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Abstract. We study the problem of packing a given collection of arbitrary, in general concave,
polyhedra into a cuboid of minimal volume. Continuous rotations and translations of polyhedra are
allowed. In addition, minimal allowable distances between polyhedra are taken into accountveé/e deri
an exact mathematical model using adjusted radical free quasi phi-functions for concave polyhedra to
describe non-overlapping and distance constraints. The model is a nonlinear programming formulation.
We develop an efficient solution algorithm, which employs a fast starting point algorithm and a new
compaction procedure. The procedure reduces our problem to a sequence of nonlinear programming
subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The
benefit of this approach is borne out by the computational results, which include a comparison with
previously published instances and new instances.

Keywords: packing; concave polyhedra; continuous rotations; mathematical modeling;

nonlinear optimisation

1. Introduction

Cutting and packing problems have a long history of being tackled by the Operational Research
community. Where the objects have arbitrary shape, theames has a strong link with the field of
computational geometry (see, e.g., [24], [1], [9]). These problems have a wide spectrum of applications,
for example in modern biology, mineralogy, medicine, materials science, nanotechnology, robotics,
pattern recognition systems, control systems, spaceapp&ontrol systems, as well as in the chemical
industry, power engineering, mechanical engineering, shipbuilding, aircraft construction and civil
engineering.

At present, the interest in finding effective solutions for packing problems is growing rapidly.
This is due to a large number of applications and the development of new and sophisticated methods
that can exploit the ever increasing speed of computer processing.

In this paper, we consider the practical problem of packing a collection of non-identical, and in
general, concave polyhedra into a cuboid of minimal sizes (in particular volume). We will refer to the

problem as the polyhedron packing problem.
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An interesting example of applications of the polyhedron packing arises in engineering design.
Optimal packing of electronic components and payload has always been a pivotal concern in vehicle
engineering, in particular in applications where volume is at a premium, for example embedding
avionics in aircraft. The aim is to design an external envelope and determine the configuration of the
payload subject to a fixed volume constraint. Alternatively, the approach may begto aeginvelope
around a fixed packing of the payload and the avionics in order to minimize volume wikfigrgata
set of mechanical, technical and maneuverability constraints.

Another application arises in the recent advent of additive manufacturing (AM), often referred
to as 3D printing. There are a variety of different AM technologies that build up objects by adding one
very thin layer of material at a time, for example through material extrusion or sintering layers of
powder material. This procedure is very slow and not appropriate for repetitive manufacturing but
useful for individual items and prototyping. Combining objects into one compact print pattern can
reduce the print time, improving capacity utilization, and reduce the need for extra supporting material

that is often required as part of the printing process when objects are arranged in certain configurations.

The polyhedron problems are NP-hard [2] and, as a result, solution methodologies generally
employ heuristics, for example see [3], [8], [11], [12], [15], [20], [21]. Some researchers develop
approaches based on mathematical modeling and general optimisation procedures; for example see [5],
[6]. [22].

Egeblad et al [5] present an efficient solution method for packing polyhedra within the bounds
of a container (a polyhedron). The central geometric operation of the method is an exact horizontal or
vertical translation of a given polyhedron to a position, which minimizes its volume of overlap with all
other polyhedra. The translation algorithm is embedded into a local search heuristic. Additional details
are given for the three-dimensional case and appropriate results are reported for the problem of packing
polyhedra into a rectangular parallelepiped. Utilization of container space is improved by an average of
more than 14 percentage points compared to previous methods proposed in [18]. In the experiments the
largest total volume of overlap allowed in a solution corresponds t&o01he total volume of all
polyhedra for the given problem.

Liu et al [13] propose a new constructive algorithm, call&&PB3D, which is a heuristic
algorithm based on the principle of minimum total “potential energy” for the 3D irregular packing
problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with
fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the
container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped
polyhedrons, which can be rotated around each coordinate axis at different angles. The taodinguts
merit is that HAPE3D does not need to calculate no-fit polyhedrons. HAPE3D can also be hybridized
with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments
demonstrate the good performance of HAPE3D and prove that it can be hybridized with a meta-heuristic
algorithm that further improves the packing quality.

Our approach is based on the mathematical modeling of relations between geometric objects
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and allowing the packing problem to be formulated as a nonlinear programming problem. To this end
we use the phi-function technique (see, [4]) to provide atythn description of objects placed in a
container taking into account th@ontinuous rotationandtranslations At present phi-functions for

the simplest 3D-objects, such as parallelepipeds, convex polyhedra and spheres are considered in [16].
Phi-functions for 3D-objects, in particular polyhedra, can be highly complicated analysoadlythey

involve many radicals and maximum operators, and are therefore difficult for NLP-solvers to solve.

In this paper we apply thiuasi phi-functionsoncept introduced in [19], which is based on the
idea proposed by [10] to use a separating plane to model non-overlapping constraints for circles and
convex polygons. The conceptafasi phi-functiongxtends the domain phi-functionsby including
auxiliary variables. The new functions can be described by analytical formulas that are substantially
simpler than those used for phi-functions, for some types of objects, in particular, for convex polyhedra

The use of quasi phi-functions, instead of phi-functions, allows us to describe (or simplify) the
non-overlapping constraints. While this makes our models easier to solve, this comes at a price, which
is performing the optimisation over a larger set of parameters, including the extra (auxiliary) variables
used by the quasi phi-functions. Our approach is capable of finding a good local optimal solution in
reasonable computational time.

The phi- and quasi phi-functions have been widely and successfully used to model a variety of
packing problems, as in ([4], [14], [17]-[19]). In the current manuscript, we consider packing problem
of concavepolyhedra. The contributions of the work presented in this manuscript are as follows.

o We construct radical freguasi phi-functionsto describe analytically the non-
overlapping constraints f@oncavepolyhedra anadjustedjuasi phi-functionso describe analytically
the minimal allowable distances betw@amcavepolyhedra.

e We derive arexact mathematical modef the optimal packing problem obncave
polyhedra as aontinuous nonlinear programming probledur feasible region is described by a
system of inequalities with infinitely differentiable functions.

o We develop an efficient solution algorithm, which employs a clear and simple starting
point algorithm and a new and original optimisation procedure (called COMPOLY) for the compaction
of concave polyhedra. The COMPOLY procedure reduces ouslgmoto a sequence of NLP
subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The
procedure allows us to search for local optimal solutions of the packing problem.

e Our approach allows us to apply state of the art NLP solvers to the optimal packing
problem ofconcavepolyhedra.

The paper is organized as follows: in Section 2 we formulate the polyhedron packing problem.
In Section 3 we give definitions of a phi-function and a quasi phi-function, an adjusted phi-function and
an adjusted quasi phi-function and derive related functions for an analytical description-of
overlapping, containment and distance constraints in the problem. In Section 4 we provide an exact
mathematical model in the form of a nonlinear programming problem by means of the phi-function

technique. In Section 5 we describe a solution algorithm, which involves a fast starting point and
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efficient local optimisation procedures. In Section 6 we present our computational results for some new
instances and several instances studied before. Finakyio® 7 concludes this paper with a brief

summary and a discussion about our future research directions.

2. Problem formulation

We consider here the packing problem in the following settimfj (2 denote a cuboid,
Q={(x,y,2) e R3:0< x<1,0< y<w,0< z< 1. It should be noted that each of the three dimensions
(I or w or h) can be variable. L€l,2,...,N}=Jy and a set of polyhed@,, qe Jy be given.

Each polyhedro®, can be concave or convex. With each polyhe@pme associate its local

coordinate system with origin denoted ty.
Assume that each concave polyhedt@pis presented as a union of convex polyheldr%,
j=1,...,ny. With each convex polyhedrdﬁ}q we associate the local coordinate system of the polyhedron

Q- Each convex polyhedrol‘i}q is defined by its vertice|sx§j , =1, m? in the local coordinate
system of Q,.

We give here input data that form a concave polyhe@pby two lists:

e List_1 contains the vertex coordinates of all the convex polyhléc%ajzl, ...,ny, and
e List 2 contains the index seﬂﬁq, j=1,...,n, of the numbers of vertices (with respect

to List_1) that define appropriate convex polyheﬁr%, =1,

We note that List_1 involves all the original vertices of the concave polyhedron and, in general,
additional vertices that appear as a result of decomposing the concave polyhedron into convex
polyhedra. See Appendix A for details.

n

q
For the purposes of this paper, we assumeQhat U K? is known.
j=1

Without loss of generality, we assume that the origjrof a polyhedror@, coincides with the

center point of its circumscribed sphesg of radiusry . In order to circumscribe a sphere around a

polyhedron we employ the algorithm described in [7], which computes the smallest enclosing sphere of
a collection of points. We use the library function found at (https://github.com/hbf/miniball), which is

sufficiently fast.

The location and orientation of each polyhed@rms defined by a vectou=(v,0) of its variable
placement parameters. Heve: (X, y,z) is a translation vectod, = (91, 02,0 3) iS a vector of rotation

parameters, wherel, 92, 0° are Euler angles.
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A polyhedron rotated through angle@l, 02, 0% and translated by vectar is denoted as
Q) ={peR®p=v+ M) p°p° € Q’, whereu =(v, 6), Q° denotes the non-translated and
non-rotated polyhedro®, M (6) =M (91, 92,93) is a rotation matrix of the form:
cosd! co®3- sim! cos? s> - cost - dt S 605  &ih 6sih

M(0)=| sin0! co®®+ co®! cos? sid® — si' sin®+ cos @S 605 - @&ds 0Os
sin6? sinp* sing? co®® co8?
It is possible to define minimal allowable distances between each pair of polyhedrdQ,, g <

g € Jn, as well as, between a polyhed@p, q < I , and the boundary of contain€r. It means that

each polyhedro®, has to be located no clost&rpolyhedron Q, than the given allowable distance
andeach polyhedro®, has to be located inside the container and no closer to the boundary of the

container than the given allowable distance.

We note that the minimal allowable distance between each pair of convex poljfh‘%dr@q

, J=1,...,ny, and K|g cQg, I=1,....,n5, g < g € ]y, is equal to the given allowable distance between
the original polyhedr®, andQ,. Moreover, the minimal allowable distance between each polyhedron

K ?, qe |y ,» and the boundary of the contairferis equal to the given allowable distance between the

original polyhedrorQ, , q e Iy , and the boundary of container.

The polyhedron packing problem can be formulated in the form:

Pack the set of polyhed@,, qe Jy, within a cuboid containe€2 of minimal volume

F =1-w-h, taking into account the given minimal allowable distances.

We note that it is possible that just one of the metrical characteristiesoain be variable.

In this definition, the term “pack” assumes polyhedra do not overlap and are fully enclosed in the

containing cuboid.

3 Mathematical modeling of placement constraints
In this section we describe our methodology for modeling the non-overlapping, containment and

minimal distance constraints. Here we introduce phi-functions and quasi phi-functions.

3.1 Placement constraints

Let us consider placement constraints that are met in the polyhedron packing problem:

* non-overlapping constraintstwo polyhedraQ andQ ¢ do not have common interior points

but may touch, i.e.
intQqMNintQgy = for eachq, ge Jy withq = g;
e containment constraintseach polyhedro@, has to be fully enclosed in the container, i.e.



Qgc Q& int QqﬂQ* =(J for eachqe Jy , Q" =R\intQ.
Distance constraints

Let pyg > O denote the minimal allowable distance between two polyh&jrand Q, and

pq > 0 denote the minimal allowable distance between a polyhe@pand the objecQ*.

e distance constraints for "non-overlapping" each polyhedroQ, has to be located no closer
to polyhedron Q4 than the given allowable distangg, , i.e.
dist( Q;, Q) = p,y for eachq, ge Jy withq = g, where
dist Q;,Q,) = min d(a,b);

a€ Qq.be Qq
e distance constraints for "containment"each polyhedro®, has to be located inside the

container no closer to the boundary of the container than the given allowable distaree

dis{ Q;, Q") = p, foreachqe Jy , Q' =R\intQ, where
dist{ Q,, Q") = . &I]’Ibne Q*d(a,b),

d(a, b represents the Euclidean distance between two pajrits R.

In order to feasibly place two objects within a containernesd an analytical description of
the relationships between a pair of objece Bconsidered in thplacement constraint$Ve employ
the phi-function technique for this [4], [19].

3.2 Phi-functions
Phifunctions allow us to distinguish the following three casesndBare intersecting so that
A and B have common interior points; @nd B do not intersect, i. e. And B do not have common

points; Aand B are in contact, i. e. &nd B have only common frontier points.
Let AcR® and B R® be two objects. Sizes of objects can change according to homothetic

coefficients gcaling parameters of objects), Ag > 0. The position of objech is defined by a vector

of placement parametergv,,0,), where: v, =(xa,Ya,Za) IS @ translation vector and
Op= (0% ,e,i , 93) is a vector of rotation angles. We denote the vector of variables for the gbjsct
ua=(va,04,1a) and the vector of variables for the obj&tby ug =(vg,05,Ag). The object A,
rotated by angle@1 ,9%,9 ,3, translated by vectov 5, and rescaled by homothetic coefficient,
will be denoted byA(u 5) .
Definition 1. A continuous and everywhere defined funct(bﬁB(uA, Ug) is called a phi-function for
objectsA(u 5) andB(ug) if
®”B >0, if A(up)NBug)=9;
@B =0, if int Au)Nint Bug) =@ and frAu )N frBug) =3 ;

@B <0, if int Au)NintBug) =T ;



provided thath 5,15 are fixed.

Here frA means the boundary (frontier) antA means the interior of object A

Figure 1 illustrates three situations that a phi-function distinguishes.

i B i B & B
(a) (b) (©)
Fig. 1 —lllustrations of definition 1: ayp”® >0; b) @8 =0: ¢) ®”B <0.

Thus, inequality(I)AB >0 represents thaeon-overlapping relationshipnt A(u 5)Nint B(ug) =<,

ie. "B >0 int A, )NintB(ug)=2.

We employ phi-functions for the description of tentaiment relatio’Ac B as follows: @8 > 0,

whereB = R3\intB.

We emphasize that according to Definition 1, the phi-functioff for a pair of objects And Bcan
be constructed by many different formulas [4], and we can choose the most convenient ones for our

optimisation algorithms.

We can take into accountinimum allowabledistance constraintsy replacing the phi-functions in
thenon-overlappingandcontainment constraintsith adjusted phi-functions.
Let p>0 be a given minimal allowable distance between objé¢ts,) and B(ug).

Definition 2. A continuous and everywhere defined functiﬁﬁB(uA, ug) is called an adjusted phi-
function for objectsA(u ») andB(ug), if
®”B >0, if dist(A,B)>p; @B =0, if dist(A,B)=p;
®”B <0, if dist(A,B)<p.
We can describe the distance constraint for obja¢ts,) and B(ug) in the form:®”8 >0 <

dist(A,B)>p . Figure 2 illustrates three situations that an adjusted phi-function distinguishes.
p

p

*DB *B *B

(a) (b) (©)



Fig. 2 —lllustrations of Definition 2: aYp "8 >0; b) @8 =0; ¢) ®”& <0.

The literature only contains the construction of phi-functions for concave polyhedra without
rotation [17]. Constructing phi-functions for concave polyhedra with rotation is too coragdlicat
therefore in this research we apply the concept of quasi phi-functions.

3.3 Quasi phi-functions
We introduce a functiod’ "8 (Up, Ug, U') that must be defined for all values afand w. In addition
to the placement parameters of objects used with phi-functions, quasi phi-functions depend on auxiliary
variablesu'. These extra variablestake values in some domaihc R". The number and the nature
of variablesu' dependon the shapes of objec#u 5) and B(ug), as well as on the restrictions of a

packing problem. We defing for a quasi phi-function of a pair of polyhedra later.
Definition 3. A continuous and everywhere defined functibt® (Up,Ug, U') is called aquasi phi-

functionfor two objectsA(u ,) and B(ug) if max®' B Ua ,Ug ,u")is a phi-function for the objects.
u'eU

The main property of a quasi phi-function is:
o |f @’AB(UA, Ug, U')> 0 for someu’, thenint A(u 5)Nint B(ug) =9,

@!AB

where (U, Ug, U') is a quasi phi-function for two object$u ) and B(ug) .

We note that the inverse proposition is not valid. It means that a quasi phi-function can take negative
values while objects do not overlap, in contrast to a phi-function.

Let p>0 be a given minimal allowable distance between objé¢ts,) and B(ug).
Definition 4. Function&D'AB(uA, Ug, U') is called an adjusted quasi phi-function for objes(s )

and B(ug), if function max® B A ,Ug ,u") is an adjusted phi-function for the objects.
u'eU

We can define the distance constraint for objexts ) and B(ug) in the form: ®'"B>0. The
inequality implies dist(A,B} p .

In order to describe the non-overlapping constraints in our polyhedron packing problem, we
use quasi phi-functions, while for the containment constraints we use phi-functions. To formalise the

distance constraints, we employ adjusted quasi phi-functions and adjusted phi-functions.

3.4 Construction of quasi phi-functions for non-overlapping and distance constraints

To construct a quasi phi-function and an adjusted quasi phi-function of two concave polyhedra
we will use a quasi phi-function and an adjusted quasi phi-function for each pair of convex polyhedra
that together form the original concave polyhedra.

First we consider a quasi phi-function for a pair of convex polyhedra.
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Let A(u,)andB(ug) be two convex polyhedra given by their vertip@s s=1,....,ma, and

B
Ps, s=1,.....mg.

A radical free quasi phi-functio@’AB(uA, Ug, U = Up) for convex polyhedraA(u ,) and B(ug) can

be defined by the following formula:

OB (Up, Ug, U = i) = min{®?P (up, 1), DB (s, )}, (1)

whereP(up)={(x ¥, 2:wp=0a-x+B-y+7y-z+up<0} is a half-space,

a 0 costl - simeh co92  sinl siad 0 sino} sino?
B |=M(0},02,0)-| 0| = sinel codls co8% - calp sifp | . (6| - cobp i
Y 1 0 sin63 co®? 1) | coso?

elp and 9% are appropriate (precession and nutation rotations) variable Euler angles (under intrinsic

rotation 9% =0),

Up =(91p,92p,u p is a vector of variable parameters that define a plane
Lag={(X ¥ 2:yp=0a-x+B-y+y-z+pp=0} in three-dimensional Euclidean space (we assume

a2+[32+y2=1),
QDAP(UA, Up)is a phi-function ofA(u 4) and half planeP(up),

@B (ug, Up) is a phi-function of B(ug) and half planeP” (up) (the complement t®(up)),

AP . A BP” . B
O™ (up,up)= min yp(pg), - (ug,up)= Min (—yp(pPs))-
I<s<mp I<s<mg

We note thati, eU = R3, n=_3.

It is known that if two fixed convex objectd and B do not have common points then there exists at
least one separating plane. Therefore there exists a \m{stof parameters of a plane,g such that
the distanced; =@ (u,, Us) from A to L g equals to the distance, = ® 8 (ug, us) from B

toL g - Thus functiond)’AB(uA, Ug, Up) reaches its maximum wheb 5, Ug, u*p)z (Up, s, d,d)

, whered” = d;=d,.

Figure 3 illustrates two cases whan”® > 0:

a) &' "8 (uy, up, UB)=min{ &, d = &}

b) maxd'*® Uy ,uy,up )= '8 (U, Uy, Up )= min{dy, d}= d= d= d.
up
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(a) (b)
Fig.3 Separating planes for two fixed convex objeAtandB : a) oM =d"; b) o' "B = dlo.

Therefore always existsp such thatmax ®'*8 > 0 for two non-overlapping convex polyhedra and
up

max @' "B > 0« int Au,)Nint B(ug) =9 .
up

(D!AB

We identify here the important characteristic guasi phi-function if (U, Ug, Up )= 0 for some

up, thenint A(u o) Nint B(ug) =< (see [19] for details).

Let theminimal allowable distance 5z between two arbitrary convex polyhedtgu ) and B(ug)
be given. To describe distanceconstraint, disth,B)>p 55, We use an adjusted radical free quasi

phi-function for convex polyhedra(u ,) and B(ug) derived by

(’ISIAB q)rAB

(Ua Ug, Up)= (Uas Us, )~ 0.9 pp- 2

Since max® " (U, Ug ,Up )=®"® (s, U5 ) and ®"B(up,ug)>0s dist(AB)>ppg, then
up

maxd' A8

up

Ua,Ug ,Up )> 0= dist(AB »p pg. Based on the characteristic of a quasi phi-function,
mentioned above, and formulas (1), (2), we can conclude ae (Up,Ug, U )= 0 implies
dist(A,B)=p g -

A quasi phi-function of two concave polyhedra is composed by quasi phi-functions for all pairs

of convex polyhedra that together form the original concave polyhedra. By analogy an adjusted quasi
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phi-function of two concave polyhedra is constructed.

Before we introduce a quasi phi-function and an adjusted quasi phi-function for a pair of

concave polyhedra we present a given collection of convex ponhedfa,jzl,...,m, qe Jy,asa

N
set of nzz Ny convex polyhedraK;, ief{L,2,...,n}=1, using the following ruIe:K}q —->Kj,
o=1

q-1
i = Z n +j, j=1,...,m, qe Jy, provided thatng = 0.

1=0
Now we introduce the “gluing” vecta = (ay, ,,, a,), a; € Jy , Wherea; = q, if K; takes part in the
composition of a polyhedroQ,, qe Jy . Let I, =1 U12U...UI'N be an ordered partition df, ,
where | 4 ={i el ,a; =d}, ‘I q‘ =Ng.qe Jy . For example, the “gluing” vector for polyhedgg =

K1UK2, QZZ K3, Q3: K4UK5UK6 haStheforrT'a:(al, az,a3, EM, %, %) :(1,1,2,3,3,3:

3
(Fig.4). In the example#8 andn= )" n, =2+1+ 3= 6.
g=1

Fig.4 — Generation of the “gluing” vector for polyhed@,, Q,, Qs.
LetQ, = U Ki andQg = U K; be concave polyhedra amg: g .
iel d jel 9

We introduce the following function:

Dy (Ug, Ugs Ugg) = MIN{®'(Ug, Ug, Uy), ie 19, je 19}, (3)
where &Dﬁj (uq » Ug s L{j ) is the adjusted quasi phi-function an'g is a vector of auxiliary variables for
a pair of convex polyhedri (u,) andK;(ug), iel %, j el 9, ugy=(ujj,ic19,jel 9).

We note thatu, eU = R, n =3Ngg, Wherengg =ng- ngy is the number of all pairs of appropriate
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convex polyhedra that forn@, and Q.

We show now that function (3) is an adjusted quasi phi-fun(ﬁi(ag for concave polyhedr@,(u,)

and Qg(ug). In fact, we need to prove thaﬂ]ax <i)'qg(uq, Ug, Ugg) is an adjusted phi-function for
qg

polyhedraQg (u,) andQ (u,).

Since each vectou{j of auxiliary variables is met in appropriate functidrjj (uq »Ug s L{j)

only, then

D' - indD’ .. 1) ie 19 i 19
T(gxmqg(uq,ug,qu)_ Hlixmlng) ,J(uq,ug,u”),lel Jje I® E

min{max®f; Uy ,Ug , 4j ).ie 19,j el 93= min{d;;(ug, ug), i 19, jel =D (uqguy,
Uij

where @ (Uy,Ug) is the adjusted phi-function for convex polyhedd (u,) and K;(uy),
&)qg(uq, ug) is an adjusted phi-function for concave polyhe@du,) anng(ug). It should be

noted that function (3) is radical free.
From (3), a quasi phi-function for a pair of concave polyhe@éi,) andQ,(u,), can be defined in

the form:
Dy (Ug Ug, Ugg) = MIn{®'j(Ug, Ug, Uy), ie 19, je 19},
where @j; (uy, Ug, 4j) is @ quasi phi-function andj; is a vector of auxiliary variables for convex
polyhedrak; (ug) andK;(ug), iel 9, jel 9, ugy=(uj,ic19 jel9).
Let us consider an example of a quasi phi-function for two polyh&girar,) = K4(u,) and

Q4 (uy)=Kyuy) UK 4u- (Fig. 5a).
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(b)

Fig.5—a) polyhedraQ; andQ , ; b) separating plands;, and L, ; for two pairs of appropriate convex

polyhedrakK; andK,; K; andK,
A quasi phi-function forQ, (u;) andQ,(u,) can be defined in the following form:
@ 5(Ug, Up, Ugp)= Min{®@]5(uy Uy Upg), @1 {uy Uj Ug3},
where u;, = (Up,, U9, @f(uq, Uy, Upy) is a quasi phi-function and;, is a vector of auxiliary

variables for a pair of convex polyhedta(u;) andK,(u,), ®%3(us, u,, U9 is a quasi phi-function

anduj s is a vector of auxiliary variables for a pair of convex polyhégfa,) andK;(u,).

Figure 5b illustrates two separating planes, and L;3 that provide ®},(uy, u,, U;5)>0 and

@’ 3(ug, Uy Uy > 0 that implies®’ 5 (uy, Uy ugp) > 0. Here Ly ={(x y, 2): y;; =0} is a separating
plane for K;(g) and Kj(g), where yj =oj -X+8j -y+y -Z+4 . o :sineilj sianz,

Bij= <os § sinff y; =cosef andujj = (05,67, ), i=1j=23,q=1g=2.

3.5 Construction of phi-functions for containment - distance constraints

An adjusted phi-function for a concave polyhed®@j(u,) and the objec” can be defined in the
form [4]

@ (ug) =min{®(ug), ie !9, (4)
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where@i (uq) is an adjusted phi-function for a convex polyhedkgfu,) andQ”, i el 9. Replacing
each adjusted phi-functior:i)i(uq) in (4) by a phi-function®; (uq) for i<l 9, we can get a phi-
function @ ,(uy) for a polyhedror@Q,(u,) and the objecn” .

To describe a containment constraift; (uy) c Q < int Ki(uq)ﬂQ* =, we use a phi-

function for a convex polyhedrol; (uy) and the object2” [4].

Let K;(gy) be convex polyhedron, given in its local coordinate system by their verp&es
k=1,....m;, where py = (pl4, Py, B). A radical free phi-function for a convex polyhedron

Ki(uq) and the objecQ* can be defined as
@D (uy)=min{ min (pi i(Uy), '——l,...,6 , 5
|( q) {<ks i k]( q) J } ( )

OkalUq) = Xq + Pxics Phe2(Ug) =~(Xq+ Pl + 1, lealUg) = Vg + Py
Olallg) = =Yg+ Py + W, 0ks(Ug) = Zg+ P 9kelUq) =—(Zq+ Pzd + h.
Let minimal allowable distance; > O between a convex polyhedrdfy (uy) and the object2” be
given. To describe distance constraint, dfrs,t(Q* )2 pq, we use an adjusted phi-function for a convex

polyhedronK;(uy) and the objecy” defined by

qA)i(uq)zq)i(uq)_pq- (6)
4. Mathematical model

The vector ue R° of all variables can be described as follows:=(c,t)e R°, where
¢=(,w,h,us,u,,...,uy ), (I,w,h) denote the variable dimensions (length, width and height) of the
cuboid @ andu, =(v,,04)=(X5,Y a,2,9,0" a,eiza,egi ) is the vector of placement parameters of
K;,iel,, anindexa; {1,2,...,N} is a component of the "gluing” vectar, defined in Section 3.
Here 1= (ulp,...,u';‘) denotes the vector of all auxiliary variables, Whelze= CRE s) is a
vector of auxiliary variables for thete pair of convex polyhedra defined in (13=1,...,m,
m=cardZz),

E={(i ))& #a;,i<j=1...n}. (7)

The number of the problem variables is derivedas3+ 6N + 3m.
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Now a mathematical model of the polyhedron packing prokmbe stated in the form

min F(u), 8)
ueWcR°®
W ={ue R%: @ Uy, Ug ;> U 4) 20, (i NeE, D ug)=0i=12,...n}, 9)

where F(u)=1-w-h, &J;j (uai,uaj,u'e}q) is an adjusted quasi phi-function defined by (2),

a,a € ly,under(i,j)e=, Uy a = uSP, s=1...,m,E is given by (7), for the pair of polyhedig,

and K, taking into account minimal allowable distaneg, >0, &)i (uai) is an adjusted phi-function

defined by (6) for a polyhedrol; and the objecn” , taking into account minimal allowable distance
pq>0.1f pgg=0 andpy =0 then we replace the adjusted quasi phi-functf.wqp(uai Ua, s u'a‘ 3 )
by the quasi phi-functiond; (uai,uaj ,uqa} ), defined by (1), to enforce the non-overlapping

constraint and the adjusted phi-functidn (U, ) by the phi-function®;(uy, ), defined in (5), to

enforce theeontainmentonstraint.

It should be noted that in order to avoid redundant inequalities in containment constraints one

can use a collection of adjusted phi-functicﬁg(uq) >0,9=1,...,N, for the convex hull of concave
polyhedraQ,,gq=1,...,N, instead of the collection of adjusted phi-functioivnﬁ(uai )>0, i=1,...n,

for convex polyhedr;, i =1,...,n.

Let us consider a mathematical model for a simple examplepatking problem for N2
polyhedra: Qq(u;)=Kiuy) and Q,(uy)=Kyuy)UKgu,) (Fig. 5a) in a cuboid
Q={(x,y,2 e R3:0< x< 1,0 y<w,0<z<h}. Here =3 is the number of convex polyhedra,

a=(ay, 8, &)=(1,2,2) is the gluing vector, E={(i j),a;#a,i<] %2,3 $(1,2),(1,3)},
Ug = (Va ,0 a)= (xﬁ, Ya zia,eli a,eiza,egi ) is the vector of placement parameterskef, i =1, 2, 3.

according to the gluing vectonn=2 is the number of pairs of convex polyhedra with respeé ,to

1

rz(up,

uzp) = (U2, Upg) is the vector of auxiliary variable;|=3m=6, u = (I, w,h,u;, uy, U;», Uy 3)

is the vector of the problem variables. The number of the problem varialales3s 6N + 3m= 21.

Now mathematical model (8)-(9) for the packing problem takes the form

min_ F(u),
uewcR%1

W ={ue R?Y: @) u; U, U9 >0,d'1§ Uy Uy U;3>0,0 (U)>0D fu)> 0D fuly O},

where

@’ 5(uq, uy, Uy, is a quasi phi-function fork(u;) and K, (uy),
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@' 3(uq, Uy, Uq5) is a quasi phi-function foK; (u,) and K5(us,),
®,(uq) is a phi-function fork,(u;) and the objecn”,
®,(u,) is a phi-function fork ,(u,) and the objecn”,

®5(uy,) is a phi-function fork 5(u,) and the objecn” .
We note, that in the model we can use two phi-functions: phi-funatiga,;) and a phi-function for

the convex hull of concave polyhed@, and the objeciQ” instead of phi-functionsi)i(uai)zo,

i=1,2,3, for convex polyhedr&;, i =1, 2,3 and the objecQ* .

Each quasi phi-function inequality in (9) is presented by a system of inequalities with infinitely
differentiable functions. Our model (8)-(9) is a non-convex and continuous nonlinear programming
problem and an exact formulation for the polyhedron packing problem. It contains all globally optimal
solutions. It is possible, at least in theory, to use a global solver for the nonlinear programming problem

and to obtain a solution, which is an optimal packing.

However in practice, the model contains a large number of variables and a huge number of
inequalities. Specifically, the model (8)-(9) involves & (monlinear inequalities and Gfrvariables
due to the auxiliary variables in quasi phi-functions, wheisethe number of convex polyhedra. As a
result, finding a locally optimadolution becomes an unrealistic task for the available sfathe art
NLP-solvers employedirectly to model (8)-(9): for N >15 starting from a random point and for N >30

starting from a feasible point.

In order to search for a “good” locally optimal polyhedron packing within a reasonable
computational time we propose here an efficient solution algorithm, which employs a fast starting point
algorithm (FAPA) and a new compaction procedure. In most cases the procedure reduces our problem
to a sequence of nonlinear programming subproblems of considerably smaller dimensjpan®é
smaller number of nonlinear inequalities (P(We use NLP-solver (IPOPT) to solve each of the NLP

subproblems starting from the feasible points found by the special procedures described in Section 5.

5. Solution algorithm
Our multi-start solution strategy involves the following steps:

1) Generate a sét% o Of vectorsc_,O =(l OwOho ulo,uzo,...,u,\?) of feasible placement parameters

(uf, ug, ...,u,?l ) of polyhedra placed into the contair@f of sizes(l O wOh 0) in the problem (8)-

(9). Various algorithms exist for obtaining a feasible solution (for example [17]). We employ here
the clear and fast algorithm, which is described in Subsection 5.1.

2) Search for a local minimum of the objective function)H(uproblem (8)-(9), starting from each

point from the se{go} " obtained at Step 1. To get a local minimum of problem (8)-(9) we develop

a compaction algorithm for rotated polyhedra described in Subsection 5.2.
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3) Choose the best local minimum from those found at Step 2 as the final solution of the problem (8)-
(9).
The actual search for a local minimum in all optimization procedures (to realize steps 1-2) is performed
by IPOPT [23], which is available at an open access noncommercial software depository

(https://projects.coin-or.org/lpopt) .

5.1 Feasible Placement Parameters Algorithm (FPPA)
In order to find a vector of starting feasible placement parameters of polyhedra we apply an algorithm,
which is based on the homothetic (scaling) transformation of objects. The algorithm consists of the

following steps.

Firstly we choose a sufficiently large starting Ieng?h width w® and heighthO for a containerQ®

to allow for a placement of all spheresg, q=12,...,N, within the containerQ®, where
Sg =5 ® S is the Minkovski sum of a sphei®; of radiusr, (Fig. 6) and a spherg® of radius

p=0.5max{ m%x Pqg ,milopq , provided thatSq and S? have the same center point. For
0, 9¢ In G

n
example, we can s¢f =w%=h%=2%"r, + (n+1)p.
g=1

Secondly we generate within the containet a set ofN randomly chosen center poir(nsg, yg, zg)

of Sg, g=12,...,N.

-

Fig. 6— Concave polyhedr@, and appropriate spheré, .

Thirdly we grow the spheresg of radiusi(ry +p), 9=1,2,...,N , starting fromx = 0 to the full size
(r=1) and the decision variables are: the centressgaf and a homothetic coefficient (a scaling

parameter)., whereO< A <1 (Fig 7.). In order to realise this step we fix| O w=w’, h=h°, and,
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starting from the pointvoz(xlo, yf,zf,...,x,\?,y,\?,z,\?}uoz 0, solve the following NLP-
subproblem:
max»a , (10)
VEW;L

W, ={veR 3N 3% () 20,0 ¥ ()>0,q<g=1,2,...N ,LA> 0> 0, (11)
wherev = (Xq, Y1, Z1, .-, XN YN sZN M )
- SqS
DI (V) = (X — Xg) 2+ (Vg — Yg) ° + (2q— 2g) 2= A2 (1q+2p+ 1), (12)

is an adjusted phi-function for a sphedg of radiusiry and a spher&, of radiusirg;

&S ()= Min{eq(V, k=L,...,6}, (13)
is an adjusted phi-function for a spheg of radiusiry and the object2” , where
01q(V) = —xq +1°=A(rq+p o). 92q(V) = Xq ~A(rg+2p),
03q(V) =Yg+ W' -A(rg+pg) . 9aq(V) = Yq—1(rg+2p),

P5q(V) =2 + hO = A(rg+p o) s Paq(V) = Zq —A(rq +2p).

We denote a point of the global maximum of problem (10)-(11) by

*

* * * * * * * \
V =(X, Y1, 200X YN Iy A =1

Finally we form a vector of feasible parametefs=(1°,w®h%u?, ...,uqo, ...,uQ ), assuming that

0 0,0 _,0,0 0,0 .0 x x o x 0 ; ;
Ug =(Xq: Yqr Zq:9 ¢) (Xq: Yq: Zq) = (Xg» Yy Z¢) and 04 Is a vector of randomly generated rotation

parameters of polyhedr®,,q=1,...,N.
We note that the global solution of problem (10)-(11) always can be found (since the chosen starting
sizes!®, w® and h® at the first step are sulfficiently large). The solution automatically respects all the

non-overlapping, containment and distance constraints for the concave polyhedra.

A~

A=0.97 r=1
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Fig. 7 —Illustration of the optimisation procedure FPPA to search for feasible placement parameters

of polyhedra, using homothetic transformations

Our FPPA algorithm returns the vect@? to generate a starting poinP = (c_,o,ro) for a subsequent

search for a local minimum of the problem (8)-(9). To search for vectorwe apply special

optimisation procedure, called Feasible Auxiliary Parameters Algorithm (FAPA), described below.

5.2 Compaction Algorithm (COMPOLY)

Since our problem (8)-(9) can not be solved for N >30 by tdiree of state of the art NLP-
solvers (starting from a feasible point), we propose an iterative compatgmrithm to search for local
minima of the problem.

Our algorithm reduces the problem (8)-(9) that has a large number of inequalities and dimension
O(rP) of the feasible set Wescribed by (9), to a sequence of nonlinear programming subproblems that
have a smaller number of nonlinear inequalities Joéamd dimension Ofn The key idea of the
algorithm is as follows: For each vector of feasible placenparameters of our polyhedral, we
construct fixed individual cubic containers of spheres that circumscribe the appropriate convex
polyhedra. Then we move each sphere within the appropriate individual container. The motion of each
sphere we describe by a system of six lineanequalities. Then we form a subregion of feasible region
W in the following way: wedd O(n) ¢ -inequalities (for all spheres) to the inequality system (9), that
allows us tadelete O(r?) phi-inequalities for such pairs of polyhedra whose individual containers do
not overlap each other adéeletesome redundant containment constraints. Then we search for a local
minimum on the subregion of dimension P(The subregion is described by @(nonlinear
inequalities. Then we use this local minimum as a starting point for the next iteration. On the last
iteration of our algorithm we find a local minimum of problem (8)-(9).

Let us consider the algorithm in details.

We assume here that sphersgz Sy(0) of radius ry and the center pointg =(Xg, Yq:Zq),

circumscribed around each non-translated and non-rotated concave polyl@gdrap=1,...,N, as
well as, sphere§0 = §(0) of radiusr; and the center point,; = (X, Vi, Zej) circumscribed around

each non-translated and non-rotated convex polyheb{ﬁ%n i=1,...,n, are constructed.
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The COMPOLY algorithm is an iterative procedure and involves the following steps.

1 (kL kL ket e

Step 1. Let k=1. Take the vectorg uﬁ‘l) of feasible placement

parameters of polyhedr®,,q=1,...,N, within the containe2 k=1

Step 2. Derive the appropriate vectqrvgfl),..,vé'ﬁl)) of center points of sphereSi(ugi“l)),
i=1,2,...n. With respect to the gluing vectar the center point/; of S; > K; after translation and
rotation of initial convex pongorKiO takes the form

V((:Ii(_l) = Vei (Ugi(_l)) = Vék_l) +M (9 (;:1(_1)) Vi -

For the sake of simplicity, we provide some illustrations to the algorithm for the 2D case.

Figure 8 illustrates the concave polyg@i0) = K;(0) U K,(0) with translation vector(0,0) and

rotation angled = 0. Circles S;(0) and S, (0), circumscribed aroun&,(0) and K,(0) have center
points v4 and v, . PolygonQ(0), translated by vector® and rotated by angléo, is denoted by
Q(u%) = K, (u®) U K,(u®), where u=(v°09. center points of circle§1(u0) and Sz(uo) are

denoted byvgL and vgz.

Qu?)

Q(0)

5,(0)
Fig. 8 — Translation and rotation parameters @t(uo) and Sz(uo) of concave polygon

Q(0) = K, (0) U K,(0), translated by vectov® and rotated by angl®.

Step 3 For each sphers; (ug_“l)) we construct a fixed individual contain@{‘ > § o K with equal
1

n
half-sides of length; +¢, i =1,...,n, and the center of symmetry poiwﬁlfl), assuming =z r/n
i=1

. Figure 9 illustrates individual containe:sl(ugl)and Qz(ugz) for circles Sl(ugl) and Sz(ng)

considered in the above example. Note, that hgrea,.
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Fig. 9— Individual containerszl(ugl) ansz(ugz) for circles Sl(ugl) and Sz(ng)-

Step 4 Move each sphers; , associated with the convex polyhedrigp, within the appropriate fixed

individual containerQik (found at Step 3). Hence, for each sphgrewe construct a phi-function
oS for spheres, ande -R \int€Y; in the form:
@S"Qi* (vai ,vgi(_l))z min{—xd(u(qk_l)) + X T6 —yd(ug(_l)) + VY & -z5(u (;_1)) +Zy tE
xci(ugi‘_l))— Xg; +& Yei(U (ak_l))— Ya +& Zgi(u 21(—1))_ Zq +e}.
The inequality@STQi* (vai ,vgi‘_l))zo provides S chk and can be described by the following

inequality system of six lineare"-constraints":

—Xei (ugi‘_l)) + Xy € 20,-Yg (u(ak_l)) + Vg tE >0, -z (ugi‘_l)) +Z tE >0,
Xgi (ugi‘_l)) — X, +€20, Y (ugi‘_l)) — Y, +820,25 (U (ak_l))— Z, +£20.
Now we introduce an auxiliary (artificial) subs&f; of additional & -constraints" on the translation
Vectors vy =(xq , ya,za), i=1,...,n, of convex polyhedr&;, i =1,...,n:
A ={ueR%: - Ci(ugi‘_l)) + Xy, +£20,-Yg (u(ak_l))+ Ya t€20,
—Z (ugi‘_l)) + 2y, 620, X (ugi‘_l)) — X, +820,
Yei (ugi‘_l)) — VY, +€20,z5 U (ak_l))— Z, +e20, i=1,..n}
Then we add the inequality system ofd&uditional linear ¥ -constraints" that describe the subagt
to the inequality system that defines the feasible regiand obtain kh subregionV, =W NA§.

It should be noted that the inequality system that describes the feasible subWegiomost cases

involves O(rf) redundant phi-inequalities.
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Step 5 To avoid the redundant phi-inequalities that descvigewe form special index sets'l‘ and

55 that involve indexes of all pairs of objects that are associated with non-redundant non-overlapping

and containment constraints respectively.

To form index seta'l‘ we exclude fronE (7) indexes of all pairs of convex polyhedra where individual

containers do not intersect each other (see Appendix B):

kok
=k ={(i, ) e=ks @Q'Ql(v;'i“l),vg;*’) <0}, where=XS —{(i, j) e=: & J(v(k 1 v(k Dy <0

o™ VD VD) < maxtef I DV E D) 5216
1

o) 05 Ve =" xRy of VP VE = Py TRy

of VP VED) =@ V-2 - R, 0 WP VED) =" P xt )Ry,

DS NED) Dy R, gD ) (D2 R,

R” =(r, +rj )+QJ +28,
& > %2, (vgi“l),vg?‘l)) is an adjusted phi-function (12) for a pair of sphefsand Sy (a; =

q, a; = g), circumscribed around concave polyhedra(u(“™") > K;(u\*") and Qg( (k- 1)) >

K;

; (u(k'l)). We provide some illustrations to form index Eei‘t in Appendix B.

9

We note that if(i, j) ¢ E'l‘ then we do not need to check the distance (or non-overlapping)

constraint for the corresponding pair of polyhed#rgu g_“l)) andK; (ug;_l)). If pjj =0 then function
1

kok
(pQ' 2 (vg_“l),vgjf‘l)) becomes a phi-function for two oriented parallelepip@gsind €3;.

To form index setE'§ we exclude from (8) all phi-inequalities for containment constraints of convex
polyhedra where individual containers do not intersect thélé*etz R \intQLf, such that
Q'S‘ —{(xy Die<x<I®V_gecycwkD _geczankD_g,

Thus, 25 ={i €E Hks ol Qg(v(k 1)) <0}, where P o (v(k 1)) is an adjusted phi-function for a

* k*
polyhedron K; (u™) and the objectQX”, =kS _{i el : & ° : (v(k ) g}, 5% s an
1

adjusted phi-function (13) for a sphei®;, associated with concave polyhedr@g,(ugk'l)) )

K;(u™), and the objec;, a = q,
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ke
ook (v(k Dy =min{y; (v(k 0, s=1,...,6},
vt ) = xR ) =y VR v ) = 6P R,

v (v(k 1)) (k D, k-1 “R, i (v(k 1)) (k 1 W(k—l)_Ri ,

Vi (v(k 1))——zi(k_l)+ hk-D R, R=r+pg+2.

We note that ifi eE‘é, then we do not need to check the distance (or containment) constraint for the

polyhedronk; (u*) and the objecn ¥ .
1

Step 6 Generate the-th subproblem on solution subséf =W A} with deleted redundant phi-

function inequalities and reduced dimension ({R(n

min F (uWk ), (24)
Uy Wk = RO~k

Wi Z{UWk =(g ka) e R7%k: &);j(%i' uaj) 20, (i, j)egll('&)i(uai )20, EEIE'
%63
OS (Uy)20,i=1,..n )21 6D g wowk g honbD_gy,

whereEf and EE are defined on Step &, =3(m-cardZy))is the number of all deleted auxiliary

variables meeting in the appropriate redundant phi-function inequadities, =3+ 6N + card(Ei‘ ),

card=X)is (O(n).

(k-1)

Step 7 Generate a feasible starting polm@“l) =(g T\(/\I/(k_l)) for problem (14). Since a vector

g(k_l) has already defined, we need to find values of the vector of auxiliary variables

D - D bt

(k-=2)m Coy =k
T Uz b ) for suchsefl,..., n} that(i,j)eEq

To derive a vectou (Pk‘l)s we employ the FAPA algorithm.

The key idea of the FAPA algorithm lies in the following (see Appendix C): we derive a vector

u(Pk‘l)S as a vector of feasible parameters of a separating planwcliospheressi(ug_“l)) and
1

Sj (ug?_l)) if &)S 5 >0, using simple geometrical calculations, otherwise we find a veéFtijiL)s,
solving the following auxilary subproblem

maxo. s.t.(usp,a)ew(; : (15)
where

W, ={(u®, o) e R (W, D, ) —a >0},

a
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aeR!, us

- CRER °), under fixed parameterngi(_l), ugj_(_l)) involving in the appropriate

adjusted quasi phi-functiorﬁD’ij (ugr_l),ug;_l),uz) , V(i,j)eZ. It should be noted that any
nonnegative value oft in (15) provides feasible values of; .

Thus, all adjusted quasi phi-functions and phi-functions in (14) at the pgfﬁlt) take nonnegative

values.
Step 8.Solve subproblem (14), starting from the feasible pu‘ﬁfl)

min F (uWk ), (16)
Uy Wk = RO~k

*k *k)

and get a local minimum poimtc\,k =(c Ty

If the point u;\,k of local minimum of subproblem (16) belongs to the frontier of an auxiliary subset

Ak, ie. u;\,k e fr A}, then we takg*k as a starting vectoc;k for the next iteration of the procedure
(set k=k+1 and go to Step 2), otherwise we stop the optimisation procedure.

We claim that the poinu* —u'k =(g* k,% k)e R° is a point of local minimum of problem (8)-(9),
k

involves 1 K

wheret W

and auxiliary variables that are deleted at the k-th iteration. Note that the

previously deleted auxiliary variables can be redefined by FAPA algorithm. However we do not need

to redefine the deleted auxiliary variables at the last step of the algorithm, since the values of auxiliary

variables have no effect on the value of the objective functiorE(.de) = F(u*k) .

Figure 10 shows the diagram of the COMPOLY procedure to sobelem (8)-(9). We
illustrate the procedure of solving a sequence of subproblems, given by (16)284k Note, that

feasible starting poinu(o) is found by algorithm FPPA. Each auxiliary (artificial) sef , described

at Step 4 of the COMPOLY procedure, is shown as a square with the centra(ha}rht k=1,2,3,4.
We take the feasible poimt(o), form setA§ with the center poinu(o), solve subproblem (16)

on subregionV; =Af NW and get a local minimum poimt;\,l. The pointu:k,\,1 belongs to the frontier
of set A7, therefore we form the next sat5 with the center poinu(l) = u;\,l and search for a local
minimum point u\*,\,2 of subproblem (16) on subregidt, = A5NW. The pointu:;\,2 belongs to the
frontier of setA5, therefore we form the next sét3 with the center point® = u;\,z and search for

a local minimum pointu:;\,3 of subproblem (16) on subregidty = A5NW . The pointu\’;\,3 belongs
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to the interior of set\§, i.e. u;\,s eint A5, therefore we stop our procedure. The pmih&z u isa

point of local minimum of problem (8)-(9).

Fig. 10— Diagram of the COMPOLY procedure.

Figure 11 illustrates the iterative procedure of packing concave polyhedra that is related to the Diagram
shown in Figure 10.

Fig. 11— Arrangements of concave polyhedra, corresponding to the sequence of feasible points
u®, u® U@ U =u® with respect to the Diagram.
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We note that dist(;\,k ,u;\,kﬂ)z e, if u e frA§, and we take the value @f that is considerably

W
greater than the accuracy of IPOFIIO(S). Thus, we can conclude that the stopping condition of the
COMPOLY procedure is always reached in a finite number of iterations.

If the IPOPT program fails to find a local minimum of subproblem (14), we halve the value of
¢ and start up the COMPOLY procedure. If a local minimum is fourttuthe half value of then

we recover the initial value of epsilon and continue the COMPprocedure for a new feasible starting
point, otherwise we terminate the procedure.

Our algorithm, in most cases, takes consideration of significantly fewer pairs of polyhedra tha

m (herem is the number of all pairs of convex polyhedra considered ingmo8)-(9)), because for
each polyhedron only itse*-neighbors” have to be monitored. It should be noted that the algorithm is
not efficient for special cases when all objects araéighbors”.

The parameter provides a balance between the number of inequalities in each nonlinear

programming subproblem (14) and the number of the subproblems (12), which we need to generate and
solve in order to get a local optimal solution of problem (8)-(9).

Thus the COMPOLY algorithm allows us to reduce the problex(98with a large number of
inequalities and dimension Gjrof the feasible set Wiescribed by (9), to a sequence of subproblems

(14) with a smaller number of nonlinear inequalities and dimensionaddgolution subsewv, .

6. Computational experiments
We present a number of examples to demonstrate the efficiency of our methodology. We have
run all experiments on an AMD Athlon 64 X2 5200+ computer, Programming Language C++,

Windows 7. For the local optimisation we use the IPOPT code (https://projects.coin-or.org/lpopt) by

means of program interface using the default options.
The following examples set=5 for the COMPOLY procedure.

Example 1.We generate a collection ofF98 convex polyhedra, consisting of the 7 types of polyhedra
from example 1 given in [18] and in Appendix A. We include 14 of each type of polyhedra. Figure 12

shows the local optimal placement of the collection of convex polyhedra. The container has dimensions

and volume: a)l™,w ,h )=(30.9324, 28.1897, 26.5064) ar{u )= 23113.0€ with p=0 (Fig.
12a). One starting point is used. Computational time is 147967.3 sec(l;*ly)!*,h* )=(41.3510,

33.0721, 31.7988) andF(u*)=43487.0040 withp =1.5 (Fig. 12b). One starting point is used.

Computational time is 48152.79 sec.
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Fig. 12— Local optimal placement of polyhedra in Example 1p &0 ; b) p=1.5.

Example 2.We generate a collection oH80 concave polyhedra, consisting of the 2 types of polyhedra
given in [17] and in Appendix A. We include 10 of each type of polyhedra. Figure 13 shows the local

optimal placement of the collection of concave polyhedra. The container has dimensions and volume:

a) (I",w ,h )=(26.3522, 23.7514, 24.4055) af(u’) = 15275.481¢ with p=0 (Fig. 13a). Two
starting points are used. Computational time is 8729.45 seo(.l;* bry*,h* )=(26.5890, 26.5239,

36.1706) andF(u*) =25509.2576 withp =1.5. Ten starting points are used. Computational time is

24696.46 sec. (Fig. 13b).

(b)
Fig. 13— Local optimal placement of polyhedra in Example 2> &) ; b) p=1.5.

Example 3.We consider a collection off20 equal concave polyhedra given in [17] and in Appendix
A. Figure 14 shows the local optimal placementhef collectionof concave polyhedra. The container

has dimensions and volume: @) W ,h )=(23.7706, 26.6212, 20.2363) afidu )= 12805.67 1
with p=0. Ten starting points are used. Computational time is 59497.9 sec. (Fig. 1@5)\7\5) h )

=(27.9795, 26.5408, 30.6725) arEJ(u*):22777.4233 withp =1.5. Ten starting points are used.
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Computational time is 28700.16 sec. (Fig. 14b).

(b)
Fig.14 — Local optimal placement of polyhedra in Example 3»&a)0; b) p=1.5.

Example 4.We pack 45 concave polyhedra of 10 types given in Appendix A. We include 5 polyhedra
of each type of the upper polyhedra row and 4 polyhedra of each type of the lower polyhedra row (Fig.
A3). Figure 15 shows the local optimal placemenhefcollectiorof concave polyhedra. The container

has dimensionsl”,w ,h )= (39.7324, 34.8629, 44.6587) and volurfiéu ) = 61860.807. Three

starting points are used. Computational time is 159884.0 sec.

Fig.15— Local optimal placement of concave polyhedra in Example 4.

Futher we compare our results to those given in [17] and [18]. We search for locally optimal solutions
employing the compaction algorithm: a) starting from a feasible point generated by FPPA algorithm
described in Section 5.1 and b) starting from a feasible point found by the algorithm developed in [17]
and [18].

Example 5.We consider a collection o580 convex polyhedra, of example 1 given in [18] and in
Appendix A. Figure 16 shows the local optimal placement of the collection of convex polyhedra. The

container has dimensions and volume(la)w ,h’ )=(43.4338, 41.8435, 45.0059) afqu ) =
81795.2169, starting from the feasible point found by FPPA. Computational time is 46035.78 sec.; b)

(", W ,h )=(36.3569, 40.8764, 56.2557) afidu ) = 83604.0544, starting from the feasible point
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found by the algorithm given in [18]. Computational time is 42950.4 sec.. Improvement of the value
of objective function in comparison to the result given in [18]: a) 27.88%; b) 26.29%

(b)

Fig.16— Local optimal placement of polyhedra in Example 5: a) starting from the feasible point

found by FPPA,; b) starting from the feasible point found by the algorithm given in [18].

Example 6.We consider a collection of#20 concave polyhedra, of example 2 given in [17] and in
Appendix A. Figure 17 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: (B),w ,h )=(29.7159, 30.6070, 30.1616) arf(u )=
27432.6412, starting from the feasible point found by FPPA(Ibw ,h )=(31.4820, 27.8994,

32.0000) andF(u’) =28106.6387, starting from the feasible point found by the algorithm given in

[17]. We generate 11 starting points, time limit is 10 hours. Improvement of the value of objective
function in comparison to the result given in [17]: a) 18.36%; b) 16.35%

(b)

Fig.17 — Local optimal placement of polyhedra in Example 6: a)istaftom the feasible

point found by FPPA, b) starting from the feasible point found by the algorithm given in [17].

Example 7.We consider a collection of80 concave polyhedra, of example 3 given in [17] and in
Appendix A. Figure 18 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: (l;),w*,h* )=(36.9929, 36.3796, 30.9454) arEi(u*):
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41646.1709, starting from the feasible point found by FPPAdhW ,h )=(31.4376, 26.1920,

48.9148) andF(u’) =40277.1892, starting from the feasible point found by the algorithm given in

[17]. We generate 11 starting points, time limit is 10 hours. Improvement of the value of objective
function in comparison to the result given in [17]: a) 19.06 %; b) 21.72%

(b)

Fig.18— Local optimal placement of polyhedra in Example 7: a) starting from the feasible point

found by FPPA,; b) starting from the feasible point found by the algorithm given in [17].

Example 8.We consider a collection ofM0 concave polyhedra, of example 4 given in [17] and in
Appendix A. Figure 19 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: (l;),w*,h* )=(34.9974, 36.9655, 43.2777) arEi(u*):
55988.4619, starting from the feasible point found by FPPA(IB)/V*,h* )=(31.1419, 30.8086,

55.4061) andF(u’) =53158.8838, starting from the feasible point found by the algorithm given in

[17]. We use 3 starting points, time limit is 10 hours. Improvement of the value of objective function in
comparison to the result given in [17]: a) 15.64%; b) 19.91%

Fig.19— Local optimal placement of polyhedra in Example 8: a) starting from the feasible point
found by FPPA,; b) starting from the feasible point found by the algorithm given in [17].
Example 9.We consider a collection of=50 concave polyhedra, of example 9 given in [17] and in
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Appendix A. Figure 20 shows the local optimal placement of the collection of concave polyhedra. The

container has dimensions and volume: (t;),w*,h* )=(46.9742, 34.8305, 41.6923) aﬂ%l(u*)z

68214.5610, starting from the feasible point found by FPPA(Ibw ,h )=(32.0000, 25.5894,

75.2637) andF(u*)=61630.6754, starting from the feasible point found by the algorithm given in

[17]. One starting point is used, time limit is 10 hours. Improvement of the value of objectitrerfunc

in comparison to the result given in [17]: a) 17.45%; b) 25.42%

Fig.20— Local optimal placement of polyhedra in Example 9: a) starting from the feasible point

found by FPPA; b) starting from the feasible point found by the algorithm given in [17].

Table 1 lists some examples presented in [13]. For each example the minimal volume of the

container found by our method is smaller than the best solution reported in [13].

Table L Comparison of our results to those in [13]

Problem the best | the best found by found by found by found by
volume | time (sec.) FPPA* + FPPA* + [17]* + [17]* +
from [13] | from [13] COMPOLY COMPOLY COMPOLY | COMPOLY
volume time (sec.) volume time (sec.)
20 from [17] 32550 26202.1 27432.64 34313.34 28106.64 5360.67
30 from [17] 48300 53741.5 41646.17 35289.34 40277.19 33008.89
40 from [17] 61950 99952.0 53158.88 201501.5 55988.46 195051)51
50 from [17] 77280 125210.6 68214.56 215144.55% 61630.68 27065484
36 from [13] 12480 9637.5 10461.67 23023.12 - -

Note. In table 1: * — a starting feasible point found by FPPA; ** — a starting feasible point found by

algorithm found in [17].

Example 10.We consider the collection of polyhedra of example 1 given in [13] and in Appendix A.

Figure 21 shows the local optimal placement of n=36 concave polyhedra, starting from the feasible
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point found by FPPA. The container has dimensidnsw ,h )=(21.5851, 19.8685, 24.3938) and

volume F(u*) =10461.67. We generate 5 starting points, time limit is 10 hours. Improvement of the

value of objective function is 16.18%.

Fig.21— Local optimal placement of polyhedra in Example 10.

To show the effectiveness of the COMPOLY procedure, some tests were performed. In the example for
N = 10 concave polyhedra from Appendix A, the average computational time per one local extremum
is: a) 1380 sec. without the use of the COMPOLY procedure; b) 283 sec. using the COMPOLY
procedure. The number of variables and inequalities is: a) 1791 andwit®®dt the use of the
COMPOLY procedure; 626 and 3086ing the COMPOLY procedure at the last iteration.

In Example 6 for I¥20 concave polyhedra, the average computational time per one local extremum is:
a) 75026.31 sec. without the use of @@MPOLY procedure; by980.74sec. using th€OMPOLY
procedure. The number of variables and inequalities is: a) 7471 and ®@8b6t the use of the
COMPOLY procedure; 1334 and 8028 using the COMPOLY procedure at the last iteration.

In Example 7 for N30 concave polyhedra a local minimum has not been found within the time limit
of 72 hours without using of tReOMPOLY procedure. The average computational time per one local
extremum is35289.34sec. using the COMPOLY procedure.

7. Conclusions and future work

We derive radical free adjusted quasi phi-functions to describe non-overlapping constraints for concave
polyhedra and use adjusted phi-functions to describe containment constraints. These tools take into
account continuous rotations of polyhedra and minimal allowable distances between objects. We
introduce an exact mathematical model for the optimal polyhedron packing problem as a nonlinear
programming problem with smooth functions. Our approach involves a fast starting point algorithm
We also propose the COMPOLY procedure to search for “good” local optimal solutions. It can be used
as a compaction algorithm, starting from a feasible point found by any algorithm published before. The
COMPOLY procedure allows us to reduce computational costs (time and memory) cohsiddrab
reduction is of a paramount importance, since we deal with nonlinear optimisation problems. Our results

on new instances and instances from the literature show our approach has superior perfor thence.
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near future, we intend to apply our methodology to pack arbitrary polyhedra into different shaped

containers (a sphere, a cylinder, a polytope, a spheroid, an ellipsoid) with different objecgyves (

maximum of the space usage) and additional constraints (e.g., behavior constraints).
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APPENDIX A: DATA FOR EXAMPLES IN SECTION 6
1. DATA FOR CONVEX POLYHEDRA
Data for Example 1

We consider 7 types of covex polyhedra Ko, Ks, K4, Ks, Ke, K7 (Fig. Al).

Fig. A1 —Types ofconvex polyhedr&;, i=1,...,7 in Example 1.
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Vertex coordinates of polyhedron:K
{xi,¥,2), j=1,2,...,9}={(3,6,0), (3,6,8), (3,0,8), (3,0,0), (0,6,0), (0,6,8), (0,0,8), (0,0,0), (5,3,4)}
Vertex coordinates of polyhedron:K
{i,¥,2), j=1,2,...,4}={(8,0,-4), (-3,4,-4), (6,2,10), (0,0,-4)}
Vertex coordinates of polyhedron:K
{i,¥,2), i=1,2,...,73={(3,0,-4), (3,4,-4), (3,0,8), (0 4,-4), (0,4,8), (0,0,8), (0,0,-4)}
Vertex coordinates of polyhedron:K
{xi,¥,2), j=1,2,...,10}={(2,0,0), (1,2,-4), (2,4,0), (-1,4,0), (-1,0,0), (2,0,7), (2,4,7), (1,2,12), (-1,4,8), (-
1,0,8)}
Vertex coordinates of polyhedror:K
{xi,¥,2), j=1,2,...,11}={(2,-4,0), (2,4,0), (1,2,6), (1,-2,6), (0,4,0), (-2,0,0), (-1,2,6), (0,-4,0), (2,0,-4),
(0,0,-4), (2,4,-4)}
Vertex coordinates of polyhedron:K
{xi,¥,2), i=1,2,...,6}={(4,7,0), (4,7,7), (6,0,7), (6,0,0), (0,0,0), (0,0,7)}
Vertex coordinates of polyhedron:K
{xi,¥,2), 1=1,2,...,10}={(4,-4,2), (4,-4,-1), (2,0,-4), (1,5,-4), (1,5,5), (3,0,5), (0,0,5), (0,0,-4), (-2,-5,-1),
(-2,-5,2)}

Data for Example 5

We consider 5 types of covex polyhedra Ko, Ks, K4, Ks (Fig. A2).

Fig. A2 —Types ofconvex polyhedr&;, i=1,2,...,5 in Example 5.

Vertex coordinates of polyhedron:K
{(%5,%,2), j=1,2,...,14}={(4,2,0), (2,7,0), (0,3,3), (-11,8,-18), (1,5,-8), (3,0,-8), (-1,1,-5), (-14,10,-10), (-
4,3,3), (-2,7,0), (-10,6,-10), (0,-1,3), (-10,10,-10), (4,-2,0)}

Vertex coordinates of polyhedron:K
{(%,%,2), 1=1,2,...,16}={(3,-4,8), (3,-4,0), (3,6,0), (3,6,8), (-1,6,0), (-1,6,8), (-1,-4,8), (-5,-1,-1), (-5,-1,
7), (-5,5,7),(-5,5,-1), (-1,-4,0), (2,-2,-8), (-2,-2,-8), (-2,4,-8), (2,4,-8)}

Vertex coordinates of polyhedron:K
{(x,%,2), j=1,2,...,10}={(8,0,10), (8,0,3), (6,5,0), (4,10,0), (4,10,13), (6,5,13), (2,5,13), (2,5,0), (0,0,3),
(0,0,10)}

Vertex coordinates of polyhedron:K
{(x,%:,2), ]=1,2,...,15}={(7,0,8), (7,8,8), (7,4,12), (7,0,12), (0,8,8), (0,8,12), (4,8,12), (0,4,8), (0,4,12),
(4,0,12), (6,2,0), (3,2,0), (3,6,0), (6,6,0), (4,0,8)}
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Vertex coordinates of polyhedrd;:
{x,¥,2), ]=1,2,...,11}={(2,-4,0), (2,4,0), (1,2,4), (1,-2,4), (-1,-2,-8), (1,2,-8), (1,-2,-8), (0,-4,0),

(-4,0,0), (-3,2,4), (-2,4,0)}
2. DATA FOR CONCAVE POLYHEDRA
Data for Examples 2- 4 and Examples 6 - 9

We consider 10 types of concave polyhedra (Fig.A3)

Fig. A3 —Types ofconcave polyhedr@,, 9=1,2,...,10.

Each type of concave polyhedron is presented as a union of convex polyhedra given by the
related collection of vertices in the local coordinate system of the appropriate concave polyhedron.

Figure A4 shows decomposition of concave polyhedpgmvith convex polyhedrons;ki=1,2,3,4.

-~ &6

Fig. A4 —Concave polyhedrorQQg andconvex polyhedronsiKi=1,2,3,4 that form the polyhedron.

We give here input data of vertices of convex polyhedrons that form concave polyhedra by two
lists: listl of vertex coordinates and list 2 of numbers of vertices (with respect to the listl) that define a

collection of vertices of convex polyhedra that form appropriate concave polyhedron.

Remark List 1 involves vertices of a concave polyhedron and, in general, additional vertices
that appear as outcomes in construction of decomposition of the concave polyhedron with convex

polyhedra.
List 1 of vertex coordinatesj(%,z), j=1,2,...,m for description of concave polyhedra:
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Qq: {(x,%,2), 1 =1,2,...,28}={(0,0,0), (8,0,0), (8,0,20), (0,0,20), (0,1,0), (0,1,20), (8,1,20),

(8,1,0), (8,18,0), (8,18,20), (7,18,0), (7,18, 20), (7,0,20), (8,17,0), (0,17,0), (0,17,20), (8,17,20),
(1,18,20), (0,18,20), (1,0,20), (1,0,0), (1,18,0), (0,18,0), (0,18,1), (0,0,1), (8,0,1), (8,18,1), (7,0,0)};

Q2:{(xi.¥i2), j=1,2,...,12}={(0,0,0), (4,0,0), (4,8,0), (0,8,0), (4,0,8), (4,8,8), (0,8,8), (0,0,8),
(2,-8,4), (2,4,-10), (2,18,4), (2,4,19);

Qs{(xi.¥i2), j=1,2,...,21}={(0,0,0), (4,0,0), (4,15,0), (0,15,0), (4,0,5), (4,15,5), (0,15,5),
(0,0,5), (3,4,0), (1,4,0), (1,10,0), (3,10,0), (2,7,-6), (4,4,5), (0,4,5), (2,2,16), (4,6,5), (0,6,5), (0,12,5),
(4,12,5), (2,9,12)};

Qa{(Xi¥h2), j=1,2,...,10}={(2,-3,0), (-2,-3,0), (-2,3,0), (2,3,0), (0,0,9), (0,0,4), (2,-5,14),
(2,5,14), (-2,5,14), (-2,-5,14)};

Qs:{(Xi.¥2), j=1.2,...,12}={(0,0,0), (3,0,0), (3,-4,0), (3,-4,5), (0,0,5), (3,0,5), (3,0,3), (0,4,3),
(0,4,9), (3,0,9), (0,0,9), (0,0,3)};

Qs: {(Xi¥12), j=1,2,...,24}={(0,0,0), (4,0,0), (4,0,16), (0,0,16), (0,1,0), (4,1,0), (4.,1,16),
(0,1,16), (0,18,16), (4,18,16), (4,18,0), (0, 18,0), (0,17,16), (4,17,16), (4,17,0), (0,17,0), (4,0,2),
(4,18,2), (0,18,2), (0,0,2), (4,0,14), (4,18,14), (0,18,14), (0,0,14)};

Q: {(Xy2), j=1.2,...,22)={(3,0,0), (3,4,0), (0,4,0), (3,0,10), (3,4,10), (0,4,10), (5,0,8),
(5.4,8), (5,4,4), (5,0,4), (3,0,8), (3.4,8), (3,4,4), (3,0,4), (2,4,6), (2,4,10), (1,9,8), (0,4,6), (2,4,4), (0,4,4),
(2,4,0), (1,8,2)}

Qs: {(%,¥,2), ] =1,2,...,7}={(0,0,0), (12,0,8), (-8,8,8), (-8,-8,8), (0,-4,12), (0,4,12), (-4,0,12)};

Qo: {(x,¥,2), ] =1,2,...,7}={(0,0,0), (12,0,-8), (-8,8,-8), (-8,-8,-8), (0,-4,-12), (0,4,-12), (-4,0,-
12)};

Qq0: {(X:¥Z ), ] =1,2,...,5}={(0,0,0), (0,-4,4), (0,4,4), (16,0,16), (-16,0,16)}.

List 2 of vertex numbers of the corresponding convex polyhedrtor Kach concave polytope
Qq» F1,2,...,10:

Q=K1 UKo UKz U Kq UKs
K:{3,10,9,2,13,12,11,28}, K{2,9,10,19,23,14,15,16,17}, ¥18,20,21,22,1,23,19,4},
K“{1,2,3,4,5,6,7,8}, K{1,2,9,23, 24,25,26,27};

Q,= K1 UKo U Ks UKsUKs



38
Q,: Ki{1,2,5,8,9}, K2{5,6,7,8,12}, Ks:{3,4,6,7,11}, Ki:{4,3,2,1,10}, Ks:{1,2,3,4,5,6,7,8};

Q:=Ki UK UKz UKy

Q3: Ki{1,2,3,4,5,6,7,8}, k{5,8,15,14,16}, k:{17,18,19,20,21}, K:{9,10,11,12,13},

Q.=KiUK>

Q4: K1:{1,2,3,4,5}, K{6,7,8,9,10};

Qs=KiUK>

Qs: Ki:{1,2,3,4,5,6}, K:{7,8,9,10, 11,12},

Q= KiUK: UKz UKy

Qe  Ku{1,2,3,4,56,7,8}, k{9,10,11,12,13,14,15,16}, £{17,18,19,20,1,2,11,12},
K4{21,22,23,24,3,4,9,10};

Q,=KiUK: UKz UKy

Q7: Ki{1,2,3,4,5,6}, K:{7,8,9,10,11,12,13,14}, K{15,16,17,18,6}, K :{19,20,21,22,3};

Q= Ki UKz U K3 U Ky

Qg: K1:{1,5,6,7}, K2:{1,4,5,7}, Ks:{1,2,5,6}, Ks:{1,3, 6,7}

Qo= KiUK: UKz UKy

Qq: K1:{1,5,6,7}, K2:{1,4,5,7}, Ks:{1,2,5,6}, Ks:{1,3,6,7},

Q0= K1 UKz

Q10: K1:{1,2,3,4}, K2:{1,2,3,5}.

APPENDIX B. FORMING INDEX SET Ell( IN COMPOLY ALGORITHM
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Let three polyhedra are placed inside the containr at k-th iteration of COMPOLY algorithm (Fig. B1)

@il o

Fig. B1 — lllustration to construction of the index @% atk-th iteration of COMPOLY algorithm.

For the example the index s&t defined by (7) has the form:
E={L3).14).(1L5).(16).(2,3).(2,4),(8).(2,6), (3,5, (3.6), (4.5),(4,6)

Firstly we define the index sa'fs (Fig Bla):
~ S, S,
(i Pez @ P I WD vED) <0 1.9, 1.4). (2.9), (2.4)).
It means that only spherﬁ’ and Sg for concave polyhedr®,; andQ, have nonempty intersection,

i.e. &)Slsz(vfkfl),vg‘*l)k 0, and therefore it is sufficient to consider only possible intersection of

convex polyhedrakK; andK;, K; andK,, K,and K5, K, andK,.
: K o =k g ks, ofokX k1) (k-1 _
Then we form the index sé&; (Fig B1lb):=Z1 ={(i, ) eE1": ¢ (vy vy )) <0} ={(1, 4)}.
i i
It means that only individual containe@f andQE for convex polyhedra&; and K, have nonempty

intersection, i.e.(pQIfQI‘(l(v{k‘l),vgk‘l))< 0 and therefore we need to include in our subproblem only
quasi phi-function for polyhedr&; andK,.

APPENDIX C. SEARCHING FOR FEASIBLE AUXALIRY VARIABLES IN THE
FAPA ALGORITHM

On the seventh step of the COMPOLY algorithm we find values of the vector of auxiliary vatigbles

, employing the FAPA algorithm. Figure C1 illustrates tweesato derive a vector of feasible

parameteraip of a separating plane: a) for two spheggsand S; if int S Nint Sj =, for two

convex polyhedrak; and K ; if int§ (int § = &.
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(a) (b)

Fig. C1 — lllustration to ¥ stepat the k-thiteration of COMPOLY algorithm:

a)SNS =J;b)int§Nint § =.

For case a) we use trivial geometrical calculations todind for case b) we solve NLP subproblem

(15) to find a nonnegative value of that corresponds to the problem of searching for a nonnegative

value of a quasi phi-function of two convex polyhe#raand K ;



