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FARVaR: Functional Autoregressive Value-at-Risk∗

Charlie X. Cai†, Minjoo Kim‡, Yongcheol Shin§and Qi Zhang¶

Abstract

Motivated by the stylized fact that intraday returns can provide additional information on the

tail behaviour of daily returns, we propose a functional autoregressive value-at-risk approach

which can directly incorporate such informational advantage into the daily value-at-risk forecast.

Our approach leads to greater flexibility in modelling the dynamic evolution of the density

function of intraday returns and the ability to capture substantial swings in the tails following

major events. We comprehensively evaluate our proposed model using intraday transaction

data and demonstrate that it can improve coverage ability, reduce economic cost and enhance

statistical reliability in market risk management.
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In the aftermath of the 2008 global financial crisis, the effective role of value-at-risk (VaR) in risk

management has been subjected to intense debate.1 Although the crisis revealed that the main
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weakness of VaR lies in ignoring the liquidity risk and underestimating the correlation risk, the

general consensus is that VaR is still one of the most important risk management tools available

(e.g., Croft, 2011). The search for more accurate VaR modelling will therefore continue (e.g., Adams

et al., 2014).

Recently, we have been confronted with new challenges. The ever-increasing prominence of

computer-based trading in the financial market makes it more important to carefully examine risks

arising from the automated intraday activities typically related to high-frequency trading (HFT).

While the market microstructure literature is still debating whether and how HFT will influence

market quality, intraday dynamics are expected to become an increasingly important input to price

discovery.2 Even for daily risk management, we expect to develop a more accurate VaR model

by capturing information generated from the higher frequency data. The usefulness of intraday

information has been demonstrated extensively in the realized volatility literature (Andersen et al.,

2001; Engle and Giampiero, 2006), though the direct incorporation of intraday return information

in risk management modelling is still at an early stage (e.g., Fuertes and Olmo, 2013; Hallam and

Olmo, 2014).

It is well-established that intraday returns follow a non-normal and time-varying distribution

(e.g., Andersen et al., 2001). Moreover, it would be extremely challenging to model such complex

intraday return dynamics, as their random character may be further complicated by market mi-

crostructure noise. To address this challenge, we propose a novel semiparametric approach, called

functional autoregressive value-at-risk (FARVaR), for forecasting the daily VaR using intraday in-

formation.3 First, we estimate the density of intraday returns nonparametrically for each day and

apply the functional autoregressive (FAR) model 4 to the sequence of intraday densities constructed

over T days to obtain h-day-ahead forecasts of intraday density. In general, it would be non-trivial

to generate the density function of daily returns directly from that of intraday returns, even if the

density function of intraday returns were known or given. To address this challenging issue, we

suggest two approaches. The first is parametric and relies on the use of the normal inverse Gaus-

sian (NIG) distribution5 for the returns. The second is based on a nonparametric sampling scheme,

which can produce a bootstrap density function of the daily return. Since we are more interested in

modelling the VaR of portfolios containing multiple assets in many finance applications, we extend

FARVaR for a single asset into one for multiple assets by incorporating copula (mFARVaR).
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FARVaR provides a few advances over the existing literature. First, it avoids any (distributional)

uncertainty associated with misspecified parametric models, by estimating the intraday density

nonparametrically. Furthermore, FAR can easily overcome the shortcomings of nonparametric

models by capturing such complex dynamic structure via a functional autoregressive operator,

which can represent all contemporaneous and time-dependent associations among all the moments

or quantiles. Second, high-frequency financial data is often characterized as extremely dispersed

and non-normally distributed (Hasbrouck, 2007). Through a detailed exploratory analysis of the

time-varying intraday moments, we establish two stylized facts: (i) volatility and skewness of

intraday returns are rather persistent; (ii) there exist complex (potentially nonlinear) and time-

varying associations among the moments. In this regard, we expect that neither the parametric nor

the nonparametric approach will have the capacity to unravel an exact relationship among intraday

moments or quantiles. By contrast, FARVaR is designed to utilize evolutions of intraday return

density in directly forecasting daily return density and daily VaR in a flexible manner. Third, while

parametric models can reduce the economic cost but tend to underestimate VaR (Netftci, 2000),

nonparametric models can provide conservative coverage ability but fail to reduce the economic cost.

This fundamental trade-off may reflect their respective forecasting inaccuracies. As confirmed by

our empirical evaluation, FARVaR can simultaneously improve the coverage ability and reduce the

economic cost. Last, the VaR forecast of FARVaR is less sensitive to the undelying market regime

than that of existing semiparametric VaR models. This makes FARVaR superior to other models

in terms of coverage ability.

We conduct various evaluation schemes using real data from 30 stocks listed in the Dow Jones

Industrial Average (DJIA) index over the period 2000–2008. All the evaluations are based on out-

of-sample forecasting. First, we evaluate the performance of intraday return density forecasting

for different functional models. We find that FAR is the best predictor for the density of intraday

returns as it produces the smallest divergence among the functional models, including a functional

martingale process and a functional i.i.d. process.

Next, we employ a wide range of backtesting tools to evaluate and compare the performance

of FARVaR against the existing VaR models. A backtest is not only a formal framework for

verifying whether the actual loss is in line with the projected loss, but also an essential procedure

for selecting suitable internal VaR models for capital requirements as recommended by the Basel
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Committee on Banking Supervision (BCBS). We conduct three broad types of test. We examine

the coverage ability and the economic cost using conventional quantitative measures such as the

empirical coverage probability and the predictive quantile loss (Koenker and Bassett, 1978). We also

assess the Basel penalty zone (BCBS, 1996) and the market risk capital requirement (BCBS, 1996,

2005). In addition, we evaluate the statistical adequacy of the VaR models using the conditional

coverage test (Christoffersen, 1998) and the dynamic quantile test (Engle and Manganelli, 2004).

These backtesting results demonstrate that FARVaR is the most reliable VaR model. The Basel

II Accord was designed to encourage sensible risk-taking using appropriate (internal) models of risk

to forecast daily VaR and capital charges. Within the Basel II rules banks may prefer to report high

VaRs to avoid the possibility of regulatory intrusion.6 This conservative risk reporting suggests

that efficiency gains may be feasible (McAleer et al., 2013). We demonstrate that FARVaR can

achieve such a non-trivial goal by simultaneously improving coverage ability, reducing economic

cost and enhancing statistical reliability.

1 FARVaR

The aim of our study is to develop a novel risk-management model which forecasts a daily VaR using

intraday information. In this context, an important issue is how best to develop an appropriate

econometric methodology for estimating and forecasting the density of daily returns using intraday

returns. The most popular approach is to construct realized volatilities from intraday returns and

forecast a daily volatility by applying a parametric model to the realized volatilities.7 However,

this approach uses only the realized volatilities, so it is not sufficiently broad to generate the entire

density of daily returns. In practice, this approach is bound to suffer from potentially misspecified

parametric assumptions imposed on the dynamics of realized volatilities and the distribution of

daily returns.

We therefore develop the semiparametric FARVaR, which generates the density forecast of

daily returns directly from the density forecast of intraday returns. It is a two-step procedure, as

illustrated in Figure 1. First, we estimate the density of intraday returns nonparametrically by a

kernel density estimator and forecast an intraday density by means of FAR. Second, we propose two

approaches to constructing the density forecast of daily returns directly from the density forecast
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of intraday returns: the parametric approximation based on the general class of the normal inverse

Gaussian (NIG) distribution, and a nonparametric bootstrap scheme. Given the density forecast

of daily returns, we can then easily compute a daily VaR.

[FIGURE 1 ABOUT HERE]

1.1 Forecasting Density Function of Intraday Returns by FAR

Bosq (2000) introduces the statistical foundation of FAR modelling. Its asymptotic theory is refined

by Cardot et al. (2007) and Mas (2007). Park and Qian (2012) develop the functional regression of a

continuous state distribution which is more general than FAR. FAR has been applied to forecasting

a climate pattern with regard to temperature (Besse et al., 2000) and ozone (Aneiros-Perez et al.,

2004; Damon and Guillas, 2002). Recently, the FAR approach has been adopted in economics and

finance. Laukaitis (2008) applies it to forecasting an intraday cash flow and a transaction intensity

in the credit card payment system. Bowsher and Meeks (2008) and Kargin and Onatski (2008)

employ it to forecast a yield curve as a function of maturity. Chaudhuri et al. (2016) apply it to

modelling the cross-sectional distribution of sectoral inflation rates nonparametrically, and develop

the flexible framework for forecasting the density of national inflation rates based on FAR.

The foundation of forecasting an intraday density function relies heavily on Park and Qian

(2012). Thus we refer readers to the asymptotic theory and its proofs in that paper. In the current

paper, we provide detailed descriptions in Appendix Section I for the estimation of FAR and the

forecasting of the intraday density function, to facilitate replication.

Using the series of asset prices observed at a fixed time interval (e.g., 5 minutes)8, we calculate

an intraday return by the first difference of logged prices, rt,i = ln Pt,i − ln Pt,i−1 for t = 1, . . . , T

and i = 1, . . . , m. The index t denotes the day t and the index i denotes the ith observation over

the fixed interval after a market opens on day t. Thus Pt,0 denotes the opening price and Pt,m the

closing price on day t.9 For example, given a 5-minute interval, r2,1 and r2,2 denote the realized

stock returns at 9:35AM and 9:40AM on the second day (see endnote 8). A daily return is then

calculated as rt = ln Pt,m − ln Pt,0. As a result, we have the following sequences of time series:

X = (Xt)
T
t=1 and Xt = (rt,i)

m
i=1 , (1)
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where Xt is an intraday return path on day t and X is the set of intraday return paths over T days.

First, we make an assumption on intraday returns that is crucial for applying FAR to their

density function.

Assumption 1 (Piecewise stationarity) Intraday returns are strictly stationary in short time in-

tervals, so that the density functions of intraday returns can be consistently estimated for each day.

However, this local stationarity does not carry over to longer horizons.

Let the density function of intraday returns on day t be ft, such that the sequence of intraday

densities (ft) can be well-defined in H = L2 (C), the Hilbert spaces of square integrable functions

defined on the compact subset C of R. Thus we can treat ft as a functional-valued random variable.

Under Assumption 1, it would be very reasonable to model the time-varying density function of

intraday returns by the FAR of order 1:

wt = Awt−1 + ǫt, t = 1, . . . , T, (2)

where wt = ft − E [f ] is the fluctuation of the density function from the well-defined common

expectation of the density function, E [f ]10, and A is the so-called autoregressive operator.

Assumption 2 We assume that:

(a) A is a compact linear operator in H, satisfying ‖Aκ‖ < 1 for some κ > 111;

(b) (ǫt) is a sequence of the functional white noise such that E [ǫt] = 0 and E ‖ǫt‖
4 < ∞, and is

independent of w0. Further, its distribution is a probability measure on H such that ǫt : (Ω, F ,P) 7→

H, where (Ω, F ,P) is the underlying probability space.

The one-step-ahead forecast of a density function can be evaluated by the conditional expecta-

tion of the density function on a past information set (Ft−1):

E [ft|Ft−1] = E [f ] + Awt−1. (3)

If A is the zero operator, the best predictor would be the unconditional expectation of density

function (AVE). On the other hand, if A is the identity operator, the best predictor would be the

last observation (LAST).
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Since (ft) cannot be directly observed in practice, we estimate the density function of intra-

day returns at each point in time, t. We estimate it nonparametrically using the kernel density

estimator12:

f̂t (xj) =
1

nht

m∑

i=1

K

(
xj − rt,i

ht

)

, t = 1, . . . , T ; j = 1, . . . , n, (4)

where K is a kernel, m is the number of intraday returns, ht a bandwidth and n the number of

discrete grids.13 One important issue is the selection of kernel and bandwidth value. The optimal

value of bandwidth is derived by minimizing a loss function and applying a cross-validation selector.

We employ the popular Gaussian kernel and follow Silverman’s (1986) rule of thumb such that the

optimal bandwidth is given by 1.06σ̂tm
−1/5, with σ̂t being the sample standard deviation of rt,i.

See also Härdle and Linton (1994) for more detail on the choice of kernel and bandwidth value.

The autoregressive operator in Equation (2) is defined as A = C1C−1
0 , where C0 = E [wt ⊗ wt]

and C1 = E [wt ⊗ wt−1] are the autocovariance operators of order 0 and 1, respectively. However,

since the autocovariance operators are defined in an infinite dimension, the inverse of C0 is not

well-defined; that is, it presents an ill-posed inverse problem. To avoid this, we project C0 onto a

finite L-dimensional subspace in H. Let us denote the inverse of C0 on the L-dimensional subspace

by C+
0,L. The autoregressive operator restricted to the L-dimensional subspace is AL = C1C+

0,L. The

choice of L is guided by a functional principal component analysis (FPCA) and a cross-validation

(CV) (see Ramsey and Silverman, 1997). Then the estimator of A in the L-dimensional subspace

is given by ÂL = Ĉ1Ĉ+
0,L. Therefore, the one-step-ahead forecast conditional on the information

set (FT ) is evaluated by

f̂T +1 = f̄ + ÂLŵT , (5)

where f̄ = T −1∑T
t=1 f̂t and ŵT = f̂T −f̄ . See Theorem 5 of Park and Qian (2012) for the consistency

of ÂL and our Appendix Section I for the estimation of FAR and the forecasting of the intraday

density in detail.

In general, the FAR algorithm involves non-negligible computation time. Hence we introduce

two popular transforms of ŵt, by the fast Fourier transform and the wavelet transform. Both

transforms can reduce the computation time dramatically (making it 30 times faster) by shrinking

the dimension of the function. Once we obtain the forecast of the transformed ŵT +1, we then

recover the original forecast by the inverse Fourier or wavelet transform, and evaluate the density
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forecast in Equation (5) (see Antoniadis and Sapatinas, 2003; Besse et al., 2000, for details). We

call these computationally efficient transforms, respectively, FAR-fft and FAR-wv.

1.2 Forecasting Density Function of Daily Returns and VaR from Density Fore-

casts of Intraday Returns

We aim to explicitly employ information on intraday returns to improve the forecasting precision

of the tail behaviour of daily returns. This requires us to generate the density forecast of the daily

returns directly from the density forecast of intraday returns. Let the probability and cumulative

distribution functions of the daily returns on day t be gt and Gt, respectively. In general, this

task would be nontrivial even if we successfully obtained the h-day-ahead density forecast of the

intraday returns, ft+h, via FAR, as in the previous section. To address this challenging issue, we

therefore suggest two approaches. We first consider a parametric approximation on the basis of the

normal inverse Gaussian (NIG) distribution, regarded as one of the most flexible distributions for

describing the distribution of returns (Barndorff-Nielsen, 1997). We then propose a more general

nonparametric bootstrap approximation.

1.2.1 NIG approximation approach (FARVaR-nig)

This approach employs the NIG parametric approximation and constructs the density of daily

returns through a flexible match of the first four moments from the density of intraday returns.

Let µt, vt, st and kt be, respectively, the mean, variance, skewness and kurtosis of the intraday

returns on day t. Then we calculate the four parameters (αt, βt, γt, δt) that determine the shape of

the NIG distribution as follows:

αt = v
− 1

2
t

(

3kt − 4s2
t − 9

) 1
2

(

kt −
5

3
s2

t − 3

)−1

, βt = stv
− 1

2
t

(

kt −
5

3
s2

t − 3

)−1

, (6)

γt = µt − 3stv
1
2
t

(

3kt − 4s2
t − 9

)−1
, δt = 3

3
2

{

vt

(

kt −
5

3
s2

t − 3

)} 1
2
(

3kt − 4s2
t − 9

)−1
,

where αt determines the tail heaviness, βt the asymmetry, γt the location and δt the scale of the

distribution. Note that the kurtosis should satisfy kt > 3 + (5/3) s2
t . The density of the intraday
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returns is then approximated by the NIG density:

ft (x) =







αtδtJ1

(

αt

√

δ2
t + (x − γt)

2
)

π
√

δ2
t + (x − γt)

2







eδtλt+βt(x−γt), (7)

where λt =
√

α2
t − β2

t and J1 denotes the modified Bessel function of the second kind. The NIG

distribution is closed under the convolution of independent random variables X1 and X2:

X1 ∼ NIG (α, β, γ1, δ1) and X2 ∼ NIG (α, β, γ2, δ2)

⇒ X1 + X2 ∼ NIG (α, β, γ1 + γ2, δ1 + δ2) . (8)

Hence the density function of the daily returns on day t (rt =
∑m

i=1 rt,i), denoted gt (x), can be

approximated by the following NIG density:

gt (x) =







mαtδtJ1

(

αt

√

m2δ2
t + (x − mγt)

2
)

π
√

m2δ2
t + (x − mγt)

2







emδtλt+βt(x−mγt), (9)

where m is the number of intraday observations on day t. Finally, we can evaluate a daily VaR from

the cumulative NIG density function of the daily returns. Notice, however, that the analytic form

of the cumulative NIG density function does not exist. Hence we approximate it by numerically

evaluating the integral of the NIG density in Equation (9) (see also Equation (A.25) in Appendix

Section I).

1.2.2 Simulation approach (FARVaR-sim)

The simulation approach is based on repeated random sampling as follows. It is straightforward to

construct the cumulative distribution function of the intraday returns from the density forecast of

the intraday returns by

F̂T +1 (x) =

ˆ x

−∞
f̂T +1 (s) ds. (10)
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As f̂T +1 is the discrete approximation of the continuous density function, we also approximate

F̂T +1 numerically by the following middle Riemann sum:

F̂T +1 (zj) =
1

2





j
∑

i=1

f̂T +1 (xi+1) ∆xi+1 +
j
∑

i=1

f̂T +1 (xi) ∆xi+1



 , j = 1, . . . , n − 1, (11)

where zj = (xj+1 + xj) /2 and ∆xi+1 = xi+1 − xi.

Next, given Assumption 1, we can randomly draw intraday returns from the cumulative

distribution function, F̂T +1, in Equation (11), in the following way. First, we draw m real numbers

randomly from the uniform distribution over (0, 1), and denote them by
{

p
(b)
1 , p

(b)
2 , . . . , p

(b)
m

}

, where

p
(b)
i ∼ U (0, 1) for each bootstrap iteration, b = 1, . . . , B. F̂T +1 is discretized over the grid set,

{z1, z2, . . . , zn−1}, while p
(b)
i is drawn from a continuous domain. In this case, an equality in

F̂T +1 (zj) = p
(b)
i does not hold for some i . Then we select a zj such that F̂T +1 (zj) is the nearest

to p
(b)
i . We present this grid selection conveniently by

z
(b)
i ≡ argmin

zj∈{z1,...,zn−1}

∣
∣
∣F̂T +1 (zj) − p

(b)
i

∣
∣
∣ . (12)

We collect a set of m simulated intraday returns in
{

z
(b)
1 , z

(b)
2 , . . . , z

(b)
m

}

and then construct a daily

return by r(b) =
∑m

i=1 z
(b)
i for each iteration, b = 1, . . . , B. Finally, we can approximate the

(empirical) cumulative distribution function of the daily returns by

ĜT +1 (ω) =
1

B

B∑

b=1

1
{

r(b) ≤ ω
}

. (13)

See also Figure 2 for a graphical representation of the simulation approach.

It is then straightforward to evaluate a daily VaR forecast given a nominal probability, α by

V̂ aRT +1 (α) = sup
(

ω|ĜT +1 (ω) ≤ α
)

. (14)

[FIGURE 2 ABOUT HERE]

With regard to our proposed FARVaR approach, we note and address the following issues. First,

the randomness of density forecasts is generated by two elements, as shown in Equation (5). The

first is associated with the estimation of the autoregressive operator. Since a true density function
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is unobservable, we have to estimate it. Thus the second is associated with the estimation of the

density function. Although it is not straightforward to construct the asymptotic confidence interval

of a VaR forecast, we can obtain it by randomly sampling in-sample prediction errors, {ǫ̂1, . . . , ǫ̂T }.

See Appendix Section III for the bootstrap-based construction of the confidence interval. Figure 3

presents the empirical distributions of VaR forecasts by FARVaR-nig and FARVaR-sim, along with

their bootstrapped 95% confidence intervals.

[FIGURE 3 ABOUT HERE]

Second, the simulation approach is a more general and robust approach than the NIG approx-

imation, because the latter requires strong distributional assumptions: that (i) an intraday return

density is characterized by the first four moments such that it follows the NIG distribution, and

(ii) intraday returns are independently and identically distributed. In particular, the validity of the

second assumption is questionable since many studies have documented evidence that the intraday

returns exhibit dependency or autocorrelation (e.g., Andersen and Bollerslev, 1997). However, in

the case where such dependency, say at the 5-minute interval, is relatively negligible, we may expect

that the NIG approximation works reasonably well.

Third, our proposed FARVaR approach is closely related to the recent study by Hallam and

Olmo (2014), who propose a method for estimating the density of daily returns directly from in-

traday returns by rescaling them through multiplying the scaling factor, under the assumption

that the intraday returns are self-affine or unifractal. They estimate a daily density by applying

either the location-scale t-distribution or the kernel density estimator to transformed daily returns,

and forecast the density of the daily returns by forecasting distributional parameters via a simple

autoregressive model or as the weighted sum of past densities. Although their approach is more

flexible than the previous studies, it is still restrictive in two ways. First, the higher-order moments

such as skewness and kurtosis of both transformed daily and intraday returns are equivalent under

the common rescaling. This would violate the market microstructure stylized evidence that intra-

day returns are more skewed and leptokurtic than daily returns. Second, their proposed density

forecasting approach is more restrictive than our proposed FAR modelling in the sense that the

dependence structure allowed in their approach is substantially simpler.14
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2 Multivariate FARVaR

So far we have developed FARVaR for a single asset. However, we are more interested in modelling

VaR for a portfolio containing multiple assets in many finance applications, such as a portfolio

containing basket options like those for the maximum performance of several stocks. In this case,

the dependence structure (or correlation) of the multiple assets is of particular importance for

computing a portfolio VaR.

However, there are limitations in directly applying FAR to a multivariate density function. Let

us take a bivariate density function as an example. For a univariate density function, f(x) : R →

R+, the autoregressive operator is defined in the form A := {a(i, j)} for i, j ∈ R. For the bivariate

density function, f(x, y) : R2 → R+, the autoregressive operator is defined, however, in the form

A := {a(i, j, k)} for i, j, k ∈ R. Thus we cannot apply estimations and inferences developed for

the univariate density function directly to the multivariate function. For this reason, we develop

FARVaR for multiple assets in an indirect way using a copula (hereafter mFARVaR) in this paper.

Let us consider a portfolio containing K assets:

rp,t,i =
K∑

k=1

wkrk,t,i, i = 1, . . . , m; t = 1, . . . , T. (15)

According to Sklar’s theorem, every K marginal distribution function {F1,t, . . . , FK,t} can be written

as

Ft (r1,t,i, . . . , rK,t,i) = Ct (F1,t (r1,t,i) , . . . , FK,t (rK,t,i)) , t = 1, . . . , T ; i = 1, . . . , m (16)

for some copula Ct which is uniquely determined on [0, 1]K for the multivariate distribution function

with absolutely continuous margins. Conversely, any copula Ct of their joint distribution function

may be extracted from Equation (16) by evaluating

Ct (ut,i) := Ct (u1,t,i, . . . , uK,t,i) = Ft

(

F −1
1,t (u1,t,i) , . . . , F −1

K,t (uK,t,i)
)

, (17)

where F −1
k,t is the quantile function of the margin. In our exercise, we can compute ut,i =

(u1,t,i, . . . , uK,t,i)
′ from the nonparametric density function, fk, and estimate the copula Ct given

the K marginal density functions for each day.

12



Next, we assume that Ct follows VAR(1), which is reasonably consistent with the FAR of order 1.

For simplicity, we assume that Ct has the form of a multivariate Student’s t (νt, 0, P t)-distribution,

where P t is the correlation matrix and νt the degree of freedom. The unique copula is given by

Cνt,P t
(ut,i) =

ˆ t−1
νt

(u1,t,i)

−∞
. . .

ˆ t−1
νt (uK,t,i)

−∞

Γ
(

νt+K
2

)

Γ
(νt

2

)
√

(πνt)
K |P t|

(

1 +
x′P −1

t x

νt

)−
νt+K

2

dxK · · · dx1,

(18)

where t−1
νt

denotes the quantile function of a standard univariate tνt distribution. Then we model

vech(P t) and νt by VAR(1) and AR(1), as

vech(P t) = c + Γvech(P t−1) + et, (19)

νt = α + ϕνt−1 + ζt, (20)

and forecast both, which are then used to construct a copula forecast, ĈT +1 ≡ Cν̂T +1,P̂ T +1
.

Hence we can forecast the K marginal intraday density functions by FAR and their copula by

VAR(1). Then we randomly draw u from the copula forecast,

u
(b)
T +1,i =

(

u
(b)
1,T +1,i, . . . , u

(b)
K,T +1,i

)′
, (21)

and convert these into intraday returns using the K marginal density forecasts, f̂1,T +1, . . . , f̂K,T +1:

r
(b)
1,T +1,i = F̂ −1

1,T +1

(

u
(b)
1,T +1,i

)

, . . . , r
(b)
K = F̂ −1

K,T +1

(

u
(b)
K,T +1,i

)

, i = 1, . . . , m. (22)

See Equations (10) and (11) for the numerical computation of the cumulative distribution function

from the density forecast.

We update the intraday returns of the portfolio using the simulated intraday returns,

r
(b)
p,T +1,i =

K∑

k=1

wkr
(b)
k,T +1,i, i = 1, . . . , m, (23)

and generate daily portfolio returns by summing the intraday portfolio returns,

r
(b)
p,T +1 =

m∑

i=1

r
(b)
p,T +1,i, (24)
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for each iteration b = 1, 2, . . . , B.

Finally, we approximate the (empirical) cumulative distribution function of the daily portfolio

returns by

ĜT +1 (ω) =
1

B

B∑

b=1

1
{

r
(b)
p,T +1 ≤ ω

}

. (25)

We then evaluate the daily VaR forecast for the nominal probability, α, by

V̂ aRp,T +1 (α) = sup
(

ω|ĜT +1 (ω) ≤ α
)

. (26)

Appendix Section II describes the practical algorithm of mFARVaR in detail.

To recap, we have developed the multivariate FARVaR approach together with associated econo-

metric techniques. This clearly shows that the FAR modelling can be extended to analyzing the

dependence structure among multiple assets. In practice, we can apply the multivariate FARVaR

to the model with the large number of assets (say, 100 or more) so far as we can collect sufficient

intraday samples and/or we can employ any factor-based copula.

3 Intraday Data

We consider the constituents of the Dow Jones Industrial Average (DJIA) index over the period

2000–2008.15 Two market downturns were experienced during the sample period: one caused by

the dot-com bubble burst (2001–2002) and the other by the subprime mortgage crisis (2007–2008).

In order to guarantee the reliability of backtesting, recommended practice is to include both normal

and market downturn periods. The more market events in a sample period, the more scenarios for

backtesting; nevertheless, our sample period meets a minimum requirement for the reliability of

backtesting.

Three companies experienced crucial financial problems in 2008: bailouts for American Inter-

national (AIG) and Citigroup were announced by the Federal Reserve Board of Governors; in the

case of General Motors (GM), a government bridge loan was given to the auto manufacturers by

the US government, which is classed as a de facto bailout. It is clearly important for regulators

to understand the risk profiles of such companies, so as to monitor and safeguard the US financial

system. At the same time, these companies are actively traded and their transactions are thus
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likely to generate huge amounts of information, especially at the intraday level. Hence we aim to

address the important empirical question of whether and how the use of intraday information can

improve risk management modelling in practice.

There were five times of change in the components of the DJIA over the sample period: 27 Jan

2003, 8 Apr 2004, 21 Nov 2005, 19 Feb 2008 and 22 Sep 2008.16 We choose the benchmark list of

constituents as at 21 Nov 2005, which corresponds to the middle of our sample period and includes

the three financially distressed companies (AIG, Citigroup and GM) which were removed from the

list in 2008. See Table 1 for details of the 30 components. Intraday transaction data is collected

from the Trade and Quote (TAQ) database. Following existing studies such as Lee and Ready

(1991) and Hvidkjaer (2006), we have utilized a filtering procedure to exclude any data likely to be

erroneous. Specifically, all the trades (quotes) with condition codes A, C, D, G, L, N, O, R, X, Z, 8,

9 (4, 5, 7–9, 11, 13–17, 19, 20) are eliminated. The trades with a correction code greater than 2 are

also removed. (Refer to the TAQ manual for definition of the codes.) Quotes are excluded if the

ask is equal to or less than the bid, if the ask spread is above 75% of mid-quote, or if the ask (bid)

is more than double or less than half of the previous ask (bid). We only consider trades reported

from 9:30 AM to 4:00 PM. According to Lee and Ready (1991), trades occur 5 seconds earlier than

the reported time. Thus we calculate trade time as the reported time minus 5 seconds. Trades are

deleted if the trade price is more than double or less than half of the previous trade. After filtering,

we calculate the closing trade and quote prices in every 5-minute interval (see footnote 8). Closing

trade and quote prices are the price of the last trade in each interval and the corresponding quote

price when the trade occurs. If there is no trade, the price for the current interval is replaced by

the closest trade and quote prices from the previous interval.

[TABLE 1 ABOUT HERE]

3.1 Descriptive Statistics

Table 2 presents the descriptive statistics of the intraday and daily returns of the 30 stocks over

the sample period, 2000–2008. Panel A reports results for the intraday returns. The mean returns

are very close to zero, a consistent finding in the market microstructure literature. The standard

deviation ranges widely between 0.17 (Intel) and 0.54 (AIG). There is significant evidence of asym-

15



metry as skewness is non-zero and mainly negative. As expected, kurtosis is significantly higher

than that of the normal distribution, highlighting the typical fat tails of financial data.

Panel B reports the descriptive statistics of the daily returns. The mean returns are small and

around a few basis points. The average returns of AIG (−0.17%) and Citigroup (−0.08%) are

relatively low, reflecting that they experienced bailouts in 2008. The maximum (minimum) and

the standard deviation of these companies are also much larger (smaller). The asymmetry of the

return distribution is not as severe as in the intraday returns, though AIG (−6.49) and Procter &

Gamble (−5.17) are substantially negatively skewed. Fat tails are observed for all the companies.

In particular, the kurtosis of AIG (158.5), Citigroup (47.82) and Procter & Gamble (120.3) are

significantly higher. Overall, these findings not only confirm the typical characteristics of financial

time series but also display some extreme statistics, especially for companies bailed out during the

global financial crisis in 2008.

[TABLE 2 ABOUT HERE]

3.2 Time-Varying Moments of Intraday Returns

To enhance our understanding of complex intraday return dynamics, we provide a time-varying

descriptive analysis of the four moments (mean, standard deviation, skewness and kurtosis) of the

intraday returns on the value-weighted portfolio of 30 stocks.

In Figure 4 we display the autocorrelation function (ACF) of volatility (standard deviation)

and skewness respectively. As expected, volatility exhibits high persistence with its first-order

autoregressive (AR(1)) coefficient of around 0.76; this is a consistent finding with those documented

in Andersen et al. (2001). Skewness is weakly persistent with its AR(1) coefficient slightly negative

at −0.074, but statistically significant. On the other hand, the ACFs of mean and kurtosis are

statistically insignificant (and not reported here).

[FIGURE 4 ABOUT HERE]

We turn to analyzing time-varying patterns of contemporaneous correlation among the mo-

ments. Figure 5 displays scatter plots between moment pairs.17 First, from plot (a), we find

a U-shaped relationship between return and volatility, suggesting that the correlation is regime-

dependent and measured at 0.67 when the mean is positive (bull market) and −0.63 when it is
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negative (bear market). This finding is qualitatively consistent with the recent literature docu-

menting a non-monotonic relationship between return and volatility (e.g., Rossi and Timmermann,

2010; Chiang and Li, 2012). The U-shaped risk–return relationship observed at the intraday fre-

quency is also in line with the market microstructure model (e.g., Hasbrouck, 2007, chap. 2),

where the unconditional mean reverts to zero at high frequency. The high-frequency trading strat-

egy should be a directional bet with information advantage (e.g., knowledge about order flows),

since bearing additional volatility risk will not be necessarily compensated by higher returns. This

evidence may suggest that the imposition of a time-invariant and linear risk–return trade-off would

lead to inaccurate and misleading forecasts.

Second, plot (b) shows that mean and skewness are positively associated, with a correlation

coefficient of 0.51. There has been mixed evidence on the mean-skewness relationship, mostly at

lower frequencies (weekly or monthly; e.g., Conrad et al., 2013 and Rehmany and Vilkovz, 2012).

To the best of our knowledge, there is no documented evidence at the intraday level. Intuitively, our

finding suggests that extreme values or outliers may play a significant role in generating intraday

returns, as a few large positive or negative movements are likely to render the average return moving

in the same direction.

Third, we find from plot (c) that there also exists a U-shaped relationship between volatility

and skewness, with the correlation measured at −0.37 when skewness is negative (downside risk)

and 0.23 when skewness is positive (upside uncertainty). Given that we obtain the U-shaped

risk–return and the linear return-skewness trade-off, this finding is consistent with transitivity.

It confirms that extreme large price movements (positive or negative skewness) are associated

with higher volatility. The steeper slope observed under downside risk also confirms that the

volatility–skewness relationship is stronger when the market is hit by bad news.

Fourth, plot (d) displays a strong quadratic U-shaped relationship between skewness and kur-

tosis. The correlation is measured at −0.96 when skewness is negative and 0.98 when skewness is

positive. This quadratic U-shaped relationship is a pleasing finding mathematically.

[FIGURE 5 ABOUT HERE]

Overall, our time-varying moment-based analysis reveals two stylized facts. First, the sec-

ond and third moments of the intraday return density are persistent. Second, contemporaneous

17



associations among the four moments are all complex and time-varying. These results provide

support for the numerous lower-frequency studies showing that the time-varying characteristics of

the higher-order moments should be carefully modelled for the purposes of portfolio allocation and

asset pricing (Cenesizoglu and Timmermann, 2012; Harvey and Siddique, 2000). This highlights

the challenging issue of modelling intraday return dynamics. A nonparametric approach tends to

ignore the time-varying nature of the density function, which leads to an inaccurate forecast. The

fully parametric approach, on the other hand, suffering from misspecification, is ill-equipped to

unravel an exact relationship among the higher-order moments, resulting in the erroneous mea-

surement of risk. In this regard, we expect FARVaR to take into account the relative advantages

of both approaches and thus deal in a robust manner with the complex characteristics of intraday

returns when forecasting their density.

3.3 Time-Varying Dependence Structure of Multiple Intraday Returns

The correlation structure of individual assets constituting a portfolio is an essential input to port-

folio risk management. Recently, more attention has been focused on dependence structure, which

is a broader concept than linear correlation (see McNeil et al., 2005). We too have developed

mFARVaR on the basis of a copula by taking into account the dependence structure of the individ-

ual assets making up the portfolio. In this section, we estimate the copula correlation coefficients

between individual intraday returns and analyze their dynamics.

Given the limited number of intraday returns for each day, we construct 10 portfolios, each

consisting of three stocks. To avoid the selection bias, we randomly draw the 10 sets of stocks from

30 stocks without replacement. In each set, we construct the equal-weighted portfolio of the three

stocks. We will also use these portfolios for the backtesting of mFARVaR in Section 6.

Table 3 presents the descriptive statistics and autocorrelation tests of copula correlation co-

efficients between individual intraday returns. We estimate the copula correlation coefficients of

Student’s t-copula for each day. (See Appendix Section II for estimating a copula in detail.) Panel

A reports the minimum, maximum and mean values of the copula correlation coefficients for each

pair of individual stocks. The mean value is between 0.2 and 0.4 and the range between –0.4 and

0.9, which shows the large variation of the copula correlation coefficients over time. In Panel B, we

compute the sample autocorrelation function of order 1 and conduct the Ljung–Box Q test for the
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autocorrelations of the copula correlation coefficients at a lag of 5. As the test results show, there

are significant autocorrelations in all portfolios.

[TABLE 3 ABOUT HERE.]

We confirm that there is a strong dependence structure of intraday returns constituting a

portfolio, beyond their linear correlation, and that it follows the autoregressive process. The overall

results therefore support mFARVaR as developed in Section 2.

4 Pseudo Out-of-Sample Forecasting

We conduct pseudo out-of-sample forecasting exercises to evaluate the forecasting performance of

a number of functional models as proposed above (FAR, FAR-fft, FAR-wv, AVE and LAST; see

Section 1.1 for details). In particular, we choose the continuous version of the fast Fourier transform

algorithm, with 40 pairs of coefficients for FAR-fft, and 3-level Daubechies wavelets for FAR-wv,

respectively. This practice of holding out a sample is called “pseudo real-time” experiment (e.g.,

Elliot and Timmermann, 2008). In this way we evaluate the performance in forecasting the density

of intraday returns for each functional model.

To examine which of the five functional models described above can produce the most accurate

density forecasts of intraday returns, we evaluate the three divergence criteria measuring the dis-

tance between the forecast and true density functions: the Hilbert norm (DH), the uniform norm

(DU ) and the generalized entropy (DE):

DH =

´

(

f̂ (x) − f (x)
)2

dx
´

f̂ (x)2 dx +
´

f (x)2 dx
, DU =

supx

∣
∣
∣f̂t (x) − ft (x)

∣
∣
∣

supx ft (x)
, DE =

ˆ

f (x) π

(

f̂ (x)

f (x)

)

dx, (27)

where f̂ (f) denotes the forecast (realized) density function of intraday returns and π (y) =

(γ − 1)−1 (yγ − 1), with γ > 0 and γ 6= 1. Since the true density function is unobservable, we

proxy it by the kernel density estimator in Equation (4). If π is the natural log, this becomes

the Kullback–Leibler divergence measure. We use the generalized version to avoid the log of zero,

which would happen when the density estimate or forecast has zero points. We set γ = 1/2 in

our study. All three quantities (called the global error) are non-negative and produce a zero value
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if f̂ = f . DH is useful for evaluating the model’s goodness-of-fit, DU for comparing the function

shapes and DE for assessing the difference in information content.

Throughout the paper, we employ the rolling sample approach, with a window size of 250

business days to accommodate any time-varying patterns. To begin with, we estimate the five

functional models using intraday data over the period 3 Jan 2000 – 27 Dec 2000 and compute the

one-day-ahead density forecast of intraday returns for 28 Dec 2000. We repeat this procedure by

moving forward a day at a time in a rolling manner, ending with the density forecast for 31 Dec

2008. This generates 2013 density forecasts of intraday returns for each firm, except for HP, AT&T

and Verizon, with 1428, 2006 and 1887 density forecasts, respectively.

We evaluate the mean divergence for each firm and report the average across 30 firms by

D̄H =
1

30

30∑

k=1

(∑Nk

t=1 DH,k,t

Nk

)

, D̄U =
1

30

30∑

k=1

(∑Nk

t=1 DU,k,t

Nk

)

, D̄E =
1

30

30∑

k=1

(∑Nk

t=1 DE,k,t

Nk

)

, (28)

where Nk is the number of daily density forecasts for a firm, k. Overall, from Table 4, we find that

the FAR models outperform the other functional models, LAST and AVE. In particular, FAR-fft

turns out to be the best predictor, producing the smallest divergence. Therefore, we will employ

the FAR-fft approach as our FAR model in the further analysis of VaR.

[TABLE 4 ABOUT HERE]

5 Backtesting: Single Asset

We examine the performance of FARVaR against a number of existing VaR models popularly

employed by both academics and practitioners: historical simulation (HS), filtered historical sim-

ulation (FHS), RiskMetrics (RM; RiskMetrics, 1996), GARCH, the filtered extreme value theory

(FEVT) models, conditional autoregressive value-at-risk by regression quantiles (CAViaR), and

CAViaR-GARCH. HS is a static nonparametric model and most popular for simplicity (Perignon

et al., 2008).18 RM and GARCH are typical dynamic parametric models; RM assumes the normal

distribution of asset returns while GARCH can also allow for the fat-tailed Student’s t-distribution.

FHS is a hybrid approach, applying HS to returns filtered by GARCH. FEVT is suggested to con-

trol for time-varying volatility (Diebold et al., 1998; McNeil and Rudiger, 2000); similarly to FHS,
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it applies the EVT procedure to returns filtered by GARCH. Here we consider the filtered general-

ized extreme value (FGEV) distribution and the filtered generalized Pareto distribution (FGPD).

Finally, we examine CAViaR and CAViAR–GARCH, which incorporates GARCH in CAViaR (see

Engle and Manganelli, 2004). In the literature, FHS has been one of the most successful VaR

models (e.g., Barone-Adesi et al., 2002; Kuester et al., 2006; Pritsker, 2006). More details of the

models can be found in Appendix Section V. Notice that all the existing VaR models use daily

returns as defined in Section 1.1 (i.e., rt = ln Pt,m − ln Pt,0).

We evaluate the performance of the VaR models in terms of coverage ability, economic cost

and statistical validity. As strongly recommended by the Basel Committee on Banking Supervision

(BCBS), backtesting is a key part of the internal VaR model development for market risk man-

agement. We employ a number of backtesting tools: empirical coverage probability (ECP), the

Basel penalty zone (BPZ; BCBS, 1996), market risk capital requirement (MRCR; BCBS, 1996),

predictive quantile loss (PQL; Koenker and Bassett, 1978), the conditional coverage test (CC test;

Christoffersen, 1998) and the dynamic quantile test (DQ test; Engle and Manganelli, 2004).

Backtesting evaluates coverage ability and the economic cost arising from failure to cover the

realized extreme event. Hence all backtesting tools have been developed on the basis of the failure

of a model. The failure is defined by an indicator function which takes unity when a realized return

is not covered by the VaR forecast:

Hs = 1
{

rs < V̂ aRs (α)
}

, s = 1, . . . , N, (29)

where V̂ aRs (α) is the VaR forecast given the information set available at s − 1 with the nominal

coverage probability α.

First, ECP and BPZ evaluate the coverage ability as follows: ECP is calculated by the sample

average of Hs, i.e.,

ECP =
1

N

N∑

s=1

Hs. (30)

BPZ describes the strength of an internal VaR model through evaluating its failure rate, which is

the number of daily violations of the 99% VaR over the previous 250 business days; we expect, on

average, 2.5 violations under a correctly forecasting model. The Basel Committee rules that up
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to 4 violations are acceptable, and defines this range as the “Green” zone. If there are 5 or more

violations, banks fall into the “Yellow” (5–9) or “Red” (10+) zones. The penalty is cumulatively

imposed by the multiplicative factor (κ); this factor is determined according to the number of

violations: 3 (for 0–4 violations), 3.4 (5), 3.5 (6), 3.65 (7), 3.75 (8), 3.85 (9) and 4 (10+). In the

Yellow zone, the supervisor will decide the penalty according to the reason for the violation.19 In

the Red zone, the penalty will be automatically generated. Hence the regulator prefers the VaR

model producing ECP close to the nominal probability and BPZ indicating the Green zone.

Second, MRCR and PQL evaluate the economic costs of the VaR model. Providing that a bank

has a sound risk management system, an independent risk-control unit and external audits, MRCR

is summarized by the following four factors: (i) the quantitative parameters, (ii) the treatment of

correlations, (iii) the market risk charge, and (iv) the plus factor (see BCBS (1996) and BCBS

(2005) for details and Jorion (2006) for a compact summary). Then MRCR can be formulated by

MRCRs = max

(

κ
1

60

60∑

i=1

V̂ aRs−i (α) , V̂ aRs−1 (α)

)

+ SRCs, s = 251, . . . , N, (31)

where SRC is the additional capital charge for the specific risk (BCBS, 1996, 2005) and κ is the

multiplicative factor from BPZ.20 We report the average of MRCR as

MRCR =
1

N − 250

N∑

s=251

MRCRs. (32)

PQL measures the expected economic cost of the VaR model using the “check” function (Koenker

and Bassett, 1978). It is consistently estimated by

PQL =
1

N

N∑

s=1

(α − Hs)
[

rs − V̂ aRs (α)
]

. (33)

When the VaR forecast fails to cover a realized return, |rs − V̂ aRs (α) | is the economic loss and we

impose a harsh penalty on it. Alternatively, when it does cover the realized return, |rs − V̂ aRs (α) |

is the opportunity cost and we impose a mild penalty on it as compensation for its success. Thus
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we can rewrite PQL, by following our economic intuition, as

PQL = (1 − α)










1

N

N∑

s=1

∣
∣
∣rs − V̂ aRs (α)

∣
∣
∣Hs

︸ ︷︷ ︸

Expected Economic Loss










+ α










1

N

N∑

s=1

∣
∣
∣rs − V̂ aRs (α)

∣
∣
∣ (1 − Hs)

︸ ︷︷ ︸

Expected Opportunity Cost










. (34)

It is a reasonable measure of the expected economic cost of the VaR model, considering both the

economic loss and the opportunity cost.

Finally, the CC and DQ tests evaluate the statistical validity of the VaR model. The CC test

verifies whether the conditional expectation of Hs is equal to the coverage probability. Christof-

fersen (1998) shows that it is equivalent to testing whether Hs is an identically and independently

distributed Bernoulli process with probability α. Hence the likelihood ratio statistic simultane-

ously tests whether the unconditional coverage probability is α (unconditional coverage test) and

whether the binary random variable is independent (independence test). It follows the chi-squared

distribution with two degrees of freedom under the null hypothesis. The DQ test extends the CC

test by allowing for more time-dependent information such as lagged realized violations and the

VaR forecast. Specifically, we regress the demeaned binary variable on (constant, lagged demeaned

binary variable and the VaR forecast), and test the null, R2 = 0, by the Wald test statistic given

by

DQ =

(

H̃′Z
)

(Z′Z)−1
(

Z′H̃
)

α (1 − α)
=

β̂
′
Z′Zβ̂

α (1 − α)
a
∼ χ2

p+2, (35)

where H̃ =
(

H̃p+1, . . . , H̃N

)′
, H̃s = Hs−α, Z = (zp+1, . . . , zN )′ and zs =

(

1, H̃s−1, . . . , H̃s−p, V̂ aRs

)′
.

The regulator prefers the VaR model which is not rejected. We use the first four lags, that is,

zs =
(

1, H̃s−1, . . . , H̃s−4, V̂ aRs

)′
, where the DQ statistic follows the chi-squared distribution with

six degrees of freedom under the null.

In the next subsections, we repeat the rolling estimation procedure as described in Section 4

and apply the backtesting to VaR forecasts. We estimate VaR models using the window size of 250

days over the period 3 Jan 2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR forecasts

for 28 Dec 2000. We repeat this procedure moving forward a day at a time in a rolling manner,

ending with the forecast for 31 Dec 2008. This generates 2013 density forecasts of intraday returns

for each firm except for HP, AT&T and Verizon, which generate 1428, 2006 and 1887 forecasts,
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respectively. This is our main analysis. We also apply the procedure to the value-weighted portfolio

of 30 stocks.

We further compare FARVaR with FHS to see how differently these two hybrid approaches use

information for the VaR forecast. As a robustness check, we run various exercises in the following

subsections. First, we apply the backtesting to subperiods divided by the market regimes: normal

and market downturn periods. Second, we compare our probability density function (PDF)-based

FARVaR with a cumulative distribution function (CDF)-based one. Third, we check the asymmetry

of the return distribution. We investigate how FARVaR performs at the right tail by taking a short

position. Finally, we consider a longer window size (500 days) for investigating any effect of the

window size on our evaluations. We estimate VaR models using the longer window size of 500 days

over the period 3 Jan 2000 – 31 Dec 2001 and compute the one-day-ahead 99% VaR forecast for 2

Jan 2001. We repeat this procedure moving forward a day at a time in a rolling manner, ending

with the forecast for 31 Dec 2008. This generates 1763 daily density forecasts of intraday returns

for each firm except for HP, AT&T and Verizon, which generate 1178, 1756 and 1637 forecasts,

respectively.

5.1 Main Analysis

For our main analysis, we apply the VaR models to the left-tail behaviour of return distribution

with a window size of 250 days; that is, we hold a long position. We report the average of ECP,

MRCR and PQL for the 30 stocks,

ECP =
1

30

30∑

k=1

ECPk, MRCR =
1

30

30∑

k=1

MRCRk, PQL =
1

30

30∑

k=1

PQLk, (36)

where k indicates a stock. We report BPZ based on the average violation of the 30 stocks. For

the CC and DQ tests, we count the frequency of an individual model being rejected at the 5%

significance level out of the 30 asset returns.

Table 5 presents the backtesting results for the long position. In terms of ECP, FARVaR-sim

(FARVaR-nig) slightly over-forecasts (under-forecasts) VaR, though both outcomes stay in the BPZ

Green zone. Overall, we find that the coverage ability of FARVaR is quite reliable. RM severely

under-forecasts VaR, receiving the warning Yellow zone, a finding consistent with Johansson et
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al. (1999) and Netftci (2000). This implies that the coverage ability of RM is unreliable, render-

ing it inappropriate for use as an internal VaR model. Despite the fact that GARCH employs

the (fat-tailed) Student’s t-distribution, its results are not significantly better than those of RM.

As expected, the FEVT models substantially over-forecast VaR, though their outcomes stay in the

Green zone due to their conservative forecasting. (Under BPZ, over-forecasts of VaR tend to receive

better scores, given the Basel Committee’s prudential principle.) Finally, the CAViaR models con-

siderably under-forecast VaR, receiving the warning Yellow (CAViaR) and Red (CAViaR-GARCH)

zones, respectively. They turn out to be the worst models in terms of coverage ability.

Overall results reveal a number of stylized facts. First, the parametric models tend to under-

or over-forecast the tail behaviour of the return distribution. Hence with sufficient sample obser-

vations, the nonparametric return distribution could generally improve coverage ability, as demon-

strated by the performance of FARVaR and FHS. The coverage ability of the GARCH model can

be significantly improved by simulating the tail behaviour from the nonparametric empirical dis-

tribution. Second, we can estimate the tail behaviour more precisely when we model the complex

dynamic relationships directly among moments or quantiles rather than when we focus on mod-

elling the specific quantile, say at 1% or 5%, like CAViaR. As FARVaR is designed to fully address

these two important issues, it can therefore produce more reliable coverage ability than the existing

parametric models, RM, GARCH and CAViaR.

Next, we turn to assessing the economic costs accompanying the different VaR models. RM

requires the smallest MRCR, followed by GARCH and the FARVaR models. Conversely, the

FEVT models incur the highest costs as they considerably over-forecast VaR, and thus necessitate

the maintenance of high levels of capital, entailing high opportunity costs.21 The CAViaR models

also incur high economic costs to compensate for their poor coverage ability. FARVaR is able to

reduce the economic costs significantly by producing reliable coverage ability as well as by explicitly

addressing the dynamics of the return distribution.

Finally, we discuss the statistical adequacy of the different VaR models by applying the CC test

and the DQ test to each of the 30 asset returns at the 5% significance level. The relevant columns

report the number of individual models rejected out of 30 returns. The null hypothesis of the

CC test is rejected for six and four cases respectively in the FARVaR-sim and FARVaR-nig models.

These rejection frequencies are well below those of other models, such as GARCH (19), CAViaR (30)
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and CAViaR-GARCH (30); except for FHS displaying only one rejection. The rejection frequencies

for the DQ test are significantly higher for all the models.22 The lowest rejection frequencies are

reported at 11 out of 30 for FARVaR-nig and FGEV, followed by FARVaR-sim and FHS at 12.

Again, the null hypothesis of the DQ test is rejected for all stocks when using CAViaR. Combining

these results, we may conclude that the semiparametric approach, such as FARVaR and FSH, is

statistically more adequate than either parametric or nonparametric models.

In sum, the backtesting performance of VaR modelling can be greatly improved by combining

the relative advantages of parametric and nonparametric models. In this regard, we recommend

FARVaR as it turns out to be a more reliable approach, substantially improving the coverage ability

through avoiding severe misspecification errors, while considerably reducing economic costs through

explicitly modelling the dynamics of intraday density in a functional space.

[TABLE 5 ABOUT HERE]

5.2 Portfolio Analysis

The main analysis shows that FARVaR performs well for individual stocks. Furthermore, it is

important to analyze how well FARVaR performs relative to other VaR models when applied to

portfolios. To this end, we evaluate the performance of the VaR models by applying them to the

value-weighted portfolio of 30 stocks. We investigate them to the left-tail behaviour of the return

distribution with a window size of 250 days.

Table 6 presents the backtesting results. The FARVaR models slightly over-forecast VaR but

maintain relatively low economic cost, which is the highly desirable property for a VaR model.

Further, their VaR forecasts are not rejected by the CC and DQ tests. FHS shows performance

similar to FARVaR for all backtesting except for ECP. Its ECP is slightly higher than 1%; that is,

it slightly under-forecasts VaR.

The nonparametric and parametric models, HS, GARCH and RM, under-forecast VaR. Their

ECPs are noticeably higher than 1%. HS stays in a safe zone with relatively low economic cost;

further, it is not rejected by the CC and DQ tests. However, both GARCH and RM suffer from weak

coverage ability and statistical inadequacy due to their considerable under-forecast; that is, their

ECPs are close to 2%. The FEVT models show performance similar to the hybrid semiparametric
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models but their economic costs are higher than those of the latter models. The CAViaR models

perform poorly for all aspects: they largely under-forecast VaR, stay in the Yellow and Red zones,

and suffer from poor statistical power.

[TABLE 6 ABOUT HERE]

Both FARVaR and FHS perform reasonably well with the portfolio. We find that FARVaR

tends to slightly over-forecast VaR while FHS tends to under-forecast it. However, it is difficult to

judge which model performs better from the backtesting only. In order to better understand the

differences between the two models, in the next section we further analyze distinctive aspects of

how FARVaR and FHS use information and forecast VaR.

5.3 FARVaR vs. FHS

The hybrid approaches, FARVaR and FHS, greatly improve the VaR forecast. However, the two

models use information about the distribution of daily stock returns, and forecast the daily VaR, in

different ways. FARVaR forecasts VaR relying on information from realized intraday densities, while

FHS relies on observed daily returns. So are the two models able to obtain the same information,

about the distribution of daily stock returns, in different ways? To answer this question, we

investigate how closely the VaR forecasts from the two approaches track each other. This kind of

analysis would also help deepen our understanding of whether both FARVaR and FHS capture the

same information about stock returns, or whether there are important differences.

Figure 6 plots the VaR forecasts of FARVaR and FHS applied to the value-weighted portfolio

of 30 stocks, as described in Section 5.2. The upper panel compares FARVaR-nig with FHS, and

the lower one FARVaR-sim with FHS. The time-series patterns of the VaR forecasts by FARVaR

and FHS appear to track each other over the sample period, but we find that their responses to the

underlying market regime are different. FHS responds sensitively to realized stock returns because

it standardizes those by the GARCH filter. It therefore tends to relatively over-forecast VaR in

periods of market downturn, such as the dot-com bubble burst (2001 – 2002) or subprime mortgage

crisis (2007–2008), while under-forecasting in a normal period, such as (2003–2006).23 By contrast,

FARVaR depends on the realized density rather than the observed stock returns. Thus its VAR

forecast is relatively less sensitive to the underlying market regime than that of FHS.
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[FIGURE 6 ABOUT HERE]

For a more specific analysis, we investigate the failures of the VaR forecasts in Table 7. Failure

is defined as when a realized return is not covered by the VaR forecast. In times of market

downturn (dot-com bubble burst and subprime mortgage crisis), the FARVaR models and FHS

show a similar number of failures, and the dates of their failures also mostly coincide. In other

words, FARVaR relatively under-forecasts VaR to a slightly greater degree than FHS, but there is no

notable difference between the two models in terms of coverage ability. However, in normal market

periods, FHS under-forecasts VaR to a relatively greater degree and its failures are overwhelmingly

more numerous than those of FARVaR.

[TABLE 7 ABOUT HERE]

Overall, the two models offer acceptable VaR forecasts and we cannot find any significant

differences. The subtle difference is that the VaR forecast of FARVaR is less sensitive to the

underlying market regime than that of FHS. This is due to the way that the two models use

information; that is, FARVaR utilizes the entire probability distribution given by the realized

density, while FHS relies largely on information provided by the realized returns.

5.4 Subperiod Analysis

As seen in the comparison between FARVaR and FHS, VaR models may have different backtesting

results according to the underlying market regime. To investigate this point, we divide the full

sample period into three subperiods. First, there are two notable market downturns in our sample:

one caused by the dot-com bubble burst (2001–2002) and the other by the subprime mortgage

crisis (2007–2008). The remaining subperiod (2003–2006) can be regarded as relatively normal.

We apply backtesting to each subperiod in the same way as in our main analysis (long position and

250-day window size).

Table 8 presents the backtesting results for the normal subperiod. The FARVaR models and

FHS show reasonable coverage ability and economic cost. They are also statistically reliable. Other

models, except for CAViaR, also work reasonably well. However, the FEVT models entail very high

economic cost even during the normal subperiod.

[TABLE 8 ABOUT HERE.]
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Table 9 presents the backtesting results for the subperiods of market downturn. In the nature

of FEVT, it can provide the most prudential VaR forecast during a market downturn. Thus despite

the high economic cost of the FEVT models, they successfully reduce the number of failures when

the market is in deep recession. In the case of the FARVaR models and FHS, their failures increase

but they still remain in the Green zone, at a lower economic cost than for FEVT. In particular, the

FARVaR models show statistically reasonable results during the subperiod of the dot-com bubble

burst.

[TABLE 9 ABOUT HERE.]

In sum, the difference in how the VaR models use information accounts for the difference in their

VaR forecasts as the market regime changes. Although FEVT works more robustly than others

during periods of market downturn, FARVaR and FHS also work reasonably well. In particular,

FARVaR is statistically more reliable than FHS during periods of market downturn. On balance,

FARVaR thus gives the best performance overall across different market conditions.

5.5 PDF vs. CDF

In Section 1.2.2, the numerical approximation of the cumulative distribution function (CDF) in

our proposed simulation approach uses the probability density function (PDF) forecast. Since this

numerical approximation affects the accuracy of the CDF, we may consider to model CDFs directly

instead of PDFs.

The fact that the PDF follows the FAR process means that the PDF tends to revert toward

its unconditional mean. We can therefore deduce that the CDF does the same. We model the

(centred) CDF, W (x) = F (x) − F̄ (x), as the FAR of order 1:

Wt = BWt−1 + ξt, (37)

where B denotes the autoregressive operator.

We apply FARVaR-sim in Section 1.2.2 to the CDFs of the value-weighted portfolio of 30

stocks. We use FARVaR-cdf-sim to indicate the CDF-based FARVaR-sim. The empirical CDFs can
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be consistently estimated by

F̂t (xj) =
1

m

m∑

i=1

1 (rt,i ≤ xj) , t = 1, . . . , T ; j = 1, . . . , n (38)

with a large number of intraday observations. However, 78 intraday observations are too small

to accurately measure probabilities in tails by Equation (38). Furthermore, we need a smooth

empirical CDF to randomly generate intraday returns. We therefore estimate them using the

kernel density estimator.

We plot the rolling VaR forecasts for FARVaR-cdf-sim in Figure 7 and show the backtesting

results in Table 10. We also present the results of our PDF-based FARVaR-sim for comparison. In

Figure 7, FARVaR-cdf-sim under-forecasts VaR relative to FARVaR-sim; this is clearly observable

during the normal subperiod. Table 10 shows that FARVaR-cdf-sim under-performs FARVaR-sim

for all backtests, given its weak coverage ability due to under-forecasting. Furthermore, the model is

rejected for all statistical tests while FARVaR-sim is not rejected for any tests at the 5% significance

level.

[FIGURE 7 ABOUT HERE]

[TABLE 10 ABOUT HERE]

Although it is beyond the scope of this paper to investigate the theoretical basis for its under-

performance, we do have some doubts about FAR modelling of the CDF: First, with regard to the

definition of the error term in Equation (37), based on Equation (2), the error term at a point x is

defined by

ξt(x) =

ˆ x

−∞
ǫt(s)ds. (39)

Thus it has zero mean and variance,

V ar (ξt(x)) = V ar

(
ˆ x

−∞
ǫt(s)ds

)

. (40)

It is not clear, however, whether it has a finite variance, because it depends on the covariance of ǫt,

but it must be a function of x. This heteroscedasticity can affect the estimation of the autoregressive

operator. Second, the CDF is more restrictive than the PDF. It is bounded in the range of [0, 1]
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and is the non-decreasing function. However, the forecast of the CDF can violate these restrictions

unless we impose a certain functional transformation. Note that the only restriction on the PDF

is that it has a non-negative value. The CDF-based approach is attractive in many respects but it

needs more theoretical study with regard to estimations and forecasts. We leave it for future study.

5.6 Short Position

It is not unusual to observe that the return distribution is asymmetric. Hence it is worth investi-

gating how FARVaR performs at the right tail by taking a short position. Table 11 presents the

backtesting results for the short position. Overall results are qualitatively similar to those for the

long position. More specifically, the coverage ability of FARVaR is somewhat weakened, while its

economic cost is slightly reduced. The overall performance of FARVaR remains better than that of

other models except for FHS.

Next, we find that the FARVaR models are equally or slightly less rejected than other models

by both CC and DQ tests, although, for both FGEV and FGPD, the null hypothesis of the CC

test is rejected more while the null hypothesis of the DQ test is less rejected than FARVaR. For

CAViaR, the null hypotheses of both tests are rejected for all 30 stocks. Once again, we find that

the rejection frequencies of parametric or nonparametric models remain substantially high. This

confirms that the hybrid models, FARVaR and FHS, are statistically the most reliable VaR models,

irrespective of the asymmetry of the asset return distribution.

[TABLE 11 ABOUT HERE]

5.7 Longer Window Size

In practice, the selection of an optimal window size is a nontrivial issue. As the window size

increases, estimation and forecasting precision generally improve. However, there is correspondingly

greater uncertainty about the latent market regimes caused by a sequence of rare or extreme shocks

hitting the market; for this reason, it would be more desirable to select shorter and homogeneous

samples rather than longer and heterogeneous ones. With this caveat, we have also conducted

backtesting exercises using the longer window size of 500 days, and find qualitatively similar results

to those in Tables 12 and 13.
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[TABLE 12 and 13 ABOUT HERE]

6 Backtesting: Multiple Assets

In this section, we examine the performance of mFARVaR against the existing multivariate VaR

models: multivariate GARCH-based FHS (mFHS-MGARCH) and copula-based FHS (mFHS-

copula).24 mFHS-MGARCH standardizes individual returns by the multivariate GARCH (MGARCH)

filter and applies the Monte Carlo (MC) simulation to those returns as FHS does. For the MGARCH

specification, we model the time-varying conditional correlations by the constant conditional cor-

relation (CCC) model of Bollerslev (1990).25 Analogously, mFHS-copula standardizes individual

returns by the copula filter and applies the MC simulation to those returns. We model the de-

pendence structure of the standardized returns by the Student’s t-copula.26 In addition, we eval-

uate the performance of mFARVaR by imposing no correlations on the multiple intraday returns

(mFARVaR-naïve).

We use the 10 equal-weighted portfolios of three stocks constructed in Section 3.3. For each

portfolio, we estimate the multivariate VaR models, applied to the left-tail behaviour of the return

distribution, with the window size of 250 days, and compute a one-day-ahead 99% VaR fore-

cast. This forecasting exercise generates 2013 daily forecasts for each portfolio except for three:

P(DIS,HPQ,MMM), P(KO,MSFT,VS) and P(T,UTX,WMT), which generate 1428, 1887 and 2006

daily forecasts, respectively. (See Table 1 for the details of company tickers.)

Tables 14 – 17 present the backtesting results of mFARVaR, mFARVaR-naïve, mFHS-MGARCH

and mFHS-copula, respectively. First, we compare mFARVaR with mFARVaR-naïve. This compar-

ison demonstrates the economic gains obtained by modelling the dependence structure in mFAR-

VaR. For all portfolios, the ECP of mFARVaR-naïve is much higher than 1% and only three

portfolios remain in the Green zone. This weak coverage ability is mainly caused by its consid-

erable under-forecast of VaR. For example, Figure 8 plots the VaR forecasts by mFARVaR and

mFARVaR-naïve for the portfolio P(T,UTX,WMT). It clearly shows that mFARVaR-naïve system-

atically under-forecasts VaR compared to mFARVaR.27 Furthermore, the CC and DQ tests are

rejected for all portfolios. By contrast, mFARVaR achieves more accurate VaR forecasts by taking

into account the dependence structure of the individual intraday returns. On average, its ECP is
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slightly higher than 1%, but this is due to more frequent failures in the portfolios that include stocks

such as AIG or GM which have experienced serious financial problems. Moreover, all portfolios

remain in the Green zone and are less frequently rejected than other models by the CC and DQ

tests. From this comparison, we can see how important is the dependence structure of intraday

returns constituting a portfolio, and can confirm that the implemented modelling of dependence

structure in mFARVaR robustly works well.

[TABLE 14 ABOUT HERE.]

[TABLE 15 ABOUT HERE.]

[FIGURE 8 ABOUT HERE.]

Next, we compare mFARVaR with mFHS, which is the rival model for a single asset. In mFHS-

MGARCH, there is no significant difference in economic cost. As seen in the case of a single asset,

the CC test is slightly less frequently rejected than for mFARVaR, while the DQ test is slightly

more frequently rejected. However, the crucial difference is found in its coverage ability: the ECP

for mFHS-MGARCH is higher than 1% for all portfolios. This tendency is not desirable in risk

management. For example, Figure 9 plots the VaR forecasts by mFARVaR and mFHS-MGARCH

for the portfolio P(T,UTX,WMT). Analogously to the case of a single asset in Figure 6, mFHS-

MGARCH tends to over-forecast VaR in a period of market downturn such as the dot-com bubble

burst (2001–2002) or the subprime mortgage crisis (2007–2008), while under-forecasting it in a

normal period (2003–2006); thereby more failures are observed during the normal period. mFHS-

copula shows even worse results: its ECP is much higher than 1% and only three portfolios remain

in the Green zone. Moreover, many portfolios are statistically rejected.

[TABLE 16 ABOUT HERE.]

[TABLE 17 ABOUT HERE.]

[FIGURE 9 ABOUT HERE.]

Overall results reveal the following stylized facts. First, the dependence structure of intraday

returns constituting a portfolio is essential for enhancing the performance of VaR forecasting in
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applications considering multiple assets. The copula framework is well equipped in our proposed

mFARVaR and contributes to improving its VaR forecasts. Second, there is no dominance between

mFARVaR and mFHS-MGARCH in terms of economic cost or statistical adequacy, just as in

the case of a single asset. However, we find the crucial differences between the two models in

their coverage ability: the ECP of mFHS-MGARCH is higher than that of mFARVaR, but not

overwhelmingly so. The problem for mFHS-MGARCH is that it has a tendency to under-forecast

VaR, and thus suffers from more failures during a normal market period; this tendency needs to

be improved. Consequently, we find that mFARVaR has potential as the most efficient model to

utilize information from multiple intraday returns and has competitive advantage over the existing

multivariate VaR models.

7 Concluding Remarks

With the growing importance of intraday activity in the financial market, such as high-frequency

and algorithmic trading, we have proposed the FARVaR approach in order to improve daily VaR

evaluation by explicitly incorporating intraday returns information. FARVaR is a semiparametric

approach which applies FAR to forecasting the nonparametric density of intraday returns. Further-

more, we have provided a practical algorithm for constructing the density forecast of daily returns

directly from the density forecast of intraday returns, using a parametric approximation based on

the NIG distribution and a nonparametric bootstrap approximation. More importantly, we have

extended the FARVaR approach to multiple assets for more flexible application.

We have conducted comprehensive evaluation exercises using actual data from 30 stocks listed

in the Dow Jones Industrial Average index over the period 2000–2008. First, we find that FAR

turns out to be the best functional model predictor for the density of intraday returns for all 30

stocks. Second, we have conducted a number of backtests, which confirm that FARVaR outperforms

other nonparametric and parametric VaR models. Third, we find that the overall performance of

FARVaR-sim is slightly more favorable than that of FARVaR-nig. Given that the former is a more

efficient approach, we recommend the use of FARVaR-sim in practice. Finally, the backtesting for

multiple assets demonstrates that mFARVaR has competitive advantage over existing multivariate

VaR models.

34



Overall, this study enhances our understanding of contemporary VaR analysis in several ways.

First, as intraday information becomes more helpful in forecasting the daily risk, a robust nonpara-

metric modelling of the density of intraday returns is likely to be a key input to improving daily

risk management. Second, FARVaR can accommodate the complex dynamics of intraday return

density in a flexible manner because FAR is a generalization of all classes of autoregressive models.

Furthermore, FARVaR can be flexibly combined with a framework for multivariate distribution

functions like copula. Third, we demonstrate that the hybrid approach can simultaneously improve

coverage ability and reduce economic cost. Specifically, the robust nonparametric approach helps

to improve coverage ability while the dynamic parametric FAR modelling can reduce economic

cost. Finally, Basel III suggests, but does not require, that banks and other financial institutions

move away from VaR and towards a coherent measure of tail risk known as “expected shortfall”.

Once the daily density has been estimated by the FARVaR approach, it is rather straightforward

to calculate the expected value of the tail, where the tail is defined as the density beyond the VaR

quantile.
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Notes

1New York Times reporter J. Nocera wrote an extensive piece, “Risk Mismanagement”, on 2 Jan 2009, discussing

the role VaR played in the financial crisis of 2007–2008. Having interviewed risk managers, she suggests that VaR was

very useful to risk experts but nevertheless exacerbated the crisis by giving false security to bank regulators. In 2009

Professor N. N. Taleb testified in Congress asking for the banning of VaR because “tail risks are non-measurable.”

2Brogaard et al. (2014) show that HFT facilitates price efficiency by trading in the direction of permanent price

changes and in the opposite direction to transitory pricing errors, suggesting that HFT is beneficial to price discovery

and market quality; see also Hasbrouck and Saarb (2013). On the other hand, Zhang (2010) argues that HFT is

harmful to price discovery, as HFT is positively correlated with stock price volatility, and this correlation is stronger

during periods of high market uncertainty.

3Andersen et al. (2003) document that daily realized volatility estimates based on intraday returns provide volatil-

ity forecasts that are superior to forecasts constructed parametrically from daily returns only.

4Bosq (2000) introduces the statistical foundation of FAR modelling. See also Park and Qian (2012).

5The NIG distribution is one of the most popular parametric distributions for describing the return distribution,

and enables matching the first four moments of the observed data (Barndorff-Nielsen, 1997).

6Although market risk management is in transition from VaR to expected shortfall (ES) under the Basel III

Accord, the Basel II rules are still crucial requirements for the robust ES model.

7Giot and Laurent (2004) use an ARCH-type model, Clements et al. (2008) consider a mixed data sampling and

a heterogeneous autoregressive model, and Andersen et al. (2003) employ a vector autoregressive model.

8In practice, a trading action and its frequency are irregular in time, so we filter the trading data and extract

prices at fixed time intervals (e.g., 9:35AM, 9:40AM, 9.45AM, ..., 4:00PM). In the empirical application below, we

follow Andersen et al. (2001), and collect intraday returns over 5-minute intervals, as this is short enough to secure

the accuracy of continuous record asymptotic, but long enough to weaken cumulative noises from microstructure

frictions.

9If we include an overnight jump in price, Pt,0 should be the closing price from day t − 1. This suggests that the

overnight return, rt,1, may have a different data-generating process from other intraday returns (e.g. Ahoniemi et al.,

2016; Taylor, 2007). The modelling of the overnight jump is beyond the scope of the current study. Notice, however,

that we have obtained qualitatively similar evaluation results both with and without including the overnight returns.

10The expectation denotes the point-wise functional mean of a density function throughout the paper. See also

Equation (A.6) in Appendix Section I

11The role of A is to transform one function into another in the infinite dimensional space.

12Under the piecewise stationarity of intraday returns, we still allow them to be autocorrelated or dependent. In

such a situation, unless we are certain about a true parametric distribution, the nonparametric approach is more

reliable in constructing an intraday density (see Hall et al., 1995; Wu, 1997).

13The grid set covers the range of sample values for x1 < . . . < xn. For simplicity, we use an equal interval,

δ = xj − xj−1, for all j = 1, . . . , n.
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14For example, Chaudhuri et al. (2016) show that the average of past densities is inferior to FAR in forecasting the

density of inflation rates.

15Note that the data for HP is collected from 6 May 2002 to 31 Dec 2008 and the data for Verizon Communications

is collected from 3 Jul 2000 to 31 Dec 2008.

1627 Jan 2003: Name changes only: Allied Signal Incorporated merged with and changed its name to Honeywell

International; Exxon Corporation and Mobil merged and changed to Exxon Mobil Corporation; J.P. Morgan &

Company changed to JPMorgan Chase & Co.; Minnesota Mining & Manufacturing changed to 3M Company; Philip

Morris Companies Inc. changed to Altria Group Incorporated. 8 Apr 2004: AT&T, Eastman Kodak and International

Paper were replaced by American International, Pfizer and Verizon. 21 Nov 2005: SBC Communications Inc. was

renamed AT&T Inc. after it acquired the original AT&T. 19 Feb 2008: Altria Group and Honeywell were replaced

by Bank of America and Chevron. 22 Sep 2008: American International was replaced by Kraft Foods Inc.

17These graphs are produced with intraday returns. In particular, while it is tempting to see the relationship

between mean and volatility in (a) as a test of the mean–variance relationship, it is not the objective we have

here. More formal tests and consideration should be undertaken to draw such a conclusion. These graphs should be

considered as revealing empirical regularities which demonstrate the regime-dependent nonlinear relationship between

the moments of intraday returns. We thank the referee for pointing out, in particular, the potential for estimation

errors and the relevance of intraday returns to the general mean–variance setting.

18A McKinsey report in May 2012 estimated that 85% of large banks were using historical simulation.

19See Jorion (2006, p.149) for detailed descriptions of the reasons suggested by the Basel Committee: (i) basic

integrity of the model, (ii) model accuracy could be improved, (iii) intraday trading, and (iv) bad luck.

20It is difficult to identify the specific risk and its capital charge for an individual company. Hence we only include

the VaR part of Equation (31) for the purpose of comparison. Since we are comparing alternative VaR models for

each stock or portfolio, SRC is fixed across models, and should not therefore affect our overall conclusion.

21For example, suppose that the CFO of a bank manages $1bn and reports the economic cost of the internal VaR

model using MRCR and PQL on a daily basis. When the bank uses FGPD, then the CFO should allocate $602.1m

against the maximum loss over a 10-day horizon, or endure a $78.2m daily loss. If the CFO switches to employ

FARVaR-nig, then FARVaR-nig could reduce the capital requirement to $408m and the daily loss to $67.6m, saving

$194.1m on the capital requirement and $10.6m on the daily loss by.

22Berkowitz et al. (2011) show that the CC test is less powerful against inaccurate VaR models than the DQ test.

23Care is needed to select a right filter for a given underlying regime to improve this tendency (see Gurrola-Perez

and Murphy, 2015).

24Note that our proposed multivariate FARVaR shares the almost same idea with the multivariate FHS.

25We also employ the BEKK model (Engle and Kroner, 1995) and the dynamic conditional correlation (DCC)

model (Engle, 2002). These models produce qualitatively similar results to those from CCC.

26We model the dependence structure relying on the constant Student’s t-copula, but the performance of mFHS-

copula could be improved by modelling the dependence structure using a time-varying copula such as the generalized
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autoregressive score (GAS) model (Creal et al., 2013).

27We find near-identical patterns in other portfolios.
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Appendix

I. FARVaR

We describe a detailed FARVaR estimation and forecasting procedure. Given a series of equity

prices observed at a fixed time interval, we calculate intraday returns by the first difference of the

logged prices. Suppose that we observe m intraday returns, (rt,i)
m
i=1, at each day t over T days.

For simplicity, we consider the following balanced panel data:

R =










r1,1 r1,2 · · · r1,m

...
...

. . .
...

rT,1 rT,2 · · · rT,m










T ×m

, (A.1)

which consists of T row vectors with each row vector containing m intraday returns.

Step 1: Forecasting density of intraday returns by FAR

A. Kernel density estimation of intraday return density

We set an n × 1 vector of discrete grids, x = (x1, . . . , xn)′, which covers the range of intraday

samples with n = 1, 024 as used in the empirical analysis. We then estimate the density of intraday

returns by the following kernel density estimator:

f̃t(xj) =
1

nht

m∑

i=1

K

(
xj − rt,i

ht

)

, t = 1, ..., T, j = 1, . . . , n, (A.2)

where K is a kernel and ht is a bandwidth. Following Silverman (1986), we employ the popular

Gaussian kernel and the rule of thumb that the optimal bandwidth is given by ht = 1.06σ̂tm
−1/5,

where σ̂t is the sample standard deviation of {rt,1, . . . , rt,m}.

Since the density function must satisfy
´

f (x) dx = 1, we normalize the estimated density

function by

f̂t (xj) =
f̃t (xj)

RSUM
(

f̃t

) , (A.3)

where RSUM
(

f̃t

)

approximates
´

f̃t (x) dx by the following numerical middle Riemann sum of
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f̃t =
(

f̃t (x1) , . . . , f̃t (xn)
)′

:

RSUM
(

f̃t

)

=
1

2





n−1∑

j=1

f̃t (xj+1) (xj+1 − xj) +
n−1∑

j=1

f̃t (xj) (xj+1 − xj)





=
1

2





n−1∑

j=1

f̃t (xj+1) +
n−1∑

j=1

f̃t (xj)



∆, (A.4)

where ∆ = xj+1 − xj is an equally-partitioned interval for all j = 1, . . . , n − 1. Next, we construct

the matrix of densities by

F̂ =

[

f̂1 f̂2 · · · f̂T

]

=










f̂1 (x1) f̂2 (x1) · · · f̂T (x1)

...
...

. . .
...

f̂1 (xn) f̂2 (xn) · · · f̂T (xn)










n×T

. (A.5)

Then we estimate a point-wise unconditional functional mean by

f̄ =










f̄ (x1)

...

f̄ (xn)










=










T −1∑T
t=1 f̂t (x1)

...

T −1∑T
t=1 f̂t (xn)










n×1

, (A.6)

and build the matrix of fluctuations around the unconditional functional mean by

Ŵ = [ŵ1, ŵ2, . . . , ŵT ] =










ŵ1 (x1) ŵ2 (x1) · · · ŵT (x1)

...
...

. . .
...

ŵ1 (xn) ŵ2 (xn) · · · ŵT (xn)










n×T

, (A.7)

where ŵt = f̂t − f̄ .

B. Estimation of FAR model

We estimate the autocovariance operators of order 0 and 1 by

Ĉ0 =
1

T

T∑

t=1

ŵtŵ
′
t, Ĉ1 =

1

T − 1

T∑

t=2

ŵtŵ
′
t−1, (A.8)
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and then obtain the eigenvalues (λj) of Ĉ0 and its corresponding eigenfunctions (vj) by

λ =










λ1

...

λn










n×1

, V =

[

v1 · · · vn

]

=










v11 v21 · · · vn1

...
...

. . .
...

v1n v2n · · · vnn










n×n

. (A.9)

Next, we choose L (< n) eigenvalues, (λ1, λ2, . . . , λL), and the corresponding eigenfunctions, (v1, . . . , vL).

Hence we approximate the inverse of Ĉ0 in the L-dimensional subspace by

Ĉ+
0,L =

L∑

k=1

λ−1
k vkv′

k. (A.10)

The choice of L is guided by applying a functional principal component analysis (FPCA) and a cross-

validation (CV; see Ramsey and Silverman, 1997). FPCA explains the variation of the fluctuation

and CV selects the optimal dimension L (≤ Lmax) by minimizing the following criterion:

Ncv∑

i=1

RSUM

([

ŵL
T −i+1 − ŵT −i+1

]2
)

, (A.11)

where Ncv is the number of the last observations used in CV and ŵL
T −i+1 represents the in-sample

forecasts of wT −i+1 on the L-dimensional subspace. We set Lmax = 20 in the empirical analysis,

and find that CV selects the optimal value of L ranging between 5 and 10. Finally, we estimate

the autoregressive operator A in the L-dimensional subspace, consistently, by

ÂL = Ĉ1Ĉ+
0,L, (A.12)

where

ÂL =













â11 â12 · · · â1n

â21 â22 · · · â2n

...
...

. . .
...

ân1 ân2 · · · ânn













. (A.13)

C. Density forecast of intraday returns
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A one-step-ahead conditional density forecast is evaluated by

f̂T +1 = f̄ + ÂLŵT , (A.14)

or equivalently,













f̂T +1 (x1)

f̂T +1 (x2)

...

f̂T +1 (xn)













=













f̄ (x1)

f̄ (x2)

...

f̄ (xn)













+













â11ŵT (x1) + â12ŵT (x2) + · · · + â1nŵT (xn)

â21ŵT (x1) + â22ŵT (x2) + · · · + â2nŵT (xn)

...

ân1ŵT (x1) + ân2ŵT (x2) + · · · + ânnŵT (xn)













. (A.15)

Step 2: Forecasting daily VaR

A. NIG approximation approach

We numerically evaluate the first four moments from the density forecast of intraday returns in

Equation (A.14) (i.e., mean (µT +1), variance (vT +1), skewness (sT +1), kurtosis (kT +1)), by

µ̂T +1 = RSUM
(

x ⊙ f̂T +1

)

, (A.16)

v̂T +1 = RSUM
(

(x − µ̂T +1)2 ⊙ f̂T +1

)

, (A.17)

ŝT +1 = RSUM
(

(x − µ̂T +1)3 ⊙ f̂T +1

)

/v̂
3/2
T +1, (A.18)

k̂T +1 = RSUM
(

(x − µ̂T +1)4 ⊙ f̂T +1

)

/v̂2
T +1, (A.19)

where ⊙ stands for an element-by-element multiplication operator and RSUM
(

yk ⊙ f
)

approx-

imates
´

ykf (y) dy for k ≥ 1. We then calculate the four parameters,
(

α̂T +1, β̂T +1, γ̂T +1, δ̂T +1

)

from the four moments in Equation (A.16) - (A.19) by

α̂T +1 = v̂
− 1

2

T +1

(

3k̂T +1 − 4ŝ2
T +1 − 9

) 1
2

(

k̂T +1 −
5

3
ŝ2

T +1 − 3

)−1

, (A.20)

β̂T +1 = ŝT +1v̂
− 1

2

T +1

(

k̂T +1 −
5

3
ŝ2

T +1 − 3

)−1

, (A.21)

γ̂T +1 = µ̂T +1 − 3ŝT +1v̂
1
2

T +1

(

3k̂T +1 − 4ŝ2
T +1 − 9

)−1
, (A.22)

δ̂T +1 = 3
3
2

[

v̂T +1

(

k̂T +1 −
5

3
ŝ2

T +1 − 3

)] 1
2
(

3k̂T +1 − 4ŝ2
T +1 − 9

)−1
. (A.23)
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We can approximate the density of daily returns by the following NIG density formula:

ĝT +1 (x) =







mα̂T +1δ̂T +1J1

(

α̂T +1

√

m2δ̂2
T +1 + (x − mγ̂T +1)2

)

π
√

m2δ̂2
T +1 + (x − mγ̂T +1)2







emδ̂T +1λ̂T +1+β̂T +1(x−mγ̂T +1).

(A.24)

Since the analytic form of the cumulative NIG density function does not exist, we approximate the

cumulative NIG density ĜT +1 by evaluating the integral of ĝT +1:

ĜT +1 (ω) =

ˆ ω

−∞
ĝT +1 (x) dx. (A.25)

Since there is no analytic formula for ĜT +1 (ω), the numerical integration method is employed.1

B. Simulation approach

To construct the cumulative distribution function of daily returns, F̂T +1, from the density forecast

of intraday returns, f̂T +1, in Equation (A.14), we approximate an empirical cumulative distribution

function using the middle Riemann sum:

F̂T +1 (zj) = RSUM
(

f̂T +1 [1 : j + 1]
)

, j = 1, . . . , n − 1, (A.26)

where f̂T +1 [1 : j + 1] :=
(

f̂T +1 (x1) , . . . , f̂T +1 (xj+1)
)′

. We express the cumulative distribution

function of intraday returns as an (n − 1) × 1 vector:

F̂T +1 =













F̂T +1 (z1)

F̂T +1 (z2)

...

F̂T +1 (zn−1)













(n−1)×1

. (A.27)

Then we simulate intraday and daily return forecasts and the daily VaR forecasts from F̂T +1, as

described in Section 1.2.2 and depicted in Figure 2.

1We use the MATLAB package for the NIG distribution provided by Dr. Ralf Werner. The package uses
a Gaussian integration rule for computing the CDF. http://uk.mathworks.com/matlabcentral/fileexchange/

6050-normal-inverse-gaussion-distribution.
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II. Multivariate FARVaR

We describe the detailed estimation and forecasting procedure of mFARVaR. Consider K assets

constituting a portfolio in Equation (15).

Step 1. Forecasting K marginal densities of intraday returns by FAR

We forecast K marginal densities individually by FAR (see Equation (A.14)). We then numerically

approximate a cumulative distribution function by applying the middle Riemann sum in Equation

(A.26) to each density forecast. We express the cumulative distribution function of intraday returns

as an (n − 1) × K matrix:

F̂T +1 =













F̂1,T +1 (z1) F̂2,T +1 (z1) · · · F̂K,T +1 (z1)

F̂1,T +1 (z2) F̂2,T +1 (z2) · · · F̂K,T +1 (z2)

...
...

. . .
...

F̂1,T +1 (zn−1) F̂2,T +1 (zn−1) · · · F̂K,T +1 (zn−1)













(n−1)×K

. (A.28)

Step 2. Forecasting copula of K intraday return series by VAR(1)

For each day, we construct the matrix of the probability integral transform (PIT) of intraday

returns. To this end, we first approximate K cumulative distribution functions by applying the

middle Riemann sum in Equation (A.26) to the estimated density functions:

F̂t =













F̂1,t (z1) F̂2,t (z1) · · · F̂K,t (z1)

F̂1,t (z2) F̂2,t (z2) · · · F̂K,t (z2)

...
...

. . .
...

F̂1,t (zn−1) F̂2,t (zn−1) · · · F̂K,t (zn−1)













(n−1)×K

for t = 1, . . . , T. (A.29)
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Then we compute the PIT of intraday returns by ûk,t,i ≈ F̂k,t (rk,t,i) and construct a PIT matrix:

Ût =













û1,t,1 û2,t,1 · · · ûK,t,1

û1,t,2 û2,t,2 · · · ûK,t,2

...
...

. . .
...

û1,t,m û2,t,m · · · ûK,t,m













m×K

for t = 1, . . . , T. (A.30)

Next, we estimate a copula using the PIT series for each day. Let us assume that the copula has

the form of the multivariate Student t (νt, 0, P t)-distribution, where P t is the correlation matrix and

νt the degree of freedom. We estimate the copula parameters, P̂ t and ν̂t, using the quasi-maximum

likelihood estimator (QMLE):

{

ν̂t, P̂ t

}

= argmax
{νt,P t}∈Θ

m∑

i=1

ln ct (u1,t,i, . . . , uK,t,i; νt, P t) . (A.31)

Then we model the dynamics of copula parameters by VAR(1) in Equations (19) – (20) and forecast

them:
{

ν̂T +1, P̂ T +1

}

⇒ Cν̂T +1,P̂ T +1. (A.32)

Step 3. Simulating daily portfolio VaR

We randomly generate UT +1 from the copula forecast, Cν̂T +1,P̂ T +1
,

U
(b)
T +1 =













u
(b)
1,T +1,1 u

(b)
2,T +1,1 · · · u

(b)
K,T +1,1

u
(b)
1,T +1,2 u

(b)
2,T +1,2 · · · u

(b)
K,T +1,2

...
...

. . .
...

u
(b)
1,T +1,m u

(b)
2,T +1,m · · · u

(b)
K,T +1,m













m×K

for b = 1, . . . , B, (A.33)
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and convert those into intraday returns using the inverse cumulative distribution function of intra-

day returns,

R
(b)
T +1 =













r
(b)
1,T +1,1 r

(b)
2,T +1,1 · · · r

(b)
K,T +1,1

r
(b)
1,T +1,2 r

(b)
2,T +1,2 · · · r

(b)
K,T +1,2

...
...

. . .
...

r
(b)
1,T +1,m r

(b)
2,T +1,m · · · r

(b)
K,T +1,m













m×K

for b = 1, . . . , B, (A.34)

where we obtain rk,T +1,i = F̂ −1
k,T +1

(

u
(b)
k,T +1,i

)

following the algorithm depicted in Figure 2. Note that

we randomly generate UT +1 from the independent multivariate uniform distribution for mFARVaR-

naïve.

Then we update the intraday returns of the portfolio, generate the daily portfolio returns and

evaluate the daily VAR following Equations (23) – (26).

III. Confidence Interval of VaR Forecast

In order to construct the confidence interval of the VaR forecast, we employ the nonparametric

bootstrap approach. First, we draw the prediction errors,
{

ǫ
(b)
1 , . . . , ǫ

(b)
T

}

for b = 1, . . . , B, with

replacements from the pool of sample residuals, {ǫ̂1, . . . , ǫ̂1}, where ǫ̂t = ŵ − ÂLŵt−1. Next, we

update the density function based on FAR, using the prediction errors:

(

f
(b)
t − f̄

)

= ÂL

(

f
(b)
t−1 − f̄

)

+ ǫ
(b)
t , t = 1, . . . , T, (A.35)

where we assume that f
(b)
1 is given by the initial density function estimate. We finally forecast

a daily VaR using the simulated density functions,
{

f
(b)
1 , . . . , f

(b)
T

}

. We repeat the bootstrapping

many times to construct the empirical distribution of daily VaR forecasts by

D̂T +1(ω) =
1

B

B∑

b=1

1

{

V̂ aR
(b)

T +1 ≤ ω

}

. (A.36)

Finally, it is straightforward to construct a confidence interval given a probability from the empirical

distribution.

46



IV. Computational Burden

We provide detail on the computational burden that is involved in computing FARVaR for both

single and multiple assets in our empirical analysis. As benchmarks we also compare our models

with FHS, mFHS-MGARCH and mFHS-copula. We repeat the forecast exercise 100 times and use

the average value. The PC used has Intel(R) Core(TM) i7-2640M CPU 2.8 GHz (dual cores and

four logical processors) and 8 GB RAM, running 64-bit Windows 10 Pro OS. We use MATLAB

2014b (64-bit). We use Econometrics Toolbox for (AR-GARCH-based) FHS and mFHS-copula,

and the Oxford MFE Toolbox for mFHS-MGARCH. We use a 250-day window to estimate models

and 1000 iterations for the simulation-based models.

Single Asset Multiple Assets (3 Assets)

FARVaR-sim FARVaR-nig FHS mFARVaR mFHS-MGARCH mFHS-copula

2.344s 1.368s 0.329s 16.793s 1.537s 1.476s

V. Value-at-Risk Models

Consider the sequence of daily returns (rt) generated by a probability law

P {rt ≤ x|Ft−1} ≡ Ft (r) (A.37)

conditional on the available information at t − 1 (Ft−1). Then VaR with a given tail probability α

is defined as the conditional quantile from Ft such that

V aRt (α) = F −1
t (α) or Ft (V aRt (α)) = α. (A.38)

Daily asset returns are usually represented with mean and volatility,

rt = µt + σtzt, (A.39)

where µt = E [rt|Ft−1] and σ2
t = V ar (rt|Ft−1). The standardized return zt = (rt − µt) /σt has

a conditional distribution function Ft∗ ≡ P {zt ≤ z|Ft−1}. Thus VaR in Equation (A.38) can be

alternatively defined as

V aRt (α) = µt + σtF
−1
t∗ (α) . (A.40)
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Equations (A.38) and (A.40) are often categorized as unfiltered VaR and filtered VaR, respectively.

For practical use, we estimate VaR by

V̂ aRt (α) =







F −1
t (α) (unfiltered)

µ̂t + σ̂tF
−1
t∗ (α) (filtered).

(A.41)

A. Historical Simulation (HS)

HS is a static nonparametric model and is most popular for its simplicity (Perignon et al., 2008). It

does not make any strong asumption about the probability distribution of asset returns. It employs

a window of observations generally ranging from 6 months to 2 years. Asset returns within this

window are sorted in ascending order and the α-quantile of interest is given by the return that

leaves α% of the observation on its left side and (1 − α)% on its right side. Hence it uses the

unfiltered VaR, and FT is an empirical probability distribution function of historical asset returns.

B. RiskMetrics (RM)

RM uses the filtered VaR. It estimates a conditional mean and volatility by µ̂T +1 = T −1∑T
t=1 rt

and σ̂2
T +1 = 0.94σ̂2

T + 0.06 (rT − µ̂T )2. Further, it assumes that zt follows the standard normal

distribution.

C. GARCH

GARCH uses the filtered VaR. The conditional mean is estimated by AR(1) and the conditional

volatility is estimated by GARCH(1,1). It assumes that zt follows the Student’s t-distribution.

D. Filtered Historical Simulation (FHS)

FHS is the hybrid approach, applying HS to returns filtered by AR(1)-GARCH(1,1). We randomly

draw filtered returns
{

z
(b)
1 , . . . , z

(b)
T

}

from the empirical distribution {z1, . . . , zT } and simulate a

sample path of (rt) by the AR(1)-GARCH(1,1) process. We iterate this procedure many times and

construct the simulated distribution of rT to get an unfiltered VaR.

E. Filtered Extreme Value Theory (FEVT)

FEVT is suggested to control for time-varying volatility (Diebold et al., 1998; McNeil and Rudiger,

2000). Similarly to FHS, it applies the EVT procedure to returns filtered by AR(1)-GARCH(1,1).
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Here we consider the filtered generalized extreme value (FGEV) distribution and the filtered gen-

eralized Pareto distribution (FGPD).

In the fixed time interval, consider collection of n filtered returns {z1, . . . , zn}. Let z(1) =

min1≤j≤n {zj} as the minimum return and z(n) = max1≤j≤n {rj} as the maximum return. Assume

that (zt) is the sequence of i.i.d random variables. Then the CDF of z(1) is given by

GEV : F
(

z(1)

)

=







exp
[

− (1 + ξz)−1/ξ
]

if ξ 6= 0

exp
[

− exp (z)−1/ξ
]

if ξ = 0

(A.42)

GPD : F
(

z(1)

)

=







1 − (1 + ξz)−1/ξ for ξ 6= 0

1 − exp (−z) for ξ = 0,

(A.43)

where z(1) ≥ 0 for ξ ≥ 0 and 0 ≤ z(1) ≤ −1/ξ for ξ < 0.

F. Conditional Autoregressive Value-at-Risk by Regression Quantile (CAViaR)

CAViaR and CAViAR–GARCH, which incorporates GARCH in CAViaR (Engle and Manganelli,

2004):

CAV iaR : V aRt (α) = β0 + β1qt−1 (α) + β2 |rt−1| , (A.44)

CAV iaR − GARCH : V aRt (α) =
(

β0 + β1q2
t−1 (α) + β2r2

t−1

)1/2
. (A.45)

G. Multivariate Filtered Historical Simulation (mFHS)

mFHS is the hybrid approach, applying HS to multiple returns filtered by AR(1)-MGARCH(1,1)

(mFHS-MGARCH) or AR(1)-copula (mFHS-copula). We randomly draw multiple filtered returns
{

z
(b)
1 , . . . , z

(s)
T

}

, where z
(b)
t =

(

z
(b)
1,t , . . . , z

(b)
K,t

)′
, from its empirical distribution {z1, . . . , zT } and sim-

ulate a sample path of (r1,t, . . . , rk,t)
′ by the AR(1)-MGARCH(1,1) or AR(1)-copula process. Then

we get a simulated portfolio return, r
(b)
p,T +1 =

∑K
k=1 wkr

(b)
k,T +1. We iterate this procedure many times

and construct the simulated distribution of portfolio returns to get an unfiltered VaR.
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Figure 1: FARVaR algorithm

This figure presents the time-series plot of the
density estimates of intraday returns over time.
Time denotes days and Return denotes the
intraday returns. We estimate the density of
intraday returns by Equations (A.2) and (A.3)
and plot Equation (A.5): (f̂1, f̂2, . . . , f̂T ).

Step 1. This figure presents the one-day-ahead
density forecast of intraday returns and the
realized density estimate of intraday returns at
time T + 1. We model the densities of intraday
returns by FAR and forecast the density by
Equation (10). The realized density of intraday
returns is estimated by Equations (A.2) and
(A.3).

Step 2. This figure presents the density of daily
returns generated from the density forecast of
intraday returns in Step 1. There are two
densities of daily returns: one generated by the
NIG approximation using the first four moments
from the density forecast of intraday returns
described in Section 1.2.1; the other by
simulating intraday returns randomly drawn
from the density forecast of intraday returns
decribed in Section 1.2.2.

Note: This figure illustrates the two-step algorithm of FARVaR described in Section 1 and Appendix
Section I. We use the intraday returns on the equal-weighted portfolio of 30 stocks to estimate the
density of intraday returns.
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Figure 2: Simulating intraday returns from cumulative distribution function of intraday returns

Note: This figure depicts the idea of simulating intraday returns from the empirical cumulative distribution function of intraday returns
in Section 1.2.2. Given the piecewise stationarity assumption of intraday returns, we randomly draw m real numbers from the uniform

distribution over (0, 1), and denote them by
{

p
(b)
1 , p

(b)
2 , . . . , p

(b)
m

}

, where p
(b)
i ∼ U (0, 1) for each iteration, b = 1, . . . , B. We then select

a z
(b)
i corresponding to p

(b)
i , following the algorithm described in Equation (12) and construct a set of m simulated intraday returns,

{

z
(b)
1 , z

(b)
2 , . . . , z

(b)
m

}

.
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Figure 3: Bootstrap-based confidence interval of VaR forecast
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Note: This figure presents the empirical distribution of VaR as forecast by FARVaR-nig and FARVaR-sim, along with their 95% confidence
intervals. We obtain the empirical distribution by bootstrapping the intraday density from the in-sample prediction errors. Appendix
Section III provides the detailed construction of the empirical distribution.
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Figure 4: Autocorrelation function of moments of intraday returns

(a) volatility (b) skewness

AR (1) = 0.758 ∗ ∗∗ AR (1) = −0.074 ∗ ∗∗

Note: This figure displays the autocorrelation functions of the volatility and skewness of intraday
returns, constructed by the equal-weighted portfolio of 30 stocks. 95% CI denotes the 95% confi-
dence interval. *, ** and *** indicate that the null of a zero AR(1) coefficient is rejected at the
10%, 5% and 1% significance level, respectively.
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Figure 5: Contemporaneous relationships between moments of intraday returns

(a) mean – volatility (b) mean – skewness

Corr (µ, σ|µ > 0) = 0.672 Corr (µ, s) = 0.512
Corr (µ, σ|µ < 0) = −0.633

(c) volatility – skewness (d) skewness – kurtosis

Corr (σ, s|s > 0) = 0.227 Corr (s, k|s > 0) = 0.977
Corr (σ, s|s < 0) = −0.366 Corr (s, k|s < 0) = −0.963

Note: This figure displays scatter plots between moment pairs of intraday returns. Corr (x, y|z)
denotes a correlation coefficient between x and y, given a condition z. µ, σ and s denote the mean,
volatility and skewness of intraday returns constructed by an equal-weighted portfolio of 30 stocks.
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Figure 6: VaR forecasts by FARVaR and FHS
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Note: This figure presents the VaR forecasts by FARVaR-nig, FARVaR-sim and FHS applied to the value-weighted portfolio of 30 stocks.
The portfolio takes a long position. We estimate the VaR models using the window size of 250 days over the period 3 Jan 2000 – 27 Dec
2000 and compute the one-day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this procedure moving forward a day at a time in a
rolling manner, ending with the forecast for 31 Dec 2008.

61



Figure 7: VaR forecasts by FARVaR-cdf-sim and FARVaR-sim
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Note: This figure presents the VaR forecasts by FARVaR-cdf-sim applied to the value-weighted portfolio of 30 stocks. The portfolio takes
a long position. We estimate the VaR model using the window size of 250 days over the period 3 Jan 2000 – 27 Dec 2000 and compute
the one-day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this procedure moving forward a day at a time in a rolling manner,
ending with the forecast for 31 Dec 2008. For comparison, we also plot the VaR forecasts of our PDF-based FARVaR-sim.
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Figure 8: VaR forecasts by mFARVaR and mFARVaR-naïve
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Note: This figure presents the VaR forecasts by mFARVaR and mFARVaR-naïve applied to the portfolio P(T,UTX,WMT). The portfolio
takes a long position. We estimate the VaR models using the window size of 250 days over the period 3 Jan 2000 – 27 Dec 2000 and
compute the one-day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this procedure moving forward a day at a time in a rolling
manner, ending with the forecast for 31 Dec 2008.
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Figure 9: VaR forecasts by mFARVaR and mFHS
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Note: This figure presents the VaR forecasts by mFARVaR and mFHS-MGARCH applied to the portfolio P(T,UTX,WMT). The portfolio
takes a long position. We estimate the VaR models using the window size of 250 days over the period 3 Jan 2000 – 27 Dec 2000 and
compute the one-day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this procedure moving forward a day at a time in a rolling
manner, ending with the forecast for 31 Dec 2008.
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Table 1: Components of the Dow Jones Industrial Average

Ticker: Company Exchange Industry Data period

AA: Alcoa Corporation NYSE Aluminum 03/01/00 – 31/12/08
AIG: American International Group, Inc. NYSE Multiline insurance & brokers 03/01/00 – 31/12/08
AXP: American Express Company NYSE Consumer credit card services 03/01/00 – 31/12/08
BA: The Boeing Company NYSE Commercial aircraft manufacturing 03/01/00 – 31/12/08
C: Citigroup Inc. NYSE Banking 03/01/00 – 31/12/08
CAT: Caterpillar Inc. NYSE Construction machinery 03/01/00 – 31/12/08
DD: E. I. du Pont de Nemours & Company NYSE Industrial conglomerate 03/01/00 – 31/12/08
DIS: The Walt Disney Company NYSE Broadcasting 03/01/00 – 31/12/08
GE: General Electric NYSE Industrial conglomerate 03/01/00 – 31/12/08
GM: General Motors NYSE Auto & truck manufacturing 03/01/00 – 31/12/08
HD: The Home Depot, Inc. NYSE Home improvement products & services 03/01/00 – 31/12/08
HON: Honeywell International Inc. NYSE Industrial conglomerate 06/05/02 – 31/12/08
HPQ: HP Inc. NYSE Computer hardware 03/01/00 – 31/12/08
IBM: International Business Machines Corp. NYSE Computers & technology 03/01/00 – 31/12/08
INTC: Intel Corporation NASDAQ Semiconductors 03/01/00 – 31/12/08
JNJ: Johnson & Johnson NYSE Pharmaceuticals 03/01/00 – 31/12/08
JPM: JPMorgan Chase & Co. NYSE Banking 03/01/00 – 31/12/08
KO: The Coca-Cola Company NYSE Non-alcoholic beverages 03/01/00 – 31/12/08
MCD: McDonald’s Corporation NYSE Quick service restaurants 03/01/00 – 31/12/08
MMM: 3M Company NYSE Industrial conglomerate 03/01/00 – 31/12/08
MO: Altria Group, Inc. NYSE Cigars & cigarette manufacturing 03/01/00 – 31/12/08
MRK: Merck & Co., Inc. NYSE Pharmaceuticals 03/01/00 – 31/12/08
MSFT: Microsoft Corporation NASDAQ Software 03/01/00 – 31/12/08
PFE: Pfizer Inc. NYSE Pharmaceuticals 03/01/00 – 31/12/08
PG: Procter & Gamble Co. NYSE Personal products 03/01/00 – 31/12/08
T: AT&T Inc. NYSE Telecommunications services 03/01/00 – 31/12/08
UTX: United Technologies Corporation NYSE Aerospace & defence 03/01/00 – 31/12/08
VZ: Verizon Communications Inc. NYSE Telecommunications services 03/07/00 – 31/12/08
WMT: Wal-Mart Stores, Inc. NYSE Supermarkets & convenience stores 03/01/00 – 31/12/08
XOM: Exxon Mobil Corporation NYSE Oil & gas refining and marketing 03/01/00 – 31/12/08

Note: From 21 Nov 2005, after the close, the Dow Jones Industrial Average consisted of the above 30 major companies.
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Table 2: Descriptive statistics of intraday returns and daily returns

Panel A: Intraday returns Panel B: Daily returns
Ticker: Company Mean StDev SK K Mean StDev SK K

AA: Alcoa Corporation −0.0007 0.31 0.18 176.72 −0.0573 2.71 −0.06 10.77
AIG: American International Group, Inc. −0.0024 0.54 −50.37 10690.99 −0.1698 3.99 −6.49 158.52
AXP: American Express Company −0.0006 0.29 −2.39 207.30 −0.0423 2.41 −0.37 9.26
BA: The Boeing Company 0.0000 0.25 −3.75 324.89 0.0011 2.10 −0.33 9.37
C: Citigroup Inc. −0.0010 0.35 15.90 2240.65 −0.0794 2.97 0.58 47.82
CAT: Caterpillar Inc. 0.0003 0.26 −2.11 173.43 0.0267 2.08 −0.21 7.28
DD: E. I. du Pont de Nemours & Company −0.0005 0.23 −0.80 58.49 −0.0425 1.88 −0.22 8.96
DIS: The Walt Disney Company −0.0001 0.27 −2.27 434.35 −0.0113 2.22 −0.05 11.87
GE: General Electric −0.0007 0.24 −1.03 150.30 −0.0508 2.03 −0.22 9.47
GM: General Motors −0.0006 0.28 −6.38 663.38 0.0300 1.79 0.15 14.63
HD: The Home Depot, Inc. −0.0003 0.29 0.46 371.78 −0.0485 2.40 −1.11 22.44
HON: Honeywell International Inc. 0.0006 0.28 −0.31 238.78 −0.0253 2.38 −0.48 13.30
HPQ: HP Inc. −0.0002 0.23 −2.61 477.37 0.0437 2.25 0.13 9.91
IBM: International Business Machines Corp. −0.0010 0.37 −37.02 6336.19 −0.0127 1.94 −0.05 10.35
INTC: Intel Corporation 0.0001 0.17 −6.78 721.42 −0.0472 2.95 −0.49 9.49
JNJ: Johnson & Johnson −0.0008 0.44 −148.97 44269.37 0.0110 1.43 −0.84 18.52
JPM: JPMorgan Chase & Co. −0.0001 0.19 −0.91 76.73 −0.0032 2.64 0.03 11.91
KO: The Coca-Cola Company 0.0003 0.23 −2.18 140.36 −0.0106 1.54 0.08 9.12
MCD: McDonald’s Corporation 0.0001 0.20 0.32 80.99 0.0196 1.78 −0.19 7.61
MMM: 3M Company −0.0003 0.36 −193.24 61862.39 0.0081 1.59 0.19 7.99
MO: Altria Group, Inc. −0.0005 0.24 −15.69 1810.63 0.0431 1.88 −0.02 12.94
MRK: Merck & Co., Inc. −0.0006 0.25 −1.39 258.30 −0.0358 2.05 −1.83 31.32
MSFT: Microsoft Corporation −0.0003 0.23 −3.98 326.59 −0.0488 2.25 −0.08 11.07
PFE: Pfizer Inc. 0.0001 0.20 −44.87 8810.92 −0.0261 1.81 −0.24 7.34
PG: Procter & Gamble Co. −0.0003 0.32 45.67 9311.84 0.0061 1.66 −5.19 120.31
T: AT&T Inc. 0.0003 0.23 −2.10 229.93 −0.0539 2.44 0.28 14.90
UTX: United Technologies Corporation −0.0002 0.23 −1.01 68.85 0.0295 1.91 −0.16 9.55
VZ: Verizon Communications Inc. −0.0001 0.22 −0.14 61.41 −0.0186 1.88 0.17 8.28
WMT: Wal-Mart Stores, Inc. 0.0004 0.20 −0.69 63.75 −0.0089 1.79 0.26 6.88
XOM: Exxon Mobil Corporation −0.0018 0.39 −1.94 549.39 0.0306 1.79 0.15 14.63

Note: This table presents the descriptive statistics of the intraday and daily returns of the 30 stocks listed in the DJIA index.
We calculate the mean, standard deviation (StDev), skewness (SK) and kurtosis (K) of each individual company over the
sample period. Panel A reports the descriptive statistics of the intraday returns. Panel B presents the descriptive statistics
of the daily returns.
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Table 3: Descriptive statistics and autocorrelation of copula correlation coefficients

Panel A. Min/Mean/Max Panel B. Autocorrelation
Portfolio δ12 δ13 δ23 Statistics δ12 δ13 δ23

P(AA,CAT,INTC) –0.30/0.28/0.83 –0.26/0.28/0.80 –0.27/0.33/0.82 ACF(1) 0.484*** 0.365*** 0.463***
Q(5) 2161*** 1233*** 1976***

P(AIG,C,GM) –0.18/0.36/0.81 –0.30/0.22/0.72 –0.26/0.27/0.72 ACF(1) 0.537*** 0.447*** 0.455***
Q(5) 2691*** 1874*** 2083***

P(AXP,DD,PG) –0.27/0.32/0.80 –0.50/0.28/0.73 –0.31/0.28/0.80 ACF(1) 0.477*** 0.393*** 0.435***
Q(5) 2080*** 1338*** 1687***

P(BA,GE,XOM) –0.26/0.30/0.78 –0.31/0.26/0.82 –0.31/0.32/0.81 ACF(1) 0.448*** 0.473*** 0.567***
Q(5) 1943*** 2233*** 3059***

P(DIS,HPQ,MMM) –0.29/0.28/0.81 –0.22/0.31/0.85 –0.27/0.31/0.79 ACF(1) 0.436*** 0.521*** 0.402***
Q(5) 1204*** 1915*** 957***

P(HD,HON,IBM) –0.28/0.28/0.86 –0.23/0.31/0.83 –0.39/0.31/0.84 ACF(1) 0.486*** 0.452*** 0.476***
Q(5) 2215*** 1788*** 2043***

P(JNJ,JPM,MCD) –0.25/0.26/0.75 –0.29/0.22/0.77 –0.33/0.26/0.81 ACF(1) 0.348*** 0.376*** 0.451***
Q(5) 1031*** 1387*** 1773***

P(KO,MSFT,VZ) –0.34/0.29/0.77 –0.29/0.27/0.79 –0.27/0.30/0.79 ACF(1) 0.422*** 0.424*** 0.469***
Q(5) 1420*** 1347*** 2087***

P(MO,MRK,PFE) –0.33/0.20/0.74 –0.31/0.21/0.73 –0.45/0.31/0.85 ACF(1) 0.373*** 0.382*** 0.479***
Q(5) 1227*** 1418*** 2257***

P(T,UTX,WMT) –0.25/0.24/0.83 –0.28/0.25/0.74 –0.27/0.30/0.79 ACF(1) 0.512*** 0.417*** 0.479***
Q(5) 2556*** 1736*** 2046***

Note: This table presents the descriptive statistics and autocorrelation of copula correlation coefficients between the
individual intraday returns constituting the equal-weighted portfolio of three stocks. In Panel A, we calculate the
minimum/mean/maximum of copula correlation coefficients for each pair of individual stocks. In Panel B, we compute
the sample ACF of order 1 and conduct the Ljung –Box Q-test for autocorrelation of copula correlation coefficients at
a lag of 5. Note that *, ** and *** indicate that the null of zero autocorrelations is rejected at the 10%, 5% and 1%
significance level, respectively.
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Table 4: Performance of density forecast of intraday returns

Model DH DU DE

FAR 0.02852 (9) 0.26648 (13) 0.04124 (4)
FAR-fft 0.02837 (14) 0.26625 (15) 0.04048 (19)
FAR-wv 0.02841 (7) 0.26781 (2) 0.04063 (7)
AVE 0.04568 (0) 0.36825 (0) 0.05762 (0)
LAST 0.03415 (0) 0.27786 (0) 0.05386 (0)

Note: This table presents the performance of the density
forecast of intraday returns for different functional models:
FAR, FAR-fft, FAR-wv, AVE and LAST. For the 30 stocks,
one-step-ahead rolling forecasting is performed based on the
250-day window size. To begin with, we estimate the five
functional models using intraday data over the period 3 Jan
2000 – 27 Dec 2000 and compute the one-day-ahead den-
sity forecast of intraday returns for 28 Dec 2000. We re-
peat this procedure by moving forward a day at a time in
a rolling manner, ending with the density forecast for 31
Dec 2008. The Hilbert norm (DH), the uniform norm (DU )
and the generalized entropy (DE) are employed as diver-
gence criteria (see Equation (27) for the definition), which
are evaluated for the mean value of the 2013 intraday re-
turn density forecasts (except for HP, AT&T and Verizon,
where 1418, 2006 and 1887 forecasts respectively are used
for the calculation). The main figure reports the average of
each divergence measure for 30 stocks evaluated by Equa-
tion (28), and (·) indicates the number of stocks for which a
given model achieves the smallest value. The best forecast-
ing performance for each measure is highlighted by a red
colour.
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Table 5: Backtesting VaR models: 250-day window size and long position

Model ECP BPZ MRCR PQL CC DQ

FARVaR-sim 0.87% Green 42.65% 6.79% 6 12
FARVaR-nig 1.07% Green 40.80% 6.76% 4 11
HS 1.19% Green 45.28% 7.44% 12 25
FHS 1.10% Green 45.29% 6.87% 1 12
RM 1.82% Yellow 39.59% 6.89% 25 29
GARCH 1.60% Green 39.78% 6.80% 19 25
FGEV 0.49% Green 58.22% 7.61% 19 11
FGPD 0.51% Green 60.21% 7.82% 20 12
CAViaR 2.83% Yellow 47.43% 8.25% 30 30
CAViaR-GARCH 4.54% Red 47.25% 9.74% 30 30

Note: This table presents the backtesting results for the long
position. We estimate VaR models using the window size of 250
days over the period 3 Jan 2000 – 27 Dec 2000 and compute the
one-day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this
procedure moving forward a day at a time in a rolling manner,
ending with the forecast for 31 Dec 2008. This generates 2013
daily forecasts per company except for HP, AT&T and Verizon,
which generate 1428, 2006 and 1887 forecasts, respectively. We
report the average of the ECP, MRCR and PQL for the 30 stocks
evaluated by Equation (36). The BPZ is evaluated based on the
average violation of the 30 stocks. For the CC and DQ tests, we
count the frequency of an individual model being rejected at the
5% significance level for the 30 stocks.
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Table 6: Backtesting VaR models with value-weighted portfolio of 30 stocks: 250-day window
size and long position

Models ECP BPZ MRCR PQL CC DQ

FARVaR-sim 0.65% Green 31.21% 4.51% 3.065 10.387
FARVaR-nig 0.80% Green 28.84% 4.44% 1.165 1.379
HS 1.24% Green 27.35% 4.61% 1.750 8.236
FHS 1.14% Green 25.89% 4.48% 1.649 9.408
RM 1.79% Yellow 24.64% 4.38% 10.463*** 41.198***
GARCH 1.84% Yellow 25.00% 4.42% 13.267*** 38.099***
FGEV 0.55% Green 35.47% 5.09% 5.100* 5.490
FGPD 0.65% Green 35.56% 5.18% 3.065 4.592
CAViaR 2.09% Yellow 26.66% 4.59% 21.70*** 107.515***
CAViaR-GARCH 3.68% Red 27.56% 5.52% 88.239*** 333.923***

Note: This table presents the backtesting results of VaR models applied to
the value-weighted portfolio of 30 stocks. The portfolio takes a long position.
We estimate VaR models using the window size of 250 days over the period 3
Jan 2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR forecast for
28 Dec 2000. We repeat this procedure moving forward a day at a time in a
rolling manner, ending with the forecast for 31 Dec 2008. This generates 2013
daily forecasts per company except for HP, AT&T and Verizon, which generate
1428, 2006 and 1887 forecasts, respectively. We report the ECP, BPZ, MRCR,
PQL, CC test statistic and DQ test statistic. *, ** and *** denote that the
CC (DQ) test statistic is rejected at the 10%, 5% and 1% significance level,
respectively.
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Table 7: FARVaR and FHS: 250-day window size and long position

Date Return FARVaR-sim FARVaR-nig FHS

12 Mar 2001 –4.896 –3.159 –2.985 –3.544
13 Jun 2001 –3.610 –2.807 –2.749 –2.673
17 Sep 2001 –16.453 –3.996 –4.050 –4.257
04 Feb 2002 –2.519 –2.764 –2.471 –4.312
03 Jun 2002 –2.450 –2.772 –2.433 –3.150
10 Jul 2002 –3.365 –4.242 –4.165 –3.269
19 Jul 2002 –4.792 –4.895 –4.788 –3.222
03 Sep 2002 –4.520 –4.414 –4.598 –3.609
24 Mar 2003 –4.363 –4.039 –4.171 –5.116
19 May 2003 –2.703 –2.917 –2.405 –3.176
22 Oct 2003 –1.664 –3.148 –2.867 –1.613
28 Jan 2004 –1.367 –2.014 –1.779 –1.327
10 Mar 2004 –1.701 –2.757 –2.666 –1.366
11 Mar 2004 –1.688 –2.221 –1.993 –1.600
22 Feb 2005 –1.645 –1.943 –1.695 –1.489
15 Apr 2005 –1.738 –3.941 –3.532 –1.621
23 Jun 2005 –1.463 –2.025 –1.565 –1.437
20 Jan 2006 –1.830 –2.006 –2.020 –1.623

17 May 2006 –1.809 –3.398 –3.293 –1.388
30 May 2006 –1.660 –1.904 –1.505 –1.634
27 Nov 2006 –1.364 –1.775 –1.710 –1.134
27 Feb 2007 –3.313 –1.982 –1.547 –1.252
19 Oct 2007 –2.381 –4.274 –4.014 –1.837
11 Dec 2007 –2.007 –1.865 –1.699 –3.651
06 Jun 2008 –3.423 –3.171 –2.800 –2.800
26 Jun 2008 –3.247 –3.085 –2.681 –2.926
15 Sep 2008 –8.228 –5.889 –4.859 –3.168
17 Sep 2008 –6.688 –6.565 –6.844 –4.769
29 Sep 2008 –6.342 –5.701 –5.644 –6.584
01 Dec 2008 –8.625 –4.598 –4.163 –11.463

Note: This table presents the failures of VaR forecasts by
FARVaR-sim, FARVaR-nig and FHS applied to the value-
weighted portfolio of 30 stocks. The portfolio takes a long
position. We estimate VaR models using the window size of
250 days over the period 3 Jan 2000 – 27 Dec 2000 and com-
pute the one-day-ahead 99% VaR forecasts for 28 Dec 2000.
We repeat this procedure moving forward a day at a time in a
rolling manner, ending with the forecast for 31 Dec 2008. Note
that a coloured cell indicates the failure of a VaR forecast.
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Table 8: Backtesting VaR models excluding periods of market downturn: 250-day window size
and long position

Models ECP BPZ MRCR PQL CC DQ

FARVaR-sim 0.57% Green 32.87% 5.02% 9 5
FARVaR-nig 0.74% Green 30.81% 4.93% 1 4
HS 0.66% Green 33.63% 5.39% 2 10
FHS 0.85% Green 31.98% 5.19% 0 9
RM 1.45% Green 27.96% 4.95% 5 16
GARCH 1.14% Green 27.94% 4.92% 3 7
FGEV 0.43% Green 42.06% 5.94% 11 4
FGPD 0.44% Green 44.24% 6.14% 9 4
CAViaR 2.59% Yellow 33.54% 6.22% 26 30
CAViaR-GARCH 4.12% Red 33.16% 7.26% 29 30

Note: This table presents the backtesting results for the long
position excluding the periods of market downturn (the dot-com
bubble burst of 2001 – 2002 and the subprime mortgage crisis
of 2007 – 2008). We estimate VaR models using the window
size of 250 days over the period 4 Jan 2002 – 31 Dec 2002 and
compute the one-day-ahead 99% VaR forecast for 2 Jan 2003.
We repeat this procedure moving forward a day at a time in a
rolling manner, ending with the forecast for 31 Dec 2006. This
generates 1009 daily forecasts per company except for HP, which
generates 924 forecasts. See the note of Table 5 for ECP, BPZ,
MRCR, PQL, CC and DQ.
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Table 9: Backtesting VaR models during periods of market downturn: 250-day window size
and long position

Models ECP BPZ MRCR PQL CC DQ

Panel A. Dot-com bubble burst (2001–2002)

FARVaR-sim 0.87% Green 58.86% 8.43% 1 8
FARVaR-nig 1.03% Green 56.79% 8.34% 1 9
HS 0.97% Green 63.01% 9.34% 2 16
FHS 1.11% Green 65.75% 9.19% 1 17
RM 1.86% Yellow 57.26% 9.17% 7 23
GARCH 1.63% Yellow 55.88% 9.01% 2 19
FGEV 0.46% Green 84.98% 10.26% 1 4
FGPD 0.48% Green 89.70% 10.63% 1 5
CAViaR 2.60% Yellow 66.91% 10.68% 14 24
CAViaR-GARCH 5.12% Red 67.88% 13.48% 25 29

Panel B. Subprime mortgage crisis (2007–2008)

FARVaR-sim 1.47% Green 59.90% 8.77% 5 15
FARVaR-nig 1.79% Green 59.20% 8.94% 7 16
HS 2.44% Yellow 60.04% 9.75% 19 26
FHS 1.60% Green 69.94% 8.00% 3 14
RM 2.51% Yellow 65.28% 8.60% 21 27
GARCH 2.51% Yellow 64.66% 8.43% 20 29
FGEV 0.63% Green 84.22% 8.38% 0 2
FGPD 0.67% Green 83.61% 8.49% 0 2
CAViaR 3.48% Yellow 78.19% 9.90% 27 30
CAViaR-GARCH 4.77% Red 78.09% 11.05% 29 30

Note: This table presents the backtesting results for the long posi-
tion during the periods of market downturn (the dot-com bubble
burst of 2001 – 2002 and the subprime mortgage crisis of 2007
– 2008). In Panel A (the dot-com bubble burst), we estimate
VaR models using the window size of 250 days over the period
5 Jan 2000 – 31 Dec 2000 and compute the one-day-ahead 99%
VaR forecast for 3 Jan. 2001. We repeat this procedure mov-
ing forward a day at a time in a rolling manner, ending with the
forecast for 31 Dec 2002. This generates 500 daily forecasts per
company except for HP and Verizon, which generate 0 (VaR fore-
cast is available from 2003) and 374 forecasts, respectively. In
Panel B (the subprime mortgage crisis), we estimate VaR models
using the window size of 250 days over the period 4 Jan 2006 –
29 Dec 2006 and compute the one-day-ahead 99% VaR forecast
for 3 Jan 2007. We repeat this procedure moving forward a day
at a time in a rolling manner, ending with the forecast for 31 Dec
2008. This generates 504 daily forecasts per company except for
AT&T, which generate 497 forecasts. See the note of Table 5 for
ECP, BPZ, MRCR, PQL, CC and DQ.
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Table 10: FARVaR-cdf-sim and FARVaR-sim: 250-day window size and long position

Panel A. Backtesting

Model ECP BPZ MRCR PQL CC DQ

CDF 1.89% Yellow 26.06% 4.30% 14.228*** 33.280***
PDF 0.65% Green 31.21% 4.51% 3.065 10.387

Panel B. Failures

Date Return CDF PDF Date Return CDF PDF

12 Mar 2001 –4.896 –3.535 –3.159 17 May 2006 –1.809 –1.578 –3.398
13 Jun 2001 –3.610 –2.727 –2.807 30 May 2006 –1.660 –1.173 –1.904
06 Jul 2001 –1.963 –1.713 –2.420 27 Nov 2006 –1.364 –1.322 –1.775

08 Aug 2001 –1.487 –1.453 –1.849 25 Jan 2007 –1.005 –0.946 –1.861
17 Sep 2001 –16.453 –4.671 –3.996 27 Feb 2007 –3.313 –1.015 –1.982
29 Jan 2002 –2.491 –2.154 –2.706 13 Mar 2007 –1.924 –1.537 –3.386
04 Feb 2002 –2.519 –2.149 –2.764 10 May 2007 –1.048 –0.899 –1.885
03 Jun 2002 –2.450 –1.945 –2.772 10 Jul 2007 –1.313 –1.064 –1.963
03 Sep 2002 –4.520 –4.729 –4.414 24 Jul 2007 –1.508 –1.406 –5.302
24 Mar 2003 –4.363 –4.172 –4.039 09 Aug 2007 –2.636 –2.530 –5.908
19 May 2003 –2.703 –2.217 –2.917 28 Aug 2007 –2.058 –1.537 –3.257
24 Sep 2003 –1.722 –1.666 –3.308 11 Dec 2007 –2.007 –1.406 –1.865
13 Apr 2004 –1.323 –1.173 –1.857 27 Dec 2007 –1.370 –1.003 –2.479
20 Apr 2004 –1.442 –1.406 –1.865 05 Feb 2008 –2.964 –2.884 –3.484
22 Sep 2004 –1.377 –1.249 –2.326 06 Jun 2008 –3.423 –2.567 –3.171
22 Feb 2005 –1.645 –1.388 –1.943 26 Jun 2008 –3.247 –2.706 –3.085

31 May 2005 –0.768 –0.766 –1.916 15 Sep 2008 –8.228 –5.067 –5.889
27 Dec 2005 –0.965 –0.761 –1.912 17 Sep 2008 –6.688 –7.691 –6.565
20 Jan 2006 –1.830 –1.316 –2.006 29 Sep 2008 –6.342 –5.261 –5.701

11 May 2006 –1.172 –1.169 –1.670 01 Dec 2008 –8.625 –3.769 –4.598

Note: This table presents the results of VaR forecasts by FARVaR-cdf-sim and (PDF-
based) FARVaR-sim applied to the value-weighted portfolio of 30 stocks. The portfolio
takes a long position. We estimate VaR models using the window size of 250 days
over the period 3 Jan 2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR
forecast for 28 Dec 2000. We repeat this procedure moving forward a day at a time
in a rolling manner, ending with the forecast for 31 Dec 2008. Panel A reports the
backtesting results. We report the ECP, BPZ, MRCR, PQL, CC test statistic and
DQ test statistic. *, ** and *** denote that the CC (DQ) test statistic is rejected
at the 10%, 5% and 1% significance level, respectively. Panel B reports the failures
of VaR forecasts by FARVaR-cdf-sim (CDF) and FARVaR-sim (PDF). The failure is
highlighted by a red colour.
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Table 11: Backtesting VaR models: 250-day window size and short position

Model ECP BPZ MRCR PQL CC DQ

FARVaR-sim 1.22% Green 39.74% 5.98% 5 12
FARVaR-nig 0.96% Green 41.20% 5.93% 4 7
HS 1.20% Green 45.13% 7.06% 7 20
FHS 1.03% Green 42.88% 6.05% 0 3
RM 1.66% Yellow 38.64% 6.09% 19 20
GARCH 1.46% Green 39.04% 5.97% 12 11
FGEV 0.48% Green 52.53% 6.60% 20 6
FGPD 0.48% Green 53.77% 6.73% 24 4
CAViaR 2.31% Yellow 44.13% 7.10% 30 30
CAViaR-GARCH 2.27% Yellow 42.70% 7.30% 30 30

This table presents the backtesting results for the short posi-
tion. We estimate VaR models using the window size of 250 days
over the period 3 Jan 2000 – 27 Dec 2000 and compute the one-
day-ahead 99% VaR forecast for 28 Dec 2000. We repeat this
procedure moving forward a day at a time in a rolling manner,
ending with the forecast for 31 Dec 2008. This generates 2013
daily forecasts per company except for HP, AT&T and Verizon,
which generate 1428, 2006 and 1887 forecasts, respectively. See
the note of Table 5 for ECP, BPZ, MRCR, PQL, CC and DQ.
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Table 12: Backtesting VaR models: 500-day window size and long position

Model ECP BPZ MRCR PQL CC DQ

FARVaR-sim 0.89% Green 40.24% 6.58% 8 10
FARVaR-nig 1.05% Green 38.77% 6.59% 7 13
HS 1.55% Green 42.09% 7.85% 22 27
FHS 1.13% Green 40.88% 6.37% 2 10
RM 1.82% Yellow 36.84% 6.57% 27 28
GARCH 1.61% Green 37.25% 6.46% 19 21
FGEV 0.20% Green 70.93% 8.75% 29 22
FGPD 0.21% Green 72.42% 8.92% 30 23
CAViaR 1.76% Yellow 42.12% 6.88% 28 30
CAViaR-GARCH 3.54% Yellow 45.22% 8.34% 30 30

Note: This table presents the backtesting results for the long
position. We estimate VaR models using the window size of 500
days over the period 3 Jan 2000 – 31 Dec 2001 and compute the
one-day-ahead 99% VaR forecast for 2 Jan 2002. We repeat this
procedure moving forward a day at a time in a rolling manner,
ending with the forecast for 31 Dec 2008. This generates 1763
daily forecasts per company except for HP, AT&T and Verizon,
which generate 1178, 1756 and 1637 forecasts, respectively. See
the note of Table 5 for ECP, BPZ, MRCR, PQL, CC and DQ.
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Table 13: Backtesting VaR models: 500-day window size and short position

Models ECP BPZ MRCR PQL CC DQ

FARVaR-sim 0.84% Green 40.12% 5.74% 5 7
FARVaR-nig 0.96% Green 41.20% 5.93% 3 7
HS 1.20% Green 45.13% 7.06% 13 29
FHS 1.03% Green 42.88% 6.05% 2 1
RM 1.66% Yellow 38.64% 6.09% 24 22
GARCH 1.46% Green 39.04% 5.97% 13 11
FGEV 0.48% Green 52.53% 6.60% 30 21
FGPD 0.48% Green 53.77% 6.73% 30 19
CAViaR 2.31% Yellow 44.13% 7.10% 19 26
CAViaR-GARCH 1.98% Yellow 41.02% 6.59% 25 28

Note: This table presents the backtesting results for the short
position. We estimate VaR models using the window size of 500
days over the period 3 Jan 2000 – 31 Dec 2001 and compute the
one-day-ahead 99% VaR forecast for 2 Jan 2002. We repeat this
procedure moving forward a day at a time in a rolling manner,
ending with the forecast for 31 Dec 2008. This generates 1763
daily forecasts per company except for HP, AT&T and Verizon,
which generate 1178, 1756 and 1637 forecasts respectively. See
the note of Table 5 for ECP, BPZ, MRCR, PQL, CC and DQ.
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Table 14: Backtesting multivariate FARVaR (mFARVaR)

Portfolio ECP BPZ MRCR PQL CC DQ

P(AA,CAT,INTC) 1.54% Green 38.91% 5.79% 6.094** 16.621**
P(AIG,C,GM) 2.19% Green 40.47% 8.99% 22.333*** 93.375***
P(AXP,DD,PG) 0.99% Green 28.96% 4.16% 0.403 5.709
P(BA,GE,XOM) 1.24% Green 31.89% 4.45% 1.776 8.753
P(DIS,HPQ,MMM) 0.91% Green 26.74% 4.06% 0.353 0.642
P(HD,HON,IBM) 0.60% Green 35.90% 4.70% 3.998 18.556***
P(JNJ,JPM,MCD) 0.60% Green 29.29% 3.80% 3.998 5.265
P(KO,MSFT,VZ) 0.74% Green 27.76% 3.62% 1.588 1.679
P(MO,MRK,PFE) 1.69% Green 29.73% 4.96% 9.211** 18.443***
P(T,UTX,WMT) 0.85% Green 29.10% 3.91% 0.779 0.993

Overall 1.14% Green 31.87% 4.85% 3 4

Note: This table presents the backtesting results of mFARVaR applied to the 10
portfolios. Each portfolio takes a long position and is the equal-weighted port-
folio of three stocks randomly drawn without replacement from the 30 stocks.
We estimate mFARVaR using the window size of 250 days over the period 3 Jan
2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR forecast for 28
Dec 2000. We repeat this procedure moving forward a day at a time in a rolling
manner, ending with the forecast for 31 Dec 2008. This generates 2013 daily
forecasts per company except for P(DIS,HPQ,MMM), P(KO,MSFT,VZ) and
P(T,UTX,WMT), which generate 1428, 1887 and 2006 forecasts, respectively.
Note that we select the t-copula for modelling the tail dependence. We report
the ECP, BPZ, MRCR, PQL, CC test statistic and DQ test statistic for each
portfolio. *, ** and *** denote that the CC (DQ) test is rejected at the 10%,
5% and 1% significance level, respectively. The ‘Overall’ row reports the aver-
age of the ECP, MRCR and PQL for the 10 portfolios. The BPZ is evaluated
based on the average violation of the 10 portfolios. For the CC and DQ tests,
we count the number of portfolios being rejected at the 5% significance level.
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Table 15: Backtesting naïve multivariate FARVaR (mFARVaR-naïve)

Portfolio ECP BPZ MRCR PQL CC DQ

P(AA,CAT,INTC) 3.43% Yellow 33.42% 7.32% 74.630*** 176.327***
P(AIG,C,GM) 4.03% Yellow 35.29% 11.83% 113.537*** 527.076***
P(AXP,DD,PG) 2.19% Yellow 24.82% 4.65% 23.403*** 60.938***
P(BA,GE,XOM) 2.69% Yellow 26.80% 5.28% 37.741*** 119.653***
P(DIS,HPQ,MMM) 2.66% Yellow 24.67% 4.55% 29.528*** 94.404***
P(HD,HON,IBM) 1.59% Green 30.53% 4.80% 7.068** 36.896***
P(JNJ,JPM,MCD) 1.59% Green 26.17% 3.98% 6.416** 35.877***
P(KO,MSFT,VZ) 2.02% Yellow 25.07% 3.92% 15.267*** 27.620***
P(MO,MRK,PFE) 2.88% Yellow 27.19% 5.79% 47.918*** 99.015***
P(T,UTX,WMT) 1.95% Green 25.64% 4.20% 14.288*** 31.111***

Overall 2.50% Yellow 27.96% 5.63% 10 10

Note: This table presents the backtesting results of naïve mFARVaR applied to
the 10 portfolios. Each portfolio takes a long position and is the equal-weighted
portfolio of three stocks randomly drawn without replacement from the 30 stocks.
We estimate mFARVaR-naïve using the window size of 250 days over the period
3 Jan 2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR forecasts
for 28 Dec 2000. We repeat this procedure moving forward a day at a time in
a rolling manner, ending with the forecast for 31 Dec 2008. This generates 2013
daily forecasts per company except for P(DIS,HPQ,MMM), P(KO,MSFT,VZ) and
P(T,UTX,WMT), which generate 1428, 1887 and 2006 forecasts, respectively. Note
that we select the t-copula for modelling the tail dependence. See the note of Table
14 for ECP, BPZ, MRCR, PQL, CC, DQ and Overall.
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Table 16: Backtesting MGARCH-based FHS (mFHS-MGARCH)

Portfolio ECP BPZ MRCR PQL CC DQ

P(AA,CAT,INTC) 1.49% Green 39.66% 5.87% 5.187* 25.394***
P(AIG,C,GM) 1.79% Green 49.83% 7.33% 11.602*** 16.211**
P(AXP,DD,PG) 1.49% Green 27.30% 4.38% 5.187* 16.864***
P(BA,GE,XOM) 1.44% Green 30.48% 4.76% 3.614 16.530**
P(DIS,HPQ,MMM) 1.26% Green 26.94% 4.37% 2.406 11.297*
P(HD,HON,IBM) 1.39% Green 31.82% 4.51% 3.586 19.192***
P(JNJ,JPM,MCD) 1.39% Green 29.21% 4.01% 3.586 6.211
P(KO,MSFT,VZ) 1.43% Green 28.04% 3.84% 3.849 9.003
P(MO,MRK,PFE) 1.34% Green 34.22% 5.09% 2.896 5.910
P(T,UTX,WMT) 1.55% Green 28.39% 4.28% 5.646* 12.664**

Overall 1.46% Green 32.59% 4.84% 1 6

Note: This table presents the backtesting results of mFHS-MGARCH applied
to the 10 portfolios. Each portfolio takes a long position and is the equal-
weighted portfolio of three stocks randomly drawn without replacement from
the 30 stocks. We estimate mFHS-MGARCH using the window size of 250
days over the period 3 Jan 2000 – 27 Dec 2000 and compute the one-day-ahead
99% VaR forecast for 28 Dec 2000. We repeat this procedure moving forward
a day at a time in a rolling manner, ending with the forecast for 31 Dec 2008.
This generates 2013 daily forecasts per company except for P(DIS,HPQ,MMM),
P(KO,MSFT,VZ) and P(T,UTX,WMT), which generate 1428, 1887 and 2006
forecasts, respectively. Note that we select the t-copula for modelling the tail
dependence. See the note of Table 14 for ECP, BPZ, MRCR, PQL, CC, DQ
and Overall.
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Table 17: Backtesting copula-based mFHS (mFHS-copula)

Portfolio ECP BPZ MRCR PQL CC DQ

P(AA,CAT,INTC) 1.24% Green 42.85% 5.82% 1.750 17.381***
P(AIG,C,GM) 2.04% Yellow 50.17% 7.82% 20.451*** 53.293***
P(AXP,DD,PG) 1.24% Green 27.92% 4.21% 1.750 16.142**
P(BA,GE,XOM) 1.34% Green 31.13% 4.50% 5.494* 25.374***
P(DIS,HPQ,MMM) 1.89% Yellow 28.25% 4.82% 9.508*** 61.765***
P(HD,HON,IBM) 0.94% Green 34.05% 4.80% 0.425 16.371**
P(JNJ,JPM,MCD) 1.69% Green 29.41% 4.28% 13.466*** 44.084***
P(KO,MSFT,VZ) 1.64% Green 28.58% 4.14% 12.708*** 65.711***
P(MO,MRK,PFE) 2.14% Yellow 34.68% 5.68% 25.931*** 147.051***
P(T,UTX,WMT) 1.90% Green 30.25% 4.48% 24.731*** 106.869***

Overall 1.61% Green 33.73% 5.06% 6 10

Note: This table presents the backtesting results of mFHS-copula applied to
the 10 portfolios. Each portfolio takes a long position and is the equal-weighted
portfolio of three stocks randomly drawn without replacement from the 30 stocks.
We estimate mFHS-copula using the window size of 250 days over the period 3
Jan 2000 – 27 Dec 2000 and compute the one-day-ahead 99% VaR forecast for
28 Dec 2000. We repeat this procedure moving forward a day at a time in a
rolling manner, ending with the forecast for 31 Dec 2008. This generates 2013
daily forecasts per company except for P(DIS,HPQ,MMM), P(KO,MSFT,VZ)
and P(T,UTX,WMT), which generate 1428, 1887 and 2006 forecasts, respectively.
Note that we select the t-copula for modelling the tail dependence. See the note
of Table 14 for ECP, BPZ, MRCR, PQL, CC, DQ and Overall.
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