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Abstract 

Organic Rankine cycle (ORC) is one of the most rapidly growing approach to 

utilizing low grade thermal energy. This paper deals with the main control problems 

existed in ORC systems and overviews the main approaches presented in literature. The 

main ORC operating modes are introduced, the control strategies of ORC systems are 

then surveyed. Thus, this paper presents a comprehensive review of overall control 

strategies for ORC energy conversion systems and points out research trend on ORC 

control systems.    
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Nomenclature 

ADRC Active disturbance 

rejection controller 

 LQI Linear quadratic integral 

CV Controlled variable  MV Manipulated variable 

EKF Extended Kalman Filter  MVC Minimum variance 

control 

DP Dynamic programming  MPC Model predictive control 

FCL Following the connected 

load   

 NC Neural control  

FFC Feedforward control  OC Optimal control 

FOPTD First order plus time 

delay  

 ORC Organic Rankine cycle  

FTE Following the thermal 

energy 

 PID Proportional-Integral-

Derivative 

GSC Gain scheduling control  PWM Pulse-width modulation  

LPV Linear parameter varying   RC Robust control  

1. Introduction 

Organic Rankine cycle (ORC) is a well-known approach to recovering low grade 

thermal energy. The available low temperature heat sources include geothermal energy, 

biomass products, waste heat from industrial processes and internal combustion engine, 

surface seawater, solar energy and so on (Tchanche et al., 2013; Tchanche et al., 2011; 

Lecompte et al., 2015; Colonna et al., 2015; Hung et al., 1997; Qiu et al., 2015; Sprouse 



et al., 2013).  

Some literature has been published on control of ORC systems, but no recent 

comprehensive review has been reported on control theories and applications of ORC 

systems except reference (Tona and Peralez, 2015) where the control schemes designed 

for ORC systems on board heavy-duty vehicle was surveyed. A number of research 

publications have reviewed architectures (Lecompte et al., 2015), principles (Tchanche 

et al., 2013; Liu et al., 2015; Shi et al., 2017), working fluid and expander selections 

(Bao and Zhao, 2013), modelling (Ziviani et al., 2014; Zhang et al., 2017), Techno-

economic analysis (Quolin et al., 2013; Velez et al., 2012), applications in waste heat 

recovery (Hung et al., 1997; Qiu et al., 2015; Sprouse et al., 2013), ORC based power 

systems (Colonna et al., 2015; Markides, 2015). 

Control system plays an important role in ORC systems, effective control scheme 

may ensure ORC systems operating over a wide range meet the process operation 

efficiency, safety and reliability. This paper presents a comprehensive review of overall 

control strategies for ORC systems and aims at providing a reference for further 

research in the field of ORC systems. 

The rest of the paper is organized as follows. Section 2 gives a brief introduction of 

the operation modes of ORC systems. Section 3 devotes to overview control strategies 

applied to ORC systems operating in following the connected load mode (FCL). Section 

4 focuses on a review of control strategies applied to ORC systems operating in 

following thermal energy (FTE) mode. Section 5 gives some concluding remarks and 

some challenges of improving control performance.   



2. Operation modes for ORC systems  

 ORC based low grade thermal energy conversion systems are usually operated 

using two basic strategies: FCL and FTE (Zhang et al., 2014c). The difference between 

two operating modes are: 1) Is the mass flow rate or temperature of heat source a 

manipulated variable (MV)? 2) Does the rotating speed of the expander vary with hot 

source? 

The ORC based power generation system operating in FCL and FTE modes are 

shown in figure 1 and figure. 2, in which the operation strategy of ORC systems 

concentrates on load following and maximum thermal energy conversion efficiency 

respectively. The control objectives of the ORC systems are closely related to their 

operation modes. 
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Figure 1. An ORC system in FCL operation mode (Zhang et al., 2014c) 

2.1 FCL mode 

Figure 1 shows an ORC based system operating in FCL mode, in which the expander 



and the generator are linked with the same shaft, and the generator is connected to 

power grid without a power converter interface. In essence, the ORC power generation 

system need meet load requirement as soon as possible. The maximum energy 

conversion efficiency of the ORC system in this operating mode is not required, namely, 

low grade thermal energy that is not utilized by ORC system may be bypassed. The 

rotating speed of the generator (or the expander) is determined by grid frequency and 

the number of poles of the stator winding. The produced electric power is required to 

follow the variations of the load demand while the primary ORC process variables must 

be maintained within safe operating limits. The mass flow rate or the temperature of the 

low grade thermal energy sources is usually manipulated to match the varying load. 

The control tasks of the ORC system under this kind of operating mode are similar 

to that of the conventional fossil fired power plants. The set-points of the controlled 

ORC systems may change substantially due to changes in load requirements. The 

primary ORC process variables (the evaporating pressure, the superheating and the 

subcooling) must be maintained within appropriate ranges. 
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Figure 2. An ORC system in FTE operation mode (Zhang et al., 2014c)  

2.2 Following utilized thermal energy mode 

With regard to the ORC system operating in FTE mode (shown in figure 2), where 

the generator is connected to the grid via a full-capacity converter system. The electric 

power from the generator follows the variations of the utilized thermal energy so as to 

guarantee the efficient utilization of thermal energy while the ORC process variables 

must be maintained at desired levels. The mass flow rate or the temperature of the low 

grade thermal energy sources is usually not used as an MV. The set-points of the 

controlled ORC systems may change substantially because of variations in the mass 

flow rate or the temperature of heat source entered to the evaporator. 

The ORC system operating in FTE mode aims at efficiently utilizing low grade 

thermal energy, namely, maximum energy conversion efficiency is expected to achieve 

under this circumstance. The energy conversion efficiency of the ORC system operating 

in FTE mode was investigated in (Zhang et al., 2014c). It is pointed out that the overall 

energy conversion efficiency can be reformulated by  
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where exp   and 
overall   stand for efficiency of the expander and overall energy 

conversion efficiency. expN , am  and ah  are the rotating speed of the expander, the 

mass flow rate and the enthalpy of heat source respectively. exp,i  and ,a refh  are the 

reference enthalpy of heat source at 25℃ and the specific volume of working fluid 

respectively. ff   is the filling factor and sV   the swept volume. pW    is the pump 



consumption power. 
1w  and 

2w   are the specific work of the expander during 

Isentropic expansion and Constant volume expansion respectively. It can be observed 

from Eq. (1) that the energy conversion efficiency of a given ORC system is closely 

related to the rotating speed of the expander, the mass flow rate and the enthalpy (or the 

temperature) of heat source.  

As far as the ORC system operating in a specific operating point is concerned, its 

current operating condition is determined by the mass flow rate am  and the enthalpy 

ah  (or the temperature) of the heat source together. Therefore, the rotating speed of the 

expander should be manipulated in order that the maximum energy conversion 

efficiency is obtained. 

In figure 2, the generator connects to power grid through double pulse-width 

modulation (PWM) converters and transformer. The permanent magnet synchronic 

generator (PSMG) allowed for four quadrant operations can realize variable-speed and 

constant frequency control by using double PWM converters. Since the expander and 

the generator are linked together with the same shaft, speed regulation of the expander 

can then be achieved by manipulating the generator torque. Accordingly, the maximum 

energy conversion system can be achieved.  

In summary, the control tasks of the ORC system in FTE operating mode are similar 

to that of the wind power plants operating in low wind speed region. Seeking the 

maximum energy conversion efficiency is equivalent to capturing maximum thermal 

energy. The optimal set-points of the controlled ORC system can be calculated on basis 

of both the mass flow rate and the temperature of heat source. The primary ORC process 



variables must be kept within appropriate ranges. Moreover, the rotating speed of the 

expander is manipulated so that the produced electric power can adapt to varying 

thermal energy inputting into the ORC system.       

3. Control strategies for the FCL mode 

When an ORC system is operating in FCL mode, the rotating speed of the expander 

might keep within a proper range. The set-points of the evaporating temperature, 

superheating and subcooling vary with the load demand. The mass flow rate or the 

temperature of the heat source at the inlet of the evaporator is selected as one of MVs.  

This kind of ORC power plant is required to deal with some problems encountered 

in conventional thermal power plants.  

3.1 Traditional PID  

Three PI controllers were designed for an ORC system that recovers waste heat of 

heavy-duty diesel powertrain in (Luong and Tsao, 2015). Two independent PI 

controllers are designed to control the evaporating and condensing pressures and the 

third one to follow the load demand. The mass flow rate of the condensing fluid and 

two throttle valve positions are selected as the MVs. The controlled automotive ORC 

system operating in following base/varying load mode is investigated. The controlled 

ORC system cannot meet both the power demand and pressure set-points in presence 

of infeasible power demand. Obviously, it is necessary to improve control performance 

by adding decoupling or adopting other advanced control laws. Although PI or PID 

controller is the most intuitive and easiest to implement, it is unable to achieve 

satisfactory control performance due to nonlinearities, uncertainties, coupling, varying 



load demand.    

3.2 LQI  

Two-input two-output (2ⅹ2) and Three-input two-output (3ⅹ2) multivariable LQI 

control scheme were employed for an ORC system respectively (Luong and Tsao, 

2014a). LQI control algorithm incorporates linear quadratic regulation technique and 

integral action so as to reject the steady state tracking error. Two controlled variables 

(CVs) are the evaporating and condensing pressures. The MVs are chosen as the mass 

flow rate of the condensing fluid and the throttle valve (before the evaporator) positions 

in the 2ⅹ2 multivariable ORC control system. Another throttle valve position becomes 

a new MV in the 3ⅹ2 multivariable ORC control system. 

A control oriented nonlinear state space model was built for ORC system operating 

in FCL mode (Zhang et al., 2012a), a four-input four-output (4ⅹ4) multi-variable LQI 

control method was presented. The CVs include the net power, throttle pressure, 

superheated vapor temperature at the outlet of the evaporator and the working fluid 

temperature at the outlet of the condenser. These CVs are controlled by corresponding 

MVs: the throttle valve position, rotating speed of the pump, condensing air velocity 

and exhaust gas velocity. The controller is designed for the ORC system operating in a 

nominal operating point with the aid of the linearized model. The control performance 

will degrade when the ORC system deviates the nominal operating point. In addition, 

the last two CVs, condensing air velocity and exhaust gas velocity, should be replaced 

by the mass flow rates of exhaust gas and condensing air for improving their 

measurement in practice.  



3.3 MVC 

In order to tackle stochastic disturbances from heat source and measurement noises, 

a multivariable generalized minimum variance control (MVC) algorithm was employed 

in an ORC system (Hou et al., 2014). The MVC controller can be obtained by 

minimizing the following performance index 

1 1 1

1 1 1

{[ ( ) ( ) ( ) ( )] [ ( ) ( )

( ) ( )] [ ( ) ( )] [ ( ) ( )]}

T

MVC r

T

r

J E H q y k d R q y k d H q y k d

R q y k d q u k q u k 

− − −

− − −

= + − + +

− + +
       (2) 

where the vector ry   represents the set points of the CVs. 1( )H q−  , 1( )R q−   and 

1( )q −  are weight polynomials corresponding to the CVs, set-points of the CVs and 

MVs, which penalizes the tracking errors and control efforts. Compared with PID 

controller, generalized MVC obtains better performance (Hou et al., 2014). It should be 

pointed out that the disturbances and measurement noises are not necessarily Gaussian 

in practical ORC systems, so it is necessary to do further research on stochastic control 

theory for ORC systems.   

3.4 OC  

Optimal control is one of promising control strategies for ORC control systems. 

Peralez et al. (2014a) employed an adaptive-grid dynamic programming (DP) algorithm 

to obtain the optimal control law, a fraction of engine exhaust gas and condensing air 

flow, by maximizing the net power. Constraints on wall temperature and pressure are 

taken into account as well.  

Additionally, the adaptive grid DP algorithm was extended to design an optimal 

control strategy for an ORC based engine waste heat recovery system in (Peralez et al., 

2015). Dynamic real-time optimization is used to produce the optimal set-points for the 



ORC pressures in high-level. While DP algorithm is used to calculate the optimal 

control signals in low-level. A fraction of engine exhaust gas and condensing air flow 

are obtained by maximizing the recovered energy. In addition, the condensing air flow 

can be calculated by maximizing the net power as well. The optimal control input of 

the ORC system can be solved by minimizing following performance index: 

( )
0

( ) ( ) ( , )
ft

OC turb pump fanJ P t P t P u t dt= − + +              (3) 

where ( )turbP t  is the produced power by the turbine. ( )pumpP t  and ( , )fanP u t  are the 

powers consumed by the pump and the cooling system respectively. The bounds on the 

control inputs (4) and security constraint on pressure (5) is also considered for the 

proposed optimal control approach. 

( ) [0,1] [0,4], t [0, ]fu t t                   (4) 

where the fraction of exhaust gas is bounded by [0,1]  , whereas the air mass flow 

provided by the fan is limited to [0,4kg / s] . 

1( ) 25bar, [0, ]fp t t t                    (5) 

Although the net power or the recovered energy of the ORC system might be 

maximized, however, numerical calculation burden increases with time, because the 

cost function to be optimized is an accumulative index rather than an instant index. 

Moreover, the control algorithm depends on the model of the ORC system. Two state 

model might not completely characterize the dynamics of real ORC systems.    

The optimal control algorithm obtains an optimal control law by minimizing a certain 

cost function (performance index). The objectives of optimization in ORC systems are 

generally energy consumption, net power, control effort, closed loop tracking error. In 



addition, some constraints on CVs and MVs can be considered by solving optimization 

problem with constraints.  

3.5 MPC          

MPC has been applied in ORC processes due to its efficient control of multivariable 

systems with strong couplings, disturbances and operating constraints. A set of control 

signals are obtained by optimizing a proper cost function over the prediction horizon 

based on predicted model. The first element of the calculated control vector at current 

sampling instant is sent to the actuator. 

A four-input four output (4ⅹ4) generalized predictive control strategy was presented 

for ORC systems (Zhang et al., 2013a), in which the dynamics of the ORC plant is 

formulated by a controlled autoregressive integrated moving average (CARIMA) 

model. The optimal control law can be solved by minimizing the following cost 

function 
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where ˆ( )y k j k+  is an optimal j -step ahead prediction of the CVs up to time k  

sampling periods, ( )ry k j+   a future set-points of the CVs. yN   and uN   are 

prediction horizon and control horizon respectively. R  and  Q  are positive definite 

weighting matrices respectively. 

Simulation results are given to test the load following capability and set-points 

tracking performance of the throttle pressure, the superheated vapor temperature and 

working fluid temperature at the outlet of the condenser. Additionally, disturbance 

rejection capabilities are also testified. However, constraints on both CVs and MVs are 



not taken into account in the proposed MPC strategy. The simulation tests are designed 

for the ORC system operating around a specified nominal operating condition, no 

further research on wide range control is reported. 

In a different study, a four-input four output (4ⅹ4) constrained model predictive 

control strategy was applied into an ORC based solar thermal power plant in (Rahmani 

et al., 2015). A nonlinear state space model is identified for the ORC power plant, its 

linearized state space model is then established and provided for the MPC with 

constraints on 6 process variables. There are some differences in choosing CVs and 

paired MVs between two schemes presented in (Zhang et al., 2013a; Rahmani et al., 

2015). The selected CVs are the net power, superheating, the temperature of the 

working fluid at the inlet of the turbine and the pressure at the outlet of the turbine. The 

corresponding MVs includes rotational frequency of the motor pump, volume flow rate 

of hot heat source, rotating speeds of both the ventilator and the circulation pump. 

Although nonlinear MPC strategy is effective in ORC control systems, but it requires 

system identification or complex mathematical analysis.  

Grelet et al. (2015) employed an explicit multiple MPC to control the fluid 

temperature at the inlet of the expander in an ORC based waste heat recovery system 

mounted on a heavy duty truck engine. The fluid temperature at the inlet of the 

expansion machine is controlled by manipulating the working fluid mass flow rate 

entering the evaporator. The model of the controlled plant is identified and represented 

by a series of first order plus time delay (FOPTD) models. Simulation results illustrate 

that multiple MPC is satisfactory based on two FOPTD models which describe the 



dynamics of the ORC system operating in high/low load operating points respectively. 

Indeed it is a fast control algorithm without online optimization. Wide range control 

based on the proposed multiple MPC strategy is not reported.    

A switching MPC strategy was presented to reject disturbances caused by the diesel 

engine waste heat of Euro-VI heavy-duty truck in real on-road driving conditions (Feru 

et al., 2015). The ORC based waste heat recovery system operating area is divided into 

three regions, in which MPC controllers are assigned respectively. Two parallel 

evaporators provide thermal energy to one expander in this ORC system, two bypass 

valves manipulate the ethanol flow rate simultaneously, such that the vapor state at the 

outlet of the evaporators is maintained in the presence of engine disturbances. CVs are 

the vapor fraction after the exhaust gas recirculation and exhaust evaporator. Simulation 

results show that the proposed switching MPC can achieve better control performance 

than nonlinear MPC and PI controller. In order to put the proposed control algorithm 

into practice, the vapor fraction measurement equipment or an estimator is needed to 

measure the CVs. 

3.6 Compound control  

Compound control strategies are obtained by the fusion of different control 

techniques. Several compound controllers have been presented for ORC control 

systems.  

3.6.1 MPC +EKF 

Since not all system states are available for measurement, it is reasonable to estimate 

unknown system states using filtering algorithms. A three-input two-output (3ⅹ2) 



multivariable MPC with extended Kalman filter (EKF) was utilized in ORC systems in 

(Luong and Tsao, 2014b). EKFs are designed for estimating the states of both the 

evaporator and the condenser. MPC can obtain better control performance than both PI 

and LQI in terms of reducing pressure regulation errors and incorporating constraints 

on control law. However, further research on wide range control is needed. 

3.6.2 Cascade control + ADRC 

Shi et al. (2016) applied a compound control strategy, combined cascade control with 

two active disturbance rejection controllers (ADRCs), to an ORC based engine waste 

heat recovery system, in which the primary CV, the superheating, is controlled by 

manipulating the mass flow rate of the engine exhaust gas and the secondary CV (the 

opening of each valve in exhaust gas mixture recirculation) by the corresponding valve 

voltage. The ADRC strategy is utilized in both outer and inner loops. The external heat 

source disturbance and the internal parametric uncertainties can be restrained efficiently. 

The ADRC obtains promising results, but tuning the controller parameters is 

cumbersome. This work only investigate superheating control law for ORC systems, 

control method of other key process variables are not reported.  

3.6.3 PID + FFC + Compensator 

An improved scheme based on proportional-integral, feed-forward and lead-lag 

compensator was proposed for an ORC control system in off-grid island mode in 

(Usman et al., 2017). Experimental investigation has been done for an off-grid ORC 

system subjected to load disturbance, the rotating speed of the expander can track its 

set-point quickly while the inlet pressure of the expander varies with load demand.  



In addition, a compound control scheme combined PID control with FFC was used 

for an ORC based engine waste heat recovery system in (Torregrosa et al., 2016), 

although the FFC algorithm wasn’t revealed in detail.   

The controlled system shown in figure 3 is a section of a geothermal ORC power 

plant (Padula et al., 2012). The mechanical side of the ORC plant is mainly composed 

by the two turbines and the relative piping and valves. The control of the turbine speed 

is of main concern when the ORC power plant connects to the grid (normal) or a stand-

alone load (island mode). The turbine inlets are regulated by the valves HT-V1, HT-V2, 

LT-V1, LT-V2 and HT-V3. The first four valves are kept completely open when the 

plant delivers electric power to the grid. When the ORC power plant is working in 

island-mode, the first four valves are completely closed and the low temperature/ 

pressure turbine is switched, the control valve HT-V3 is used to control the plant. A 

compound controller that combines an event driven PI controller with FF controller 

send the control signals to the valve motors. 

 

 Figure 3. Diagram of the ORC Plant power section (Padula et al., 2012) 



When the ORC power plant is switched from the normal operation mode (grid 

connected) to the island one (stand-alone), the electric brake regulated by nonlinear FF 

controller dissipates the excess of power produced in order to avoid excessive turbine 

speed overshoot.   

3.6.4 GSC+PID+FFC+EKF  

A compound control strategy was proposed for regulating the superheating of an 

ORC based engine waste heat recovery system by combining PID feedback controller 

with feedforward controller in (Peralez et al., 2013). Dynamic FFC term is obtained 

from a nonlinear reduced model of the high-pressure part of the ORC system while a 

gain-scheduling (GS) PID controller is tuned based on identified model. The 

superheating control performance is improved, nevertheless, it needs an extensive 

investigation on system identification so as to obtain a reliable, concise and low time-

consuming model. In addition, the control method of other main process variables is 

not introduced.  

Later, this compound control strategy was extended to a two-input two-output (2ⅹ

2) ORC system in (Peralez et al., 2014b), moreover, the unmeasurable states are 

estimated using an implicit EKF. Simulation results indicates that both the superheating 

and the evaporating pressure have been successfully controlled.  

Recently, more details have been demonstrated in (Peralez et al., 2016), some 

experimental results on superheating control testify the effectiveness of the proposed 

compound algorithm that integrates gain scheduling PID, FFC and EKF together. 

Simulation results on pressure control have been illustrated rather than experimental 



results. It is not easy to tune the parameters of the proposed compound control strategy.  

 3.6.5 ADRC + Decoupling 

Zhang et al. (2012b) proposed a compound control strategy, combined a linear ADRC 

with a static decoupling compensator, for an ORC based waste heat recovery system, 

whose model is obtained by applying the system identification technique. The 

disturbances existed in the ORC system are estimated through an extended linear state 

observer and then compensated by a linear feedback control strategy. The decoupling 

compensator, designed based on the simplified linear ORC model, can alleviate the 

interactions among process variables, hence, it is easier to tune the parameters of the 

proposed ADRC strategy. The temperature of the working fluid at the outlet of the 

condenser can be easily controlled by a single closed-loop control system, therefore, a 

three-input three-output (3 × 3) multivariable control system is investigated for the 

ORC system. Simulation results show that the proposed control strategy can provide 

satisfactory set-point tracking performance and disturbance rejection. The proposed 

control strategy without requiring an accurate mathematical model for the waste heat 

recovery system is a significant progress for this type of processes. This practical 

control strategy is easy to understand and implement, making it an appealing method 

to real applications. Nevertheless, it is still necessary to investigate the methods to tune 

the parameters of the nonlinear ADRC for ORC control systems in future. 

4. Control systems for the FTE mode 

When an ORC system is operating in FTE mode, it can be observed that the rotating 

speed of the expander is usually varying with the heat source. In addition, the mass flow 



rate and the temperature the heat source at the inlet of the evaporator are not selected 

as MVs or CVs.  

This kind of ORC power plant is required to deal with some problems encountered 

in wind plants or solar plants rather than conventional thermal power plants. The 

objective of the control system is to maintain the outlet temperature (or the superheating) 

of the evaporator, the outlet temperature (or the sub-cooling) of the condenser and the 

evaporating pressure at desired set-points in spite of the disturbances induced from 

fluctuations in the low grade thermal energy source, the pump and the expander. Thus, 

when the pump rotating speed for adjusting working fluid, the expander rotating speed 

(or the shaft torque) for adjusting evaporating pressure (or temperature) and the pump 

(or the fan) rotating speed for adjusting water (or air) entering the condenser are 

manipulated during operation, the expected transient response might be obtained.  

  4.1 PI Control  

Three control schemes were proposed in (Quoilin et al., 2011), the superheating is 

controlled with the pump flow rate and the evaporating temperature with the expander 

speed. Two independent single PI control loops are employed in scheme 1. Adding the 

optimal set-point of the evaporating temperature to scheme 1 leads to scheme 2. In 

scheme 3, the evaporating temperature PI control loop is same as that in scheme 1. A 

faster reaction of the pump can be achieved to deal with varying operating conditions 

due to the FFC adopted in the superheating control loop, where the correlated optimal 

pump flow rate regarded as the FFC signal, is defined by a linearly combined formula 

whose coefficients need be identified in advance. The linear regression formula to 



predict the optimal evaporating temperature in scheme 2 is determined by studying the 

ORC system in many operating points, so is the optimal working fluid flow rate in 

scheme 3. The control performance degrades if the operating conditions vary from 

nominal condition.  

4.2 GSC 

A gain scheduling control (GSC) strategy was proposed for ORC base waste heat 

recovery systems over a wide range of operation conditions in (Zhang et al., 2016a). 

The nonlinear dynamics of the ORC system is formulated by an affine linear parameter 

varying (LPV) system whose scheduling parameters are selected as the mass flow rate 

and the temperature at the inlet of the evaporator. The LPV controller should guarantees 

the quadratic H
 performance   for the closed-loop system zwT  as follows 

zwT 

                          (7) 

Simulation results illustrate that the gain scheduling controller based on the LPV 

model can achieve satisfactory control performance over a wide range operating region. 

The comparisons between GSC and conventional PI control has been investigated in 

(Zhang et al., 2016a). Take the robustness test as an illustrative example, figure 5 show 

variations of CVs and MVs when the operating condition of the ORC system varies as 

shown in Fig. 4. The responses of the CVs achieve smaller deviation from its set-point 

and settling time using the gain scheduling controller based on LPV model. It is clear 

from Fig. 5 that the GSC requires less energy than PI controller by comparing the MVs. 

Figure 6 shows the superiority of GSC by comparing net output power and overall 

efficiency of the ORC system.  



 

Figure. 4 Variance of operating condition (Zhang et al., 2016a)  

 

 

Figure. 5 Variations of CVs and MVs (Zhang et al., 2016a) 
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Figure. 6 Net output power and overall efficiency (Zhang et al., 2016a) 

However, ORC control systems over entire operating range are not reported in 

(Zhang et al., 2016a), more appropriate LPV models should be built to improve control 

performance in future.  

4.3 MPC 

A constrained MPC strategy shown in figure 7 was presented for an ORC system 

operating in FTE mode in (Zhang et al., 2014c). This three-input three-output (3ⅹ3) 

multivariable system obtains satisfactory control performance. In this work, the 

temperature at the outlet of the condenser (the subcooling) becomes a CV regulated by 

the mass flow rate of the condensing fluid for improving the energy conversion 

efficiency. The constraints on both CVs and MVs are included to guarantee the 

controlled ORC system operating within safe operating region. There are two kinds of 

MV constraints shown as inequalities (8) and (9) in this control system. In addition, CV 

constraints shown in inequality (10) are critical to guarantee the controlled ORC system 

within the safe operating region. 

( )   max maxu u t u−                      (8) 
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( )u u t u                                       (9) 

where maxu   is maximum rate of the control input. u   and u   are maximum and  

minimum input values respectively. 

( )y y t y                                   (10) 

where y  and y  are maximum and minimum output values respectively. 
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Figure 7. Constrained MPC of ORC systems (Zhang et al., 2014c) 

The disturbances from the waste heat source shown in Fig. 8, the temperature aiT  

and the flow rate aim ,  are imposed during the test. The controlled ORC system may 

adapt to the variations of the temperature and flow rate, hence, the waste heat can be 

deeply recovered.  

The variations of MVs shown in Fig. 9 (a) demonstrate that the manipulated 

signals lie within the feasible region. In Fig. 9 (b), the dash lines represent the set-points 

corresponding to each CVs. It is clear that the CVs are kept within proper ranges despite 

the fluctuations of the temperature and flow rate of waste heat source.  



 

Figure 8. Fluctuation of waste heat and response of output power (Zhang et al., 

2014c) 

(a) Variations of MVs               (b) Responses of CVs 

 Figure 9. Evolutions of MVs and CVs (Zhang et al., 2014c) 
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The dynamics of the ORC process is identified and formulated by controlled auto-

regressive integrated moving average model, it is necessary to investigate nonlinear 

MPC for ORC systems in future.    

A two-input two-output MPC strategy was applied into an ORC waste heat recovery 

system for increasing its efficiency in (Hernandez et al., 2014). Two CVs, the 

superheating and the evaporating temperature, are regulated by manipulating the 

rotating speeds of both the pump and the expander respectively. Compared with a 

decentralized PI controller, the extended prediction self-adaptive control algorithm can 

achieve a higher average efficiency (Hernandez et al., 2014) , that is to say, a higher 

average net power can be obtained with less control effort. However, wide range control 

is not studied in this work.  

Later, the MPC strategy was improved by optimizing the set-points of the CVs in 

(Hernandez et al., 2015). Considering the variations in heat source, an optimizer is 

explored to produce the optimal set-point of the controlled superheating. Compared 

with switching PI control, the ORC system under the improved MPC strategy produces 

more net power. The optimal set-point act on the superheating rather than another CV 

(the evaporating temperature). In addition, wide range control is not studied. 

Recently, a multiple MPC strategy was proposed for ORC system to deal with 

nonlinearity and varying operating conditions in (Zhang et al., 2016b). A model bank 

is built to describe the ORC system operating in some typical operating points. The 

control signal is obtained based on the prediction outputs of all sub-model and their 

corresponding weights. Simulation results testify the effectiveness of the ORC system 



over a wide operating range. This practical control strategy is easy to understand and 

implement, moreover, it can deal with nonlinearity, constraints both on CVs and MVs 

and varying operating points. Hence, it is suitable for real ORC systems after obtaining 

the proper weights corresponding to sub-models.   

4.4 RC 

A multivariable robust control (RC) algorithm was designed for an ORC system in 

(Zhang et al., 2013b). Simulation results show that the proposed control strategy can 

obtain satisfactory performance in set-point tracking and disturbance rejection. This 

simple structured and easy-to-realized controller does not require a precise math model, 

it can deal with generalized disturbances that include the internal unmodeled dynamics, 

the external uncertain disturbance and the modeling errors and make it an appealing 

method to real applications. 

4.5 Neural control (NC) 

A single neuron controller was presented to control the working fluid temperature at 

the outlet of the evaporator (Ren et al., 2016). The survival information potential 

criterion is used to optimize the controller parameters in order that the randomness and 

magnitude of the closed-loop tracking error are as small as possible. The weights of the 

neural controller can be determined by minimizing following performance index 

  ( ) ( )NC k kJ S e S u = +                  (11) 

where 0   is the weight. ( )kS e  and ( )kS u  are the survival information 

potential of the tracking error and the MV at 
thk  instant respectively.  



Simulation results show some encouraging results have been achieved. The proposed 

neural control algorithm doesn’t depend on the model of the controlled ORC process. 

In essence, this control algorithm is a data driven control algorithm which can be 

implemented easily and reject stochastic disturbances.  

4.6 OC 

In order to deal with stochastic disturbances in ORC systems, optimal control 

algorithm which needn’t make any assumptions on stochastic disturbances has been 

used in ORC systems. A minimum error entropy controller was developed for control 

the superheating of an ORC system in (Zhang et al., 2016c). The optimal controller is 

obtained by minimizing an improved entropy criterion which combines the entropy of 

the tracking error and mean value of the squared tracking error. In addition, constraints 

on the rotating speed of the pump is also considered. Similarly, a multi-objective 

estimation of distribution algorithm was adopted to obtain all the possible optimal 

control inputs to control the working fluid temperature at the outlet of the evaporator 

of an ORC system (Zhang et al., 2014b). However, it is necessary to determine the best 

control inputs from all candidates. The proposed optimal algorithm isn’t extended to 

multivariable ORC control systems.  

Set-points optimization is very important in order that the controlled ORC system 

operates optimally. The optimizer shown in figure 4 produces optimal set-points for the 

constrained MPC in the lower level on basis of optimal operation strategies or data 

mining techniques (Zhang et al., 2014c). A more detailed supervisory control system 

was presented for ORC systems in (Zhang et al., 2014a). In supervisory level, the 



optimal set-points are determined for superheating and evaporating pressure by 

combing support vector machine with genetic algorithm. Following the mass flow rate 

and temperature of heat source, the optimal set-points make controllers produce optimal 

control signals which drive the expander operating at optimal rotating speed, 

accordingly, the energy conversion efficiency can be achieved.   

It was pointed out that the optimal evaporating temperature correlated to the heat 

source temperature, the condensing temperature and the working fluid mass flow rate 

in the second control strategy presented by Quoilin et al. (2011). A line regression 

formula for predicting the optimal evaporating temperature was obtained using the 

golden section search method for 31 operating points and specified operating conditions.  

5. Conclusions 

Control strategies play an important role in harvesting energy efficiently from low 

grade thermal energy. This paper overviews different control techniques and outcomes 

of many research work in the area of ORC control systems. Advantages and 

disadvantages of different control techniques and their limitations are analyzed and 

discussed.   

Some important points of development for ORC control systems can be summarized 

as follows: 

1) Some attractive control strategies are available for ORC control systems in the form 

of conventional PID control, FFC, GSC, ADRC, LQI, OC, NC, RC, MVC, MPC 

and some compound control strategies. These techniques were reviewed and 

highlighted their features. Compared with most of the other control techniques, 



MPC and improved MPC (multiple MPC, switching MPC) generally provides 

better control performance because they can deal with nonlinearities, constraints on 

process variables, disturbances and varying operating condition. 

2) Most of the control strategies proposed for ORC systems depend on model, 

although some control oriented models have been built for ORC systems, for 

example, two state model (Peralez et al., 2015), (simplified) physical model 

(Quoilin et al., 2011; Zhang et al., 2012, 2016a), LPV model (Zhang et al., 2016a), 

FOPTD (Grelet et al., 2015) and transfer functions (Hernandez et al., 2014). 

Modelling of ORC systems should be studied via system identification techniques 

or analyzing physical models. Some state estimation methods, filter or observer 

design approaches, can be employed to improve control performance.  

3) Maximum energy conversion efficiency tracking algorithm is crucial for ORC 

systems so as to deeply utilize low grade thermal energy. Associated with the mass 

flow rate and temperature of heat source, there exists a specific generator (expander) 

speed which captures maximum power. Hence, it is necessary to investigate both 

the machine side and grid side controller for ORC power generation systems. 

4) In order to ensure ORC systems operate in optimal condition, it is necessary to 

investigate supervisory control strategy to produce optimal set-points for ORC 

control systems.  

5) Because the dynamics of ORC systems is complex in terms of nonlinearity, 

coupling and time varying disturbances, advanced control algorithms should be 



investigated. In addition, performance comparison of different control strategies 

should be performed via both simulation and experimental test. Some comparison 

metrics can be employed to compare the performances of different controllers, for 

example, energy conversion efficiency, steady state response improvement 

(alleviating tracking error), transient response improvement (decrease in overshoot, 

rise time, settling time and peak time), robustness to disturbances and changes in 

operating points, handling constraints on operation variables, reduction of 

computation time, implementation in practice.    

6) The ORC control system over a wide (or entire) operating range should be studied 

to adapt to variances induced by heat source or connected load.  

7) Because ORC systems operating in different modes have different control 

objectives, it is necessary to investigate proper control algorithms to follow load 

demand or heat source.      
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