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ABSTRACT

Superluminous supernovae (SLSNe) are at least ∼5 times more luminous than common super-

novae. Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering

mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I

are powered by an internal engine, such as a magnetar or an accreting black hole. Strong

magnetic fields or collimated jets can circularly polarize light. In this work, we measured cir-

cular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph

(FORS2) mounted at the ESO’s Very Large Telescope. PS17bek, a fast-evolving SLSN-I, was

observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 d

after maximum. Neither SLSN shows evidence of circularly polarized light; however, these

non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I.

We calculate the strength of the magnetic field and the expected circular polarization as a

function of distance from the magnetar, which decreases very fast. Additionally, we observed

no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere

near peak is close to spherical symmetry.

Key words: supernovae: general – polarization – supernovae: individual: OGLE16dmu,

PS17bek.

1 IN T RO D U C T I O N

Superluminous supernovae (SLSNe) may include a few remaining

examples of deaths of extremely massive stars that in the early uni-

⋆ E-mail: acikota@eso.org

†Alexander von Humboldt Fellow

verse may have played an important role for re-ionization of the

Universe and are therefore an important class of objects to under-

stand. They are extremely bright, as the name would imply, and

powering such a luminous display is a challenge. Peak luminosi-

ties of SLSNe are greater by a factor of ∼5 than peak luminosities

of type Ia supernovae, and ∼10–100times greater than broad-lined

type Ic and normal stripped envelope supernovae. They are sepa-
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Circular polarimetry of SLSNe 4985

rated into two classes: the hydrogen poor SLSN-I, which have quite

featureless early spectra; and hydrogen-rich SLSN-II, which are

thought to occur within a thick hydrogen shell and are therefore

difficult to investigate (Gal-Yam 2012).

Woosley, Blinnikov & Heger (2007) suggest that collisions be-

tween shells of matter ejected by massive stars that undergo an

interior instability arising from the production of electron–positron

pairs might explain such luminous SLSNe-I (see also Woosley

2016) or a pair-instability explosion of a very massive star (with

a core of ≥50 M⊙, e.g. Gal-Yam et al. 2009; Dessart et al. 2013).

The luminosity may also be produced by interaction between the

ejecta and H-poor circumstellar material (Chatzopoulos, Wheeler

& Vinko 2012; Sorokina et al. 2016; Vreeswijk et al. 2017).

Another possibility is that SLSNe-I are powered by an internal

engine, such as a magnetar (Kasen & Bildsten 2010; Woosley 2010;

Inserra et al. 2013; Nicholl et al. 2013; Chen et al. 2015) or an ac-

creting black hole (Dexter & Kasen 2013). Kasen & Bildsten (2010)

have shown that energy deposited into an expanding supernova rem-

nant by a highly magnetic (B ∼ 5 × 1014G) fast-spinning neutron

star can substantially contribute to the SLSN luminosity and ex-

plain the brightest events ever seen. They calculated that magnetars

with initial spin periods <30 ms can reach a peak luminosity of

1042–1045 erg s−1 (MBol = −16.3 to −23.8 mag) because of the

rotational energy deposition from magnetar spin-down.

In this work, we first time undertake circular polarimetry of

SLSNe in the visible part of the spectrum. We aim to test the magne-

tar scenario using circular polarimetry. Our hypothesis is that if there

is a strong magnetic field, we would expect to observe circularly

polarized light, attributed to the monotonic grey-body magnetoe-

missivity which has been theoretically predicted by Kemp (1970)

and demonstrated in the laboratory. The challenge for the magnetar

observations is that the energy from the magnetar is reprocessed by

the ejecta so that the bulk of the luminosity is arising from thermal

processes (as is manifest in the spectra). In the thermalization pro-

cess, the polarization of the original light is destroyed; however, the

magnetar’s magnetic field will remain.

Circular polarization has already been observed in white dwarfs

with strong magnetic fields. For instance, Kemp et al. (1970) and

Angel, Landstreet & Oke (1972) observed strong circular polariza-

tion, 1–3 per cent, in visible light, and 8.5–15 per cent in the infrared

(Kemp & Swedlund 1970) of Grw+70◦8247. For this white dwarf,

they estimate a mean projected B field of 1 × 107 G.

Another possible origin of circularly polarized light may be an

electron pitch-angle anisotropy in a relativistic jet, for instance from

an accreting black hole, as suggested by Wiersema et al. (2014).

They observed circular polarization in the afterglow of gamma-ray

burst 121024A, which are believed to be powered by a collimated

relativistic jet from an accreting black hole.

In Section 2, we describe the targets and observations, in Section3

the methods, in Section 4, we show the results, which we discuss

in Section 5, and the summary and conclusions are presented in

Section6.

2 TA R G E T S A N D O B S E RVAT I O N S

We obtained circular polarimetry of two SLSNe-I at single epochs:

OGLE16dmu at 101.3 d past peak (rest frame), and PS17bek at

peak brightness. Additionally, we obtained linear polarimetry of

PS17bek at four different epochs (−4.0, +2.8, +13.4, and +21.0 d

relative to peak brightness in rest frame).

All observations in this study were acquired with the FOcal Re-

ducer and low-dispersion Spectrograph (FORS2, Appenzeller 1967;

Appenzeller et al. 1998; ESO 2015) mounted at the Cassegrain focus

of the UT1 Very Large Telescope (VLT), under the ESO program

ID 098.D-0532(A), using the MIT CCD chip. The observations

were obtained in the imaging polarimetry mode (IPOL). Circular

polarimetry was obtained, without any filters, with two different

quarter-wave retarder plate (QWP) angles of θ = ±45◦ but in two

different rotations of the instrument (0◦ and 90◦) in order to re-

move possible crosstalks between linear and circular polarization

(Bagnulo et al. 2009).

Linear polarimetry of PS17bek was obtained through the

V HIGH FORS2 standard filter (λ0= 555 nm, FWHM = 123.2 nm)

at four half-wave retarder plate (HWP) angles (0◦, 22.5◦, 45◦, and

67.5◦).

A observation log is given in Table 1.

2.1 OGLE16dmu

OGLE16dmu was discovered on 2016 September 23 (MJD

57654.84) (Wyrzykowski et al. 2016) and classified as a SLSN-I.

The classification spectrum is shown in Fig.1. It is apparently host-

less at a redshift z ∼ 0.426 (Prentice et al. 2016). From GROND

observations (Chen et al., in preparation), we determined an ap-

parent magnitude at peak of mr= 19.41 mag in 2016 November

11 (MJD 57698.41). The total Galactic reddening in the direction

of OGLE16dmu is E(B − V) = 0.03 mag (Schlafly & Finkbeiner

2011), which corresponds to Ar ∼ 0.07 mag assuming a Fitz-

patrick (1999) extinction law and RV = 3.1. The Galactic reddening-

corrected absolute brightness is Mr= −22.2 mag.1

From the rest frame light curve, we estimate the rate of decline

at 30 d past maximum (Inserra & Smartt 2014) to be DM30 ∼ 0.22

mag. Alternatively, using the metric described in Nicholl et al.

(2015a) (the time to reach from maximum light, fmax, to fmax/e), we

estimate τ dec∼ 70.6 d. Thus, this is a bright and slowly evolving

SLSN-I, similar to PTF12dam or SN 2015bn.

2.2 PS17bek

PS17bek is a SLSN-I at z = 0.30992 ± 0.0003 (see Fig. 1, PESSTO

classification).

It was discovered at α = 10h47m41.90s and δ = +26◦50′06.0′′ on

MJD = 57 802.4 (February 18, 2017) and it is possibly associated to

the galaxy GALEXMSC J104 742.19 + 265 006.8. The object was

discovered when this region of sky was observed by Pan-STARRS

(Chambers et al. 2016; Smartt et al. 2016) in response to a possible

low-significance gravitational wave signal provided by LIGO-Virgo

(Abbott et al. 2016), but this transient was not considered related

to that event. As part of the Public ESO Spectroscopic Survey for

Transient Objects (PESSTO), we took a classification spectrum (see

Smartt et al. 2015 for details of the instrumentation, calibration, and

data access).

We determined an apparent magnitude at peak of mr = 19.8 mag

(Cano et al., in preparation) at MJD = 57 814.58 d. The Galac-

tic reddening in the direction of PS17bek is E(B − V) = 0.03 mag

(Schlafly & Finkbeiner 2011), which corresponds to Ar ∼ 0.07 mag.

Thus, the Galactic reddening-corrected absolute magnitude of

PS17bek is Mr ∼ −20.7 mag.

For PS17bek, we estimate a decline rate of DM30 ∼ 1.62 mag

or tdec ∼ 23 d. Thus, this is a fast-declining SLSN-I, similar to SN

2010gx or SN 2011ke. In fact, the measured decline rate implies that

PS17bek is one of the fastest evolving SLSNe-I (see Inserra et al.

1We assume a flat universe with H0 = 67.8 km s−1 Mpc−1 and �M = 0.308

(Planck Collaboration et al. 2016).
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4986 A. Cikota et al.

Table 1. Observations log.

Name UT date and time Filter λ/2-plate λ/4-plate Wollaston Exposure Seeing

angle (◦) angle (◦) angle (◦) (s) (’)

PS17bek 2017-02-25 05:48:09 None – 315 0 200 0.61

PS17bek 2017-02-25 05:53:59 None – 45 0 200 0.62

PS17bek 2017-02-25 06:23:44 None – 405 90 200 0.67

PS17bek 2017-02-25 06:28:02 None – 135 90 200 0.61

PS17bek 2017-02-25 06:42:04 v HIGH 0 – 0 650 0.67

PS17bek 2017-02-25 06:53:37 v HIGH 45 – 0 650 0.63

PS17bek 2017-02-25 07:05:03 v HIGH 22.5 – 0 650 0.66

PS17bek 2017-02-25 07:16:35 v HIGH 67.5 – 0 650 0.55

PS17bek 2017-03-06 05:07:26 v HIGH 0 – 0 520 0.71

PS17bek 2017-03-06 05:16:48 v HIGH 45 – 0 700 0.60

PS17bek 2017-03-06 05:29:04 v HIGH 22.5 – 0 700 0.59

PS17bek 2017-03-06 05:41:26 v HIGH 67.5 – 0 700 0.50

PS17bek 2017-03-20 01:45:38 v HIGH 0 – 0 700 0.64

PS17bek 2017-03-20 01:58:02 v HIGH 45 – 0 700 0.69

PS17bek 2017-03-20 02:10:17 v HIGH 22.5 – 0 700 0.70

PS17bek 2017-03-20 02:22:40 v HIGH 67.5 – 0 700 0.86

PS17bek 2017-03-20 02:36:04 v HIGH 0 – 0 700 0.68

PS17bek 2017-03-20 02:48:27 v HIGH 45 – 0 700 0.67

PS17bek 2017-03-20 03:00:42 v HIGH 22.5 – 0 700 0.77

PS17bek 2017-03-20 03:13:05 v HIGH 67.5 – 0 700 0.81

PS17bek 2017-03-30 02:10:19 v HIGH 0 – 0 500 0.69

PS17bek 2017-03-30 02:19:23 v HIGH 45 – 0 500 0.72

PS17bek 2017-03-30 02:28:18 v HIGH 22.5 – 0 500 0.68

PS17bek 2017-03-30 02:37:21 v HIGH 67.5 – 0 500 0.56

PS17bek 2017-03-30 02:46:59 v HIGH 0 – 0 500 0.47

PS17bek 2017-03-30 02:56:02 v HIGH 45 – 0 500 0.54

PS17bek 2017-03-30 03:04:57 v HIGH 22.5 – 0 500 0.58

PS17bek 2017-03-30 03:13:60 v HIGH 67.5 – 0 500 0.81

OGLE16dmu 2017-03-30 23:59:36 None – 315 0 220 0.74

OGLE16dmu 2017-03-31 00:04:14 None – 45 0 220 0.85

OGLE16dmu 2017-03-31 00:18:00 None – 405 90 220 0.84

OGLE16dmu 2017-03-31 00:22:38 None – 135 90 220 0.75

Figure 1. PESSTO classification spectra of OGLE16dmu (middle blue

spectrum) and PS17bek (top red spectrum), compared to LSQ14bdq (bot-

tom green spectrum, Nicholl et al. 2015b). The inset shows the (OIII) and

Hβ emission lines in the spectrum of PS17bek, used for the redshift deter-

mination. PS17bek and LSQ14bdq have been plotted with a constant offset

of +4 × 10−17 and −1× 10−16, respectively.

2018b). Starting from Gal-Yam (2012), it remains an unresolved

issue if H-poor SLSNe can be divided into more sub-classes (e.g.

Type I/Type R or fast/slow) and whether this division has physical

implications (De Cia et al. 2017; Inserra et al. 2018b; Quimby et al.

2018). Irrespective, it remains an advantage that our experiment

probes representative SLSNe from both sub-classes.

3 DATA PRO C E S S I N G A N D M E T H O D S

The data consist of two science frames per exposure: the upper

CHIP1 and lower CHIP2, which correspond to two mosaic parts of

the two CCD detectors. In IPOL mode, the image is split by the

Wollaston prism into an ordinary (o) beam and an extraordinary

(e) beam, and the multi-object spectroscopy slitlets strip mask is

inserted to avoid the beams overlapping. The targets were observed

at the bottom of CHIP1 (upper frame), centred in the optical axis

of the telescope. The bottom strip in the upper frame is the ex-

traordinary beam. The Wollaston prism is usually aligned with the

north celestial meridian except when the instrument is rotated by

90◦ during the second sequence of circular polarimetry, when it was

aligned towards East.

All frames were bias subtracted using the corresponding calibra-

tion bias frames. A flat-field correction was not performed because

the flat-field effect gets cancelled out, because of the redundancy

introduced by multiple HWP and QWP angles, for linear and circu-

lar polarimetry, respectively (Patat & Romaniello 2006; ESO 2015

).

MNRAS 479, 4984–4990 (2018)
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Circular polarimetry of SLSNe 4987

To determine the polarization of our targets, we conducted aper-

ture photometry of sources in the ordinary and extraordinary beams

using the IRAF’s DAOPHOT.PHOT package. An optimal aperture

radius of ∼2 FWHM was used.

3.1 Circular polarimetry

Following the FORS2 user manual (ESO 2015), the amount of

circular polarization is given as:

V =
1

2

[(

f o − f e

f o + f e

)

θ=45◦
−

(

f o − f e

f o + f e

)

θ=−45◦

]

, (1)

where fo and fe are the measured flux in the ordinary and extraordi-

nary beam, respectively, for both quarter-wave retarder plate angles

of θ = ±45◦. The circular polarization error was calculated by error

propagation of the flux errors.

To minimize a possible linear-to-circular polarization crosstalk

(Bagnulo et al. 2009), we calculate the average of the Stokes V

measured at two instrument position angles, φ, and φ + 90◦:

PV =
Vφ + Vφ+90◦

2
, (2)

which leads to cancellation of the spurious signal (Bagnulo et al.

2009).

3.2 Linear polarimetry

The Stokes Q and U parameters for PS17bek and a number of

field stars were derived using the standard approach, as described

in Leloudas et al. (2015), that is, via the Fourier transformation

of normalized flux differences measured at four half-wave retarder

plate angles of 0◦, 22.5◦, 45◦, and 67.5◦ (see also the FORS2 manual,

ESO 2015).

We correct the polarization position angles of the raw measure-

ments for the half-wave plate zero angle chromatic dependence

(table 4.7 of ESO 2015), and for the instrumental polarization,

which increases with distance from the optical axis ( fig.5 of Patat

& Romaniello 2006). In addition, we used 7 field stars to determine

the interstellar polarization (ISP) by calculating their barycentre in

the Q–U plane for each epoch (Fig. 2). The stars give a stable and

self-consistent result with time:

QISP = 0.066 ± 0.004 per cent

UISP= −0.007 ± 0.018 per cent.

Thus, PISP = 0.066 ± 0.004 per cent. This value is lower than

the expected maximum ISP, pmax = 9.0 × E(B − V), determined by

Serkowski, Mathewson & Ford (1975), using the Galactic reddening

in the direction of PS17bek, E(B − V) = 0.027 ± 0.004 mag

(Schlafly & Finkbeiner 2011).

Additionally, we do a polarization bias correction, following Patat

& Romaniello (2006).

4 R ESULTS

We undertook circular polarimetry for two SLSNe-I: OGLE16dmu

101.3 d after peak brightness (in rest frame) and PS17bek 4.0 d

before peak brightness.

The circular polarization of both SLSNe is consistent with zero.

We measured a circular polarization of PV = −0.55± 1.31 per cent

for OGLE16dmu, and PV = −0.21± 0.18 per cent for PS17bek.

The results are summarized in Table 2. The signal-to-noise ratio of

PS17bek observed at different instrument rotation angles φ of 0◦ and

90◦ is S/N ∼ 272 and ∼172, respectively, while for OGLE16dmu

Figure 2. Q–U plane for all four epochs of PS17bek. Comparison stars are

coloured light green. In each panel, a dark green cross indicates the position

of the ISP, calculated as the barycentre of the stars at each epoch. The red

cross is the ISP averaged over all epochs, which coincides with the dark

green cross in the individual epochs. The original measurement of the SN is

shown in magenta and the ISP-corrected value in blue.

Table 2. Circular polarimetry results.

SLSN Phase V0◦ (%) V90◦ (%) PV (%)

PS17bek −4.0 d − 0.33 ± 0.25 − 0.08 ± 0.27 − 0.21 ± 0.18

OGLE16dmu +101.3 d − 0.58 ± 1.30 − 0.52 ± 2.28 − 0.55 ± 1.31

S/N ∼ 62 (at φ = 0◦) and ∼59 (at φ = 90◦), which explains the

large uncertainties of the calculated polarization.2

Fig. 3 shows a section of the FORS2 imaging polarimetry field for

OGLE16dmu and PS17bek taken with different instrument position

angles. It is shown that the measured polarization of our targets is

consistent with the polarization of field stars that are expected to be

unpolarized. Furthermore, the fainter sources with lower S/N have

larger polarization values but also higher uncertainties.

The ISP-corrected linear polarization measurements of PS17bek

are given in Table 3 and shown in Fig.4. At least for the first three

epochs (−4, +2.8, and +13.4 relative to peak brightness), the linear

polarization of the SLSN is very similar to one of the field stars

and consistent with zero in Q and U. Thus, there is no significant

linear polarization at these phases. The fourth epoch (21.0 d past

maximum brightness) might indicate a larger polarization (∼0.8

per cent) but the result is not highly significant. The signal-to-noise

ratio at the last phase is 154 (since the SN has faded), which is

significantly lower than at −4 d (SNR ∼ 384), +2.8 d (SNR ∼ 384),

and +13.4 d (SNR ∼ 282) relative to peak brightness. Considering

that the uncertainty of the last phase is ∼0.5 per cent, this is a 2σ

result.

2The absolute error of P is related to the signal-to-noise ratio as

σP = 1√
N/2 SNR

, where N is the number of wave plate angles used (Patat &

Romaniello 2006).

MNRAS 479, 4984–4990 (2018)
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4988 A. Cikota et al.

Figure 3. Sections of the ordinary beams for single imaging polarimetry exposures for OGLE16dmu (left) and PS17bek (right). The top and bottom panels

are exposures taken with the instrument rotated by 0◦ and 90◦, respectively. The red circles mark the targets, while green circles mark comparison stars in the

field. The radii of the circles correspond to the absolute circular polarization, as indicated in the legend.

Table 3. ISP-corrected linear polarimetry results for PS17bek.

Phase Q (%) U (%) Pa (%) φ (◦)

−4.0 − 0.02 ± 0.18 0.05 ± 0.18 0.0 ± 0.18 56.3 ± 97.1

+2.8 0.1 ± 0.18 − 0.13 ± 0.18 0.0 ± 0.18 − 26.5 ± 31.6

+13.4 − 0.11 ± 0.25 − 0.06 ± 0.25 0.0 ± 0.25 − 74.6 ± 56.8

+21.0 − 0.32 ± 0.46 0.85 ± 0.46 0.19 ± 0.46 55.4 ± 14.5

Notes. aPolarization-bias corrected.

Figure 4. Stokes Q–U plane for PS17bek observed at four epochs. The

different colours indicate different epochs: −4.0 (purple), +2.8 (blue), +13.4

(green), and +21.0 (yellow) days relative to peak brightness. The dashed

concentric circles of equal polarization have a radius of 0.5 per cent and 1.0

per cent, respectively.

5 D ISCUSSION

5.1 Circular polarimetry of OGLE16dmu and PS17bek

In the magnetar scenario, a rapidly rotating magnetar is born dur-

ing a core-collapse SN explosion. The explosion ejects many solar

masses of material, which expands while the magnetar spins down.

The spin-down injects ∼1051 erg into the ejected material that has

since expanded to a distance of ∼100 au, and heats it up, which then

radiates the energy away (Woosley 2010; Kasen & Bildsten 2010;

Inserra et al. 2013; Smith 2015).

The idea behind observing a target at early phases was to possibly

detect an imprint of the strong magnetic field in the ejected material,

while the aim of observing a target at late phases was to observe

emitted light originating from the photosphere which moves inwards

with time, closer to the magnetar, as the ejecta expands and becomes

transparent.

Kemp (1970) predicted that a ‘grey-body’ model in a magnetic

field will emit a fraction of circularly polarized light. The degree of

polarization, q, is proportional to the emitting wavelength, λ, and

the strength of the magnetic field, B (see equations (7) and (16) in

Kemp 1970), and is given by:

q(λ) ≃ −
λeB

4πmc
, (3)

where e and m are the electron’s charge and mass, respectively, and

c is speed of light.

However, since the magnetic field is decreasing with distance,

proportional to 1/distance3, the polarization will drop very quickly.

Assuming a magnetic field B0 at the surface of a magnetar with

radius R0, the maximum magnetic field decreases as a function of

distance, r, as following:

B(r) = B0

(

R0

r

)3

. (4)

Fig. 5 shows the magnetic field, B, and the circular polarization

attributed to grey-body magnetoemissivity, q, as a function of dis-

tance, calculated in the optical (λ = 0.67 μm), for three different

surface magnetic strengths, B0, for a magnetar of radius R0 = 10

km.

For example, assuming a surface magnetic field strength of B0

= 5 × 1015 G, the magnetic field strength drops to 4× 104 G at a

distance of only 5 × 104 km. The degree of polarization produced by

grey-body magnetoemissivity at that distance is q ∼ 0.01 per cent,

which is beyond our detection capabilities.

Furthermore, our observations were taken without any filter in or-

der to achieve a high SNR in a reasonable time, while the absolute

degree of circular polarization produced by grey-body magnetoe-

missivity increases with wavelength (see equation 3). Therefore, it is
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Circular polarimetry of SLSNe 4989

Figure 5. Maximum magnetic field strength (black lines) and absolute

circular polarization, q (red lines), in the optical (λ= 0.67 μm) as a function

of distance, r, for three different initial surface magnetic field strengths, B0,

at R0 = 10 km.

generally recommended to observe circular polarization at infrared

wavelengths.

Despite a non-detection of circular polarization in SLSN-I, the

magnetar scenario cannot be excluded as the internal engine of

SLSNe, because in order to observe circularly polarized light at-

tributed to grey-body magnetoemissivity, it is necessary that the

light is emitted within strong magnetic fields, close to the magnetar,

which is not the case in the magnetar scenario as described, e.g.

by Kasen & Bildsten (2010), in contrast to the observed circular

polarization in white dwarfs (e.g. Kemp, Swedlund & Wolstencroft

1971; Rich & Williams 1973), where the observed light is emitted

from the white dwarf’s surface.

Another possibility for the lack of observed circular polarization

is that OGLE16dmu and PS17bek are not driven by an internal

engine at all. For instance, other possible scenario that could ex-

plain such a high luminosity is a pair-instability supernova (PISN,

e.g. Woosley et al. 2007; Gal-Yam et al. 2009; Dessart et al. 2013;

Woosley 2016; Kozyreva 2017), or a normal SN explosion inter-

acting with circumstellar shells (e.g. Chatzopoulos et al. 2012;

Sorokina et al. 2016; Vreeswijk et al. 2017). In case of a PISN,

which requires high amounts of 56Ni to explain the luminosity, the

light curves are expected to evolve slowly, which likely rules out

this scenario for PS17bek that has one of the fastest evolving light

curves (Chen et al., in preparation). However, it is beyond the scope

of this short paper to analyse the light curves for those SLSNe.

5.2 Linear polarimetry of PS17bek

Intrinsic linear polarization of SNe is a measure of the supernova’s

photosphere departure from spherical symmetry projected on the

sky. If the projection of the photosphere is not symmetric, more

photons will be scattered by electrons along the photosphere’s major

axis than along the minor axis, which will produce net polarization

in the continuum (see, e.g. Hoflich 1991; Kasen et al. 2003; Bulla,

Sim & Kromer 2015).

Because SLSNe are faint, and thus it is hard to undertake po-

larimetry that requires high SNR, only a few SLSNe have been

studied using polarimetry (Leloudas et al. 2015; Inserra et al. 2016,

2018a; Leloudas et al. 2017; Bose et al. 2018).

LSQ14mo, also a fast-declining SLSN-I (as PS17bek), did not

show evidence for significant polarization or polarization evolution

from −7 and up to +19 d with respect to maximum (Leloudas

et al. 2015). In the contrary, the slowly evolving SN 2015bn did

show an increase in polarization with time that was attributed to

the photosphere receding to inner layers of the explosion that are

more asymmetric. Inserra et al. (2016) obtained the first spectropo-

larimetric observations of an SLSN-I, at −24 and +28 d, further

showing that the geometry was consistent with an axisymmetric

configuration (that could be consistent with a magnetar scenario).

The polarization increase was confirmed by Leloudas et al. (2017),

who obtained multi-epoch imaging polarimetry between −20 and

+46 d, showing that the increase was coincident with changes in

the optical spectrum.

The result obtained for PS17bek is fairly consistent with the

picture obtained from previous events. Similar to the other SLSNe-

I, observed around peak, no significant polarization is detected. Our

last observation (at +21 d) could be consistent with an increase in

polarization but the significance of this result is below 2σ . Either

fast-evolving SLSNe (PS17bek and LSQ14mo) follow a different

geometrical evolution than slowly evolving SLSNe, or simply the

available data, due to a combination of low SNR and lack of data

at late phases, are not able to significantly detect an increase in

polarization.

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we investigated circular polarization of two hydrogen-

poor SLSNe for the first time, using FORS2 at the VLT. Our main

results can be summarized as follows:

(i) OGLE16dmu is a slowly evolving hydrogen-poor SLSN. We

undertook circular imaging polarimetry at +101.3 d past peak (in

rest frame r band) and found no evidence of circular polarization.

(ii) PS17bek is a fast-evolving SLSN-I. We undertook circular

polarimetry at −4.0 d relative to the peak brightness (in rest frame

r band) and found no evidence of circular polarization.

(iii) Additionally, PS17bek was observed in linear polarimetry

mode at four phases (−4.0, +2.8, +13.4, and +21.0 d), and shows

no significant linear polarization.

(iv) We cannot exclude the magnetar scenario because of a non-

detection of circular polarization, which, due to the rapid decrease

in the strength of the magnetic with distance, would be detectable

only at small radii close to the surface of the magnetar.

(v) We note that future attempts to measure the strength of mag-

netic fields using circular polarimetry should be made in the in-

frared, where the expected degree of circular polarization produced

by grey-body magnetoemissivity is higher.

(vi) It is not likely that we will observe circular polarization

produced by grey-body magnetoemissivity, because (assuming the

magnetar scenario) the bulk of the luminosity arises from thermal

processes in the ejecta, which occurs at large distances from the

magnetar, where the magnetic fields are not strong enough to pro-

duce significant circular polarization, however, such observations

are valuable, because they may also allow us to probe for other

sources of circular polarization, e.g relativistic jets.
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