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PACKING OF CONCAVE POLYHEDRA WITH CONTINUOUS ROTATIONS

USING NONLINEAR OPTIMISATION
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aDepartment of Mathematical Modeling and Optimal Design, Institute for Mechanical Engineering

Problems of the National Academy of Sciences of Ukraine, Pozharsky Str., 2/10, Kharkov, 61046,

Ukraine

bSouthampton Business School, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Abstract. We study the problem of packing a given collection of arbitrary, in general concave,

polyhedra into a cuboid of minimal volume. Continuous rotations and translations of polyhedra are

allowed. In addition, minimal allowable distances between polyhedra are taken into account. We derive

an exact mathematical model using adjusted radical free quasi phi-functions for concave polyhedra to

describe non-overlapping and distance constraints. The model is a nonlinear programming formulation.

We develop an efficient solution algorithm, which employs a fast starting point algorithm and a new

compaction procedure. The procedure reduces our problem to a sequence of nonlinear programming

subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The

benefit of this approach is borne out by the computational results, which include a comparison with

previously published instances and new instances.

Keywords: packing; concave polyhedra; continuous rotations; mathematical modeling;

nonlinear optimisation

1. Introduction

Cutting and packing problems have a long history of being tackled by the Operational Research

community.  Where the objects have arbitrary shape, this research has a strong link with the field of

computational geometry (see, e.g., [24], [1], [9]). These problems have a wide spectrum of applications,

for example in modern biology, mineralogy, medicine, materials science, nanotechnology, robotics,

pattern recognition systems, control systems, space apparatus control systems, as well as in the chemical

industry, power engineering, mechanical engineering, shipbuilding, aircraft construction and civil

engineering.

At present, the interest in finding effective solutions for packing problems is growing rapidly.

This is due to a large number of applications and the development of new and sophisticated methods

that can exploit the ever increasing speed of computer processing.

In this paper, we consider the practical problem of packing a collection of non-identical, and in

general, concave polyhedra into a cuboid of minimal sizes (in particular volume). We will refer to the

problem as the polyhedron packing problem.
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An interesting example of applications of the polyhedron packing arises in engineering design.

Optimal packing of electronic components and payload has always been a pivotal concern in vehicle

engineering, in particular in applications where volume is at a premium, for example embedding

avionics in aircraft. The aim is to design an external envelope and determine the configuration of the

payload subject to a fixed volume constraint. Alternatively, the approach may be to design an envelope

around a fixed packing of the payload and the avionics in order to minimize volume while satisfying a

set of mechanical, technical and maneuverability constraints.

Another application arises in the recent advent of additive manufacturing (AM), often referred

to as 3D printing. There are a variety of different AM technologies that build up objects by adding one

very thin layer of material at a time, for example through material extrusion or sintering layers of

powder material. This procedure is very slow and not appropriate for repetitive manufacturing but

useful for individual items and prototyping. Combining objects into one compact print pattern can

reduce the print time, improving capacity utilization, and reduce the need for extra supporting material

that is often required as part of the printing process when objects are arranged in certain configurations.

The polyhedron problems are NP-hard [2] and, as a result, solution methodologies generally

employ heuristics, for example see [3], [8], [11], [12], [15], [20], [21]. Some researchers develop

approaches based on mathematical modeling and general optimisation procedures; for example see [5],

[6], [22].

Egeblad et al [5] present an efficient solution method for packing polyhedra within the bounds

of a container (a polyhedron). The central geometric operation of the method is an exact horizontal or

vertical translation of a given polyhedron to a position, which minimizes its volume of overlap with all

other polyhedra. The translation algorithm is embedded into a local search heuristic. Additional details

are given for the three-dimensional case and appropriate results are reported for the problem of packing

polyhedra into a rectangular parallelepiped. Utilization of container space is improved by an average of

more than 14 percentage points compared to previous methods proposed in [18]. In the experiments the

largest total volume of overlap allowed in a solution corresponds to 0.01% of the total volume of all

polyhedra for the given problem.

Liu  et  al  [13]  propose  a  new  constructive  algorithm,  called  HAPE3D,  which  is  a  heuristic

algorithm based on the principle of minimum total “potential energy” for the 3D irregular packing

problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with

fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the

container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped

polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding

merit is that HAPE3D does not need to calculate no-fit polyhedrons. HAPE3D can also be hybridized

with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments

demonstrate the good performance of HAPE3D and prove that it can be hybridized with a meta-heuristic

algorithm that further improves the packing quality.

Our approach is based on the mathematical modeling of relations between geometric objects
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and allowing the packing problem to be formulated as a nonlinear programming problem. To this end

we use the phi-function technique (see, [4])  to provide an analytic description of  objects placed in a

container taking into account theircontinuous rotations andtranslations. At present phi-functions for

the simplest 3D-objects, such as parallelepipeds, convex polyhedra and spheres are considered in [16].

Phi-functions for 3D-objects, in particular polyhedra, can be highly complicated analytically, since they

involve many radicals and maximum operators, and are therefore difficult for NLP-solvers to solve.

In this paper we apply thequasi phi-functionsconcept introduced in [19], which is based on the

idea proposed by [10] to use a separating plane to model non-overlapping constraints for circles and

convex polygons. The concept ofquasi phi-functions extends the domain ofphi-functions by including

auxiliary variables. The new functions can be described by analytical formulas that are substantially

simpler than those used for phi-functions, for some types of objects, in particular, for convex polyhedra.

The use of quasi phi-functions, instead of phi-functions, allows us to describe (or simplify) the

non-overlapping constraints. While this makes our models easier to solve, this comes at a price, which

is performing the optimisation over a larger set of parameters, including the extra (auxiliary) variables

used by the quasi phi-functions. Our approach is capable of finding a good local optimal solution in

reasonable computational time.

The phi- and quasi phi-functions have been widely and successfully used to model a variety of

packing problems, as in ([4], [14], [17]-[19]). In the current manuscript, we consider packing problem

of concavepolyhedra. The contributions of the work presented in this manuscript are as follows.

· We construct radical free quasi phi-functions to describe analytically the non-

overlapping constraints forconcave polyhedra andadjustedquasi phi-functions to describe analytically

the minimal allowable distances betweenconcave polyhedra.

· We derive anexact mathematical model of the optimal packing problem ofconcave

polyhedra as acontinuous nonlinear programming problem. Our feasible region is described by a

system of inequalities with infinitely differentiable functions.

· We develop an efficient solution algorithm, which employs a clear and simple starting

point algorithm and a new and original optimisation procedure (called COMPOLY) for the compaction

of  concave  polyhedra.  The  COMPOLY  procedure  reduces  our  problem  to  a  sequence  of  NLP

subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The

procedure allows us to search for local optimal solutions of the packing problem.

· Our approach allows us to apply state of the art NLP solvers to the optimal packing

problem ofconcavepolyhedra.

The paper is organized as follows: in Section 2 we formulate the polyhedron packing problem.

In Section 3 we give definitions of a phi-function and a quasi phi-function, an adjusted phi-function and

an adjusted quasi phi-function and derive related functions for an analytical description of non-

overlapping, containment and distance constraints in the problem. In Section 4 we provide an exact

mathematical model in the form of a nonlinear programming problem by means of the phi-function

technique. In Section 5 we describe a solution algorithm, which involves a fast starting point and
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efficient local optimisation procedures. In Section 6 we present our computational results for some new

instances  and  several  instances  studied  before.  Finally,  Section  7  concludes  this  paper  with  a  brief

summary and a discussion about our future research directions.

2. Problem formulation

We consider here the packing problem in the following setting. Let W  denote a cuboid,

3{ ( , , ) :0 ,0 ,0 }x y z R x l y w z hW= Î £ £ £ £ £ £ . It should be noted that each of the three dimensions

( l  or w  or h) can be variable. Let{1, 2, ..., } NN J=  and a set of polyhedraԷ௤, Nq JÎ  be given.

Each polyhedronԷ௤ can be concave or convex. With each polyhedronԷ௤ we associate its local

coordinate system with origin denoted byqv .

Assume that each concave polyhedronԷ௤ is presented as a union of convex polyhedraqjK  ,

j=1,…,nq. With each convex polyhedron q
jK  we associate the local coordinate system of the polyhedron

Է௤. Each convex polyhedron q
jK  is defined by its verticesqj

sp , 1, ...., q
js m= , in the local coordinate

system ofԷ௤.

We give here input data that form a concave polyhedronԷ௤ by two lists:

· List_1 contains the vertex coordinates of all the convex polyhedraq
jK , j=1,…,nq, and

· List_2 contains the index setsqjJ , j=1,…,nq, of the numbers of vertices (with respect

to List_1) that define appropriate convex polyhedraqjK , j=1,…,nq.

We note that List_1 involves all the original vertices of the concave polyhedron and, in general,

additional vertices that appear as a result of decomposing the concave polyhedron into convex

polyhedra. See Appendix A for details.

For the purposes of this paper, we assume thatԷ௤ =
1

qn
q
j

j

K
=
U  is known.

Without loss of generality, we assume that the originqv  of a polyhedronԷ௤ coincides with the

center point of its circumscribed sphereqS  of  radius qr . In order to circumscribe a sphere around a

polyhedron we employ the algorithm described in [7], which computes the smallest enclosing sphere of

a collection of points. We use the library function found at (https://github.com/hbf/miniball), which is

sufficiently fast.

 The location and orientation of each polyhedronԷ is defined by a vector = ( , )u v q of its variable

placement parameters. Here= ( , , )v x y z  is a translation vector,ș = ( 1 2 3, ,q q q ) is a vector of rotation

parameters, where1,q 2,q 3q  are Euler angles.
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A polyhedron rotated through angles1,q 2,q 3q  and translated by vectorv is denoted as Է(ݑ) = ݌} א ܴଷ: ݌ = ݒ + (ߠ)ܯ ή ଴݌,଴݌ א Է଴}, whereݑ =(ݒ, ș), Է଴ denotes the non-translated and

non-rotated polyhedronԷ, 1 2 3( ) ( , , )M Mq = q q q  is a rotation matrix of the form:

1 3 1 2 3 1 3 1 2 3 1 2

1 3 1 2 3 1 3 1 2 3 1 2

2 3 2 3 2

cos cos sin cos sin cos sin sin cos cos sin sin

( ) = sin cos cos cos sin sin sin cos cos cos cos sin .

sin sin sin cos cos

M

æ öq q - q q q - q q - q q q q q
ç ÷
ç ÷q q q + q q q - q q + q q q - q q
ç ÷
ç ÷q q q q qè ø

It is possible to define minimal allowable distances between each pair of polyhedraԷ௤ andԷ௚, ݍ <݃ א ,ே, as well as, between a polyhedron Է௤ܬ Nq IÎ , and the boundary of containerW . It means that

each polyhedronԷ௤ has to be located no closerto polyhedron Է௚ than the given allowable distance

andeach polyhedronԷ௤ has to be located inside the container and no closer to the boundary of the

container than the given allowable distance.

We note that the minimal allowable distance between each pair of convex polyhedraq
qjK ÌQ

, j=1,…,nq, and g
glK ÌQ , l=1,…,ng, ݍ < ݃ א ே,  is equal to the given allowable distance betweenܬ

the original polyhedraԷ௤ andԷ௚. Moreover, the minimal allowable distance between each polyhedron

q
jK , Nq IÎ , and the boundary of the containerW  is equal to the given allowable distance between the

original polyhedronԷ௤ , Nq IÎ , and the boundary of containerW .

The polyhedron packing problem can be formulated in the form:

Pack the set of polyhedraԷ௤, Nq JÎ , within a cuboid containerW  of minimal volume

F l w h= × × , taking into account the given minimal allowable distances.

We note that it is possible that just one of the metrical characteristics ofW can be variable.

In this definition, the term “pack” assumes polyhedra do not overlap and are fully enclosed in the

containing cuboid.

3 Mathematical modeling of placement constraints

In this section we describe our methodology for modeling the non-overlapping, containment and

minimal distance constraints. Here we introduce phi-functions and quasi phi-functions.

3.1 Placement constraints

Let us consider placement constraints that are met in the polyhedron packing problem:

· non-overlapping constraints– two polyhedra qQ  and gQ  do not have common interior points

but may touch, i.e.

int intq g = ÆIQ Q  for each , Nq g JÎ with q ¹ g ;

· containment constraints– each polyhedronԷ௤ has to be fully enclosed in the container, i.e.
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*intq qÌ WÛ WIQ Q =Æ  for each Nq JÎ  , * 3 \ intRW = W .

Distance constraints

Let ௤௚ߩ > 0 denote the minimal allowable distance between two polyhedra Է௤ and Է௚ andߩ௤ > 0 denote the minimal allowable distance between a polyhedron Է௤ and the object * .W

· distance constraints for "non-overlapping"  –  each polyhedronԷ௤ has to be located no closer

to polyhedron Է௚ than the given allowable distanceߩ௤௚ , i.e.

dist൫ Է௤ ǡ Է௚൯ ൒ ௤௚ߩ  for each , Nq g JÎ with q ¹ g, where

dist൫ Է௤ ǡ Է௚൯ = min௔א Է೜,௕א Է೒ ݀(ܽ,ܾ) ;

· distance constraints for "containment" – each polyhedronԷ௤ has to be located inside the

container no closer to the boundary of the container than the given allowable distanceߩ௤, i.e.

dist൫ Է௤ ǡ ȳכ൯ ൒ ௤ߩ  for each Nq JÎ  , * 3 \ intRW = W , where

dist൫ Է௤ ǡ ȳכ൯ = min௔א Է೜,௕א ஐכ ݀(ܽ,ܾ),

( , )d a b  represents the Euclidean distance between two points 3,a b RÎ .

In order to feasibly place two objects within a container, we need an analytical description of

the relationships between a pair of objects A and B considered in theplacement constraints. We employ

the phi-function technique for this [4], [19].

3.2 Phi-functions

Phi-functions allow us to distinguish the following three cases: A and B are intersecting so that

A and B  have common interior points; A and B  do not intersect, i. e. A and B  do not have common

points; A and B  are in contact, i. e. A and B  have only common frontier points.

Let 3A RÌ  and 3B RÌ  be two objects. Sizes of objects can change according to homothetic

coefficients (scaling parameters of objects) , 0A Bl l > . The position of objectA  is defined by a vector

of placement parameters( , )A Av q , where: ( , , )A A A Av x y z=  is  a  translation  vector  and

1 2 3( , , )A A A Aq = q q q  is a vector of rotation angles. We denote the vector of variables for the objectA  by

( , , )A A A Au v= q l  and the vector of variables for the objectB  by ( , , )B B B Bu v= q l . The object A,

rotated by angles 1 2 3, ,A A Aq q q , translated by vector Av , and rescaled by homothetic coefficient ,Al

will be denoted by ( )AA u .

Definition 1. A continuous and everywhere defined function ( , )AB
A Bu uF  is called a phi-function for

objects ( )AA u  and ( )BB u  if

0,ABF >  if ( ) ( )A BA u B u = ÆI ;

0,ABF =  if int ( ) int ( )A BA u B u = ÆI  and ( ) ( )A BfrA u frB u ¹ ÆI ;

0,ABF <  if int ( ) int ( )A BA u B u ¹ ÆI ;
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provided that ,A Bl l are fixed.

Here frA means the boundary (frontier) andintA means the interior of object A.

Figure 1 illustrates three situations that a phi-function distinguishes.

(a)                                        (b)                                 (c)

Fig. 1  –Illustrations of definition 1: a) 0ABF > ; b) 0ABF = ; c) 0.ABF <

Thus, inequality 0ABF ³  represents thenon-overlapping relationshipint ( ) int ( ) ,A BA u B u = ÆI

i.e. 0 int ( ) int ( ) .AB
A BA u B uF ³ Û =ÆI

We employ phi-functions for the description of thecontaiment relationA BÍ  as follows:
*ABF 0³ ,

where * 3 \ intB R B= .

We emphasize that according to Definition 1, the phi-functionABF  for a pair of objects A and B can

be constructed by many different formulas [4], and we can choose the most convenient ones for our

optimisation algorithms.

We can take into accountminimum allowabledistance constraintsby replacing the phi-functions in

thenon-overlapping andcontainment constraints with adjusted phi-functions.

Let 0r >  be a given minimal allowable distance between objects( )AA u  and ( ).BB u

Definition 2. A continuous and everywhere defined function ( , )AB
A Bu uF

)
 is called an adjusted phi-

function for objects ( )AA u  and ( )BB u , if

0,ABF >
)

 if dist( , )A B > r ; 0,ABF =
)

 if dist( , )A B = r ;

0,ABF <
)

 if dist( , )A B < r .

We can describe the distance constraint for objects( )AA u  and ( )BB u   in the form: 0ABF ³
)

Û

dist(A,B)³ r . Figure 2 illustrates three situations that an adjusted phi-function distinguishes.

(a)                                               (b)                                          (c)

A A A

B

B
B

r
r

r

BA A
A

B B
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Fig. 2  –Illustrations of Definition 2: a) 0ABF >
)

; b) 0ABF =
)

; c) 0.ABF <
)

The literature only contains the construction of phi-functions for concave polyhedra without

rotation [17]. Constructing phi-functions for concave polyhedra with rotation is too complicated,

therefore in this research we apply the concept of quasi phi-functions.

3.3 Quasi phi-functions

We introduce a function ( , , ')AB
A Bu u u¢F that must be defined for all values of uAand uB. In addition

to the placement parameters of objects used with phi-functions, quasi phi-functions depend on auxiliary

variablesu'.  These extra variablesu' take values in some domainU RhÌ . The number and the nature

of variablesu' dependon the shapes of objects( )AA u  and ( )BB u , as well as on the restrictions of a

packing problem. We defineh for a quasi phi-function of a pair of polyhedra later.

Definition 3. A continuous and everywhere defined function ( , , ')AB
A Bu u u¢F  is called aquasi phi-

function for two objects ( )AA u  and ( )BB u  if
'

max ( , , ')AB
A B

u U
u u u

Î
¢F  is a phi-function for the objects.

The main property of a quasi phi-function is:

· if ( , , ') 0AB
A Bu u u¢F ³  for someu', then int ( ) int ( )A BA u B u = ÆI ,

where ( , , ')AB
A Bu u u¢F  is a quasi phi-function for two objects( )AA u  and ( )BB u .

We note that the inverse proposition is not valid. It means that a quasi phi-function can take negative

values while objects do not overlap, in contrast to a phi-function.

Let 0r >  be a given minimal allowable distance between objects( )AA u  and ( ).BB u

Definition 4. Function ' ( , , ')AB
A Bu u uF

)
 is called an adjusted quasi phi-function for objects( )AA u

and ( )BB u , if function '

'
max ( , , ')AB

A B
u U

u u u
Î

F
)

 is an adjusted phi-function for the objects.

We can define the distance constraint for objects( )AA u  and ( )BB u  in the form: 0.AB¢F ³
)

 The

inequality implies dist(A,B)³ r .

In order to describe the non-overlapping constraints in our polyhedron packing problem, we

use quasi phi-functions, while for the containment constraints we use phi-functions. To formalise the

distance constraints, we employ adjusted quasi phi-functions and adjusted phi-functions.

3.4 Construction of quasi phi-functions for non-overlapping and distance constraints

To construct a quasi phi-function and an adjusted quasi phi-function of two concave polyhedra

we will use a quasi phi-function and an adjusted quasi phi-function for each pair of convex polyhedra

that together form the original concave polyhedra.

First we consider a quasi phi-function for a pair of convex polyhedra.
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Let ( )AA u and ( )BB u be two convex polyhedra given by their vertices,A
sp 1, ...., As m= , and

,B
sp 1, ...., Bs m= .

A radical free quasi phi-function ( , , )AB
A B Pu u u u¢ ¢F =  for convex polyhedra ( )AA u and ( )BB u can

be defined by the following formula:

( , , ) min{ ( , ), ( , )}AB AP BP
A B P A P B Pu u u u u u u u

*
¢ ¢F = = F F ,                      (1)

where ( ) {( , , ) : 0}P P PP u x y z x y z= y = a × + b × + g × + m £  is a half-space,

1 21 1 2 1 2

1 2 1 1 2 1 2 1 2

2 2 2

sin sincos sin cos sin sin0 0

( , , 0) 0 = sin cos cos cos sin . 0 cos sin ,

1 10 sin cos cos

P PP P P P P

P P P P P P P P P

P P P

M

æ öæ ö q qq - q q q qaæ ö æ ö æ ö ç ÷ç ÷ç ÷ ç ÷ ç ÷ ç ÷ç ÷b = q q × q q q - q q = - q qç ÷ ç ÷ ç ÷ ç ÷ç ÷ç ÷ ç ÷ ç ÷g ç ÷ ç ÷è ø è ø è øq q qè ø è ø

1
Pq and 2

Pq  are appropriate (precession and nutation rotations) variable Euler angles (under intrinsic

rotation 3 0Pq = ),

1 2( , , )P P P Pu = q q m  is  a  vector  of  variable  parameters  that  define  a  plane

{( , , ) : 0}AB P PL x y z x y z= y = a × + b × + g × + m =  in three-dimensional Euclidean space (we assume

2 2 2 1a +b + g = ),

( , )AP
A Pu uF is a phi-function of ( )AA u  and half plane ( )PP u ,

( , )BP
B Pu u

*
F is a phi-function of ( )BB u  and half plane * ( )PP u  (the complement to ( )PP u ),

1
( , ) min ( ),

A

AP A
A P P s

s m
u u p

£ £
F = y

*

1
( , ) min ( ( ))

B

BP B
B P P s

s m
u u p

£ £
F = -y .

We note that 3,pu U RÎ º 3.h =

It is known that if two fixed convex objectsA  and B  do not have common points then there exists at

least one separating plane. Therefore there exists a vector*
Pu  of parameters of a planeABL  such that

the distance *
1 ( , )AP

A Pd u u=F  from A  to ABL equals to the distance *
2 ( , )BP

B Pd u u
*

= F  from B

to ABL . Thus function ( , , )AB
A B Pu u u¢F  reaches its maximum when * * *( , , ) ( , , , )A B P A Bu u u u u d d=

, where *
1 2d d d= = .

Figure 3 illustrates two cases when 0AB¢F > :

a) 0 0 0 0
1 2 1 2 1( , , ) min{ , } ;AB

Pu u u d d d¢F = =

b) * * * * * *
1 2 1 2 1 2 1 2max ( , , ) ( , , ) min{ , } .

P

AB AB
P P

u
u u u u u u d d d d d¢ ¢F = F = = = =
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   (a)                                                               (b)

Fig.3 Separating planes for two fixed convex objectsAandB : a) *AB d¢F = ; b) 0
1

AB d¢F = .

Therefore always existsPu  such thatmax 0
P

AB

u
¢F > for two non-overlapping convex polyhedra and

max 0
P

AB

u
¢F ³ Û int ( ) int ( )A BA u B u = ÆI .

We identify here the important characteristic of aquasi phi-function:  if ( , , ) 0AB
A B Pu u u¢F ³  for some

Pu , then int ( ) int ( )A BA u B u = ÆI (see [19] for details).

Let theminimal allowable distance ABr  between two arbitrary convex polyhedra( )AA u  and ( )BB u

be given. To describe adistance constraint, dist(A , B ) AB³ r , we use an adjusted radical free quasi

phi-function for convex polyhedra ( )AA u  and ( )BB u  derived by

( , , ) ( , , ) 0.5AB AB
A B P A B P ABu u u u u u¢ ¢F =F - r

)
.                                (2)

Since max ( , , ) ( , )
P

AB AB
A B P A B

u
u u u u u¢F = F

) )
and ( , ) 0 dist( , )AB

A B ABu u A BF ³ Û ³r
)

, then

max ( , , ) 0 dist( , )
P

AB
A B P AB

u
u u u A B¢F ³ Û ³r

)
. Based on the characteristic of a quasi phi-function,

mentioned above, and formulas (1), (2), we can conclude that ( , , ) 0AB
A B Pu u u¢F ³

)
 implies

dist( , ) ABA B ³ r .

A quasi phi-function of two concave polyhedra is composed by quasi phi-functions for all pairs

of convex polyhedra that together form the original concave polyhedra. By analogy an adjusted quasi
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phi-function of two concave polyhedra is constructed.

Before we introduce a quasi phi-function and an adjusted quasi phi-function for a pair of

concave polyhedra we present a given collection of convex polyhedra,,q
jK j=1,…,nq, Nq JÎ , as a

set of
1

N

q
q

n n
=

=å convex polyhedra iK , {1, 2, ..., } ni n IÎ = using the following rule: ,q
ijK K®

1

0

,
q

l
l

i n j
-

=
= +å  j=1,…,nq, Nq JÎ , provided that 0 0.n =

 Now we introduce the “gluing” vector 1( , , , , )na a=a , i Na JÎ , where ia q= , if iK  takes part in the

composition of a polyhedronԷ௤, Nq JÎ . Let 1 2 ... N
nI I I I= U U U  be an ordered partition ofnI ,

where { , },q
n iI i I a q= Î = q

qI n= , Nq JÎ . For example, the “gluing” vector for polyhedraԷଵ =

1 2,K KU

,

Էଶ = 3,K Էଷ = 4 5 6K K KU U has the form 1 2 3 4 5 6( , , , , , )a a a a a a=a (1,1, 2, 3, 3, 3)=

(Fig.4). In the example N=3 and
3

1

2 1 3 6q
q

n n
=

= = + + =å .

Fig.4 – Generation of the “gluing” vector for polyhedra  Էଵ, Էଶ, Էଷ.

Let Է௤ =
q

i
i I

K
Î
U  andԷ௚ =

g
j

j I

K
Î
U  be concave polyhedra andq g¹ .

We introduce the following function:

( , , ) min{ ( , , ), , }q g
qg q g qg ij q g iju u u u u u i I j I¢ ¢ ¢= F Î Îĭ

) )
,                        (3)

where ( , , )ij q g iju u u¢ ¢F
)

 is the adjusted quasi phi-function andiju¢  is a vector of auxiliary variables for

a pair of convex polyhedraܭ௜൫ݑ௤൯ andܭ௝(ݑ௚), ,q gi I j IÎ Î , ( , , )q g
qg iju u i I j I¢= Î Î .

We note that ,pu U RhÎ º 3 ,qgnh =  where qg q gn n n= ×  is the number of  all  pairs of  appropriate
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convex polyhedra that formԷ௤ and Է௚.

We show now that function (3) is an adjusted quasi phi-functionqg¢ĭ
)

 for concave polyhedraԷ௤(ݑ௤)

and Է௚൫ݑ௚൯.  In  fact,  we  need  to  prove  thatmax ( , , )
qg

qg q g qg
u

u u u¢ĭ
)

is an adjusted phi-function for

polyhedraԷ௤(ݑ௤) andԷ௚൫ݑ௚൯.

Since each vector iju¢ of auxiliary variables is met in appropriate function ( , , )ij q g iju u u¢ ¢F
)

only, then

max ( , , ) max min{ ( , , ), , }
qg qg

q g
qg q g qg ij q g ij

u u
u u u u u u i I j I¢ ¢ ¢= F Î Î =ĭ

) )

min{max ( , , ), , }
ij

q g
ij q g ij

u
u u u i I j I

¢
¢ ¢F Î Î =
)

min{ ( , ), , } ( , )q g
ij q g qg q gu u i I j I u uF Î Î =ĭ

))
,

where ( , )ij q gu uF
)

 is the adjusted phi-function for convex polyhedraܭ௜൫ݑ௤൯ and ,(௚ݑ)௝ܭ

( , )qg q gu uĭ
)

 is an adjusted phi-function for concave polyhedraԷ௤(ݑ௤) andԷ௚൫ݑ௚൯. It should be

noted that function (3) is radical free.

From (3), a quasi phi-function for a pair of concave polyhedra,Է௤(ݑ௤) andԷ௚(ݑ௚), can be defined in

the form:

( , , ) min{ ( , , ), , }q g
qg q g qg ij q g iju u u u u u i I j I¢ ¢ ¢= F Î Îĭ ,

where ( , , )ij q g iju u u¢ ¢F  is a quasi  phi-function andiju¢  is a vector of  auxiliary variables for convex

polyhedraܭ௜൫ݑ௤൯ andܭ௝(ݑ௚), ,q gi I j IÎ Î , ( , , )q g
qg iju u i I j I¢= Î Î .

Let us consider an example of a quasi phi-function for two polyhedra:1 1 1 1( ) ( )u K u=Q  and

2 2 2 2 3 2( ) ( ) ( )u K u K u= UQ  (Fig. 5a).
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(b)

Fig.5 – a) polyhedra 1Q  and 2Q ; b) separating planes12L  and 13L for two pairs of appropriate convex

polyhedra 1K  and 2K ; 1K  and 3K

A quasi phi-function for 1 1( )uQ  and 2 2( )uQ  can be defined in the following form:

12 1 2 12( , , )u u u¢ =ĭ 12 1 2 12 13 1 2 13min{ ( , , ), ( , , )} ,u u u u u u¢ ¢ ¢ ¢F F

where 12 12 13( , ),u u u¢ ¢= 12 1 2 12( , , )u u u¢ ¢F is a quasi phi-function and12u¢  is a vector of auxiliary

variables for a pair of convex polyhedraܭଵ(ݑଵ) andܭଶ(ݑଶ), 13 1 2 13( , , )u u u¢ ¢F is a quasi phi-function

and 13u¢  is a vector of auxiliary variables for a pair of convex polyhedraܭଵ(ݑଵ) andܭଷ(ݑଶ).

Figure 5b illustrates two separating planes12L  and 13L  that provide 12 1 2 12( , , ) 0u u u¢ ¢F > and

13 1 2 13( , , ) 0u u u¢ ¢F >  that implies 12 1 2 12( , , ) 0u u u¢ >ĭ . Here {( , , ) : 0}ij ijL x y z= y =  is a separating

plane for ( )i qK u  and ( )j gK u , where ij ij ij ij ijx y zy = a × + b × + g × + m , 1 2sin sin ,ij ij ija = q q

1 2cos sin ,ij ij ijb = - q q 2cosij ijg = q  and 1 2( , , ),ij ij ij iju¢ = q q m 1, 2,3,i j= = 1, 2.q g= =

3.5 Construction of phi-functions for containment - distance constraints

An adjusted phi-function for a concave polyhedronԷ௤(ݑ௤) and the object *W  can be defined in the

form [4]

( ) min{ ( ), }q
q q i qu u i I= F Îĭ

) )
,                                         (4)
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where ( )i quF
)

is an adjusted phi-function for a convex polyhedronܭ௜(ݑ௚) and *W , qi IÎ . Replacing

each adjusted phi-function ( )i quF
)

 in (4) by a phi-function ( )i quF  for ,qi IÎ  we can get  a  phi-

function ( )q quĭ  for a polyhedronԷ௤(ݑ௤) and the object *W .

To describe a containment constraint, *( ) int ( )i q i qK u K uÌ WÛ W =ÆI ,  we  use  a  phi-

function for a convex polyhedron ( )i qK u  and the object *W 	[4].

Let ( )i qK u  be convex polyhedron, given in its local coordinate system by their vertices,i
kp

1, ...., ik m= , where ( , , )i i i i
k xk yk zkp p p p= .  A radical free phi-function for a convex polyhedron

( )i qK u  and the object *W can be defined as

1
( ) min{ min ( ), 1, ..., 6},

i

i
i q k j q

k m
u u j

£ £
F = j =                       (5)

1( )i i
k q q xku x pj = + , 2( ) ( )i i

k q q xku x p lj = - + + , 3( )i i
k q q yku y pj = + ,

4 ( ) ( )i i
k q q yku y p wj = - + + , 5( )i i

k q q zku z pj = + , 6( ) ( )i i
k q q zku z p hj = - + + .

Let minimal allowable distanceߩ௤ > 0 between a convex polyhedron ( )i qK u  and the object *W  be

given. To describe distance constraint, dist(iK , *W ) q³ r , we use an adjusted phi-function for a convex

polyhedron ( )i qK u  and  the object *W defined by

( ) ( ) .i q i q qu uF =F -r
)

                                               (6)

4. Mathematical model

The vector u RsÎ  of  all  variables  can  be  described  as  follows: ( , ) ,u Rs= V t Î  where

1 2( , , , , , ..., )Nl w h u u uV = , ( , , )l w h  denote the variable dimensions (length, width and height) of the

cuboidW  and 1 2 3( , ) ( , , , , , )
i i i i i i i i ia a a a a a a a au v x y z= q = q q q  is the vector of placement parameters of

iK , ni IÎ , an index {1, 2, ..., }ia NÎ  is a component of the ”gluing” vectora, defined in Section 3.

Here 1( , ..., )
P P

mu ut =  denotes the vector of all auxiliary variables, where 1 2( , , )
P P

s s s s
P Pu = q q m  is  a

vector of auxiliary variables for the s-th pair of convex polyhedra defined in (1), 1, ..., ,s m=

( )m card= X ,

{( , ), , 1, ..., }i ji j a a i j nX = ¹ < = .                                                (7)

The number of the problem variables is derived as3 6 3N ms = + + .
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 Now a mathematical model of the polyhedron packing problemcan be stated in the form

min ( )
u W R

F u
sÎ Ì

,                                                           (8)

{ : ( , , ) 0, ( , ) , ( ) 0, 1, 2, ..., }
i j i j iij a a a a i aW u R u u u i j u i ns ¢ ¢= Î F ³ ÎX F ³ =

) )
,          (9)

where ( )F u l w h= × × , ' ( , , )
i j i jij a a a au u u¢F

)
 is an adjusted quasi phi-function defined by (2),

,i j Na a IÎ , under( , )i j ÎX ,
i j P

s
a au u¢ = , 1, ..., ,s m= X  is given by (7), for the pair of polyhedraiK

and jK , taking into account minimal allowable distance 0qgr > , ( )
ii auF

)
 is an adjusted phi-function

defined by (6) for a polyhedron iK  and the object *W , taking into account minimal allowable distance

0qr > . If 0qgr =  and 0qr =  then we replace the adjusted quasi phi-function( , , )
i j i jij a a a au u u¢ ¢F

)

by the quasi phi-function ( , , )
i j i jij a a a au u u¢ ¢F , defined by (1), to enforce the non-overlapping

constraint and the adjusted phi-function ( )
ii auF

)
 by the phi-function ( )

ii auF ,  defined  in  (5),  to

enforce thecontainment constraint.

It should be noted that in order to avoid redundant inequalities in containment constraints one

can use a collection of adjusted phi-functions ( ) 0, 1, ...,h
qq qu q N³ =ĭ

)
, for the convex hull of concave

polyhedraԷ௤ , 1, ...,q N= , instead of the collection of adjusted phi-functions( ) 0,
ii auF ³

)
1, ..., ,i n=

for convex polyhedra ,iK 1,...,i n= .

Let  us  consider  a  mathematical  model  for  a  simple  example  of  a  packing  problem for N=2

polyhedra: 1 1 1 1( ) ( )u K u=Q  and 2 2 2 2 3 2( ) ( ) ( )u K u K u= UQ  (Fig.  5a)  in  a  cuboid

3{ ( , , ) :0 ,0 ,0 }x y z R x l y w z hW= Î £ £ £ £ £ £ . Here n=3 is the number of convex polyhedra,

1 2 3( , , ) (1, 2, 2)a a a= =a  is the gluing vector, {( , ), , 1, 2, 3} {(1, 2), (1,3)},i ji j a a i jX = ¹ < = =

1 2 3( , ) ( , , , , , )
i i i i i i i i ia a a a a a a a au v x y z= q = q q q  is the vector of placement parameters ofiK , 1, 2, 3i = .

according to the gluing vector, m=2 is the number of  pairs of  convex polyhedra with respect toX ,

1 2
12 13( , ) ( , )

P P
u u u u¢ ¢t = = is the vector of auxiliary variables, 3 6mt = = , 1 2 12 13( , , , , , , )u l w h u u u u¢ ¢=

is the vector of the problem variables. The number of the problem variables is3 6 3 21N ms = + + = .

Now mathematical model (8)-(9) for the packing problem takes the form

21
min ( )

u W R
F u

Î Ì
,

21
12 1 2 12 13 1 2 13 1 1 2 2 3 2{ : ( , , ) 0, ( , , ) 0, ( ) 0, ( ) 0, ( ) 0},W u R u u u u u u u u u¢ ¢ ¢ ¢= Î F ³ F ³ F ³ F ³ F ³

where

12 1 2 12( , , )u u u¢ ¢F  is a quasi phi-function for 1 1( )K u and 2 2( ),K u
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13 1 2 13( , , )u u u¢ ¢F  is a quasi phi-function for 1 1( )K u and 3 2( )K u ,

1 1( )uF  is a phi-function for 1 1( )K u  and the object *W ,

2 2( )uF  is a phi-function for 2 2( )K u  and the object *W ,

3 2( )uF  is a phi-function for 3 2( )K u  and the object *W .

We note, that in the model we can use two phi-functions: phi-function1 1( )uF and a phi-function for

the convex hull of concave polyhedraԷଶ and the object *W instead of phi-functions ( ) 0,
ii auF ³

)

1, 2,3,i =  for convex polyhedra ,iK 1, 2,3i =  and the object *W .

Each quasi phi-function inequality in (9) is presented by a system of inequalities with infinitely

differentiable functions. Our model (8)-(9) is a non-convex and continuous nonlinear programming

problem and an exact formulation for the polyhedron packing problem. It contains all globally optimal

solutions. It is possible, at least in theory, to use a global solver for the nonlinear programming problem

and to obtain a solution, which is an optimal packing.

However in practice, the model contains a large number of variables and a huge number of

inequalities. Specifically, the model (8)-(9) involves O(n2) nonlinear inequalities and O(n2) variables

due to the auxiliary variables in quasi phi-functions, where n is the number of convex polyhedra. As a

result, finding a locally optimalsolution becomes an unrealistic task for the available state of the art

NLP-solvers employeddirectly  to model (8)-(9): for N >15 starting from a random point and for N >30

starting from a feasible point.

 In order to search for a “good” locally optimal polyhedron packing within a reasonable

computational time we propose here an efficient solution algorithm, which employs a fast starting point

algorithm (FAPA) and a new compaction procedure. In most cases the procedure reduces our problem

to a sequence of nonlinear programming subproblems of considerably smaller dimension (O(n)) and a

smaller number of nonlinear inequalities (O(n)). We use NLP-solver (IPOPT) to solve each of the NLP

subproblems starting from the feasible points found by the special procedures described in Section 5.

5. Solution algorithm

Our multi-start solution strategy involves the following steps:

1) Generate a set 0{ } cV  of vectors 0 0 0 0 0 0 0
1 2( , , , , , ..., )Nl w h u u uV =  of feasible placement parameters

0 0 0
1 2( , , ..., )Nu u u  of polyhedra placed into the container0W  of sizes 0 0 0( , , )l w h  in the problem (8)-

(9). Various algorithms exist for obtaining a feasible solution (for example [17]). We employ here

the clear and fast algorithm, which is described in Subsection 5.1.

2) Search for a local minimum of the objective function F(u) in problem (8)-(9), starting from each

point from the set 0{ } cV  obtained at Step 1. To get a local minimum of problem (8)-(9) we develop

a compaction algorithm for rotated polyhedra described in Subsection 5.2.
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3) Choose the best local minimum from those found at Step 2 as the final solution of the problem (8)-

(9).

The actual search for a local minimum in all optimization procedures (to realize steps 1-2) is performed

by IPOPT [23], which is available at an open access noncommercial software depository

(https://projects.coin-or.org/Ipopt) .

5.1 Feasible Placement Parameters Algorithm (FPPA)

In order to find a vector of starting feasible placement parameters of polyhedra we apply an algorithm,

which is based on the homothetic (scaling) transformation of objects. The algorithm consists of the

following steps.

Firstly we choose a sufficiently large starting length0l , width 0w  and height 0h  for a container 0W

to  allow  for  a  placement  of  all  spheresqSr , 1, 2, ...,q N= , within the container 0W , where

q qS S Sr r= Å  is the Minkovski sum of a sphereqS  of radius qr  (Fig. 6) and a sphereSr  of radius

,
0.5max{ max , max }

N N
qg q

q g J q JÎ Î
r = r r , provided that qS  and Sr  have  the  same  center  point.  For

example, we can set0 0 0

1

2 ( 1) .
n

q
q

l w h r n r
=

= = = + +å

Secondly we generate within the container0W  a set ofN  randomly chosen center points0 0 0( , , )q q qx y z

of qSr , 1, 2, ...,q N= .

Fig. 6 – Concave polyhedraԷ௤ and appropriate spheresqS .

Thirdly we grow the spheresqSr of radius ( )qrl + r , 1, 2,..., ,q N=  starting from 0l = to the full size

( 1l = )  and  the  decision  variables  are:  the  centres  ofqSr and a homothetic coefficient (a scaling

parameter)l , where0 1£ l £ (Fig 7.). In order to realise this step we fix 0l l= , 0w w= , 0h h= , and,
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starting from the point 0 0 0 0 0 0 0 0
1 1 1( , , , ..., , , , 0)N N Nv x y z x y z= l = , solve the following NLP-

subproblem:

max
v WlÎ

l ,                                                               (10)

*
3 1{ R : ( ) 0, ( ) 0, 1, 2, ..., ,1 0, 0}q g qS S SNW v v v q g N

W+
l = Î F ³ F ³ < = - l ³ l ³

) )
,       (11)

where 1 1 1( , , , ..., , , , )N N Nv x y z x y z= l ,

2 2 2 2 2( ) ( ) ( ) ( ) ( 2 ) ,q gS S
q g q g q g q gv x x y y z z r rF = - + - + - - l + r +

)
          (12)

is an adjusted phi-function for a sphereqS  of radius qrl  and a sphere gS  of radius ;grl

*
( ) min{ ( ), 1, ..., 6}qS

kqv v k
W

F = j =
)

,                                          (13)

is an adjusted phi-function for a sphereqS  of radius qrl  and the object *W , where

1 ( )q vj = 0 ( )q q qx l r- + - l + r , 2 ( )q vj = ( 2 )q qx r- l + r ,

3 ( )q vj = 0 ( )q q qy w r- + - l + r , 4 ( )q vj = ( 2 )q qy r- l + r ,

5 ( )q vj = 0 ( )q q qz h r- + - l + r , 4 ( )q vj = ( 2 )q qz r- l + r .

We denote a point of the global maximum of problem (10)-(11) by

* * * * * * * *
1 1 1( , , , ..., , , , 1)N N Nv x y z x y z= l = .

Finally  we  form  a  vector  of  feasible  parameters0 0 0 0 0 0 0
1( , , , , ..., , ..., )q Nl w h u u uV = , assuming that

0 0 0 0 0( , , , )q q q q qu x y z= q , 0 0 0 * * *( , , ) ( , , )q q q q q qx y z x y z=  and 0
qq   is a vector of randomly generated rotation

parameters of polyhedra Է௤ , 1, ...,q N= .

We note that the global solution of problem (10)-(11) always can be found (since the chosen starting

sizes 0l , 0w  and 0h  at the first step are sufficiently large). The solution automatically respects all the

non-overlapping, containment and distance constraints for the concave polyhedra.

0W 0W 0W

0W 0W

0l =

0.97l =

0.3l = 0.75l =

1l =
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Fig. 7 –Illustration of the optimisation procedure FPPA to search for feasible placement parameters

of polyhedra, using homothetic transformations

Our FPPA algorithm returns the vector0V  to generate a starting point0 0 0( , )u = V t for a subsequent

search for a local minimum of the problem (8)-(9). To search for vector0t  we apply special

optimisation procedure, called Feasible Auxiliary Parameters Algorithm (FAPA), described below.

5.2 Compaction Algorithm (COMPOLY)

 Since our problem (8)-(9) can not be solved for N >30 by direct use of state of the art NLP-

solvers (starting from a feasible point), we propose an iterative compaction algorithm to search for local

minima of the problem.

Our algorithm reduces the problem (8)-(9) that has a large number of inequalities and dimension

O(n2) of the feasible set W, described by (9), to a sequence of nonlinear programming subproblems that

have a smaller number of nonlinear inequalities (O(n)) and dimension O(n). The key idea of the

algorithm  is  as  follows:  For  each  vector  of  feasible  placement  parameters  of  our  polyhedral,  we

construct fixed individual cubic containers of spheres that circumscribe the appropriate convex

polyhedra. Then we move each sphere within the appropriate individual container. The motion of each

sphere we describe by a system of six lineare -inequalities. Then we form a subregion of feasible region

W  in the following way: weadd O(n) e -inequalities (for all spheres) to the inequality system (9), that

allows us todeleteO(n2) phi-inequalities for such pairs of polyhedra whose individual containers do

not overlap each other anddeletesome redundant containment constraints. Then we search for a local

minimum on the subregion of dimension O(n).  The  subregion  is  described  by  O(n) nonlinear

inequalities. Then we use this local minimum as a starting point for the next iteration. On the last

iteration of our algorithm we find  a local minimum of problem (8)-(9).

Let us consider the algorithm in details.

We assume here that spheres0 (0)q qS Sº  of radius qr  and the center point ( , , ),q q q qv x y z=

circumscribed around each non-translated and non-rotated concave polyhedron Է௤, 1, ...,q N= , as

well as, spheres 0 (0)i iS Sº  of radius ir  and the center point ( , , )ci ci ci civ x y z=  circumscribed around

each non-translated and non-rotated convex polyhedron0
iK  , 1,...,i n= , are constructed.
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The COMPOLY algorithm is an iterative procedure and involves the following steps.

Step 1. Let 1k = . Take the vector 1 1 1 1 1 1
1( , , , ,..., )k k k k k k

Nl w h u u- - - - - -V =  of feasible placement

parameters of polyhedra Է௤ , 1, ...,q N= , within the container 1k-W .

Step 2. Derive the appropriate vector ( 1) ( 1)
1( , .., )k k

cncv v- -  of center points of spheres ( 1)( ),
i

k
i aS u -

1, 2, ...,i n= . With respect to the gluing vectora, the center point civ  of i iS KÉ  after translation and

rotation of initial convex polygon 0
iK  takes the form

( 1) ( 1) ( 1) ( 1)( ) ( )
i i i

k k k k
ci cici a a av v u v M v- - - -= = + q × .

For the sake of simplicity, we provide some illustrations to the algorithm for the 2D case.

Figure 8 illustrates the concave polygonԷ(0) = ଵ(0)ܭ ׫ ଶ(0)ܭ  with translation vector(0, 0)  and

rotation angle 0q = . Circles 1(0)S  and 2 (0)S , circumscribed around 1(0)K  and 2(0)K  have center

points 1cv  and 2cv . Polygon Է(0) , translated by vector 0v  and rotated by angle0q ,  is denoted byԷ(ݑ଴) = ଴ሻݑ)ଵܭ ׫ where ,(଴ݑ)ଶܭ 0 0 0( , )u v= q .  Center  points  of  circles 0
1( )S u  and 0

2( )S u  are

denoted by 0
1cv  and 0

2cv .

Fig.  8 – Translation and rotation parameters of 0
1( )S u  and 0

2( )S u  of concave polygonԷ(0) = ଵ(0)ܭ ׫ ଶ(0), translated by vector0vܭ  and rotated by angle0.q

Step 3. For each sphere ( 1)( )
i

k
i aS u -  we construct a fixed individual containerki i iS KW É É  with equal

half-sides of length ir + e , 1,...,i n= , and the center of symmetry point( 1)k
civ - , assuming

1

/
n

i
i

r n
=

e =å

. Figure 9 illustrates individual containers
1

0
1( )auW and

2

0
2( )auW  for circles

1

0
1( )aS u  and

2

0
2( )aS u

considered in the above example. Note, that here1 2a a= .
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Fig. 9 – Individual containers
1

0
1( )auW  and

2

0
2( )auW  for circles

1

0
1( )aS u  and

2

0
2( ).aS u

Step 4. Move each sphereiS , associated with the convex polyhedroniK , within the appropriate fixed

individual container k
iW  (found  at  Step  3).  Hence,  for  each  sphereiS we construct a phi-function

i iS *WF  for sphere iS  and * 3 \ inti iRW = W  in the form:

( 1) ( 1) ( 1) ( 1)( , ) min{ ( ) , ( ) , ( ) ,i i
i i i ii i i i

k k k kS
a ci a ci a ci aa a a av v x u x y u y z u z

* - - - -WF = - + + e - + + e - + + e

( 1) ( 1) ( 1)( ) , ( ) , ( ) } .
i i ii i i

k k k
ci a ci a ci aa a ax u x y u y z u z- - -- + e - + e - + e

The inequality ( 1)( , ) 0i i
i i

kS
a av v

* -WF ³ provides k
i iS ÌW and can be described by the following

inequality system of six linear "e -constraints":

( 1) ( 1)( ) 0, ( ) 0,
i ii i

k k
ci a ci aa ax u x y u y- -- + + e ³ - + + e ³ ( 1)( ) 0,

ii

k
ci aaz u z-- + + e ³

( 1)( ) 0,
ii

k
ci aax u x- - + e ³ ( 1) ( 1)( ) 0, ( ) 0.

i ii i

k k
ci a ci aa ay u y z u z- -- + e ³ - + e ³

  Now we introduce an auxiliary (artificial) subsetk
eL  of additional "e -constraints" on the translation

vectors ( , , )
i i i ia a a av x y z= , 1, ..., ,i n= of convex polyhedra iK , 1,...,i n= :

( 1) ( 1){ : ( ) 0, ( ) 0,
i ii i

k k
k ci a ci aa au R x u x y u y- -e sL = Î - + + e ³ - + + e ³

( 1)( ) 0,
ii

k
ci aaz u z-- + + e ³ ( 1)( ) 0,

ii

k
ci aax u x- - + e ³

( 1) ( 1)( ) 0, ( ) 0,
i ii i

k k
ci a ci aa ay u y z u z- -- + e ³ - + e ³ 1, ..., }i n= .

Then we add the inequality system of 6n additional linear "e -constraints" that describe the subsetk
eL

to the inequality system that defines the feasible regionW and obtain k-th subregion .k kW W e= LI

It should be noted that the inequality system that describes the feasible subregionkW in most cases

involves O(n2) redundant phi-inequalities.

0
1cv

0
2cv

1W

2W

e

e

e

e

0v

0
1cv

0
2cv

1S

2S

0v
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Step 5. To avoid the redundant phi-inequalities that describekW we form special index sets1
kX  and

2
kX  that involve indexes of all pairs of objects that are associated with non-redundant non-overlapping

and containment constraints respectively.

To form index set 1
kX we exclude fromX  (7) indexes of all pairs of convex polyhedra where individual

containers do not intersect each other (see Appendix B):

( 1) ( 1)
1 1{( , ) : ( , ) 0}

k k
i j

i j

k kk kS
a ai j v v

W W - -X = ÎX j < , where ( 1) ( 1)
1 {( , ) : ( , ) 0}

a ai j

i j

S S k kkS
a ai j v v- -X = ÎX F <

)

( 1) ( 1) ( 1) ( 1)( , ) max{ ( , ), 1, ..., 6}
k k
i j

i j i j

k k k ks
ija a a av v v v s

W W - - - -j = j = ,

( 1) ( 1) ( 1) ( 1)1 ( , ) ( )
i j

k k k k
ij iji ja av v x x R- - - -j = - - , ( 1) ( 1) ( 1) ( 1)2 ( , ) ( )

i j

k k k k
ij iji ja av v y y R- - - -j = - - ,

( 1) ( 1) ( 1) ( 1)3 ( , ) ( )
i j

k k k k
ij iji ja av v z z R- - - -j = - - , ( 1) ( 1) ( 1) ( 1)4 ( , ) ( )

i j

k k k k
ij iji ja av v x x R- - - -j = - - - ,

( 1) ( 1) ( 1) ( 1)5 ( , ) ( )
i j

k k k k
ij iji ja av v y y R- - - -j = - - - , ( 1) ( 1) ( 1) ( 1)6 ( , ) ( )

i j

k k k k
ij iji ja av v z z R- - - -j = - - - ,

( ) 2ij i j ijR r r= + + r + e ,

( 1) ( 1)( , )
a ai j

i j

S S k k
a av v- -F

)
 is  an  adjusted  phi-function  (12)  for  a  pair  of  spheresqS  and gS  ( ܽ௜ =

,ݍ ௝ܽ = ݃), circumscribed around concave polyhedraԷ௤(ݑ௤(௞ିଵ) ሻ ـ ௤(௞ିଵ)ݑ)௜ܭ ) andԷ௚ ቀݑ௚(௞ିଵ) ቁ ௝ܭـ ቀݑ௚(௞ିଵ) ቁ. We provide some illustrations to form index set1
kX  in Appendix B.

We note that if 1( , ) ki j ÏX , then we do not need to check the distance (or non-overlapping)

constraint for the corresponding pair of polyhedra ( 1)( )
i

k
i aK u -  and ( 1)( )

j

k
j aK u - . If 0ijr =  then function

( 1) ( 1)( , )
k k
i j

i j

k k
a av v

W W - -j  becomes a phi-function for two oriented parallelepipedsiW and .jW

To form index set 2
kX we exclude from (8) all phi-inequalities for containment constraints of convex

polyhedra where individual containers do not intersect the set* 3 \ intk kRe eW = W , such that

( 1) ( 1) ( 1){( , , ) : , , }.k k k kx y z x l y w z h- - -
eW = e £ £ - e e £ £ - e e £ £ - e

Thus, ( 1)
2 2{ : ( ) 0}

k
i

i

kk kS
ai v

*
e -W WX = ÎX F <

)
, where ( 1)( )

k
i

i

k
av

*
e -W WF

)
 is an adjusted phi-function for a

polyhedron ( 1)( )
i

k
i aK u -  and the object *k

eW , ( 1)
2 { : ( ) 0},

k
ai

i

S kkS
n ai I v

*
eW -X = Î F <

) *k
ai

S eW
F
)

 is an

adjusted phi-function (13) for a sphereqS , associated with concave polyhedronԷ௤(ݑ௤(௞ିଵ) ሻ ௤(௞ିଵ)ݑ)௜ܭـ ), and the object *
eW , ia q= ,
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( 1) ( 1)( ) min{ ( ), 1, ..., 6}
k k
i

i i

k ks
ia av v s

*
e - -W WF = y =

)
,

( 1) ( 1)1( )
i

k k
i iiav x R- -y = - , ( 1) ( 1)2( )

i

k k
i iiav y R- -y = - , ( 1) ( 1)3( )

i

k k
i iiav z R- -y = - ,

( 1) ( 1)4 ( 1)( )
i

k k k
i iiav x l R- - -y = - + - , ( 1) ( 1)5 ( 1)( )

i

k k k
i iiav y w R- - -y = - + - ,

( 1) ( 1)6 ( 1)( )
i

k k k
i iiav z h R- - -y = - + - , 2i i qR r= + r + e .

We note that if 2
ki ÏX , then we do not need to check the distance (or containment) constraint for the

polyhedron ( 1)( )
i

k
i aK u -  and the object k

eW .

Step 6. Generate the k-th subproblem on solution subsetk kW W e= LI  with deleted redundant phi-

function inequalities and reduced dimension (O(n)):

min ( )
kk

w kk

w
u W R

F u
s-sÎ Ì

,                                                      (14)

'
1 2

( 1) ( 1) ( 1)

{ ( , ) : ( , ) 0, ( , ) , ( ) 0, ,

( ) 0, 1, ..., , , , },

k
k k i j i

k
i i

i

k k
k w w ij a a i a

S k k k
a

W u R u u i j u i

u i n l l w w h h
*

s-s

W - - -

= = V t Î F ³ ÎX F ³ ÎX

F ³ = ³ - e ³ - e ³ - e

) )

where 1
kX and 2

kX  are defined on Step 5, 13( ( ))k
k m cards = - X is the number of all deleted auxiliary

variables meeting in the appropriate redundant phi-function inequalities, 13 6 ( ),k
k N ca rds - s = + + X

1( )kcard X is (O(n)).

Step  7. Generate a feasible starting point ( 1)( 1) ( 1)( , )
k

kk k
wu -- -= V t  for  problem  (14).  Since  a  vector

( 1)k-V  has already defined, we need to find values of the vector of auxiliary variables

( 1) ( 1)1 ( 1) ( 1)( , ..., , ..., )
k P P P

k k k s k m
w u u u- - - -t =  for such {1,..., }s mÎ  that 1( , ) ki j ÎX .

To derive a vector ( 1)
P

k su -  we employ the FAPA algorithm.

The key idea of the FAPA algorithm lies in the following (see Appendix C): we derive a vector

( 1)
P

k su -  as  a  vector  of  feasible  parameters  of  a  separating  plane  for  two  spheres ( 1)( )
i

k
i aS u -  and

( 1)( )
j

k
j aS u -  if 0i jS SF ³

)
, using simple geometrical calculations, otherwise we find a vector( 1)

P

k su - ,

solving the following auxilary subproblem

maxa  s.t. '( , )
P

su Waa Î  ,                                                    (15)

where

( 1) ( 1)' 4 '{( , ) : ( , , ) 0}
P i j P

k ks s
ij a aW u R u u u- -

a = a Î F -a ³
)

,
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1RaÎ , 1 2( , , ),
P P

s s s s
P Pu = q q a  under fixed parameters ( 1) ( 1)( , )

i j

k k
a au u- -  involving in the appropriate

adjusted quasi phi-function ( 1) ( 1)( , , )
i j P

k k s
ij a au u u- -¢F
)

 , ( , )i j" ÎX . It should be noted that any

nonnegative value ofa  in (15) provides feasible values of
P

su .

Thus, all adjusted quasi phi-functions and phi-functions in (14) at the point( 1)ku -  take nonnegative

values.

Step 8.Solve subproblem (14), starting from the feasible point( 1)ku -

min ( )
kk

w kk

w
u W R

F u
s-sÎ Ì

,                                           (16)

and get a local minimum point* * *( , )
k k

k k
w wu = V t  .

If the point *
kwu  of  local minimum of subproblem (16) belongs to the frontier of an auxiliary subset

k
eL , i.e. *

kwu kfr eÎ L , then we take *kV  as a starting vectorkV   for the next iteration of the procedure

(set k =k+1 and go to Step 2), otherwise we stop the optimisation procedure.

We claim that the point * * * *( , )k k ku u Rs= = V t Î  is a point of local minimum of problem (8)-(9),

where *kt  involves *
k

k
wt  and auxiliary variables that are deleted at the k-th iteration. Note that theks

previously deleted auxiliary variables can be redefined by FAPA algorithm. However we do not need

to redefine the deleted auxiliary variables at the last step of the algorithm, since the values of auxiliary

variables have no effect on the value of the objective function, i.e.* *( ) ( )
k

k
wF u F u= .

Figure  10  shows  the  diagram  of  the  COMPOLY  procedure  to  solve  problem  (8)-(9).   We

illustrate the procedure of solving a sequence of subproblems, given by (16), for k=2,3,4. Note, that

feasible starting point (0)u  is found by algorithm FPPA. Each auxiliary (artificial) setk
eL  , described

at Step 4 of the COMPOLY procedure, is shown as a square with the centre point( 1),ku -  k=1,2,3,4.

We take the feasible point(0)u , form set 1
eL  with the center point (0)u , solve subproblem (16)

on subregion 1 1W We= L I and get a local minimum point
1

* .wu The point
1

*
wu  belongs to the frontier

of set 1
eL , therefore we form the next set2

eL  with the center point
1

(1) *
wu u=  and search for a local

minimum point
2

*
wu  of subproblem (16) on subregion2 2W We= L I . The point

2
*
wu  belongs to the

frontier of set 2,eL therefore we form the next set3
eL  with the center point

2
(2) *

wu u=  and search for

a local minimum point
3

*
wu  of subproblem (16) on subregion3 3W We= L I . The point

3
*
wu belongs
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to the interior of set 3
eL , i.e.

3
*

3intwu eÎ L , therefore we stop our procedure. The point
3

*
wu = u*  is a

point of local minimum of problem (8)-(9).

Fig. 10 – Diagram of the COMPOLY procedure.

Figure 11 illustrates the iterative procedure of packing concave polyhedra that is related to the Diagram

shown in Figure 10.

u(0)

u(1) u(2) u* = u(3)

Fig. 11 – Arrangements of concave polyhedra, corresponding to the sequence of feasible points

u(0), u(1) , u(2), u* = u(3)  with respect to the Diagram.
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We note that dist(*
kwu ,

1
*

kwu
+

)³ e , if
1

*
kw ku fr
+

eÎ L , and we take the value ofe  that is considerably

greater than the accuracy of IPOPT (810- ). Thus, we can conclude that the stopping condition of the

COMPOLY procedure is always reached in a finite number of iterations.

If the IPOPT program fails to find a local minimum of subproblem (14), we halve the value of

e  and start up the COMPOLY procedure. If a local minimum is found under the half value ofe  then

we recover the initial value of epsilon and continue the COMPOLY procedure for a new feasible starting

point, otherwise we terminate the procedure.

Our algorithm, in most cases, takes consideration of significantly fewer pairs of polyhedra than

m (herem is the number of all pairs of convex polyhedra considered in problem (8)-(9)), because for

each polyhedron only its “e -neighbors” have to be monitored. It should be noted that the algorithm is

not efficient for special cases when all objects are “e -neighbors”.

The parametere  provides a balance between the number of inequalities in each nonlinear

programming subproblem (14) and the number of the subproblems (12), which we need to generate and

solve in order to get a local optimal solution of problem (8)-(9).

Thus  the  COMPOLY  algorithm  allows  us  to  reduce  the  problem  (8)-(9)  with  a  large  number  of

inequalities and dimension O(n2) of the feasible set W, described by (9), to a sequence of subproblems

(14) with a smaller number of nonlinear inequalities and dimension O(n) of solution subset kW .

6. Computational experiments

We present a number of examples to demonstrate the efficiency of our methodology. We have

run all experiments on an AMD Athlon 64 X2 5200+ computer, Programming Language C++,

Windows 7. For the local optimisation we use the IPOPT code (https://projects.coin-or.org/Ipopt) by

means of program interface using the default options.

The following examples set 5e =  for the COMPOLY procedure.

Example 1.We generate a collection of n= 98 convex polyhedra, consisting of the 7 types of polyhedra

from example 1 given in [18] and in Appendix A. We include 14 of each type of polyhedra. Figure 12

shows the local optimal placement of the collection of convex polyhedra. The container has dimensions

and volume: a) * * *( , , )l w h =(30.9324, 28.1897, 26.5064) and *( )F u = 23113.06 with 0r =  (Fig.

12a). One starting point is used. Computational time is 147967.3 sec.; b)* * *( , , )l w h =(41.3510,

33.0721, 31.7988) and *( )F u = 43487.0040 with 1.5r =  (Fig. 12b). One starting point is used.

Computational time is 48152.79 sec.
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                                    (a)                                              (b)

Fig. 12 – Local optimal placement of polyhedra in Example 1: a)0r = ; b) 1.5.r =

Example 2.We generate a collection of N=20 concave polyhedra, consisting of the 2 types of polyhedra

given in [17] and in Appendix A. We include 10 of each type of polyhedra. Figure 13 shows the local

optimal placement of the collection of concave polyhedra. The container has dimensions and volume:

a) * * *( , , )l w h =(26.3522, 23.7514, 24.4055) and *( )F u = 15275.4815 with 0r =  (Fig. 13a). Two

starting points are used. Computational time is 8729.45 sec.; b)* * *( , , )l w h =(26.5890, 26.5239,

36.1706) and *( )F u = 25509.2576 with 1.5r = . Ten starting points are used. Computational time is

24696.46 sec. (Fig. 13b).

                                     (a)                                                  (b)

Fig. 13 – Local optimal placement of polyhedra in Example 2: a)0r = ; b) 1.5.r =

Example 3.We consider a collection of N=20 equal concave polyhedra given in [17] and in Appendix

A. Figure 14 shows the local optimal placement ofthe collectionof concave polyhedra. The container

has dimensions and volume: a)* * *( , , )l w h =(23.7706, 26.6212, 20.2363) and *( )F u = 12805.6718

with 0r = . Ten starting points are used. Computational time is 59497.9 sec. (Fig. 14a); b)* * *( , , )l w h

=(27.9795, 26.5408, 30.6725) and *( )F u = 22777.4233 with 1.5r = . Ten starting points are used.
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Computational time is 28700.16 sec. (Fig. 14b).

(a)                                                                  (b)

Fig.14 – Local optimal placement of polyhedra in Example 3: a)0r = ; b) 1.5r = .

Example 4.We pack 45 concave polyhedra of 10 types given in Appendix A. We include 5 polyhedra

of each type of the upper polyhedra row and 4 polyhedra of each type of the lower polyhedra row (Fig.

A3). Figure 15 shows the local optimal placement ofthe collectionof concave polyhedra. The container

has dimensions * * *( , , )l w h = (39.7324, 34.8629, 44.6587) and volume *( )F u = 61860.807. Three

starting points are used. Computational time is 159884.0 sec.

Fig.15–  Local optimal placement of concave polyhedra in Example 4.

Futher we compare our results to those given in [17] and [18]. We search for locally optimal solutions

employing the compaction algorithm: a) starting from a feasible point generated by FPPA algorithm

described in Section 5.1 and b) starting from a feasible point found by the algorithm developed in [17]

and [18].

Example 5.We consider a collection of n=80 convex polyhedra, of example 1 given in [18] and in

Appendix A. Figure 16 shows the local optimal placement of the collection of convex polyhedra. The

container has dimensions and volume: a)* * *( , , )l w h =(43.4338, 41.8435, 45.0059) and *( )F u =

81795.2169, starting from the feasible point found by FPPA. Computational time is 46035.78 sec.; b)

* * *( , , )l w h =(36.3569, 40.8764, 56.2557) and *( )F u = 83604.0544, starting from the feasible point
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found by the algorithm given in [18]. Computational time is 42950.4 sec.. Improvement of the value

of objective function in comparison to the result given in [18]: a) 27.88%; b) 26.29%

.

                        (a)                                                          (b)

Fig.16– Local optimal placement of polyhedra in Example 5: a) starting from the feasible point

found by FPPA; b) starting from the feasible point found by the algorithm given in [18].

Example 6.We consider a collection of N=20 concave polyhedra, of example 2 given in [17] and in

Appendix A. Figure 17 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: a)* * *( , , )l w h =(29.7159, 30.6070, 30.1616) and *( )F u =

27432.6412, starting from the feasible point found by FPPA; b)* * *( , , )l w h =(31.4820, 27.8994,

32.0000) and *( )F u = 28106.6387, starting from the feasible point found by the algorithm given in

[17]. We generate 11 starting points, time limit is 10 hours. Improvement of the value of objective

function in comparison to the result given in [17]: a) 18.36%; b) 16.35%

                          (a)                                                                 (b)

Fig.17 – Local optimal placement of  polyhedra in Example 6:  a) starting from the feasible

point found by FPPA; b) starting from the feasible point found by the algorithm given in [17].

Example 7.We consider a collection of N=30 concave polyhedra, of example 3 given in [17] and in

Appendix A. Figure 18 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: a)* * *( , , )l w h =(36.9929, 36.3796, 30.9454) and *( )F u =
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41646.1709,  starting from the feasible point found by FPPA; b)* * *( , , )l w h =(31.4376, 26.1920,

48.9148) and *( )F u = 40277.1892, starting from the feasible point found by the algorithm given in

[17]. We generate 11 starting points, time limit is 10 hours. Improvement of the value of objective

function in comparison to the result given in [17]: a) 19.06 %; b) 21.72%

                        (a)                                                                       (b)

Fig.18– Local optimal placement of polyhedra in Example 7: a) starting from the feasible point

found by FPPA; b) starting from the feasible point found by the algorithm given in [17].

Example 8.We consider a collection of N=40 concave polyhedra, of example 4 given in [17] and in

Appendix A. Figure 19 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: a)* * *( , , )l w h =(34.9974, 36.9655, 43.2777) and *( )F u =

55988.4619, starting from the feasible point found by FPPA; b)* * *( , , )l w h =(31.1419, 30.8086,

55.4061) and *( )F u = 53158.8838, starting from the feasible point found by the algorithm given in

[17]. We use 3 starting points, time limit is 10 hours. Improvement of the value of objective function in

comparison to the result given in [17]: a) 15.64%; b) 19.91%

                         (a)                                                           (b)

Fig.19– Local optimal placement of polyhedra in Example 8: a) starting from the feasible point

found by FPPA; b) starting from the feasible point found by the algorithm given in [17].

Example 9.We consider a collection of n=50 concave polyhedra, of example 9 given in [17] and in
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Appendix A. Figure 20 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: a)* * *( , , )l w h =(46.9742, 34.8305, 41.6923) and *( )F u =

68214.5610, starting from the feasible point found by FPPA; b)* * *( , , )l w h =(32.0000, 25.5894,

75.2637) and *( )F u = 61630.6754, starting from the feasible point found by the algorithm given in

[17].  One starting point is used, time limit is 10 hours. Improvement of the value of objective function

in comparison to the result given in [17]: a) 17.45%; b) 25.42%

                 (a)                                                                         (b)

Fig.20– Local optimal placement of polyhedra in Example 9: a) starting from the feasible point

found by FPPA; b) starting from the feasible point found by the algorithm given in [17].

Table 1 lists some examples presented in [13]. For each example the minimal volume of the

container found by our method is smaller than the best solution reported in [13].

Table 1. Comparison of our results to those in [13]

Problem  the best

volume

from [13]

  the best

time (sec.)

from [13]

found by

FPPA* +

COMPOLY

volume

found by

FPPA* +

COMPOLY

time (sec.)

found by

[17]** +

COMPOLY

volume

found by

[17]** +

COMPOLY

time (sec.)

20 from [17] 32550 26202.1 27432.64 34313.34 28106.64 5360.67

30 from [17] 48300 53741.5 41646.17 35289.34 40277.19 33008.89

40 from [17] 61950 99952.0 53158.88 201501.5 55988.46 195051.51

50 from [17] 77280 125210.6 68214.56 215144.55 61630.68 270654.84

36 from [13] 12480 9637.5 10461.67 23023.12 – –

Note. In table 1: * – a starting feasible point found by FPPA; ** – a starting feasible point found by

algorithm found in [17].

Example 10.We consider the collection of polyhedra of example 1 given in [13] and in Appendix A.

Figure 21 shows the local optimal placement of n=36 concave polyhedra, starting from the feasible
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point found by FPPA. The container has dimensions* * *( , , )l w h =(21.5851, 19.8685, 24.3938) and

volume *( )F u = 10461.67. We generate 5 starting points, time limit is 10 hours. Improvement of the

value of objective function is 16.18%.

Fig.21– Local optimal placement of polyhedra in Example 10.

To show the effectiveness of the COMPOLY procedure, some tests were performed. In the example for

N = 10 concave polyhedra from Appendix A, the average computational time per one local extremum

is: a) 1380 sec. without the use of the COMPOLY procedure; b) 283 sec. using the COMPOLY

procedure. The number of variables and inequalities is: a) 1791 and 7934without the use of the

COMPOLY procedure; 626 and 3086using the COMPOLY procedure at the last iteration.

In Example 6 for N=20concave polyhedra, the average computational time per one local extremum is:

a) 75026.31 sec. without the use of theCOMPOLY procedure; b)4980.74sec. using theCOMPOLY

procedure. The number of variables and inequalities is: a) 7471 and 30916without the use of the

COMPOLY procedure; 1334 and  8028 using the COMPOLY procedure at the last iteration.

In Example 7 for N=30 concave polyhedra a local minimum has not been found within the time limit

of 72 hours without using of theCOMPOLY procedure. The average computational time per one local

extremum is35289.34sec. using the COMPOLY procedure.

7. Conclusions and future work

We derive radical free adjusted quasi phi-functions to describe non-overlapping constraints for concave

polyhedra and use adjusted phi-functions to describe containment constraints. These tools take into

account continuous rotations of polyhedra and minimal allowable distances between objects. We

introduce an exact mathematical model for the optimal polyhedron packing problem as a nonlinear

programming problem with smooth functions. Our approach involves a fast starting point algorithm.

We also propose the COMPOLY procedure to search for “good” local optimal solutions. It can be used

as a compaction algorithm, starting from a feasible point found by any algorithm published before. The

COMPOLY procedure allows us to reduce computational costs (time and memory) considerably. This

reduction is of a paramount importance, since we deal with nonlinear optimisation problems. Our results

on new instances and instances from the literature show our approach has superior performance. In the



33

near future, we intend to apply our methodology to pack arbitrary polyhedra into different shaped

containers (a sphere, a cylinder, a polytope, a spheroid, an ellipsoid) with different objectives (e.g.,

maximum of the space usage) and additional constraints (e.g., behavior constraints).

References
1. Bennell, J., Oliveira, J. (2008). The geometry of packing problems:A tutorial.European Journal

of Operational Research184:397–415.

2. Chazelle, B., Edelsbrunner, H., Guibas, L. J. (1989). The complexity of cutting complexes.

Discr. & Comput. Geom.,4(2), 139–181. DOI: 10.1007/BF02187720.

3. Chen, E. R.,  Klotsa, D.,  Engel,  M.,  Damasceno, P. F.,  Glotzer,  S. C. (2014).  Complexity in

surfaces of densest packings for families of polyhedra. Phys Rev X4(1),

DOI:10.1103/PhysRevX.4.011024.

4. Chernov, N., Stoyan, Y., Romanova, T. (2010). Mathematical model and efficient algorithms

for object packing problem. Comput. Geom.: Theory and Appl.,43(9), 535–553.

DOI:10.1016/j.comgeo.2009.12.003.

5. Egeblad, J., Nielsen, B. K., Brazil, M. (2009). Translational packing of arbitrary polyhedra.

Comp. Geom., 42(4), 269–288. DOI:10.1016/j.comgeo.2008.06.003.

6. Fasano, G. A. (2013). Global Optimisation point of view for non-standard packing problems.

J.  Glob. Optim.,55(2), 279–299. DOI: 10.1007/s10898-012-9865-8.

7. Fischer, K., Gärtner, B. and Kutz, M. (2003). Fast Smallest-Enclosing-Ball Computation in

High Dimensions.Algorithms - ESA 2003,2832, 630–641. DOI:10.1007/978-3-540-39658-

1_57.

8. Galrão, R. A., Oliveira J. F., Gonçalves J. F., Lopes M. P. (2016) A container loading algorithm

with static mechanical equilibrium stability constraints.Transportation Research, (Part B),91,

565-581. DOI: 10.1016/j.trb.2016.06.003.

9. Gomes, A. Miguel Irregular Packing Problems: Industrial Applications and New Directions

Using Computational Geometry. (2014) Paper in special issue on “Cutting and Packing". Vol

11 | Part 1, 378-383. DOI: 10.3182/20130522-3-BR-4036.00113.

10. Kallrath, J. (2009). Cutting Circles and Polygons from Area-Minimizing Rectangles. Journal

of Global Optimization,43(2), 299–328. DOI: 10.1007/s10898-007-9274-6.

11. Korte, A. C. J., Brouwers H. J. H. (2013). Random packing of digitized particles. Powder

Techn.,233, 319–324. DOI: 10.1016/j.powtec.2012.09.015.

12. Li,  S. X.,  Zhao, J.,  Lu, P.,  Xie,  Y. (2010).  Maximum packing densities of  basic 3D objects.

Chin. Scien. Bull.,55(2), 114–119. DOI: 10.1007/s11434-009-0650-0.

13. Liu, X., Liu, J., Cao, A., Yao, Z. (2015). HAPE3D – a new constructive algorithm for the 3D

irregular packing problem. Frontiers of Information Technology & Electronic Engineering,

16(5), 380–390. DOI: 10.1631/FITEE.1400421.

14. Pankratov, A., Romanova, T., Chugay, A. (2015). Optimal packing of convex polytopes using

quasi phi-functions. Journal of Mechanical Engineering,18 (2), 55-64.



34

15. Smeets, B., Odenthal, T., Vanmaercke, S., Ramon, H. (2015). Polygon-based contact

description for modeling arbitrary polyhedra in the Discrete Element Method. Computer

Methods in Applied Mechanics and Engineering,290, 277-289. DOI:

10.1016/j.cma.2015.03.004.

16. Stoyan, Y., Chugay, Ⱥ. (2012). Mathematical modeling of the interaction of non-oriented

convex polyhedra. Cyber. and Sys. Anal.,48 (6), 837–845. DOI: 10.1007/s10559-012-9463-2.

17. Stoyan, Y. G., Gil, N. I., Pankratov, A. V., et al., (2004). Packing Non-convex Polyhedra into

a Parallelepiped. Technische Universitat Dresden.

18. Stoyan, Y., Gil, N., Scheithauer, G., Pankratov, A., Magdalina, I. (2005). Packing of convex

polyhedra into a parallelepiped. Optimisation,54 (2), 215 – 235. DOI:

10.1080/02331930500050681.

19. Stoyan, Y., Pankratov, A., Romanova, T. (2016). Quasi phi-functions and optimal packing of

ellipses. J. of Glob. Optim.,65 (2), 283–307. DOI: 10.1007/s10898-015-0331-2.

20. Stroeven, P. and He, H. (2013). Packing of non-spherical aggregate particles by DEM.

Advances in Cement and Concrete Technology in Africa, Uzoegbo, H.C. and Schmidt, W.

(Eds.) BAM Fed. Inst. Mat. Test., Berlin: 809-816.

21. Tasios, N., Gantapara, A. P., Dijkstra M. (2014). Glassy dynamics of convex polyhedra. The

Journal of Chemical Physics. 141: 224502. PMID 25494755 DOI: 10.1063/1.49029922.

22. Torquato, S., Jiao, Y. (2009). Dense polyhedral packings: Platonic and Archimedean solids.

Phys. Rev.,80, 041104. DOI:10.1103/PhysRevE.80.041104.

23. Wachter, A., Biegler, L. T. (2006). On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Math. Program.,106 (1), 25–57. DOI:

10.1007/s10107-004-0559-y.

24.Wɚscher, G., Hauner, H., Schumann, H. (2007). An improved typology of cutting and packing

problems. Eur. J. Oper. Res.,183(3), 1109–1130. DOI: 10.1016/j.ejor.2005.12.047.

APPENDIX A : DATA FOR EXAMPLES IN SECTION 6

1. DATA FOR CONVEX POLYHEDRA

Data for Example 1

We consider 7 types of covex polyhedra K1, K2, K3, K4, K5 , K6, K7 (Fig. A1).

Fig. A1 –Types ofconvex polyhedra࢏ࡷ, i=1,…,7 in Example 1.
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Vertex coordinates of polyhedron K1:

{(x j,yj,zj), j=1,2,…,9}={(3,6,0), (3,6,8), (3,0,8), (3,0,0), (0,6,0), (0,6,8), (0,0,8), (0,0,0), (5,3,4)}

Vertex coordinates of polyhedron K2:

{(x j,yj,zj), j=1,2,…,4}={(8,0,-4), (-3,4,-4), (6,2,10), (0,0,-4)}

Vertex coordinates of polyhedron K3:

{(x j,yj,zj), j=1,2,…,7}={(3,0,-4), (3,4,-4), (3,0,8), (0 4,-4), (0,4,8), (0,0,8), (0,0,-4)}

Vertex coordinates of polyhedron K4:

{(x j,yj,zj), j=1,2,…,10}={(2,0,0), (1,2,-4), (2,4,0), (-1,4,0), (-1,0,0), (2,0,7), (2,4,7), (1,2,12), (-1,4,8), (-

1,0,8)}

Vertex coordinates of polyhedron K5:

{(x j,yj,zj), j=1,2,…,11}={(2,-4,0), (2,4,0), (1,2,6), (1,-2,6), (0,4,0), (-2,0,0), (-1,2,6), (0,-4,0), (2,0,-4),

(0,0,-4), (2,4,-4)}

Vertex coordinates of polyhedron K6:

{(x j,yj,zj), j=1,2,…,6}={(4,7,0), (4,7,7), (6,0,7), (6,0,0), (0,0,0), (0,0,7)}

Vertex coordinates of polyhedron K7:

{(x j,yj,zj), j=1,2,…,10}={(4,-4,2), (4,-4,-1), (2,0,-4), (1,5,-4), (1,5,5), (3,0,5), (0,0,5), (0,0,-4), (-2,-5,-1),

(-2,-5,2)}

Data for Example 5

We consider 5 types of covex polyhedra K1, K2, K3, K4, K5 (Fig. A2).

Fig. A2 –Types ofconvex polyhedra࢏ࡷ, i=1,2,…,5 in Example 5.

Vertex coordinates of polyhedron K1:

{(x j,yj,zj), j=1,2,…,14}={(4,2,0), (2,7,0), (0,3,3), (-11,8,-18), (1,5,-8), (3,0,-8), (-1,1,-5), (-14,10,-10), (-

4,3,3), (-2,7,0), (-10,6,-10), (0,-1,3), (-10,10,-10), (4,-2,0)}

Vertex coordinates of polyhedron K2:

{(x j,yj,zj), j=1,2,…,16}={(3,-4,8), (3,-4,0), (3,6,0), (3,6,8), (-1,6,0), (-1,6,8), (-1,-4,8), (-5,-1,-1), (-5,-1,

7), (-5,5,7),(-5,5,-1), (-1,-4,0), (2,-2,-8), (-2,-2,-8), (-2,4,-8), (2,4,-8)}

Vertex coordinates of polyhedron K3:

{(x j,yj,zj), j=1,2,…,10}={(8,0,10), (8,0,3), (6,5,0), (4,10,0), (4,10,13), (6,5,13), (2,5,13), (2,5,0), (0,0,3),

(0,0,10)}

Vertex coordinates of polyhedron K4:

{(x j,yj,zj), j=1,2,…,15}={(7,0,8), (7,8,8), (7,4,12), (7,0,12), (0,8,8), (0,8,12), (4,8,12), (0,4,8), (0,4,12),

(4,0,12), (6,2,0), (3,2,0), (3,6,0), (6,6,0), (4,0,8)}
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Vertex coordinates of polyhedron K5:

{(x j,yj,zj), j=1,2,…,11}={(2,-4,0), (2,4,0), (1,2,4), (1,-2,4), (-1,-2,-8), (1,2,-8), (1,-2,-8), (0,-4,0),

(-4,0,0), (-3,2,4), (-2,4,0)}

2. DATA FOR CONCAVE POLYHEDRA

Data for Examples 2- 4 and Examples 6 - 9

We consider 10 types of concave polyhedra (Fig.A3)

Fig. A3 –Types ofconcave polyhedraԷࢗ, q=1,2,…,10.

Each type of concave polyhedron is presented as a union of convex polyhedra given by the

related collection of vertices in the local coordinate system of the appropriate concave polyhedron.

Figure A4 shows decomposition of concave polyhedronԷૡ with convex polyhedrons Ki, i=1,2,3,4.

Fig. A4 –Concave polyhedronԷૡ andconvex polyhedrons Ki, i=1,2,3,4 that form the polyhedron.

We give here input data of vertices of convex polyhedrons that form concave polyhedra by two

lists: list1 of vertex coordinates and list 2 of numbers of vertices (with respect to the list1) that define a

collection of vertices of convex polyhedra that form appropriate concave polyhedron.

Remark. List 1 involves vertices of a concave polyhedron and, in general, additional vertices

that appear as outcomes in construction of decomposition of the concave polyhedron with convex

polyhedra.

List 1 of vertex coordinates (xj,yj,zj), j=1,2,…,mq for description of concave polyhedra:

8฀
2K

3K

1K
4K

8฀



37Էଵ: {(x j,yj,zj), j =1,2,…,28}={(0,0,0), (8,0,0), (8,0,20), (0,0,20), (0,1,0), (0,1,20), (8,1,20),

(8,1,0), (8,18,0), (8,18,20), (7,18,0), (7,18, 20), (7,0,20), (8,17,0), (0,17,0), (0,17,20), (8,17,20),

(1,18,20), (0,18,20), (1,0,20), (1,0,0), (1,18,0), (0,18,0), (0,18,1), (0,0,1), (8,0,1), (8,18,1), (7,0,0)};Էଶ:{(x j,yj,zj), j=1,2,…,12}={(0,0,0), (4,0,0), (4,8,0), (0,8,0), (4,0,8), (4,8,8), (0,8,8), (0,0,8),

(2,-8,4), (2,4,-10), (2,18,4), (2,4,19);Էଷ:{(x j,yj,zj), j=1,2,…,21}={(0,0,0), (4,0,0), (4,15,0), (0,15,0), (4,0,5), (4,15,5), (0,15,5),

(0,0,5), (3,4,0), (1,4,0), (1,10,0), (3,10,0), (2,7,-6), (4,4,5), (0,4,5), (2,2,16), (4,6,5), (0,6,5), (0,12,5),

(4,12,5), (2,9,12)};Էସ:{(x j,yj,zj), j=1,2,…,10}={(2,-3,0), (-2,-3,0), (-2,3,0), (2,3,0), (0,0,9), (0,0,4), (2,-5,14),

(2,5,14), (-2,5,14), (-2,-5,14)};Էହ:{(x j,yj,zj), j=1,2,…,12}={(0,0,0), (3,0,0), (3,-4,0), (3,-4,5), (0,0,5), (3,0,5), (3,0,3), (0,4,3),

(0,4,9), (3,0,9), (0,0,9), (0,0,3)};Է଺: {(x j,yj,zj), j=1,2,…,24}={(0,0,0), (4,0,0), (4,0,16), (0,0,16), (0,1,0), (4,1,0), (4,1,16),

(0,1,16), (0,18,16), (4,18,16), (4,18,0), (0, 18,0), (0,17,16), (4,17,16), (4,17,0), (0,17,0), (4,0,2),

(4,18,2), (0,18,2), (0,0,2), (4,0,14), (4,18,14), (0,18,14), (0,0,14)};Է଻: {(x j,yj,zj), j=1,2,…,22}={(3,0,0), (3,4,0), (0,4,0), (3,0,10), (3,4,10), (0,4,10), (5,0,8),

(5,4,8), (5,4,4), (5,0,4), (3,0,8), (3,4,8), (3,4,4), (3,0,4), (2,4,6), (2,4,10), (1,9,8), (0,4,6), (2,4,4), (0,4,4),

(2,4,0), (1,8,2)};Է଼: {(x j,yj,zj), j =1,2,…,7}={(0,0,0), (12,0,8), (-8,8,8), (-8,-8,8), (0,-4,12), (0,4,12), (-4,0,12)};Էଽ: {(x j,yj,zj), j =1,2,…,7}={(0,0,0), (12,0,-8), (-8,8,-8), (-8,-8,-8), (0,-4,-12), (0,4,-12), (-4,0,-

12)}; Էଵ଴: {(x j,yj,zj q), j =1,2,…,5}={(0,0,0), (0,-4,4), (0,4,4), (16,0,16), (-16,0,16)}.

List 2 of vertex numbers of the corresponding convex polyhedron Ki for each concave polytopeԷ௤, q=1,2,…,10:Էଵ= K1 U K2 U K3 U K4 U K5

K1:{3,10,9,2,13,12,11,28}, K2:{2,9,10,19,23,14,15,16,17}, K3:{18,20,21,22,1,23,19,4},

K4:{1,2,3,4,5,6,7,8}, K5:{1,2,9,23, 24,25,26,27};Էଶ= K1 U K2 U K3 U K4 U K5



38Էଶ: K1:{1,2,5,8,9}, K2:{5,6,7,8,12}, K3:{3,4,6,7,11}, K4:{4,3,2,1,10}, K5:{1,2,3,4,5,6,7,8};Էଷ= K1 U K2 U K3 U K4Էଷ: K1:{1,2,3,4,5,6,7,8}, K2:{5,8,15,14,16}, K3:{17,18,19,20,21}, K4:{9,10,11,12,13};Էସ= K1 U K2Էସ: K1:{1,2,3,4,5}, K2:{6,7,8,9,10};Էହ= K1 U K2Էହ: K1:{1,2,3,4,5,6}, K2:{7,8,9,10, 11,12};Է଺= K1 U K2 U K3 U K4Է଺: K1:{1,2,3,4,5,6,7,8}, K2:{9,10,11,12,13,14,15,16}, K3:{17,18,19,20,1,2,11,12},

K4:{21,22,23,24,3,4,9,10};Է଻= K1 U K2 U K3 U K4Է଻: K1:{1,2,3,4,5,6}, K2:{7,8,9,10,11,12,13,14}, K3:{15,16,17,18,6}, K4 :{19,20,21,22,3};Է଼= K1 U K2 U K3 U K4Է଼: K1:{1,5,6,7}, K2:{1,4,5,7}, K3:{1,2,5,6}, K4:{1,3, 6,7};Էଽ= K1 U K2 U K3 U K4Էଽ: K1:{1,5,6,7}, K2:{1,4,5,7}, K3:{1,2,5,6}, K4:{1,3,6,7};Էଵ଴= K1 U K2Էଵ଴: K1:{1,2,3,4}, K2:{1,2,3,5}.

APPENDIX B. FORMING INDEX SET 1
kX IN COMPOLY ALGORITHM
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Let three polyhedra are placed inside the containerkW at k-th iteration ofCOMPOLY algorithm (Fig. B1)

Fig. B1  – Illustration to construction of the index set1
kX  atk-th iteration ofCOMPOLY algorithm.

For the example the index setX  defined by (7) has the form:

{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2,5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}.X =

Firstly we define the index set1
kSX  (Fig B1a):

( 1) ( 1)
1 1 2{( , ) : ( , ) 0} {(1,3), (1, 4), (2,3), (2, 4)}.

a ai jS S k kkS i j v v- -X = ÎX F < =
)

It means that only spheres1Sr and 2Sr  for concave polyhedraԷଵ  andԷଶ have nonempty intersection,

i.e. 1 2 ( 1) ( 1)
1 2( , ) 0k kS S v v- -F <

)
, and therefore it is sufficient to consider only possible intersection of

convex polyhedra: 1K  and 3K , 1K  and 4K , 2K and 3K , 2K  and 4K .

Then we form the index set1
kX  (Fig B1b): ( 1) ( 1)

1 1{( , ) : ( , ) 0} {(1, 4)}.
k k
i j

i j

k kk kS
a ai j v v

W W - -X = ÎX j < =

It means that only individual containers1
kW  and 4

kW for convex polyhedra 1K  and 4K  have nonempty

intersection, i.e. 1 4 ( 1) ( 1)
1 2( , ) 0

k k k kv v- -W Wj <  and therefore we need to include in our subproblem only

quasi phi-function for polyhedra 1K  and 4K .

APPENDIX C. SEARCHING FOR FEASIBLE AUXALIRY VARIABLES IN THE

FAPA ALGORITHM

On the seventh step of the COMPOLY algorithm we find values of the vector of auxiliary variablesPu

,  employing  the  FAPA  algorithm.  Figure  C1  illustrates  two  cases  to  derive  a  vector  of  feasible

parameters Pu of a separating plane: a) for two spheresiS  and jS  if int inti jS S =ÆI ; for two

convex polyhedra iK  and jK  if int int .i jS S ¹ÆI
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(a)                                                  (b)

Fig. C1  – Illustration to 7th stepat the k-thiteration ofCOMPOLY algorithm:

a) i jS S =ÆI ; b) int int .i jS S ¹ÆI

For case a) we use trivial geometrical calculations to find
P

u ;  for case b) we solve NLP subproblem

(15) to find a nonnegative value ofa  that corresponds to the problem of searching for a nonnegative

value of a quasi phi-function of two convex polyhedraiK  and jK


