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Recognition of walking activity and prediction of gait periods

with a CNN and first-order MC strategy

Uriel Martinez-Hernandez, Adrian Rubio-Solis and Abbas A. Dehghani-Sanij

Abstract— In this paper, a strategy for recognition of human
walking activities and prediction of gait periods using wearable
sensors is presented. First, a Convolutional Neural Network
(CNN) is developed for the recognition of three walking
activities (level-ground walking, ramp ascent and descent) and
recognition of gait periods. Second, a first-order Markov Chain
(MC) is employed for the prediction of gait periods, based
on the observation of decisions made by the CNN for each
walking activity. The validation of the proposed methods is
performed using data from three inertial measurement units
(IMU) attached to the lower limbs of participants. The results
show that the CNN, together with the first-order MC, achieves
mean accuracies of 100% and 98.32% for recognition of
walking activities and gait periods, respectively. Prediction of
gait periods are achieved with mean accuracies of 99.78%,
97.56% and 97.35% during level-ground walking, ramp ascent
and descent, respectively. Overall, the benefits of our work
for accurate recognition and prediction of walking activity
and gait periods, make it a suitable high-level method for the
development of intelligent assistive robots.

I. INTRODUCTION

Recognition of activities of daily living (ADLs) is an im-

portant capability required in autonomous systems to deliver

safe and accurate assistance to humans [1], [2]. Activities

such as walking, ramp ascent/descent and sit-to-stand provide

independence of living and transportation across different

terrains, which make them particularly important for research

of computational recognition methods [3], [4], [5].

In recent years, a rapid progress has been observed in

sensor technology for collection of multimodal data measure-

ments from human motion. Sensors have became wearable

and lightweight, with modules integrated to provide inertial

measurements and soft kinematic data [6], [7], [8]. Even

though the rapid advancement on sensors, robust and accu-

rate computational methods for the analysis and recognition

of human motion are still under development [9], [10].

In this work, a strategy composed of a Convolutional

Neural Network (CNN) and a first-order Markov Chain

(MC), is presented for both, recognition of walking activity

and prediction of gait periods. The recognition of level-

ground walking, ramp ascent and descent activities is im-
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Fig. 1. High-level method, composed of a CNN and first-order MC, for
recognition and prediction of walking activities and gait periods. Real data
collected from wearable sensors attached to the lower limbs of participants.

plemented with a CNN [11], [12]. In addition, this neural

network is able to recognise the gait periods (initial contact,

loading response, mid-stance, terminal stance, pre-swing,

initial swing, mid-swing and terminal swing) and phases

(stance and swing) that compose the human gait cycle. A

temporal modelling, with a first-order MC [13], [14], is

used for prediction of gait periods based on the observation,

over time, of decisions made by the CNN for each walking

activity. The proposed strategy is validated with multiple

repetitions of three walking activities (level-ground walking,

ramp ascent and descent), performed by participants wearing

three inertial measurement unit (IMU) sensors attached to

their lower limbs (Figure 1). The validation process uses

real data, composed of angular velocity, accelerometer and

magnetometer signals, collected from the thigh, shank and

foot from each walking activity.

The experiments show that the CNN is capable to achieve

mean accuracies of 100% for recognition of walking activ-

ities, 98.32% for gait periods, 97.42% for stance phase and

99.83% for swing phase. The first-order MC is able to predict

gait periods with mean accuracies of 99.78%, 97.56% and

97.35% for level-ground walking, ramp ascent and descent.

This information is important to know the probability of

the next gait period and phase during the gait cycle. The

recognition and prediction functionalities, provided by the

proposed combination of high-level methods, are crucial for

multi-layer architectures required for learning, interaction

and control of autonomous assistive robots [15], [16], [17].

Overall, the results from the experiments show that the

strategy composed of a CNN and first-order MC is highly

accurate, which makes it suitable for the development of in-

telligent wearable robots capable to assist humans in ADLs.
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Fig. 2. Sensor signals for recognition and prediction of walking activities and gait periods. (A) Data collection from 9-DoF inertial measurement units
(IMU) attached to the thigh, shank and foot. (B) Example of concatenated signals from gyroscope (x,y,z), accelerometer (x,y,z) and magnetometer (x,y,z)
for a walking activity. (C) Segmentation of the dataset, into 8 periods, for recognition and prediction of gait periods and phases during a walking activity.

II. METHODS

A. Experimental protocol and data collection

Angular velocity, accelerometer and magnetometer signals

were employed from three inertial measurement units (IMU),

worn by 12 healthy human participants (Figure 1). Anthro-

pometric data from participants are as follows: ages between

24 and 34 years old, heights between 1.70 m and 1.82 m, and

weights between 75.5 kg and 88 kg.

Participants were asked to walk at their self-selected speed

and perform ten repetitions of three walking activities: level-

ground walking, ramp ascent and ramp descent (Figure 2A).

Level-ground walking was performed on a flat cement sur-

face. A metallic ramp, with a slope of 8.5 deg, was used for

ramp ascent and descent. Sensor signals were systematically

collected and filtered with a cut-off frequency of 10 Hz. For

this process employed three IMUs (Shimmer Inc.) attached

to the thigh, shank and foot of participants. For each IMU,

angular velocity, accelerometer and magnetometer signals,

in x-y and-z axes, were sampled at 100 Hz. These signals

were concatenated to form datasets, composed of 27 signals

(3 signals × 3 axes × 3 sensors) and 200 sensor samples,

from each activity performed by participants. Datasets from

8 and 4 participants were used to train and test the proposed

strategy, respectively. Figure 2B shows an example of the

signals collected from the wearable sensors during a walking

activity. In addition, two foot pressure-insole sensors were

used to detect the beginning and end of each gait cycle.

Figure 2C presents the segmentation of the gait cycle into

stance phase, swing phase and eight periods (initial contact,

loading response, mid-stance, terminal stance, pre-swing,

initial swing, mid-swing, terminal swing). This segmentation

allows the proposed strategy to recognise and predict the

state of the human body during a walking activity.

B. CNN for recognition of walking activity and gait period

Convolutional Neural Networks (CNN) have shown their

potential for speech recognition and image classifica-

tion [18], [19], [20]. Here, a CNN is developed for

recognition of walking activity and gait periods, using data

from wearable sensors. The proposed CNN model is pre-

sented in Figure 3A. The first layer uses 32 kernels of sizes

5 × 5 and 2 × 2 for convolution and max-pooling. The

second layer uses 16 kernels of sizes 3 × 3 and 2 × 2

for convolution and max-pooling. Features from the second

layer, which are flattened and fully connected, are used by

the softmax layer to estimate the probability of the current

walking activity and gait period. The CNN model receives

input data from all walking activities, arranged in matrices

of 27 signals × 25 samples based on the segmentation into

8 periods of the complete activity matrix (27 × 200, see

Figure 2). This approach allows to recognise the walking

activity and gait period performed by participants, e.g., level-

ground walking and period 5 (pre-swing). The output map

from each convolutional layer is obtained as follows:

xl
ij = bj +

m−1
∑

a=0

m−1
∑

b=0

kab ∗ y
l−1
(i+a)(j+b) (1)

where xl
ij is the output of the l layer of the j-th feature map

on the i-th unit, and bj is the bias. The operator ∗ denotes the

convolution between the m×m kernel kab and the nonlinear

output yl−1
(i+a)(j+b) from layer l − 1. The nonlinear function

σ is applied to the output from Equation (1) as follows:

ylij = σ(xl
ij) (2)

where ylij is the nonlinear output from the l convolutional

layer and σ is the hyperbolic tangent function tanh. A

downsampling process is performed with a max-pooling

layer after each convolutional layer. This process takes a

u × u region (2 × 2 size in our CNN model) and provides

the maximum value from that region as follows:

ylij = max
u×u

(yl−1
ij ) (3)

where ylij contains the maximum values from the nonlinear

output yl−1
ij . The process performed by convolutional and

max-pooling layers is known as feature learning. The learned

features, connected to a 1-dimensional feature vector yc, are

used by a softmax layer for classification, as follows:
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Fig. 3. CNN and first-order MC strategy for recognition and prediction of walking activities and gait periods using wearable sensors. (A) The CNN
model is composed of two convolutional and max-pooling layers, followed by flatten, fully connected and softmax layers. Input sensor data from all
walking activities (level-ground walking (LGW), ramp ascent (RA) and ramp descent (RD)) are segmented into 8 periods (initial contact, loading response,
mid-stance, terminal stance, pre-swing, initial swing, mid-swing and terminal swing). The CNN estimates the current walking activity and gait period
performed by a participant. (B) The first-order MC predicts the next gait period based on the observation of current recognition decisions from the CNN.

P (c|y) =
ey

Twc

∑N

n=1 e
yTwn

(4)

ĉ = argmax
c

P (c|y) (5)

where P (c|y) contains the probabilities for all classes

(walking activities and gait periods), given the sample vector

y. The parameters w and N represent the weight vector and

total number of classes, respectively. In Equation (5), the

recognition of the current walking activity and gait period,

ĉ, is obtained with the maximum a posterior (MAP) estimate.

The output from the CNN allows to know the state of the

human body while performing walking activities. This infor-

mation is needed for control of assistive and rehabilitation

robots, but also is important for prediction of gait periods

during the current walking cycle. An approach for prediction

of gait periods is presented in the next Section II-C.

C. First-order MC for prediction of gait periods

The prediction of gait periods is based on the sequential

analysis of decisions made by the CNN. Markov models

are useful to model sequential data and assume that fu-

ture predictions are independent of all but the most recent

observations. Specifically, here, a first-order Markov Chain

(MC) of observations is employed, where the probability

distribution P (zt|zt−1) of a particular observation zt at time

t is conditioned on the observation zt−1 at time t − 1. The

directed graph in Figure 3B shows the first-order MC, which

receives the gait period, zt, recognised by the CNN. The joint

distribution for a sequence of T observations is given by:

P (z1, . . . , zT ) = P (z1)

T
∏

t=2

P (zt|zt−1) (6)

In Equation (6), the conditional probability distribution

for observation zt, given the d-separation property and all

observations up to time t, is obtained as follows:

P (zt|z1, . . . , zt−1) = P (zt|zt−1) (7)

The temporal models in Equation (7) predicts the next

observation in a sequence using only the immediately pre-

ceding observation [21]. However, there is no standard

procedure for an efficient application [22], [23]. Here, online

implementation of MC for prediction of the next observation

zt+1, is based on the algorithm presented in [24], as follows:

P (zt+1) = AtP (zt) (8)

where zt is a random variable with N states, P (zt+1) is the

predicted state, P (zt) = [P (zt) = 1, · · · , P (zt) = N ] is a

stochastic state vector and At = [aij
t
], with i, j = 1 . . . N ,

is a time-dependent transition matrix. The state vector is

recursively updated by estimates of At, as follows:

aij
t
= ρΓij

t
, i, j = 1, . . . , N (9)
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Fig. 4. Training results of the CNN for recognition of walking activity
(blue colour curve) and gait period (green colour curve). (left) Accuracy
and (right) error recognition results achieved by the CNN method.

Γij
t
=

(

t− 1

t

)

Γij
t−1

+

(

1

t

)

ζij (10)

where ρ is a normalising factor and Γij
t

is the transition

likelihood of the j-th state at t − 1 to the i-th state at time

t. The variable ζij
t

is updated as follows:

ζij
t
=

{

ĉt if P (zt = i|zt−1 = j)

0 otherwise
(11)

c̃ = argmax
z

P (zt+1) (12)

where ζij
t

takes the value zero or ĉt, which is the probability

of the gait period at time t from the CNN. Finally, the MAP

estimate is applied to P (zt+1) to obtain the predicted state or

gait period, c̃, for next time t+1 during the walking activity.

III. RESULTS

The CNN and first-order MC strategy is validated with

the recognition of walking activity and gait periods, and

prediction of gait periods. For this process, training and

testing datasets were collected from IMUs attached to the

thigh, shank and foot of participants (see Section II-A).

A. Recognition of walking activity and gait periods

First, the accuracy of the high-level recognition of walking

activities and gait periods was validated. This experiment

employed angular velocity, accelerometer and magnetometer

signals from level-ground walking, ramp ascent and descent

activities. An example of these signals, measured from the

thigh, shank and foot of participants, is shown in Figure 2B.

The gait periods (initial contact, loading response, mid-

stance, terminal stance, pre-swing, initial swing, mid-swing

and terminal swing) in which the gait cycle was divided for

recognition and prediction are shown in Figure 2C. Sensor

datasets from 12 participants were split in two groups of 8

and 4 to train and test the high-level method, respectively.

The CNN model was configured to recognise 24 classes.

The first group of 8 classes represents the eight gait periods

for level-ground walking. The second group of 8 classes are

the eight gait periods for ramp ascent. The third group of

8 classes corresponds to the eight gait periods for ramp

descent. The architecture of the proposed CNN model is

shown in Figure 3A. The model accuracy and error, randomly

drawing sensor samples from the training datasets, are shown

in Figures 4A and 4B. These results show that, in the training

step, the CNN required 100 epochs to achieve the mean

accuracy of 100% for both, recognition of walking activity

(blue colour curve) and gait period (green colour curve).

Similarly, in the training step, the CNN model required 100

epochs to achieve the smallest error of 0% for recognition for

walking activity and gait period. Sensor samples, randomly

drawn from the testing datasets, were used to evaluate the

CNN with new data. This process achieved an accuracy

of 100% for recognition of individual walking activities

(Figure 5A). The mean accuracy of 98.32% for recognition of

gait periods for all walking activities is shown in Figure 5B.

From these results, it is observed that recognition of stance

(periods 1 to 5) and swing (periods 6 to 8) phases are 97.42%

and 99.83%, respectively (Figure 5C). The recognition of

gait periods and phases is important to know the state of the

human body during the gait cycle, e.g., heel contact and toe-

off. The accuracy recognition of gait periods for individual

walking activities are shown in Figures 5D, 5E, and 5F.

These results show that the CNN was able to recognise gait

periods for level-ground walking, ramp ascent and descent

with accuracies of 99.92%, 97.62% and 97.43%, respectively.

B. Prediction of gait periods

Prediction of gait periods allows to know the probability

for the next gait period during the walking cycle, which

is important for a better control of assistive robots. The

results from prediction of gait periods, using the first-order

MC temporal model, are shown in the confusion matrices of

Figure 6. In this process, the MC model used the recognition

output from the CNN during the walking activity. Then, the

transition over time of gait periods was observed and learned

by the MC model to estimate the next probable gait period. In

Figure 6, the gait periods recognised by the CNN are shown

in orange colour, while the estimated predictions from the

MC are shown in grey scale colours. The confusion matrix

in Figure 6A shows the prediction of gait periods for level-

ground walking activity, where a mean accuracy of 99.78%

was achieved. Similarly, Figures 6B and 6C show the mean

gait period prediction accuracies of 97.56% and 97.35% for

ramp ascent and ramp descent activities, respectively. Then,

the first-order MC model was able to predict gait periods for

all walking activities with a mean accuracy of 98.23%.

The results show that the performance of the prediction

process, using the first-order MC, depends on the recognition

accuracy of the CNN model. For that reason, prediction

of gait periods for level-ground walking is more accurate

than the results achieved for ramp ascent and descent. This

prediction process is important to allow assistive robots to

understand not only the current state of the human body, but

also to perceive what is the next expected event during the

walking activity. For instance, prediction of the swing phase

is possible based on the recognition of gait periods during

the stance phase. This predictive capability allows robots to

be prepared for an expected event, and thus, delivering the

needed assistance at the appropriate time in ADLs.
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Fig. 5. Accuracy achieved by the CNN for recognition of walking activity and gait period using testing datasets. Low (0%) and high (100%) accuracy
are represented by white and black colours, respectively. (A) Recognition accuracy for all walking activities. (B) Mean recognition accuracy of gait period
for all walking activities. (C) Mean error recognition of gait periods and phases for all walking activities. Stance and swing phases correspond to periods
1 to 5 and 6 to 8, respectively. Recognition accuracy of gait periods for (D) level-ground walking, (E) ramp ascent and (F) ramp descent.

A comparison of the performance between the proposed

strategy and state-of-the-art methods is presented in Table I.

All methods are able to recognise walking activities with

high accuracies ranging from 98% (DNB [30]) to 100%

(GMM [28] and our CNN+first-order MC). Only a few

methods are able to recognise gait periods and events with

accuracies of 95.25% (DBN [30]), 97% (SVM [29]) and

98.32% (CNN + first-order MC), where the highest accuracy

is achieved by our work. Our proposed strategy allows

the prediction of gait periods (98.23%), which contrasts

with the capabilities offered by all methods in Table I.

This comparative analysis shows the benefits of combining

convolutional neural networks and Markov Chain models,

together with wearable sensors, for robust recognition and

prediction of walking activities and gait periods.

Overall, the results from all experiments showed the

capability of the CNN and first-order MC strategy to perform

high-level recognition and prediction processes. Thus, this

work offers a suitable computational approach that, con-

nected to mid- and low-level processes, has the potential to

allow wearable robots to not only identify human motion,

but also to provide reliable assistance in ADLs.
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Fig. 6. Confusion matrices with the accuracy, achieved by the first-order MC, for prediction of gait periods for each of walking activity using testing
datasets. Low (0%) and high (100%) prediction accuracy are represented by white and black colours, respectively. The recognition of the current gait
period, from the CNN, is shown in orange colour. For example, when the current gait period during level-ground walking is recognised as period 1 (initial
contact), the next most probable gait period is period 2 (loading response) with a prediction accuracy of 99.5% (see plot A). Prediction accuracy of gait
periods for level-ground walking (LGW), ramp ascent (RA) and ramp descent (RD) is presented in confusion matrices (A), (B) and (C), respectively.



TABLE I

COMPARISON OF STATE-OF-THE-ART METHODS FOR RECOGNITION OF

WALKING ACTIVITIES AND PREDICTION OF GAIT PERIODS

Recognition Recognition Prediction
activity gait period gait periodMethod Activity # Sensors

accuracy (%) accuracy (%) accuracy (%)

Log-sum
distance [25]

Level walking,
ramps, sitting

9 99.0 - -

ANN [26] Level walking 32 98.78 - -

LDA +
DBN [27]

Level walking,
ramps, stair

13 99.5 - -

GMM [28] Level walking,
standing, sitting

4 100 - -

SVM [29] Level walking,
ramps

9 99 97 -

DBN [30] Level walking,
ramps, stair

13 98 95.25 -

CNN +
first-order MC

Level walking,
ramps

3 100 98.32 98.23

IV. CONCLUSION

In this work we presented a strategy, composed of a CNN

and first-order MC, for recognition of walking activities and

prediction of gait periods using data from wearable sensors.

The CNN was implemented for recognition of walking

activities (level-ground walking, ramp ascent and descent)

and gait periods (initial contact, loading response, mid-

stance, terminal stance, pre-swing, initial swing, mid-swing

and terminal swing), achieving mean accuracies of 100%,

and 98.32%, respectively. The first-order MC was developed

to predict the next probable or expected gait period during the

gait cycle. This temporal model achieved mean accuracies

of 99.78%, 97.56% and 97.35% for prediction during level-

ground walking, ramp ascent and descent, respectively. All

the experiments, for validation of the proposed method,

employed real data collected from three wearable sensors

attached to the thigh, shank and foot of participants while

performing walking activities. The results showed that our

method is able to identify the state of the human body

and estimate the next expected event during the walking

activity. Overall, the recognition and predictive functionali-

ties, offered by the proposed strategy, are essential for control

of intelligent wearable devices capable to provide safe and

reliable assistance to humans in ADLs.
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