and only if, 

 ( ) ( )( ) ( )( )2

10

1 5 / 1
1  ,

5 10

p p

p

bL CC C L
C C a b log L

log

 + − − + − + ≥  (39) 

which is also equivalent to 

 ( ) ( )
( )

2
10

1
  .
1 10 5 1 10

p
p

bL CCC b
a blog L

C log C log

−
+ − ≥ − +

− −
 (40) 

The left-hand side of the above inequality is a constant, while the right-hand side depends 
on pL . If we let 

 ( ) ( ) ( )
( )

2
10

1
  ,

5 1 10
p

p p

bL CC
p L blog L

C log

−
= − +

−
 (41) 

then, 

 ( )
3

3

3

0           when           

   0           when           

0           when           

p

p p

p

L C

p L L C

L C

′
< <
= =
> >

 (42) 

where ( )3 25(1 ) / 1 0.4739C C CC= − − ≈ . 
Hence, p  is a decreasing function of pL  in the interval ( )2 35 / ,  C C , and increasing in the 

interval ( )3 ,  5 .C Furthermore, it can be verified that 

 ( ) ( )2 5 5 / .
1 10

C b
a p p C

C log
+ − = >

−
 (43) 

Therefore, the inequality (40) is true for ( )25 / , 5 ,pL C∈  and consequently ,q  given by 
(37), is an increasing function of pL  in the interval ( )25 / , 5C . Then, ( ) ( )5 0,pq L q≤ =  
which is equivalent to ( )2 1,Lm C g≤  and then, ( ) 1/Lm S P g<  for 2/ ,S P C<  which 
concludes the proof. 

We are now ready to state another convergence theorem for the fixed-point iteration 
method when / 1S P > . 

Theorem 6: Suppose a fixed 5,pL <  and 21 /S P C< < . Then, the fixed-point iteration 
method given by (14), is convergent for any [ ]0 0,1 m ∈  when 5,sL ≤  and for any 

( )0 / ,1 Lm m S P∈     when 5sL > . 
Proof: From Theorem 4, there exists a constant (0,1 )k ∈  such that ( ) ,g m k′ ≤  for 

0 1.m≤ ≤  Moreover, if 5,sL ≤  from Theorem 5 we have ( ) [ ]0,1 ,g m ∈  for [0,1 ]m ∈ . Then, 
by using Lemma 1, the fixed-point iteration method given by (14) is convergent for any 

[ ]0 0,1 m ∈ . In the case 5,sL >  again from Theorem 5 we have ( ) ( )/ ,1 ,Lg m m S P∈     for 
( )/ ,1 ,Lm m S P∈     and according to Lemma 1, the fixed-point iteration method given by 

(14) is convergent for any ( )0 / ,1 Lm m S P∈    . 
Theorems 2 and 6 provide a sufficient condition for the convergence of the fixed-point 

iteration method (14), namely 2/S P C< . However, the fixed-point iteration method may 
also be convergent when this condition fails, i.e., 2/S P C> . 

Moreover, in both Theorems 2 and 6, the convergence is guaranteed when choosing 
properly the initial value 0m . CIE recommended the initial guess 0 0.5m =  for the fixed-point 
iteration method, i.e., the middle point of the interval [ ]0,1 .  Gao et al. [4] proved that the 
function g  has a unique fixed point in [ ]0,1 ,  which is equivalent to assert that the equation 
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( ) 0,F m =  where F  is given by (7), has a unique solution in [ ]0,1 .  However, when 5,sL >  
Theorem 6 indicates that the initial guess 0m  should be in the interval ( )/ ,1 Lm S P    to 
ensure the convergence of the fixed-point iteration method. It is well known that the 
performance of the iteration method depends on the initial guess 0m . Therefore, if 0m  is 
chosen “close” to the fixed point * ,m  then the number of iterations to get a good estimation 
of *m  will be smaller. From the results presented in this paper, it follows that 

                                   [ ]*
0 1       for        , / 1m g g S P∈ ≤  (44) 

 [ ]*
1 0,        for        / 1      and      5sm g g S P L∈ > ≤  (45) 

 [ ]*
1 1           for        / 1      and   ,   5sm g S P L∈ > >  (46) 

The above information can help to choose a “better” initial guess 0m , and will be 

discussed in the next section. 

3. Performance of fixed-point iteration method with new initial strategy 

We have shown that the fixed-point iteration method (14) is convergent for 2/ ,S P C<  
whenever a proper initial value 0m  is chosen. In order to test numerically this result, we have 
taken some values for pL  from 0.1  to 4.9,  namely 0.1,  0.3,  0.5,  0.7, , 4.9,…  that is a total 
number of 25  values for .pL  Similarly, we have taken some values for the ratio /S P  from 
0.1  to 1,  namely 0.1,  0.15,  0.2,  0.25, ,1 ,…  and from 1.1  to 18.1  we have taken the values 
1.1,  2.1,  3.1,  4.1, ,1 8.1,…  which make a total number of 37  values for the ratio / .S P  
Therefore, we have considered 925 25 37= ×  cases for testing the performance of the fixed-
point iteration method with the original initial guess 0 0.5m =  (the current CIE MES2 method 
[1]), and also with a new initial strategy. Regarding the selected range of values for the ratio 

/S P  from 0.1 to 18.1, it must be remarked that, for most current conventional light sources, 
these values are low, in a range around 0.0-3.0 [7]. However, higher values, up to a maximum 
of around 73.0, which are associated to blue monochromatic lights, are also possible [5]. For 
example, Nizamoglu et al. [8] have reported /S P  values of 5.15 for nanocrystal hybridized 
LEDs, and previous researchers [4] have considered /S P  values up to 50, for theoretical 
light sources based on Hung et al. method [9]. The initial value 0m  in the new strategy, that 
we propose, is given by 

 
( )
( )

0 1
0

1

0.5              if          5

0.5 1                if          5
s

s

g g L
m

g L

 + ≤=  + >
 (47) 

where 0g  and 1g  are given by (34). We have fixed tolerance 510ε −=  for the convergence, 
and have limited the number of iterations to 200,  in order to avoid the program running 
during a very long time. 

Figure 4 shows the contours with the number of iterations needed for the convergence of 
the fixed-point iteration method, using the initial value 0 0.5,m =  as recommended by CIE 
[1]. In 921  cases, from the total of 925,  the convergence is obtained when computing less 
than 100  iterations. In two cases, namely / 18.1  S P =  and 4.3,pL =  and / 18.1  S P =  and 

4.5,pL =  have been necessary 120  and 157  iterations, respectively, for the convergence. 
And for / 18.1  S P =  and 4.7,pL =  and / 18.1  S P =  and 4.9,pL =  the convergence is not 
achieved after 200  iterations. 
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Fig. 4. Contours plots with the number of iterations for the convergence of the fixed-point 
iteration method with initial value 

0
0.5,m =  as a function of /S P  and 

p
L . Different colors 

represent different numbers of iterations needed, as shown on the vertical bar on the right. 
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Fig. 5. Contours plots with the number of iterations for the convergence of the fixed-point 
iteration method with the new initial strategy (see (47)) as a function of /S P  and 

p
L . 

Different colors represent different numbers of iterations needed, as shown on the vertical bar 
on the right. 

Figure 5 shows the contours with the number of iterations needed for the convergence of 
the fixed-point iteration method, using as initial value 0 ,m  in each case, the value provided by 
the new strategy proposed in (47). Now, in all 925  cases under study, the convergence is 
obtained when computing less than 70  iterations. This fact proves the validity of our 
convergence analysis. In addition, let 1N  and 2N  be the number of iterations needed for the 
convergence, when using 0 0.5m =  and the initial value provided by (47), respectively. It has 
been found that 2 1 1N N= +  only for 3  cases, 2 1N N=  for 175  cases, and 2 1N N<  for 747  
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cases. Thus, with the proposed new initial strategy (47), the fixed-point iteration method 
converges faster than with the CIE recommended initial value [1] in the 80%  of the cases. 

4. Conclusions 

The MES2 system was recommended by CIE [1] to compute the mesopic luminance, using a 
fixed-point iteration method (see (14)). In this process of computation of the mesopic 
luminance, a numerical solution of a nonlinear equation ( ) 0F m =  is searched (see (7)). 
Shpak et al. [5] have proposed new values for the parameters a  and b  involved in that 
equation (see (8)). With these new values for a  and b , Gao et al. [4] have shown that the 
nonlinear equation ( ) 0F m =  has a unique solution in (0,1 ) , whenever a condition for sL  
and pL , given by (3), is satisfied (see (9)). However, Gao et al. [4] and Shpak et al. [5] have 
found that the fixed-point iteration method may be not convergent for large values of 

/ /s pS P L L=  . Shpak et al. [5] pointed out that this ratio should not be larger than 17 in 
order to have convergence. In this paper a theoretical consideration on the convergence has 
been given, and it has been found that the fixed-point iteration method converges when using 
appropriate initial values, and the ratio /S P  is smaller than 2 18.1834C ≈ . For values of 

/S P  larger than 2C , there is no guarantee for the convergence of the fixed-point iteration 
method. Values of the ratio /S P  for current light sources are usually lower than 3.0 [7], but 
Nizamoglu et al. [8] have reported higher /S P  values of 5.15 for nanocrystal hybridized 
LEDs. The theoretical upper limit for the ratio /S P  is around 73.0 [5]. Therefore, our 
current analyses considering sources with high /S P  values make sense, because we are 
proposing a valid CIE method for both current and future light sources. Moreover, for values 
of /S P  smaller than 2C , a new strategy (47) for the choice of the initial value 0m  has been 
proposed. In many cases, this new strategy produces a remarkable reduction of the number of 
iterations needed to achieve convergence, compared when using 0 0.5m =  as initial value, as 
currently recommended in CIE MES2 method [1]. 
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