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Abstract—Anatomically  driven image  reconstruction
algorithms have become very popular in positron emission
tomography (PET) where they have demonstrated improved
image resolution and quantification. This paper examines the
effects of spatial inconsistency between MR and PET images in
hot and cold regions of PET images using the hybrid kernelized
expectation maximization (HKEM) machine learning method.
Our evaluation was conducted on Jaszczak phantom and patient
data acquired with the Biograph Siemens mMR. The results
show that even a small shift can cause a significant change in
activity concentration. In general, the PET-MR inconsistencies
can induce the partial volume effect, more specifically the “spill-
in” for cold regions and the “spill-out” for hot regions. The
maximum change was about 100% for the cold region and 10%
for the hot lesion using kernelized expectation maximization,
against the 37% and 8% obtained with HKEM. The findings of
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this paper suggest that including PET information in the kernel
enhances the robustness of the reconstruction in case of spatial
inconsistency. Nevertheless, accurate registration and choice of
the appropriate MR image for the creation of the kernel is
essential to avoid artifacts, blurring, and bias.

Index Terms—Anatomically driven, expectation maximization,
hybrid kernel, image prior, iterative reconstruction, kernel
method, positron emission tomography (PET).

I. INTRODUCTION

ACHINE learning techniques are being frequently
Mexploited for positron emission tomography (PET)
image reconstruction [1]. Recently, techniques for PET image
de-noising involving neural network approaches have been
proposed [2], [3], as well as deep learning [4] and support vec-
tor machine [5] techniques. The latter with the kernel method
has been frequently used to include anatomical information in
the reconstruction [6]-[9].

Anatomically driven algorithms have become popular in
PET. The rationale supporting the use of these techniques is
based on the assumption that the radiotracer uptake distribu-
tion follows specific anatomical patterns. As a consequence,
the anatomical information from MR can be used as prior
knowledge. Several studies have recently implemented and
investigated different anatomically driven techniques, show-
ing that they can suppress noise while preserving resolution
that is usually lost through the regularization process. There
are two different ways of including anatomical information
in the reconstruction algorithm: 1) Bayesian techniques and
2) the kernel method. Bayesian techniques are also subdivided
into segmentation-based [10]-[12] and segmentation-free tech-
niques [13]-[24], the latter avoids the potential error due
to segmentation. The kernel method can be divided into
hybrid [7], [8], where the kernel matrix is extracted from
more than one source (for example, PET and MR) and non-
hybrid [5], [6], [9], [25], [26], where the kernel is estimated
from one source.

In this paper we focus on the kernel method, the afore-
mentioned techniques are based on the kernel method, com-
monly used in machine learning and described in [27]. The
method was first introduced in PET image reconstruction by
Hutchcroft et al. [6] and Wang and Qi [5] using one source of
information for the kernel matrix, MR and PET, respectively.
Novosad and Reader [9] combined the method with temporal
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basis functions in order to perform full dynamic PET recon-
struction. Ellis and Reader [26] proposed the use of kernelized
expectation maximization (KEM) in the context of dual-dataset
longitudinal PET studies, where a baseline scan reconstruc-
tion was used to define basis functions for a follow-up scan
reconstruction. Gong et al. [7] used a hybrid kernel method to
perform direct Patlak reconstruction from dynamic PET using
MR and PET information where the latter was obtained by
combining different frames. Bland et al. (2017) [28] studied
the effect of KEM on simulated dose-reduced datasets, show-
ing improved contrast to noise ratio, but at the cost of possible
over-smoothing of features unique to the PET data. To over-
come this issue Bland er al. (2018) [29] proposed a method
using a spatially constrained MR kernel in order to main-
tain the noise reduction properties of the conventional kernel
method, whilst better retaining the features unique to the PET
data. Spencer and Wang [30] proposed a dual-kernel approach
for dynamic PET image reconstruction that combines the exist-
ing nonlocal kernel with a local convolution kernel and demon-
strated, with simulated brain dynamic data, higher image qual-
ity than the standard single-kernel reconstruction approach.

Deidda et al. [8] presented a list-mode hybrid kernelized
OSEM (LM-HKEM) that does not require preliminary PET
image reconstruction to create a PET kernel matrix by exploit-
ing the iterative process to extract the PET information. In
addition, both proposed KEM and hybrid kernelized expec-
tation maximization (HKEM) use a voxel-wise and spatially
restricted kernel rather than a patch-wise one. The two tech-
niques were evaluated for different count levels but with a
focus on low count conditions corresponding to short acquisi-
tion times. The aim of the study was to improve quantification
in terms of bias and contrast recovery coefficient for the carotid
arteries. The HKEM was also applied for the estimation of
the image-derived input function from the aorta of rabbit
models [31].
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Fig. 2. Slices of the MR images used to estimate the kernel matrix for the
(a) phantom and (b) patient studies.

(b) © (d)

Fig. 3. ROI chosen for the patient study. ROI shown on the (a) MR image
for the 300-s acquisition, (b) PET image for the 300-s acquisition, (c) MR
image for the 30-s acquisition, and (d) PET image for the 30-s acquisition.

In this paper, we investigate the limitation of the anatom-
ically driven kernel methods in circumstances where there is
an evident spatial inconsistency between the MR and PET
signal distribution even for perfectly co-registered PET and
MR images. This is important because in some cases a PET
lesion may be detected at the border between two different
regions, as shown in [24]. Moreover, it has been shown that
PET unique features can be severely over-smoothed [28] with
the MR-guided kernel. Strul and Bendriem [33] investigated
the limitations, due to MR segmentation and PET-MR registra-
tion, of different segmentation-based partial volume correction
techniques. Although the segmentation does not represent a
problem for the segmentation free techniques, registration can
always represent a problem especially if the MR sequence
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Fig. 4. Representation of the introduced MR translations using the phantom: from left to right 1, 2, 3, 5, and 10 voxels translation. The blue sphere is the

ROI used for the quantification.

OSEM +G

(d)

Fig. 5. Reconstructed images with OSEM, KEM using only MR and
no shift, and HKEM with no shift, on all the datasets and count-levels.
(a) Jaszczak phantom 50-s acquisition. (b) Jaszczak phantom 5 s. (c) Patient
300-s acquisition. (d) Patient 30-s acquisition.

is not acquired at the same time as PET. In this paper, we
show the effect on the PET image of PET-MR inconsisten-
cies, particularly for PET cold and hot regions that are crossed
by MR regions. HKEM and KEM from [8] were used to
reconstruct images for four types of dataset: 5- and 50-s acqui-
sition with phantom data, and 30- and 300-s acquisition with
patient neck data. All the data were acquired with the Biograph
Siemens mMR. Both algorithm implementations use spatially
restricted kernels and, thus, reduced smoothing of the PET
unique features is expected compared to the standard patch-
based kernel methods as shown by Bland et al. (2018) [29].
The MR image was shifted by a different number of pixels
along the x direction, and for each shift, the images were
reconstructed for each augmented MR image.

II. KERNELIZED IMAGE RECONSTRUCTION

The kernel approach can be applied to the LM-OSEM. The
formulation in this paper follows the one in [8].
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Fig. 6. Mean ROI activity concentration for each MR translation: comparison
between reconstructed images with KEM using only MR, HKEM, and OSEM
for the 50-s acquisition with the Jaszczak phantom. The x-axis is the MR
image shift in terms of number of voxels.

Fig. 1 describes the process of the learning and reconstruc-
tion of the HKEM method, the KEM diagram can be easily
obtained by removing the PET component in the creation of
the kernel. In the traditional kernel method the learning part
comes before the reconstruction, while the HKEM contains an
iterative learning component which comes from the iterative
reconstructed image. Using the kernel method the image A can
be written as follows:

N
A= Zafkﬁ (1)
f=1

where kj is the fjth element of the kernel matrix and e is the
coefficient vector which is to be estimated during the expecta-
tion maximization process shown in the diagram. At the first
subiteration our input images, m for the MR and o for the
PET, are used to extract the relative feature vectors, v and z0.
For each voxel of the PET image the corresponding feature
vectors, v; and z}"), are extracted from the local neighbor-
hood of the voxel from the MR image and the PET update
image, respectively. The number of elements in each feature
vector was chosen as the total number of available voxels in the
neighborhood, which is 27. This was a result of a preliminary
study which is reported in Fig. 2, given in the supplementary
material. The v; and z;") vectors represent the inputs for the
method, and the kernel matrix is calculated using the following
functions:

[y =’ s =
km(Vf,vj):exp<—Tn21] exp —2—2] ()

O dm
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Reconstructed phantom images with KEM and HKEM for 50-s acquisition with the Jaszczak phantom. The different columns represent a different

shift (the first one is without shift), in terms of number of voxels. Comparison between (a) reconstructed images and (b) bias images. Reconstructed images
with the correct MR are used as ground truth. (c) Zoomed-in view of the cold spheres for the case with shift = 10 voxels.

is the kernel coming from the MR image and

) _ 2
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exp
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kp(z;n%z]gn)) — exp _‘ —
p

3)

is the part coming from the PET iterative update. The quantity
x; is the coordinate of the jth 1, v; and 2" he f

f Jjth voxel, vj and z; are the feature
vectors calculated, respectively, from the MR image and the
nth PET update image, o, while o,,, 0, 04, and o (the last
two are in mm) are scaling parameters for the distances in (2)
and (3). To make it simpler to choose the kernel parameters
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(such as o, and o), the feature vector, v;, is normalized so
that (2) becomes

2 2
VF —V; Xr —X;

km(Vf, vj) = eXp(—%) exp(_%) 4)
m m

for k, (vr, v;), where SD, is the standard deviation of the mean

voxel value over the whole MR image. For the PET contribu-
tion, k, (z;"),z;")), this normalization is slightly different. The

differences in (3) are normalized with ozj(")

)z(n) —zm ? 2
m ,mY _ / s — x|
kp Zp .z ) =exp| — 5 expl ————— |-
2(05-(")> o2 zadp
J P

(&)

Once the kernel matrix is created, it is used in the first
subiteration of HKEM to estimate «!, and as a consequence
the PET image A!. Consequently, the image a! will be used
to calculate the PET component of the kernel, while the MR
component is stored in memory. The process will be repeated
for every subiteration.

The iterative nature of the HKEM method allows the train-
ing sample to be updated with more accurate information. In
addition, preliminary reconstructions, to obtain the PET input
to the kernel estimation step, are not necessary.

III. METHODS AND MATERIALS
A. Phantom Experiment

A phantom experiment was performed with a Jaszczak
phantom for resolution studies and was acquired with the
Siemens Biograph mMR scanner at Mount Sinai Hospital,
New York, NY, USA. The phantom consists of cold spheres
with different diameters, 31.8, 25.4, 19.1, 15.9, 12.7, and
9.5 mm. The background represents the hot region, which
was filled with 155 MBq of !8F-fludeoxyglucose (FDG), and
data were acquired over 1 h. The attenuation image was
obtained from an MR volumetric interpolated examination
(VIBE) acquisition, segmented into two tissue classes (air and
water) [34]. The MR component of the kernel was obtained
from a co-registered MR-VIBE sequence. The original voxel
size was 0.35 x 0.35 x 1 mm?>. The image is then aligned to
the PET field of view (FOV) and resliced to match the PET
native voxel size, 2.087 x 2.087 x 2.031 mm?, and FOV size,
344 x 344 x 127 voxels. The raw PET data were reconstructed
in two different cases: 1) 5- and 2) 50-s acquisition-time
frames. These frames correspond to the beginning of the
acquisition obtained from the full LM file.

B. Patient Experiment

The LM-HKEM method was also applied to dynamic data
of the head and neck region of a patient. The acquisition was
carried out using the Siemens Biograph mMR at Mount Sinai
Hospital and a consent form was signed by the patient. The
patient was injected with ['8F]JFDG 184 MBq and scanned
for 90 min. The attenuation images were obtained from the
Dixon MR sequence using four tissue classes (fat, water,
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Fig. 8. Mean activity concentration comparison between reconstructed phan-
tom image with KEM, HKEM, and OSEM for 5-s acquisition with the
Jaszczak phantom. The x-axis is the MR image shift in terms of number
of voxels.

air, and bone), and contains attenuation coefficients for bed
and coils [34]. The LM data were divided into shorter frames,
30 and 300 s. The scan started after 10 min from the injec-
tion of the tracer. Note that the two different durations are
considered as two different datasets and the uptake in these
datasets is not comparable due to different kinetic behavior,
especially because they are the first frames after injection.
The MR part of the kernel matrix is obtained from a time-of-
flight (TOF) MR angiography sequence (Fig. 2), the original
voxel size was 0.7 x 0.7 x 1 mm. It is then aligned to the
PET FOV and resliced to match the PET native voxel size,
2.087 x 2.087 x 2.031 mm3, and FOV size, 344 x 344 x 127
voxels. The MR TOF acquisition time is 540 s. A head and
neck coil was employed: three slabs, each consisting of 60
slices of 1-mm thickness. This image sequence is particu-
larly suitable for studying the carotid because it provides
high contrast between the carotid arteries and the surrounding
tissues.

C. Reconstruction Setup

All the datasets were reconstructed with 21 subsets and three
iterations using HKEM and KEM. The subset division for the
LM reconstruction is made by subdividing the events accord-
ing to the view number. The values of the kernel parameters
for this paper are set to give the best tradeoff between quan-
tification accuracy and noise suppression while minimizing
PET feature suppression: N = 3 x 3 x 3, oy = 0p = 1,
and oy, = o4y = 5. The best tradeoff between quantification
and noise suppression was estimated as the maximum CNR.
For small values of oy, the HKEM will be always noisier
than the KEM because the hybrid kernel contains also the
noise from the PET image. When the o, increases, the noise
decreases as we are allowing similarities between further vox-
els in the neighborhood. The number of neighbors we used
was chosen after comparing the performance with 27, 125,
and 343 neighbors and 27 allows faster image reconstruction
without significant change in quantification. In fact, smooth
images can be obtained without changing the neighborhood.
In addition, using a big neighborhood has the effect of over
smoothing small lesions This can be seen in Fig. 1, given in
the supplementary material. A small neighborhood leads to
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Fig. 9. Reconstructed phantom images with KEM using only MR and HKEM on 5-s acquisition. The different columns represent a different shift (the first
one is without shift), in terms of number of voxels. Comparison between (a) reconstructed images and (b) bias images and reconstructed images with the
correct MR are used as ground truth. (c) Zoomed-in view of the cold spheres for the case with shift = 10 voxels with HKEM and KEM.

less noise suppression [bigger coefficient of variation (CoV)] change significantly for regions where the MR does not
but at the same time a smaller bias. The calculated RMSE, contain meaningful information. On the other hand if the MR
which provides a tradeoff between bias and noise, does not image provides boundaries then the RMSE improves with the
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size of the neighborhood. The comparison is made at the
third iteration, as early stopping is routinely used in hospi-
tals. The different frame durations are obtained by selecting
only events which have occurred during the first 50 and 5 s
for the phantom, and 300 and 30 s for the patient.

Scatter correction was performed with the method described
in [35] and [36]. Randoms were estimated from singles, which
were calculated from delayed events [37]. The procedures for
these evaluations including attenuation and normalization cor-
rections [38], make use of Software for Tomographic Image
Reconstruction library [39] version 3.0. All datasets were
reconstructed using span 11. The MR image, for both experi-
ments, was translated by 1, 2, 3, 5, and 10 voxels (as in Fig. 4)
along the x-direction in order to study the effect of inaccu-
rate registration between PET and MR images, and also to
introduce differences so that different case scenarios can be
explored. Note that the attenuation image was not translated
so that we only study the effect of the anatomical image used
for the kernel.

D. Image Analysis

The comparison was carried out in terms of mean activity
concentration. Region of interest (ROI) analysis was per-
formed using: a sphere in a uniform cold region of the phantom
represented by the blue circle in Fig. 4, extracted from the MR
image whereas for the patient, the ROI was obtained using
a few steps: first, the carotid was segmented using the MR
image, which was also used as a mask on the HKEM image;
a threshold was applied on the HKEM image only to segment
the hot part of the carotid; finally it was cropped to match the
shape of the lesion in both HKEM and KEM image as the
shape of the hot lesions are the same in HKEM and KEM (as
can be seen in Fig. 5). In this paper, what is different between
the HKEM and KEM lesion is the uptake. The ROI was
not taken from the MR image because it provides the whole
carotid, while the OSEM image is substantially affected by
PVE. One ROI is used for the 300-s acquisition, and the other
for the 30-s acquisition as the kinetics and possible motion
make the two datasets very different (Fig. 3).

Quantitative comparison between algorithms was performed
using the following figure of merit:

D il
v ©)

mean =

where z; is the value of voxel inside the ROI and V is the
number of voxels included in the ROI. To estimate the bias
images, showing the induced error for each MR translation, the
reconstructed images with the correct MR is used as ground
truth, also labeled as shift = 0. The difference between the
CoV, which is defined as the percentage SD, was used in
the measured ROI to asses the noise and the repeatability of
the measure.

IV. RESULTS

In this paper, we show the effect of the anatomically driven
kernel method on the PET reconstructed images, with a focus
on those occasions where MR and PET information do not
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Fig. 10. Mean activity concentration comparison between reconstructed

patient image with KEM using only MR and HKEM and OSEM on 300-s
acquisition. The x-axis is the MR image shift in terms of number of voxels.

match. To recreate these circumstances the MR image was
translated along the x-axis creating some specific cases, such
as a cold PET region partially crossed or surrounded by an
MR well-defined region with the phantom data, and hot lesion
partially crossed by MR regions with the patient data. All the
shifts can be seen in Fig. 4. The blue circles in the figure help
to better understand and locate the area we are studying. This
investigation was carried out using the hybrid and nonhybrid
kernel methods in [8] to explore the limitation of these meth-
ods as well as to study whether the hybrid method performs
better when small differences between PET and MR images
are introduced. The o, and o, from (2) and (3) were fixed at
1 to maximize CNR.

The values of the two modulation parameters, o4y, and oy,
were set to 5 which was the optimum value in terms of
CNR. All the images shown correspond to the third iteration.
Fig. 5 shows the images reconstructed with OSEM using 5-
mm Gaussian post-filtering, and KEM and HKEM with the
correct MR image, for the Jaszczak phantom 50-s acquisi-
tion [Fig. 5(a)], Jaszczak phantom 5-s acquisition [Fig. 5(b)],
patient data 300-s acquisition [Fig. 5(c)], and patient data 30-s
acquisition [Fig. 5(d)]. Fig. 6 shows the quantitative results for
the 50-s acquisition phantom datasets. The x-axis reports the
shift in terms of the number of voxels, while the y-axis is
the mean value in the ROI, calculated using (6). The OSEM
ROI mean value (with no post filtering) is also reported for
reference. The colored bar reports the range of CoV values
in the plot. In Fig. 7, an image-based comparison for the
50-s acquisition phantom datasets is shown, where it is pos-
sible to appreciate the effects of the different translations on
HKEM and KEM [Fig. 7(a)]; the bias in all the image vox-
els [Fig. 7(b)]; and a zoomed-in view of the cold spheres
for the case where the MR image was translated by 10 vox-
els [Fig. 7(c)]. The same experiment was repeated for the
5-s acquisition and the quantitative analysis is reported in
Figs. 8 and 9. Note that in Fig. 9(c), the magnification for
each sphere is different to allow a better visual comparison.
This is why the sizes do not appear to be in a decreasing order.

Fig. 10 reports the mean ROI value as a function of the
shift for the patient data obtained from 300-s acquisition.
The OSEM ROI mean value is also reported for reference.
The colored bar reports the range of CoV values in the plot.
In Fig. 11, the image-based comparison between HKEM and
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(a) Reconstructed patient images with KEM using only MR and HKEM on 300-s acquisition using different translations. (b) Difference images

between the nonshift case and all the different translations for HKEM and KEM, reconstructed images with the correct MR are used as ground truth. The

different columns represent a different shift (the first one is without shift).

KEM and OSEM is shown. In particular Fig. 11(a) shows the
reconstructed images with each translation, while Fig. 11(b)
reports the bias images estimated as the difference between
the image reconstructed with the correct MR and the image
obtained using each translated MR. The same is repeated
for the 30-s acquisition, where image-based and quantitative
results are shown in Figs. 12 and 13, respectively.

V. DISCUSSION

The images in Fig. 5 show the improvements, in terms of
contrast and resolution, provided by the two anatomically-
driven kernelized methods over the OSEM. With the Jaszczak
phantom we investigated the effect of the PET-MR misalign-
ment on cold spheres: in Fig. 6 the ROI mean shows how the
mean value, which is supposed to be zero, increases as the
shift increases, with a significantly stronger effect for KEM.
The maximum increase is 100% for KEM against the 37% of
HKEM. This is due to the introduction of the PET information
in the kernel, which makes HKEM more flexible allowing the
PET borders to be restored. The increase in activity along with
the shift seems to indicate that the activity was pushed from
its original position to the area after the MR border. Fig. 7
shows the same result visually, where the effect of the dif-
ference between PET and MR can already be seen for the
1 voxel shift for both HKEM and KEM. Bias appears close to
the borders of the MR and PET images. In particular, we can
see positive bias in the cold region and negative bias in the hot
regions close to the borders. It is also possible to see that the
smoothing effect is more significant for the smaller spheres.
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Fig. 12. Mean activity concentration comparison between reconstructed
patient image with KEM using only MR and HKEM and OSEM on 30-s
acquisition. The x-axis is the MR image shift in terms of number of voxels.

For the 5-s acquisition, Fig. 8 shows more moderate vari-
ation than the higher count case. In this case the maximum
variation was 33% for KEM and 15% for HKEM with the
5 voxels shift. The fact that the short acquisition shows less
quantitative change than the 50-s acquisition is probably due
to the fact that the noise here has a more important impact
and there is already an increased uptake even with the correct
MR image. In fact, the OSEM value is close to the “wrong”
HKEM value. Looking at the zoomed-in view of the spheres
in Fig. 9 it is possible to see that the degradation is actually
more visible for the low count.

With the patient data, we show the effect of the PET-MR
inconsistency on hot lesions in the carotid artery. In contrast
to the phantom, here it is more difficult to visually detect the
artifacts as the human body is more complicated with a wider
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(a) Reconstructed patient images with KEM using only MR and HKEM on 30-s acquisition using different translations. (b) Difference images

between the nonshift case and all the different translations for HKEM and KEM, reconstructed images with the correct MR are used as ground truth. The
different columns represent a different shift (the first one is without shift), in terms of number of voxels.

variety of visible tissue in the MR image. Fig. 10 shows the
translation consequences for the 300-s acquisition. We can
see an instant drop of uptakes as soon as the shift takes place.
The HKEM performs better for the small shifts, however,
after the 2 voxels translation it behaves similarly to the KEM
with a maximum variation of 7% for both. Although the ROI
analysis for the hot regions show more moderate variation
than the case of the cold spheres, in Fig. 11 it is possible
to see that the shape of the lesion changes with the shift
and becomes gradually blurred. It is a consistent results over
the different count-levels that when the inconsistency is too
severe HKEM behaves similarly to KEM. In Fig. 3 (given in
the supplementary material), a similar analysis is shown for
a 5400-s acquisition dataset. Also, negative and positive bias
can be seen all over the image, which can reach 50% in certain
locations. The ROI quantification for the 30-s acquisition, as
reported in Fig. 12, shows slightly more significant variation
with a maximum of 10% for KEM and 8% for HKEM. In
this case, HKEM performs better for all translations except
the 5 voxel translation. Similarly for the 300s case, in Fig. 13
it is possible to see the gradual blurring of the lesion and the
variation voxel by voxel for all the different shifts. The dark
blue and the dark red areas in Figs. 11(b) and 13(b) represent
a bias of up to 50% and which is more important for the
low-count case. Note that, 2 cm of motion is probably too
big to be missed, and this type of motion can be corrected by
registration. However, in this case we studied the effect of the
uniform MR area of the neck overlaying the carotid artery of
the PET image. This represents, for example, cases where a
high uptake region in PET does not show any signal in the MR.

In general, the PET-MR inconsistencies can induce partial
volume effects, more specifically spill-in for the cold regions

and spill-out for the hot regions. The more significant errors
are introduced for the cold spheres than the hot lesions. In
this case the HKEM appears more flexible thanks to the PET
information included in the kernel. The average ROI error for
the hot lesions was always smaller or equal to 10% and the
HKEM outperformed KEM only in some cases while they
behave similarly in other. Finally, although the PET-MR spa-
tial inconsistencies introduce voxel variations and errors, it is
a consistent result over our datasets that the application of
a 5-mm Gaussian filter provide a significantly bigger PVE
than the one created by any MR translation, while OSEM
provide accurate but very noisy results. This can be seen in
Figs. 5, 6, 8, 10, and 12. The CoV showed up to a 20% differ-
ence between HKEM and KEM when using the phantom. On
the other hand, for the patient data the difference was always
around or lower than 1% Note that if the PET and MR images
have the same dimensions and voxel size, then the Euclidean
distances in (2) and (3) are the same. For the KEM there is
no oy, but only o4y,. The extra spatial Gaussian term and the
Gaussian term with the PET information contribute to improve
the PET unique feature preservation compared to KEM. A nar-
rower Gaussian term for KEM can be obtained with smaller
oam, however this comes at the cost of CNR. In fact, the maxi-
mum CNR was obtained with o4, = 5. The findings highlight
the improved flexibility of both HKEM and KEM compared to
the gold standard, OSEM, and the importance of a well cho-
sen MR sequence to use as anatomical information, as well
as an accurate registration between PET and MR. In fact, to
obtain the most accurate result, a study making use of anatom-
ical information should be thoroughly planned according to
the ROI one wants to study to avoid unwanted MR regions
crossing one or more PET regions.
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VI. CONCLUSION

In this paper, we showed the effect of introduced mis-
matches between PET and MR images, for cold and hot
regions, when we use the kernel method with MR information
for PET reconstructed images. We showed that even small
changes in the MR can result in a change in quantification and
blurring. Moreover, hybrid information can help to reduce this
effect, especially in the case of cold regions. The ideal solution
is to avoid MR sequences having tissue-borders crossing the
PET ROI as well as a very accurate PET-MR registration. In
addition, creating a protocol where the chosen MR sequence
is acquired during the PET scan would minimize the PET-MR
inconsistencies.
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