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Murat Oğuz† Tolga Bektaş† Julia A. Bennell† Jörg Fliege‡

†Southampton Business School and CORMSIS

University of Southampton, SO17 1BJ Southampton, United Kingdom

‡Mathematical Sciences and CORMSIS

University of Southampton, SO17 1BJ Southampton, United Kingdom

Abstract

This paper presents a general modeling framework for restricted facility location problems with arbi-

trarily shaped forbidden regions or barriers, where regions are modeled using phi-objects. Phi-objects are

an efficient tool in mathematical modeling of 2D and 3D geometric optimization problems, and are widely

used in cutting and packing problems and covering problems. The paper shows that the proposed mod-

eling framework can be applied to both median and center facility location problems, either with barriers

or forbidden regions. The resulting models are either mixed-integer linear or nonlinear programming for-

mulations, depending on the shape of the restricted region and the considered distance measure. Using

the new framework, all instances from the existing literature for this class of problems are solved to opti-

mality. The paper also introduces and optimally solves a realistic multi-facility problem instance derived

from an archipelago vulnerable to earthquakes. This problem instance is significantly more complex than

any other instance described in the literature.

Keywords. mathematical modeling, facility location, phi-objects

1 Introduction

Facility location problems are concerned with the optimal placement of facilities in order to minimize a

general cost function including that of distance and demand from customer sites. If the underlying space for

both the potential facility sites and the customer sites is continuous, such problems are termed continuous

facility location problems. These problems are different from their discrete counterparts, where facilities can

only be placed on a finite set of candidate sites. Dasci and Verter (2001) state that discrete location models

may provide optimal solutions, but when the model becomes more realistic, data and the computational

requirements increase significantly, which is likely to result in a decrease in model accuracy.

The most commonly studied continuous facility location problems are the minisum and the minimax prob-

lems (Drezner, 1995). The former corresponds to minimizing the total weighted distance from customer

sites, while the latter is concerned with minimizing the maximum weighted distance. Minisum problems

with p facilities are often referred to as p-median problems; similarly minimax problems with p facilities are

called p-center problems. When real life instances are studied, however, these problems might fail to model

the problem in a realistic manner, since there can be geographical restrictions on the location of the facili-

ties or on the paths to the facilities. For instance, a huge mountain range can hinder facility location and

transportation. These mountain ranges can be seen as a restriction on location and transportation between

facilities.
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The restriction on locations presents a challenge for such class of problems. According to Canbolat and

Wesolowsky (2010), it is possible to classify the restriction types into three categories, namely forbidden

regions, barriers and congested regions. The placement of new facilities within a forbidden region is not

allowed, but traveling through it is permitted. For barriers, neither placement of facilities within or travel

through is permitted. The placement of new facilities is also not permitted in congested regions, but travel-

ing within may be allowed in return for a penalty. In this paper, we will focus on two planar facility location

problem restrictions; one with forbidden regions, another with barriers. There are various applications of

such types of problems. Assembly of printed circuit boards (Foulds and Hamacher 1994), obnoxious facility

planning (Carrizosa and Plastria 1993) and location of emergency facilities are some examples for problems

with forbidden regions (Hamacher and Nickel, 1995), whereas urban applications considering lakes, parks,

cemeteries and rivers can be listed as examples for problems with barriers.

The problem at hand is to find optimal locations of new facilities on a continuous plane, considering the

restrictions mentioned above. These restricted regions on the plane make the feasible region non-convex

and arbitrarily shaped. To define a feasible region for this problem type, we use phi-objects, which are an

efficient tool in mathematical modeling for 2D and 3D geometric optimization problems. The concept of

phi-objects is mainly associated with cutting and packing problems and covering problems. It lends itself

to the problems addressed in this paper as they have the capability to model any arbitrary shaped region,

including regions that are bounded by arcs, and as a result, naturally form a mathematical model. While

they have the advantage of efficiently modeling shapes to a high level of fidelity, they can also be used

where a lower level of fidelity is acceptable and take advantage of the computational efficiency offered

by approximation of the shape. A model that has general applicability at any chosen level of fidelity is

new to the literature. On top of the capability of modeling any arbitrary shaped regions, using phi-objects

enables us to model different types of restrictions within a single modeling framework, which would allow

formulating and solving real-life instances featuring various types of restrictions and distance metrics. In

this paper, we will show that it is possible to adapt this concept to continuous facility location problems

with restricted regions and model arbitrarily shaped regions by using phi-objects. The main idea is to use

phi-objects to create a general model for this class of problems, which can then be used to solve them to

optimality. In this modeling approach, phi-objects can represent either restricted or feasible regions on the

plane. We show that the resulting formulations are either mixed-integer linear programs (MILP) or mixed-

integer nonlinear programs (MINLP), depending on the shape of the restricted region and the considered

distance measure.

In addition to the models, we also present an application of a cutting plane technique to solve models

with a significant number of barriers. This technique is used to relax models by decreasing the number of

constraints significantly.

The contributions of this paper are listed below:

• A new modeling approach for continuous facility location problems with arbitrarily shaped forbid-

den regions or barriers is presented by using the concept of phi-objects. This concept enables us to

deal with arcs as well as planar edges defining the region. It is shown that problems with different

restriction types can be solved within a single modeling framework. The flexibility provided by phi-

objects increases the variety of geometric objects that can be considered as restricted regions. Thus,

real geographical shapes found in nature can be modeled with negligible approximations.
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• It is shown that the proposed general modeling framework can be adapted to multi-facility location

problems with forbidden regions and to single facility location problems with barriers with various

objective functions.

• We present computational results showing that all instances for this class of problems previously

described in the literature can be solved to optimality by using the proposed approach.

The remainder of this paper is organized as follows. In Section 2, we review the relevant literature on con-

tinuous location problems with a particular focus on forbidden regions and barriers. Section 3 will present

background information on phi-objects and illustrate the application of this concept to restricted contin-

uous facility location problems with forbidden regions or barriers. We introduce the general modeling

framework in Section 4. In Section 5, we test our approach by solving instances from the literature, as well

as a new instance derived from a real geographical setting in Section 6. Conclusions are given in Section 7.

2 Literature Review

Restricted planar location problems can be classified into three categories, namely those with (i) forbidden

regions, (ii) barriers and (iii) congested regions. In this paper, we focus on the restricted planar problems

with forbidden regions and barriers. For discussion of the congested region problem, see Butt and Cavalier

(1997) and Sarkar et al. (2004).

2.1 Restricted Problems with Forbidden Regions

To our knowledge, the first study on this problems is by Aneja and Parlar (1994), who describe algorithms

for the single facility location problem with forbidden regions and barriers separately, with a metric de-

fined on R
n and with respect to a parameter 1 ≤ p ≤ ∞, namely the lp metric, which has a general form

represented as [|x− xi|
p
+ |y − yi|

p
]
1/p

. For p = 1, the lp metric is known as the rectilinear distance. Simi-

larly, l2 is known as the Euclidean distance and l∞ is the Chebyshev distance. The algorithms proposed by

Aneja and Parlar (1994) are applicable to cases where 1 < p ≤ 2. For the forbidden region problem, they

present algorithms for polygonal convex and non-convex forbidden regions. The algorithms are based on

the premise that if an optimal solution of a problem solved by ignoring the forbidden region is located

outside the forbidden region, then this solution would also be the optimal solution for the original problem

with the forbidden region. If not, then they use an algorithm that assumes that the optimal solution would

be on the boundary of the forbidden region.

Hamacher and Nickel (1994) introduce several algorithms for the 1-median problem on a plane using dis-

tance metrics including Manhattan, squared Euclidean and Chebyshev. Their assumption is that the con-

sidered forbidden region is a union of pairwise disjoint convex sets. They present some basic examples to

test their algorithms. Hamacher and Nickel (1995) extend their previous work to multi-facility median and

center problems, where the forbidden region is again a union of pairwise disjoint convex sets. They present

a heuristic algorithm which consists of a sequential solution of p single facility problems for the p-median

problem with a forbidden region, and an efficient solution algorithm based on level sets and lines for the

1-center problem with Manhattan and Chebyshev distance metrics.
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Hamacher and Schöbel (1997) study a center problem with a polyhedral convex forbidden region. A poly-

nomial solution algorithm is proposed, using the Euclidean distance metric. With few modifications, the

algorithm can be used for a problem with a polyhedral non-convex forbidden region. Later, Woeginger

(1998) shows that this problem can be solved with a better time complexity by applying standard compu-

tational geometry techniques.

2.2 Restricted Problems with Barriers

Restricted planar location problems with barriers, to the best of our knowledge, are first presented by

Katz and Cooper (1981), where the barrier is a single circular region and the distance metric is Euclidean.

In this paper, an algorithm is described to compute the shortest distance following, which the modified

objective function with the shortest distance is converted into a sequence of unconstrained minimization

problems. Klamroth (2004) presents new structural results for the problem described by Katz and Cooper

(1981). Larson and Sadiq (1983) solve a p-median problem in a case of rectilinear distance. A cell formation

technique is used to reduce the p-median problem to a discrete search problem. The authors state that any

of the existing algorithms available for the p-median problem can be applied to solve their problem.

Aneja and Parlar (1994) use the concept of visibility and the Dijkstra algorithm to compute the shortest

distance between customer sites and the location of the new facility, using polygons as barriers. Butt and

Cavalier (1996) consider the restricted 1-median problem with convex polygonal forbidden regions. They

use the Euclidean distance metric and describe an iterative solution procedure.

Hamacher and Klamroth (2000) consider the distances defined by polyhedral norms in the restricted single

facility median problem, with the barriers being convex polyhedral subsets. They use a grid construction

method to prove a discretization result, which implies a polynomial algorithm to solve location problems

with barriers and block norms. Klamroth (2001) presents an exact algorithm and a heuristic solution proce-

dure for the single facility problem with polyhedral barriers based on reducing this non-convex optimiza-

tion problem to a finite set of convex subproblems. Dearing et al. (2002) present a single facility center

problem with polygonal barriers and considered rectilinear distance as a distance metric. A polynomial

algorithm is developed to solve the problem to optimality. The same authors later adapt this modification

model to a problem considering block distance (Dearing et al., 2005).

Dearing and Segars Jr. (2002a) develop a modification technique for barriers, and prove that the objective

function values for both the original problem and the modified problem are the same. This modification

technique is based on properties of rectilinear distances. In a companion paper of this work, the authors

present a solution algorithm based on partitioning the feasible region into convex subsets by using the

mentioned modification technique (Dearing and Segars Jr., 2002b).

McGarvey and Cavalier (2003) develop an iterative solution procedure based on a modified “Big Square

Small Square” branch-and-bound method to solve 1-facility median problem with convex polygonal barri-

ers, where the distance metric is Euclidean. Bischoff and Klamroth (2007) reduce the original problem to a

finite series of convex subproblems to solve them by using Weiszfeld algorithm to find a heuristic solution

in the case of Euclidean distances. The visibility arguments are also taken into consideration to decrease

the number of convex subproblems.
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Recent research on restricted facility location problems have considered stochastic features, for example,

Canbolat and Wesolowsky (2010), Amiri-Aref et al. (2011), Shiripour et al. (2012), Amiri-Aref et al. (2013)

and Javadian et al. (2014), where the location of the barriers are uncertain.

2.3 Restricted Problems with Forbidden Regions and Barriers

To the best of our knowledge, the only paper that considers a facility planar location problem with both

forbidden regions and barriers is that by Batta et al. (1989). It is a p-median problem in the presence of

arbitrarily shaped barriers and convex forbidden regions, with a Manhattan (rectilinear) distance metric.

To solve the problem, they extend a cell formation technique introduced by Larson and Sadiq (1983).

2.4 Discussion

As the preceding review shows, it is possible to categorize restricted location problems based on the types of

restriction. While each problem has so far been individually addressed, there is a lack of a general approach

that is able to collectively address all problems in each category above. Table 1 details the types of problems

addressed in the literature and the applicability of the published approaches to these problems.

Table 1: Restricted location problems literature overview
Restriction Type Distance Metric Objective Restricted Region Shape

Forbidden Region Barrier Rectilinear Euclidean Chebyshev Median Center Polygon Circular Arbitrary

Katz and Cooper (1981) X X X X

Larson and Sadiq (1983) X X X X

Aneja and Parlar (1994) X X X X X

Hamacher and Nickel (1994) X X X X X X

Hamacher and Nickel (1995) X X X X X X X

Butt and Cavalier (1996) X X X X

Hamacher and Schöbel (1997) X X X X

Woeginger (1998) X X X X

Klamroth (2001) X X X X X X X

Dearing et al. (2002) X X X X

Dearing and Segars Jr. (2002a) X X X X X

Dearing and Segars Jr. (2002b) X X X X X

McGarvey and Cavalier (2003) X X X X

Klamroth (2004) X X X X

Bischoff and Klamroth (2007) X X X X

This paper X X X X X X X X X X

As Table 1 shows, previous studies limit the shape of the restricted regions to a polygon, even though these

shapes can vary substantially in real-world instances. Furthermore, previous studies seem to focus only on

specific objectives (e.g. median problem, center problem). A general approach that can deal with various

objectives is needed. To address the need for such an approach, we present a modeling framework to for-

mulate problems with various restriction categories, objectives and distance metrics, and arbitrarily shaped

restricted regions, such that the models can efficiently be solved to optimality using existing software. Be-

fore doing so, we first describe how regions are represented using phi-objects in the next section.

5



3 Phi-objects for Modeling Forbidden Regions

This section describes the concept of phi-objects. Phi-objects are most commonly found in the cutting and

packing literature. They are used to model real objects mathematically. These geometric objects are canon-

ically closed sets of points. Point sets that contain isolated points, points that are removed from an object

(deleted points) and objects with self-intersection of their frontiers are not classified as phi-objects. Note

that in the cutting and packing literature, the concept extends to generating the convolution of objects,

while here we simply use the objects in their original form.

The example presented in Figure 1a is a phi-object, formed by a closed set of points. The example shown

in Figure 1b is not a phi-object, since it self-intersects with its frontier. Similarly, the example in Figure 1c

contains deleted points, and is not classified as a phi-object. Readers are referred to Bennell et al. (2010)

for further details on phi-objects. In this paper, phi-objects are used as geometrical tools to model complex

geographical formations such as lakes, archipelagos, bays which often give rise to forbidden regions or

barriers.

Figure 1: Examples of arbitrarily shaped 2D objects

To model a complex shaped geometric object, it is convenient to divide phi-objects into three categories,

namely composed, basic and primitive objects (Bennell et al., 2015). A half-plane, a circle and the comple-

ment of a circle (circular hole) are types of primitive objects, as shown in Figure 2. The representation of

composed objects is through unions of a finite number of basic objects, whereas a basic object is obtained

by intersections of a finite number of primitive objects. Figure 3 shows four examples of basic objects.

Figure 2: Primitive object types

Figure 3: Examples of basic objects

In Figure 3a, the basic object is obtained by the intersection of four half-planes. The non-convex object
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shown in Figure 3b is the intersection of a circle, the complement of another circle and a half plane. In

Figure 3c, the basic object is an intersection of two circles. The basic object presented in Figure 3d is the

intersection of two half-planes and the complement of a circle.

Figure 4 shows the union of the four basic objects that are presented in Figure 3. This arbitrarily shaped

non-convex shape is a composed object.

Figure 4: A composed object

More formally, let B be the index set of basic objects and P be the index set of primitive objects. Each basic

object Bt, t ∈ B, is defined with respect to an index set Pt ⊆ P of primitive objects, where each primitive

object is denoted by Pk. Thus, Bt can be written as

Bt =
⋂

k∈Pt

Pk ∀t ∈ B. (3.1)

Let R be the index set of composed objects. For each composed object Ri, i ∈ R, let Bi ⊆ B denote the index

set of basic objects defining this region. A composed object Ri is then represented by

Ri =
⋃

k∈Bi

Bk ∀i ∈ R. (3.2)

Functions can be defined for phi-objects to describe the interaction between a point and phi-object. These

functions allow the arrangement of points, in our case facility locations, with respect to phi-objects, in our

case forbidden regions or barriers, to optimize a given objective to be formulated as a mathematical model.

Each primitive object Pk is associated with a half-plane, circle or the complement of a circle. Let fk(X) ≤ 0,

where X is a point with a coordinate (x, y) and fk(X) is a function defining the boundary of the primitive

object in such a way that it is less than zero if X is inside the phi-object. Since basic object Bt is defined

by an intersection of primitive objects, the maximum of fk(X), k ∈ Pt is taken. Therefore, the function

γt(X,Bt) representing the relationship between point X and the basic object Bt is

γt(X,Bt) = max
k∈Pt

{fk(X)} . (3.3)

If γt(X,Bt) = 0, then the point X is on the boundary of Bt. Alternatively, if γt(X,Bt) > 0, then the point X

is outside the basic object Bt.

Similarly, since a composed object Ri is a union of basic objects Bk, k ∈ Bi, it is defined by the minimum

of γk(X,Bt). Therefore, the function Γi(X,Ri) representing the relationship between point X and the com-

posed object Ri is
Γi(X,Ri) = min

k∈Bi

{γk(X,Bt)} . (3.4)

If Γi(X,Ri) = 0, then the point X is on the boundary of Ri. Alternatively, if Γi(X,Ri) > 0, then the point
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X is outside the composed object Ri.

The above mathematical model is based on the set of primitive and basic phi-objects. These objects are

known and described in Bennell et al. (2010) and Bennell et al. (2015). In order to model an arbitrary

object, the object needs to be decomposed into basic and primitive objects. Chernov et al. (2012) provides

a decomposition algorithm for this purpose. They define four types of basic objects. These are (i) a convex

polygon (Figure 5a), formed by an intersection of three or more half-planes, (ii) a circular segment (Figure

5b), as an intersection of a circle and a half-plane, (iii) a hat (Figure 5c), formed by an intersection of a

complement of a circle and two half-planes that corresponding boundaries are tangent to the circle, and

(iv) a horn (Figure 5d), an intersection of a circle, a complement of a circle and a half-plane. Chernov et al.

(2012) showed that any arbitrarily shaped composed object bounded by circular arcs and line segments can

automatically be decomposed into a set of defined basic objects by the given algorithm.

Figure 5: Four types of basic objects (Chernov et al., 2012)

These functions will be used in the proposed modeling framework to define the feasible regions for the

possible locations of new facilities. The next section describes the framework in greater detail.

4 A General Modeling Framework

In this section, we present a general modeling framework to formulate continuous facility location problems

with restricted regions where regions are modeled using the concept of phi-objects.

4.1 Restricted Problems with Forbidden Regions

By using the functions defined above, it is possible to develop a general model for problems with forbidden

regions, in which locating a facility is forbidden but traveling through is permitted. Let M be the index set

of customer sites and N be the index set of new facilities, where X1, ..., Xn are the locations for new facilities

with coordinates (x1, y1), ..., (xn, yn) respectively. Similarly, X̄1, ..., X̄m are locations for customer sites with

coordinates (x̄1, ȳ1), ..., (x̄m, ȳm) respectively, and d(Xn, X̄m) is the distance between nth new facility and

mth customer site. Let Γi(Xn, Ri) denote the function defining the relationship between a new facility Xn

and a region Ri. A binary variable zmn is defined, which is equal to 1 if point X̄m is assigned to a new

facility Xn, and 0 otherwise. The general modeling framework of the continuous facility location problem

with a forbidden region is shown below.

minimize F
(

zmn,
(

d(Xn, X̄m)
)

n∈N,m∈M

)

(4.1)
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subject to

Γi(Xn, Ri) ≥ 0 ∀i ∈ R, n ∈ N (4.2)
∑

n∈N

zmn = 1 ∀m ∈ M (4.3)

zmn ∈ {0, 1} ∀m ∈ M, n ∈ N. (4.4)

In constraints (4.2), “ ≥ ” is used because locating a new facility is not permitted in region Ri. If phi-objects

represent the feasible region on a plane, then constraints (4.2) should read Γi(Xn, Ri) ≤ 0.

There can be various objectives in facility location problems such as minimizing distance, time, operating

cost or maximizing responsiveness. The objective of the proposed modeling framework assumes mini-

mization of a weighted distance, and not the distance itself. A weighted distance is a general term that can

represent any of the measures listed above. As an example, if one wishes to minimize time, and time is pro-

portional to distance, then the objective can be modified with suitable weights to reflect this relationship.

The following are two of the most commonly studied global objective functions, both of which can easily

be included in the proposed modeling framework:

1. F can be decomposed into a sum of one-dimensional functions, i.e. F
(

zmn,
(

d(Xn, X̄m)
)

n∈N,m∈M

)

=
∑

n∈N

∑

m∈M

zmnwmd(Xn, X̄m), as in the case of the standard median problem, where wm are non-negative

weights of each customer site m ∈ M (Akyüz et al., 2010). Median problems often arise in the private

sector, since the objective is to minimize the total cost. Several applications for this objective are in

industrial transportation and telecommunications.

2. F is the maximum of one-dimensional functions, i.e. F
(

zmn,
(

d(Xn, X̄m)
)

n∈N,m∈M

)

= max
m∈M

n∈N

zmnwmd(Xn, X̄m),

as is the objective function of the well-known center problem (Drezner, 1984). Center problems are

more suitable for modeling public sector problems, since the objective is to minimize the maximum

weighted distance from demand points to new facilities. An example would be locating an emergency

aid center, from where relief items would be sent to all demand points as soon as possible following

a possible natural disaster.

In our modeling framework, the function (3.4) that appears in the constraint set includes min and max

operators, which introduces a non-linearity. The way to deal with this non-linearity is to represent the

function by a series of individual constraints using an either-or representation. While this representation in

turn may include linear or non-linear expressions, it is convenient to use this transformation when using

off-the-shelf solvers that cannot deal with min and max operators. Let us first look at the case where

phi-objects represent forbidden regions and where the new facilities can be located on the boundary of or

outside phi-objects. In this case the constraint set (4.2) is transformed into (Schouwenaars et al., 2001):

fk(Xn) ≥ 0−Maknt ∀k ∈ Pt, n ∈ N, t ∈ B (4.5)

Kt
∑

k=1

aknt ≤ Kt − 1 ∀n ∈ N, t ∈ B, (4.6)

where Kt is the total number of elements in set Pt. Here aknt is a binary variable equal to 0 if the constraint
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associated with a k ∈ Pt, n ∈ N and t ∈ B is binding, and is equal to 1 otherwise. M is a sufficiently

large positive number. In this manner at least one corresponding binary variable will take the value 0 for

each new facility and basic object. In other words, through constraint (4.5), at least one of the functions

forming the basic object Bt will be non-negative, which means the maximum of these functions will be

non-negative. Thus, for each basic object forming the forbidden region, at least one corresponding function

is non-negative, which guarantees that the minimum of these functions is non-negative.

We now look at the case where the phi-object represents a feasible region and outside of the region is

forbidden. In this case, the new facilities can be located on the boundary or inside of the phi-object, and the

constraint set

Γni(Xn, Ri) ≤ 0 ∀i ∈ R, n ∈ N, (4.7)

can be converted into

fk(Xn) ≤ 0 +Mant ∀k ∈ Pt, n ∈ N, t ∈ B (4.8)

T
∑

t=1

ant ≤ T − 1 ∀n ∈ N, (4.9)

where T is the total number of elements in set B. Here ant is a binary variable defined for a basic object

Bt and a new facility Xn, and is equal to 1 if the new facility is not contained within Bt, and 0 otherwise.

Constraints (4.8) ensure that at least each member of a group of functions forming one of the basic objects

Bt will be nonpositive. Some of the other members of other function groups that are forming other basic

objects may be positive. Therefore, at least one of the maximums will be non-positive, which implies that

the minimum of the maximums will be non-positive.

As it is mentioned above, M is a sufficiently large positive number. It is important to define a lower bound

for this number to be able to decrease the value of M , since large values for M can have a negative effect on

algorithm performance. In the following two cases, a lower bound value of M can be determined. In the

first case where phi-objects represent forbidden regions, we define the smallest rectangle Q that contains

all forbidden regions and customer sites within it or on its boundary. Note that the locations of the new

facilities must also be inside or on the boundary of Q. In this case,

M ≥ max
Xn∈Q∀n∈N,k∈Pt

{|fk(Xn)|} . (4.10)

In the second case where phi-objects represent feasible regions, a rectangle is not necessary as in the previ-

ous case since the locations of the new facilities will be inside or on the boundary of the phi-objects Ri, ∀i.

Therefore, a lower bound of M can be defined as,

M ≥ max
Xn∈

⋃

i∈R

Ri∀n∈N,k∈Pt

{|fk(Xn)|} . (4.11)

After these modifications in the constraint set, it is possible to produce models for both multi-facility me-

dian and center problems with an arbitrarily shaped forbidden region and the relevant objective function.

These models can be in the form of mixed integer linear programming (MILP) or mixed integer non-linear

programming (MINLP) formulations, depending on the objective function and the functions used to model

the forbidden region. For instance, if the distance metric is rectilinear and the forbidden region is a convex
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polygon, then the resulting model is a MILP, whereas if the distance metric is Euclidean, then the model

will be in the form of a MINLP due to the non-linearity in the objective function.

4.2 Restricted Single Facility Problems with Barriers

The modeling framework for single facility location problems with barriers is very similar to that of for-

bidden regions. The main challenge in modeling these problems is the requirement that the paths between

customer sites and the new facility must lie outside the barriers. To overcome this difficulty, a large num-

ber of points have to be defined for each path connecting each customer site with the new facility, which

must all lie outside the barrier, therefore ensuring that the paths themselves will be outside the barriers. To

illustrate, we provide an example in Figure 6, which shows the shortest path between points A and B in the

existence of a rectangular barrier. Here, the path between A and B is formed by 100 points, which are all

restricted to be outside of the rectangle. This idea can clearly be adapted to a facility location problem with

barriers as explained below.

Figure 6: Shortest path between points A and B

Let J = {1, 2, ..., Jmax} be the index set of the points generating the paths, and X̄mj be the location of the

jth point on the path starting from the mth customer site and ending at the location of the new facility. The

general modeling framework of the single facility median problem with barriers is shown below.

minimize F
(

(

d(X̄mj−1, X̄mj)
)

m∈M,j∈J\{0}

)

(4.12)

subject to

d(X̄mj−1, X̄mj) ≤ V tmax ∀m ∈ M, j ∈ J \ {0} (4.13)

Γmji(X̄mj , Ri) ≥ 0 ∀i ∈ R,m ∈ M, j ∈ J (4.14)

X = X̄mj ∀m ∈ M, j = Jmax. (4.15)

The objective function (4.12) minimizes a function of distances between each point on each path until

the last point, which is the location of the new facility. F
(

(

d(X̄mj−1, X̄mj)
)

m∈M,j∈J\{0}

)

will be equal to
∑

m∈M

∑

j∈J\{0}

wmd(X̄mj−1, X̄mj) for single facility median problems, and equal to max
m∈M

∑

j∈J\{0}

wmd(X̄mj−1, X̄mj)

for single facility center problems. Constraints (4.13) guarantee that the travel time from a point j on a path
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to point j + 1 with a constant velocity V cannot be more time than a specified limit tmax. This constraint

therefore imposes an upper bound on the distance between any two consecutive points on a path. Setting

an upper bound for each distance reduces the chance that the path with pass through the barrier. Con-

straints (4.14) state that each point on each path between the customer sites and the new facility must not

lie in an object that defines a barrier. Constraints (4.15) show that the last point of each path must be the

same as the location of the new facility. In our notation, we denote by X̄mj , j = 0 and ∀m ∈ M, as the

locations of each customer site.

5 Results on Instances from the Literature

In this section, instances of restricted continuous facility location problems previously described in the

literature are modeled with the proposed general modeling framework. Table 2 shows the characteristics

of these instances and where they were published. All instances are solved on a computer with Intel(R)

Core(TM) 2.60 GHz processor, and 4.00 GB of RAM, using CPLEX 12.5.1.0 for MILP, BONMIN 1.7 for

MINLP, and IPOPT 3.11 for DNLP.

Table 2: Characteristics of the literature instances
Source Problem Type Restriction Type Restricted Region Type Distance Measure

Katz and Cooper (1981) 1-median Barrier Circle Euclidean
Katz and Cooper (1981) 1-median Barrier Circle Euclidean
Aneja and Parlar (1994) 1-median Forbidden Region Polygonal Euclidean
Aneja and Parlar (1994) 1-median Barrier Polygonal Euclidean

Hamacher and Nickel (1994) 1-median Forbidden Region Polygonal Euclidean
Hamacher and Nickel (1994) 1-median Forbidden Region Polygonal Rectilinear
Hamacher and Nickel (1994) 1-median Forbidden Region Polygonal Chebyshev

Archipelago Instance 1-center Forbidden Region Arbitrary Euclidean
Archipelago Instance 2-center Forbidden Region Arbitrary Euclidean

5.1 Forbidden Region Instances

There exists four instances with forbidden regions in the literature, one described by Aneja and Parlar

(1994), and three by Hamacher and Nickel (1994) which we model using the proposed framework, and

subsequently solve to optimality. In the remaining sections, we introduce these instances and discuss in

detail how they were solved.

5.1.1 The Aneja and Parlar (1994) Instance

The instance introduced by Aneja and Parlar (1994) is shown in Figure 7. This is a non-convex polygonal

forbidden region for a single facility median problem. First, we will show that the non-convex forbidden

region can be modeled as a phi-object. Then, we will construct a model by using the function defining

the relationship between specified forbidden region and the new facility, and solve the model to obtain an

optimal solution to the problem.
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Originally, this problem is posed as a 1-median problem with a non-convex forbidden region R shown

in Figure 7. The coordinates of the customer sites are e1 = (0,−10) , e2 = (11,−10) , e3 = (0, 11.6) and

e4 = (11, 11.6), each of which has a weight equal to 1. The distance metric is Euclidean.

Figure 7: The numerical example of Aneja and Parlar (1994)

The non-convex composed object in Figure 7 is the union of nine basic objects, as shown in Figure 8, each

of which is a convex polygon. Each basic object in turn is formed by intersecting primitive objects, which

in this case are half planes.

Figure 8: Nine basic objects of the numerical example

For example, the basic object B1 in Figure 8a is the intersection B1 =
⋂

k∈P1

Pk where P1 = {l1, l2, l3} and l1−l3

denote the three half-planes, whose bounds are defined by the following three functions f1 : −x + 2 = 0,

f2 : −y + 0.333x + 0.333 = 0 and f3 : y + 0.5x − 6 = 0, respectively. The rest of the basic objects B2 − B9

shown in Fig8b – Fig8i respectively can be defined in a similar way. The forbidden region R in Figure 7 is

then modeled as
⋃

k∈B

Bk.

Since this instance is of a 1-median problem, the function of point X representing the relationship between

location of the new facility and the forbidden region R is shown below, and since R is a forbidden region,
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the function, Γ(X,R), must be greater or equal to zero in the model.

Γ(X,R) = min{ max
k=1,2,3

{fk} , max
k=4,5,6

{fk} , max
k=7,8,9

{fk} , max
k=10,11,12,13

{fk} ,

max
k=14,15,16

{fk} , max
k=17,18,19

{fk} , max
k=20,21,22

{fk} , max
k=23,24,25

{fk} , max
k=26,27,28

{fk}},
(5.1)

where fk, k = 1, ..., 28, is a linear function associated with each primitive object.

As mentioned in Section 4, we use either-or constraints to linearize the terms max and min appearing in the

constraints. For instance, max
k=1,2,3

{fk} in (5.1) can be converted into the constraints,

−x+ 2 ≥ 0−Ma111 (5.2)

−y + 0.333x+ 0.333 ≥ 0−Ma211 (5.3)

y + 0.5x− 6 ≥ 0−Ma311 (5.4)

a111 + a211 + a311 ≤ 2 (5.5)

a111, a211, a311 ∈ {0, 1} . (5.6)

The resulting model is a MINLP. BONMIN 1.7 is used to solve the formulation to optimality, yielding

the optimal solution d = (5.5, 0), which is same with the solution given in Aneja and Parlar (1994). The

execution time is 0.008 seconds.

5.1.2 The Hamacher and Nickel (1994) Instances

Hamacher and Nickel (1994) introduce some single facility median instances with a convex forbidden re-

gion represented by a rectangle R = [3, 11]× [9, 15], which is a basic object in our framework. The forbidden

region and the customer sites are shown in Figure 9. The coordinates of the customer sites are e1 = (5, 13),

e2 = (7, 11), and e3 = (5, 11), all with unit weights. This instance has been solved with three different

distance metrics, namely rectilinear, squared Euclidean and Chebyshev.

Figure 9: Example in Hamacher and Nickel (1994)

Since the forbidden region in this problem is a basic object, the function defining the relation between the

point X and basic object B is shown as follows;
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γ(X,B) = max
k

(fk) , (5.7)

where fk, k = 1, 2, 3, 4, is a linear function associated with the half planes that bound each edge of the

rectangle. Our proposed solution technique applies to all three distance functions mentioned above, by

only modifying the objective function of the model but keeping the constraint set the same.

In these models the either-or constraints are used to define the maximum constraints. In the second and

third model, a linearization method is applied, which has resulted in a mixed integer programming for-

mulation, using the linearization technique for rectilinear and Chebyshev distance functions in Hamacher

and Nickel (1995). The first model remains a mixed integer non-linear program, since the distance metric is

squared Euclidean. In the third model, Chebyshev distance function is transformed to rectilinear distance

function (Hamacher and Nickel, 1995).

The first model is solved by BONMIN 1.7 solver. The optimal location for the new facility is (5.667, 9) with

an objective value 26.667. The execution time is 0.004 seconds. The second and third models are solved by

CPLEX 12.5.1.0. The optimal location of the new facility for the second model is (3, 11) with an objective

value 10. For the third model, (3, 11) is the optimal location for the third model with an objective value, 8.

On a related note, we have observed that these instances exhibit alternative optima. In order to find these

solutions, cuts can be added to prune the optimal solutions found. Using such cuts, we were able to obtain

(3, 11.667), (5, 9) and (5, 9) as alternative optima for the first, second and third model respectively, which

coincide with the solutions reported in Hamacher and Nickel (1994).

5.2 Barrier Instances

There are three barrier instances that have been described in the existing literature, all of which are modeled

through the proposed framework. The first two instances are first presented in Katz and Cooper (1981), for

which the parameters use the following values: Jmax = 100, V = 0.01 m/s and tmax = 0.2 seconds.

The third instance is first presented in Aneja and Parlar (1994), for which the parameters are Jmax = 100,

V = 0.01 m/s and tmax = 0.2 seconds. These values are decided by considering the performance of the

solvers at hand and the instances that are solved. We now present the solutions of these instances in more

detail.

5.2.1 Katz and Cooper (1981) Instances

In the first instance, the barrier is a circle with a radius of two, with its center located at (0, 0). There are five

customer sites, with coordinates (−8,−6), (−7, 13), (−1,−5), (6.6,−0.5) and (4.4, 10), each with a weight

equal to one. The distance metric is Euclidean. This instance is also studied in various papers including

Butt and Cavalier (1996), Klamroth (2001), Bischoff and Klamroth (2007) and Klamroth (2004).

Since the barrier in this problem is a circle, the corresponding phi-object is simply a primitive object, which

makes the model a NLP. IPOPT 3.11 is used to solve the formulation to optimality, yielding the solution

(−1.186, 2.060) with an objective value of 48.257 as shown in Figure 10. This solution is better than the one
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found in Katz and Cooper (1981), and same with the solutions given in Butt and Cavalier (1996), Klamroth

(2001), Bischoff and Klamroth (2007) and Klamroth (2004). The execution time is 0.234 seconds.

Figure 10: Katz and Cooper (1981) Instance No. 1

The second instance in Katz and Cooper (1981) is very similar to the first one with the exception that the

radius is now three. The number of customer sites is increased to 10, which are located on (8, 8), (5, 7),

(6, 4), (−3, 5), (−6, 6), (−3,−4), (−5,−6), (−8,−8), (5,−5) and (8,−8). Bischoff and Klamroth (2007) also

applied their solution algorithm to this problem.

The model for this problem is also a NLP which is solved by IPOPT 3.11. The location of the new facility

is (3.306,−0.068) with an objective value of 88.326, which is similar to the results given in Bischoff and

Klamroth (2007), but contradict the results in Katz and Cooper (1981). The execution time is 0.452 seconds.

The solution is shown in Figure 11.

Figure 11: Katz and Cooper (1981) Instance No. 2
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5.2.2 Aneja and Parlar (1994) Barrier Instance

In this instance there are 10 convex and two non-convex polygon barriers. There are 18 facilities, each with

a unit weight, placed on points (1, 2), (6, 1), (9, 1), (14, 2), (5, 5), (7, 4), (9, 5), (14, 4), (17, 4), (2, 8), (8, 8),

(16, 8), (3, 12), (6, 11), (9, 10), (17, 10), (10, 12) and (19, 13). This is a 1-median instance where the aim is to

find the location of the new facility that minimizes the total weighted distance.

Since there are numerous barriers in this problem, there will be a large number of constraints in the model,

which can be detrimental to the performance of a solver. To overcome this drawback, the model is solved

using a Cutting Plane technique, whereby a relaxed version of the model is solved. As a first step, by

assuming barriers are forbidden regions. Figure 12 shows the solution of the relaxed problem, where the

new facility is placed on the coordinate (8.913, 6.355) and is shown by a red dot.

Figure 12: Cutting plane Step 1

In Figure 12, it can be seen that certain barrier constraints are violated. For instance, a path from the

first facility e1 to the location of a new facility intersects with barriers 1 and 6. In this case, we add the

constraint sets that define regions 1 and 6 as barriers. Other infeasibilities are shown in Table 3, for which

the corresponding constraints are also added and the model is resolved. The resulting solution, shown in

Figure 13, shows other barriers being crossed, namely 10, 8 and 12. We iteratively add the relevant cuts

and resolve the model until a feasible solution is obtained, as shown in Figure 14, after four iterations.

By applying cutting plane approach, the total number of single equations in the model is decreased from

27, 035 to 4, 635.

Figure 13: Cutting plane Step 2

Once all the violated constraints are added, there is one other potential issue that needs to be addressed to

reach optimality for this instance. Even though constraints are added to force the points that form the paths
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Table 3: Barriers for which constraints are added in Step 2

Customer Site Barrier

1 1, 6
2 -
3 7
4 9, 10
5 6
6 -
7 -
8 10
9 8, 10

10 4, 6
11 -
12 8
13 4, 5
14 4
15 -
16 8
17 8
18 8

Table 4: Barriers for which constraints are added in Step 3

Customer Site Barrier

3 10
15 8
18 12

to be outside of the barriers, a path may well contain a line segment that crosses the corners of a barrier.

This infeasibility can be addressed by adding some constraints to the model, which dictate that one of the

two points at either end of such a line segment should be placed on the vertex. For example, the 13th point

of Path 1 shown in Table 5 will be placed on the vertex coordinate (2, 1) of barrier 1, and will therefore

prohibit the formation of a path that passes through it.

For this instance, optimality is reached after adding these constraints. After applying cutting plane tech-

nique, moving specific point to barrier vertecies can be called as post-processing to reach feasible optimal

solution. An optimal solution is presented in Figure 15.

The final model for this problem is a NLP with max and min operators in constraints. It may be transformed

into a MINLP, but to keep the size as small as possible, we opted to keep it as a NLP and used IPOPT 3.11 as

a solver using its internal functions to model the max and min operators. The optimal solution reported by

IPOPT 3.11 has a value 119.176 where the new facility is placed at (8.752, 4.979). The execution time is 0.936

seconds. The values are slightly different than the results found in Aneja and Parlar (1994) and Bischoff and

Klamroth (2007), both of which report (8.7667, 4.9797) for the location of the new facility and 119.1387 for

the objective value.
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Figure 14: Cutting plane Step 3

Table 5: Vertex Points
Customer Site (Path) Point (J) Barrier Vertex Coordinate

1 13th 1 (2,1)
1 54th 1 (6,2)
3 45th 7 (9,2)
4 18th 9 (13,3)
4 60th 10 (9,4)
8 58th 10 (9,4)
9 60th 10 (9,4)
10 28th 4 (4,6)
10 46th 6 (6,5)
12 26th 8 (15,7)
13 15th 5 (4,11)
13 47th 4 (7,11)
13 65th 4 (8,9)
14 8th 4 (7,11)
14 27th 4 (8,9)
16 38th 8 (15,7)
17 56th 8 (9,8)
18 10th 12 (18,12)
18 52nd 8 (15,7)

6 Case Study: New Single and Multifacility Instances

In this section, we introduce, model and solve new instances based on real geography, for both single

and multiple facilities. The new set of instances are derived from an archipelago called Prince Islands

in the Marmara Sea near Istanbul, Turkey. These islands have historical and touristic importance. There

are nine of these islands, namely Tavsanadasi, Sedefadasi, Buyukada, Heybeliada, Kasikadasi, Burgazada,

Kinaliada, Sivriada and Yassiada, but only six are populated. A satellite view of Prince Islands by Google

Earth software is shown in Figure 16. Prince Islands are in close proximity to an active fault line, and facing

the danger of earthquakes. For this archipelago, we focused on the problem of locating a relief item depot

with a helicopter field. From Istanbul, a large city in terms of population that is vulnerable to possible

earthquake damage, it may take considerable time to send relief items to Prince Islands. Therefore, it is

vital for the residents and the visitors of these islands that they have their own autonomous emergency

response system. After a possible earthquake, relief items from the new depot can be sent to each of the
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Figure 15: Final solution

populated islands using helicopters. Given the nature of the problem, an appropriate objective here would

be to minimize the maximum distance between each populated island and its closest new relief depot.

Figure 16: Prince Islands

For this instance, we solve 1-center and 2-center problems using the modeling framework where the Mar-

mara Sea is modeled as the forbidden region, and the Prince Islands as the feasible regions. In contrast

to previous instances, the phi-objects in this case model the feasible regions implying that the forbidden

region is non-convex shaped and unbounded. To approximate these phi-objects, 105 half planes, 10 circles

and 14 circular holes are used as primitive objects, as shown in Figure 17.

Figure 17: Phi-objects representing the Prince Islands and the solutions of the problems

The helicopter fields in each populated island can be considered as customer sites on the islands. The

weights are calculated as follows: The highly populated islands in this archipelago are Buyukada and
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Heybeliada, the less populated islands are Sedefadasi and Yassiada. The population of Burgazada and

Kinaliada is at a medium level compared to the other islands. It is therefore assumed that the weights

of Heybeliada and Buyukada are both three, Burgazada and Kinaliada are both two and Sedefadasi and

Yassiada are both one. The coordinates of the customer sites are assumed to be (1, 7), (5, 5), (9, 6), (13, 7),

(17, 4) and (19, 14), shown by the blue dots in Figure 17. Since the transportation of relief items will be

done by helicopters, Euclidean distance is considered as the metric. The representation of Prince Islands as

phi-objects, the locations of existing helicopter fields and the solutions for 1-center and 2-center problems

are shown in Figure 17. The 1-center problem for these islands is solved by BONMIN 1.7, which has yielded

the location of the depot as (9.837, 5.192), which is shown by a red dot on Heybeliada. The objective value

is 14.513, and the execution time for this model is 0.215 seconds. The 2-center problem is again solved by

BONMIN 1.7, according to which the new depots are to be placed on (13.599, 6.978) and (8, 6.813), shown

by black squares in the same figure, with an objective value 10.517. These new facilities are on Burgazada

and Heybeliada. The execution time for this model is 0.437 seconds.

7 Conclusions

This paper has described a general framework for modeling continuous facility location problems with

either forbidden regions or barriers by using the concept of phi-objects. The use of phi-objects allows one

to model a restricted region or a feasible region, thus an unbounded restricted region can also be taken

into consideration. Another advantage is the flexibility of modeling various geometric shapes, which is

the case for a real life problems, since complicated geographical shapes (e.g., archipelago, bays, lakes)

can be modeled with negligible approximations. Within this framework, it is also possible to formulate

both median and center problems with various types of distance metrics such as Euclidean, rectilinear and

Chebyshev. Using the models, we have optimally solved all literature instances that we are aware of for

this class of problems, using state-of-the-art linear and nonlinear integer programming technology.

Building from the framework we present in this paper, there are two clear research challenges. To the best of

our knowledge, there is limited research on multi-facility location problems with barriers. We believe that

a solution approach on these problems is needed. Another topic that warrants further research is a similar

general modeling framework for the stochastic version of the restricted location problems. There are many

real-life examples of this problem, where random obstacles caused by natural disasters, especially floods

may occur. Many countries around the globe, including the United Kingdom, face high risks of floods

which can occur during heavy storms. Such restricted regions can be treated as 2D obstacles on a plane

with a stochastic formation pattern. Although some research on this variant has appeared, there is still a

need for a general approach.

Acknowledgments. The authors thank Antonio Martinez-Sykora for his assistance with coding. Thanks are

due to two anonymous reviewers for their comments on an earlier version of this paper.

21



References
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