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Abstract: Unit commitment is a traditional mixed-integer non-convex problem and remains a key optimisation 

task in power system scheduling. The high penetration of intermittent renewable generations such as wind 

and solar as well as mass roll-out of plug-in electric vehicles (PEVs) impose significant challenges to the 

traditional unit commitment problem, not only by significantly increasing the complexity of the problem in 

terms of the dimension and constraints, but also dramatically change the problem formulation. In this paper, a 

new hybrid unit commitment problem considering renewable generation scenarios and charging and 

discharging management of plug-in electric vehicles is first formulated. To effectively solve the problem, a 

novel parallel-series hybrid meta-heuristic optimisation method is then proposed, which combines a hybrid 

topology binary particle swarm optimisation, the self-adaptive differential evolution algorithm and a lambda 

iteration method, to simultaneously and intelligently determine the binary on/off status of each thermal unit, 

the generation power of online units, as well as the demand side management of plug-in electric vehicles. The 

proposed parallel-series hybrid method is first assessed on a 10-unit benchmark, and then on a case where 

renewable generation and smart PEV management are integrated. Numerical results confirm the superiority of 

the proposed new algorithm in comparison with some popular meta-heuristic approaches. 

Keywords:  unit commitment, hybrid meta-heuristic optimisation, binary particle swarm optimisation, 

differential evolution, renewable generation, plug-in electric vehicles 
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1. Introduction 

Unit commitment (UC) is a crucial component of the power system operation, which aims to minimise the 

economic cost considering the physical system limits. A small improvement in the optimisation like 0.5% would 

bring millions of dollars cost reduction per year for a large utility grid [1]. The UC problem is a non-convex mix-

integer optimisation problem in which both the number of discrete and continuous variables increases 

exponentially as the power system scale increases, leaving the UC problem remain to be a significant 

challenging task. Numerous computational methods have been proposed for solving the UC problems. 

Conventional methods, such as priority list [2,3], dynamic programming [4], Branch and Cut algorithm [5] and 

Lagrangian Relaxation [6], can efficiently produce a reasonable good solution but often encounter difficulties 

when the dimensionality of the problem increases or the problem becomes highly non-linear and non-convex. 

Intelligent methods have been widely employed to solve the UC and other engineering optimisation problems 

[7,8] including simulated annealing (SA) [9], genetic algorithm (GA) [10,11], particle swarm optimisation (PSO) 

[12,13], gravitational search algorithm (GSA) [14], invasive weed optimisation [15], and some other methods 

[16]. Some hybrid methods are also proposed using evolutionary programming (EP) [17] and EA [18] to update 

the Lagrangian multipliers in the Lagrangian Relaxation. However, aforementioned intelligent and hybrid 

methods often suffer from slow convergence due to the excessive number of iterations and mixed-integer 

nature of the problem. To balance the optimisation speed and the exploitation ability, binary intelligent 

optimisations such as binary PSO (BPSO) [19,20], quantum-inspired evolutionary algorithms (QEA) [21] and 

quantum-inspired binary gravitational search algorithm (QGSA) [22] have been combined with lambda 

iteration method to solve the problem in two stages. Though a number of researches have been carried out, 

the traditional UC problem has become even more challenging due to the large penetration of renewable 

energy generations (REG) [23] and mass roll-out of plug-in electric vehicles (PEVs) [24], all these call for more 

powerful tools for solving the non-convex nonlinear mixed-integer high-dimensional problem.  

Among various recent developments in decarbonising the whole energy chain, transportation electrification is 

a key measure to reduce global dependency on fossil fuels. It is also a promising solution to reduce green-

house gas emissions and other air pollutants such as NOx and SOx produced by internal combustion engines 

[25], especially given the ambitious target to limit the maximum temperature rise within 2oC by the end of this 
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century in the recent global agreement, forged in 2015 Paris Climate Conference [26]. Electric vehicles (EVs) 

use electric motors to partly or completely replace the ICE and therefore see low or no fossil fuel consumption 

as well as reduced tailgate emissions [27]. There are three main types of EVs including pure battery electric 

vehicles (BEVs), hybrid electric vehicles (HEVs) (mainly referring to the none-plug-in EVs), as well as plug-in 

hybrid electric vehicles (PHEVs), where both BEV and PHEV are referred as PEVs [28]. On one hand, the 

increasing penetration of PEVs significantly challenges the existing power system operation strategy and 

facility [29]. On the other hand, the large capacities of PEV batteries provide possibilities to vehicle to grid 

(V2G) power feeding back [30] and other ancillary services such as frequency regulation [31], power reserve 

[32] and increase renewable energy power penetration [33,34,35]. Meanwhile, the energy flow management 

of individual PEVs is fundamental in supporting ancillary services and improving energy efficiency 

[36,37,38,39,40,41]. From the system operator perspective, different PEV coordinated scheduling strategies 

have shown significant impact on the economic and environmental cost [42,43,44]. In the references [45,46], 

the original UC problem and the integer numbers of PEVs which are charged and discharged in each hour for 

one day horizon are optimised together by binary and integer PSO methods. Generally speaking, the intelligent 

charging and discharging dispatch of PEVs in day-ahead power system scheduling is a typical load shaping 

demand side management (LSDSM) [47,48] and a crucial technique to level load curve and improve energy 

efficiency [49]. Very few publications however have paid attention to the development of mathematical tools 

to simultaneously solve the UC problem associated with the LSDSM of PEVs.  

The main contributions of this paper are summarised below: 

1. A new hybrid unit commitment problem, namely hybrid unit commitment (HUC) is formulated, which 

integrates the traditional unit commitment problem with demand side management of PEV 

charging/discharging and renewable generations.  

2. A novel parallel-series hybrid meta-heuristic optimisation method (PSH) algorithm structure is 

proposed by integrating a new hybrid topology binary PSO (HTBPSO), self-adaptive differential 

evolution algorithm (SaDE) and the lambda iteration method which can effectively solve the complex 

and challenging HUC problem. 
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3. A double-priority-list method is proposed to provide priority sequence for both unit commitment and 

PEV charging/discharging dispatch. 

4. Extensive simulation studies are conducted to assess the superb performance of the proposed PSH 

method. 

The rest of this paper is organised as follows: Section 2 proposes the HUC problem formulation. Preliminaries 

for the PSH meta-heuristic method are presented in Section 3. Section 4 details the implementation procedure 

of the proposed PSH method in solving the HUC problem. Two cases including the original 10-unit UC problem 

and UC problem integrated with wind power and PV power generations as well as intelligent PEVs scheduling 

are comparatively studied in Section 5; Section 6 summarises and concludes the paper.  

2. Problem formulation 

The new HUC problem is formulated on the conventional UC basis, which is integrated with renewable wind 

and solar power generations and PEV aggregator as shown in Figure 1. The power flow from grid to users is 

denoted as red solid and dash lines (colour edition) and the power flow from generation to grid is shown as 

blue lines. The renewable energy generation is undispatchable due to the intermittent nature and assumed to 

be fully accepted into the grid. The traditional power demand considered in this paper is assumed to be non-

controllable, while the PEV aggregator is a controllable demand, which coordinates all the PEV charging and 

discharging behaviours and plays the LSDSM role. 
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Figure 1. HUC problem structure 

The aims of HUC is to minimise the economic cost by determining the on/off status of each thermal generation 

unit, the charging/discharging power to/from the PEVs as well as the expected generated power to be 

generated by each unit with ’on’ status.  Meanwhile, the generation limit, power demand limit, spinning 

reserve limit, minimum up/down limit and some other system constraints have to be met. 

2.1 Objective function 

The economic cost of a generation unit is composed of two parts, namely a quadratic formulation representing 

the fuel cost with binary unit status, and a piece-wise formulation referring to the start-up cost. 

2.1.1 Fuel cost 

The fuel cost function defined below is a widely adopted quadratic formulation determining the fossil fuel 

economic cost [10,13], 

𝐹𝑗,𝑡(𝑃𝑗,𝑡) = 𝑎𝑗 + 𝑏𝑗𝑃𝑗,𝑡 + 𝑐𝑗𝑃𝑗,𝑡2                                                                    (1) 

where Pj,t and Fj,t denote the determined power and fuel cost of the jth unit in the t time interval. aj, bj and cj 

are the fuel cost coefficients of the corresponding unit. 

2.1.2 Start-up cost 
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Once a unit is de-committed (shut down), it needs to be reheated for restarting. The start-up cost SUj,t includes 

the cold start cost SUC,j which is usually higher if the de-committed period of a unit is over the cold-start hour 

Tcold,j and the hot-start cost SUH,j which is usually lower if the de-committed period of a unit does not exceed 

the Tcold,j. The explicit expression is given below, 

𝑆𝑈𝑗,𝑡 = {𝑆𝑈𝐻,𝑗 , 𝑖𝑓 𝑀𝐷𝑇𝑗 ≤ 𝑇𝑂𝐹𝐹𝑗,𝑡 ≤ 𝑀𝐷𝑇𝑗 + 𝑇𝑐𝑜𝑙𝑑,𝑗𝑆𝑈𝐶,𝑗, 𝑖𝑓 𝑇𝑂𝐹𝐹𝑗,𝑡 > 𝑀𝐷𝑇𝑗 + 𝑇𝑐𝑜𝑙𝑑,𝑗                                                                   (2) 

where MDTj and MUTj denote the minimum down time and minimum up time for an off/on unit to re-commit 

(turn on) /de-commit. The duration of the off-line status for the jth unit is denoted as TOFFj,t.  

The final objective function CTotal is composed of the two parts defined above, associated with the binary 

variables uj,t to denote the on/off status for the jth unit in the specific time slot, and it accumulates the total 

cost of N units in T time periods as shown below, 

𝑚𝑖𝑛 𝐶𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ [𝐹𝑗(𝑃𝑗,𝑡)𝑢𝑗,𝑡 + 𝑆𝑈𝑗,𝑡(1 − 𝑢𝑗,𝑡−1)𝑢𝑗,𝑡]𝑁𝑗=1𝑇𝑡=1                                            (3) 

It should be noted that the start-up cost is related to the current on-line or off-line unit status and the status in 

previous time slot. The operational costs of wind and solar, power released from PEVs, and the battery 

degradation cost are not considered in this paper, and could be considered in the future work. 

2.2 Constraints 

In addition, several system constraints due to physical nature and power system mechanism should be 

considered, including generation limits of thermal power, REG and V2G power, power demand limit, spinning 

reserve limit, minimum up/down limit and PEV charging limit. It should be noted that some constraints such as 

the ramping rate and valve point effect in the economic dispatch step [50] are not considered in this paper. 

2.2.1  Thermal generation limit 

Each of the thermal generation units is limited by the minimum and maximum power output. The generation 

power needs to be dispatched within this range: 

𝑢𝑗,𝑡𝑃𝑗,𝑚𝑖𝑛 ≤ 𝑃𝑗,𝑡 ≤ 𝑢𝑗,𝑡𝑃𝑗,𝑚𝑎𝑥                                                                       (4) 
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where Pj,min, Pj,max represent the minimum and maximum power limit respectively. 

2.2.2 Power balance constraints 

Power demand in the HUC model is a predicted load that requires meeting by thermal unit generations. In 

other words, the total generated power of all online units should balance the system load demand. The HUC 

model considers both the thermal generation units and renewable energy sources including wind power, solar 

power and day-ahead PEV power dispatch. The power demand balance equation is denoted as follows; 

∑ 𝑃𝑗,𝑡𝑢𝑗,𝑡 + 𝑃𝑊𝑖𝑛𝑑,𝑡 + 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡 = 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡𝑛𝑗=1                                                   (5) 

where PWind,t and PSolar,t are predicted wind power and solar power respectively, and PD,t is the predicted power 

demand at time t. The V2G and G2V power are generally represented as PPEV,t  where a positive value denotes 

the PEV aggregator is on the G2V mode, receiving energy from grid at time t. A negative value of PPEV,t  

represents the V2G mode through which PEVs batteries deliver power back. 

2.2.3 Spinning reserve 

The power demand is a predicted value. The spinning reserve limit is designed to reserve enough power 

output ability to timely compensate the deviation between power supply and user demand to guarantee the 

safety and flexibility of the grid, ∑ 𝑃𝑗,𝑚𝑎𝑥𝑢𝑗,𝑡 +𝑛𝑗=1 𝑃𝑊𝑖𝑛𝑑,𝑡 + 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡 ≥ 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡 + 𝑆𝑅𝑡                                        (6) 

As in the equation (6), SRt is the spinning reserve at time t. The generation capacity is calculated as the sum of 

the maximum power output of on-line thermal units and the predicted REG. 

2.2.4 Minimum up/down time constraints 

Thermal units need to be heated up after de-committed and cooled down when over-committed, due to which 

it endures a minimum up or down time. As denoted in (7), if the on-line duration of a unit TONj,t-1 is less than 

the minimum up time, the unit status uj,t needs to be forcedly turned on, and vice versa. 

𝑢𝑗,𝑡 = { 1,   𝑖𝑓 1 ≤ 𝑇𝑂𝑁𝑗,𝑡−1 < 𝑀𝑈𝑇𝑗0,   𝑖𝑓1 ≤ 𝑇𝑂𝐹𝐹𝑗,𝑡−1 < 𝑀𝐷𝑇𝑗0 𝑜𝑟 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                      (7) 

2.2.5 Renewable generation limit 
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Wind and solar power sources are integrated in the power system under certain capacities according to the 

system planning. The maximum power generation of both wind and solar power are limited by their capacities 

due to the mechanical torque boundary for wind and chemical saturation of photovoltaic material for solar 

radius. The limits are shown in (8) and (9) as below,  

 𝑃𝑊𝑖𝑛𝑑,𝑡 ≤ 𝑃𝑊𝑖𝑛𝑑,𝑚𝑎𝑥                                                                              (8) 

 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡 ≤ 𝑃𝑆𝑜𝑙𝑎𝑟,𝑚𝑎𝑥                                                                              (9) 

Note that as the wind and solar power is not dispatchable, typical scenarios are considered and analysed in 

system scheduling [14,51]. In this paper, deterministic scenarios are considered, Pwind,max and PSolar,max are the 

maximum generation of wind and solar power. 

2.2.6 PEVs charging/discharging power limit 

Load shaping demand side management (e.g. intelligent scheduling) of PEVs flexibly determines the V2G/G2V 

mode and determine the exact power feeding back to or receiving from the grid for PEV batteries. Due to the 

number and capacity of PEV chargers (for G2V use) and feeders (for V2G use), the maximum power PPEV,max and 

minimum power PPEV,min for PEVs are denoted in (10) as follows, 

 𝑃𝑃𝐸𝑉,𝑚𝑖𝑛 ≤ 𝑃𝑃𝐸𝑉,𝑡 ≤ 𝑃𝑃𝐸𝑉,𝑚𝑎𝑥                                                                   (10) 

where PPEV,max represents the maximal charging power (positive) in the G2V mode at time t and PPEV,min denotes 

the maximal discharging power of PEVs (negative)in the V2G mode.  

2.2.7 PEVs power demand limit 

Another PEVs power limit is the PEV power demand limit. A certain amount of power necessity is expected for 

commuter PEVs to fulfil their daily transportation utilisation. This expected power for PEVs is denoted as Pexp in 

(11) which is the sum of PEV charging power from the grid.  

 ∑ 𝑃𝑃𝐸𝑉,𝑡𝑇𝑡=1 = 𝑃𝑒𝑥𝑝                                                                              (11) 

All of these limits should be handled in the optimisation procedure, which is explicitly addressed in section 4. 

 

3. Preliminaries of proposed algorithm 
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The new formulation of HUC problem reveals that it is a complex nonlinear mixed integer problem, calling for a 

novel powerful tool to seek a solution which is composed of integer variables determining the on/off status of 

each thermal unit, real valued variables for power output of online thermal units as well as real valued 

variables for PEV power delivery. A parallel-series hybrid meta-heuristic based optimisation is proposed which 

integrates a HTBPSO method to determine binary on/off status of units, a SaDE method to schedule the real 

valued power delivery of PEVs and the Lambda iteration method for economic load dispatch (ELD). The 

proposed PSH method takes the advantages of the high efficiency of the heuristic methods (e.g. the binary PSO 

and the SaDE) in seeking solutions for high-dimensional strong constrained binary and continuous problems, as 

well as the strong converging ability of lambda iteration method. Working in parallel and then series, the three 

approaches work co-ordinately to achieve competitive solutions for the proposed HUC problem.  

3.1 Hybrid topology BPSO for binary optimisation 

3.1.1 Hybrid topology binary PSO 

Binary particle swarm optimisation (BPSO) is a popular discrete intelligent methods proposed in [52]. It has 

been utilised for solving the UC problem in [53] but endures slow convergence speed and easy to be trapped in 

local minimum. Multiple variants of BPSO are proposed to improve the performance by changing the 

probability function [54, 55, 56], to modify the evolutionary logic [57, 58, 59, 60] and to integrate within 

quantum-inspired computation [13, 61]. Beheshti et al. [56] proposed a new hybrid topology binary PSO 

(HTBPSO) for solving discrete optimisation problems. This method integrates the state-of-the-art techniques of 

both binary and continuous PSO including a modified design of the sigmoid function for speeding up algorithm 

convergence, a hybrid learning structure for sharing experience from global/local/neighbour best particles, 

introduction of an Gaussian error function as a small disturbance to improve the exploitation ability, as well as 

a new acceleration term to enhance the exploration ability. The procedure of HTBPSO shares similar variables 

and parameters definition and the velocity update section as follows; 

𝑣𝑖(𝑡 + 1) = 𝑤(𝑡) × 𝑣𝑖(𝑡) + 𝐶1(𝑡) × 𝑟𝑎𝑛𝑑1 × (𝑝𝑙𝑏𝑒𝑠𝑡,𝑖 − 𝑢𝑖(𝑡)) + 𝐶2(𝑡) × 𝑟𝑎𝑛𝑑2 × (𝑝𝑛𝑏𝑒𝑠𝑡,𝑖 − 𝑢𝑖(𝑡))       (17) 

The difference of the HTBPSO compared with the original BPSO is that the global learning term has been 

replaced by a neighbour learning term, where a local best particle from a neighbour position pnbesti (t) is 

selected to improve the learning of the current variable ui(t). This neighbour is a randomly selected one from 
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the whole population. The original social coefficient C2(t) has a new role defined as the counterpart coefficient 

to scale the neighbour learning step. This new term is designed to activate the internal information exchange 

of the population in order to avoid the particles being trapped in the local optimum. However, the 

replacement of the global learning may sacrifice the exploration ability and hinder the global convergence. 

To compensate the lack of social learning term and increase the convergence speed, an acceleration is 

designed with the social learning associated with the velocity updating as follows, 𝑎𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) + 𝐶3(𝑡) × 𝑟𝑎𝑛𝑑3 × (𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑢𝑖(𝑡))                                         (18) 

where ai(t + 1) is an acceleration. It is formulated by the sum of the updated velocity from previous two 

learning term and another term with the social coefficient C3(t). The vector typology of the acceleration update 

process is illustrated in Figure 2 below, 

xi(t)

vi(t+1)

Plbest,i

Pgbest

wi(t)*vi(t)

C2*rand2*(PnBest-xi(t))

C1*rand2*(Plbest,i-xi(t))
C3*rand3*(PgBest-xi(t))

ai(t+1)

vi(t)

Pnbest,i

 

Figure 2. Hybrid typology for population update  

By adding a new acceleration, the probability function of each position P(a) is given as follows, 𝑃(𝑎) = |𝑡𝑎𝑛ℎ (𝑎)|                                                                             (19) 

where the original sigmoid curve is modified as a symmetrical curve shown in figure 3. The large value of 

acceleration represents high possibility to change from the current position while the zero value means that 

the current value has approached the optimum and will stay at current position. The boundaries of 
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acceleration are limited as [-6, 6] due to that the value of probability function of this boundary has cover over 

99.99% of all the possibility. 

In addition to determining the final generation probability from the acceleration, a small perturbation is 

introduced to increase the chance for the population to jump out of the local optimums. The disturbance 

employed the Gaussian error function as follows, 

𝐸 = erf (𝑁𝐹𝑇′ ) = 2√𝜋 ∫ 𝑒−𝑡2𝑁𝐹𝑇′0 𝑑𝑡,                                                                    (20) 

where NF is the iteration number with the best position remaining unchanged in the iteration, associated with 

a time constant T’. This Gaussian error function value E is embedded into the population function denoted as: 𝑃(𝑎𝑖(𝑡 + 1)) = 𝐸 + (1 − 𝐸) × |𝑡𝑎𝑛ℎ(𝑎(𝑡 + 1))|                                               (21) 

The position is then updated by comparing the probability P(a) with a random number rand4 with the range of 

(0,1) shown as: 

𝑢𝑖(𝑡 + 1) = {1 − 𝑢𝑖  (𝑡),   𝑖𝑓 𝑟𝑎𝑛𝑑4 < 𝑃(𝑎𝑖  (𝑡 + 1))𝑢𝑖(𝑡),         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                            (22) 

As shown in (22), the new variables probability is calculated by the latest accelerations and compare with 

rand4, and if rand4<P(ai(t+1)), the binary variable ui (t+1) will change to the opposite position of ui(t). 

             

Figure 3. Probability distribution of HTBPSO 

This integration of complementary perturbation strategy with previously introduced symmetric acceleration 

and neighbour learning strategy greatly enhance both the exploration and exploitation capability. The 

proposed HTBPSO will not only speed up the convergence, but also avoid solutions being trapped within local 

optimum.  

3.2 SaDE method for real-valued optimisation problem 
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In parallel with the binary method, a real valued optimisation method is required to simultaneously determine 

the PEVs power PPEV,t in order to handle the system constraints (5) and (6). The DE algorithm is one of a 

popular meta-heuristic due to the high efficiency and simple implementation. A number of DE variants have 

been proposed to solve continuous constrained and unconstrained problems such as jDE [62], NSDE [63], SaDE 

[64], JADE [65], DEGL [66] and so on. Among these variants, SaDE has a simple structure and less parameters 

to tune, and therefore is used in this paper to schedule real valued PPEV,t. Detailed process including mutation, 

crossover and selection operations of SaDE is illustrated as follows: 

𝑀𝑉𝑖,𝐺 = {𝑋𝑟1,𝐺 + 𝐹 ∙ (𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺),                                        𝑖𝑓  𝑝𝑠 < 𝑝1     𝑋𝑖,𝐺 + 𝐹 ∙ (𝑋𝑏𝑒𝑠𝑡,𝐺 − 𝑋𝑖,𝐺) + 𝐹 ∙ (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺),      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          (23) 

where Xr1,G, Xr2,G and Xr3,G are three randomly selected particles in the optimisation population at Gth iteration 

and F is the mutation factor. MVi,G, Xi,G and Xbest,G are the ith mutant vector, ith particle in the population as well 

as best particle at Gth iteration. Two basic DE mutation strategies namely rand/1/bin and current to best/2/bin 

are selected in (23) according to the probability p1 determined by (24) comparing with a random number ps. 

The probability p1 depends on ns1, ns2, nf1 and nf2 which denote the success and failure times of corresponding 

two strategies in (23).  𝑝1 = 𝑛𝑠1∙(𝑛𝑠2+𝑛𝑓2)𝑛𝑠2∙(𝑛𝑠1+𝑛𝑓1)+𝑛𝑠1∙(𝑛𝑠2+𝑛𝑓2)                                                                   (24) 

The crossover operation is denoted in (26) where CR is the crossover rate. mvj,i,G, xj,i,G and tavj,i,G represent 

mutant vector, trial vector and target vector respectively. 

𝑡𝑎𝑣𝑗,𝑖,𝐺 = {𝑚𝑣𝑗,𝑖,𝐺 ,   𝑖𝑓  𝑟𝑎𝑛𝑑4 < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑𝑥𝑗,𝑖,𝐺 ,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    ,     𝑗 = 1,2, … , 𝑛                                      (25) 

The trial vector is evaluated by the cost function f and updates the trail particle Xi,G+1 as show below. 

𝑋𝑖,𝐺+1 = {𝑇𝐴𝑉𝑖,𝐺 ,   𝑖𝑓  𝑓(𝑇𝐴𝑉𝑖,𝐺) < 𝑓(𝑇𝑉𝑖,𝐺)𝑋𝑖,𝐺                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           (26) 

The SaDE algorithm is a trade-off between the exploration capability and the exploitation capability by 

selecting two mutation strategies and therefore can be integrated with the previously introduced binary 

optimisation method to effectively solve the HUC problem in a parallel-series topology. 

3.3 Two Priority lists for solving the HUC problem 
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The priority list of the original UC problem is established as the reference in determining the order of unit 

commitments. However in the new HUC problem, two priority lists are produced for both the unit 

commitment and the charging/discharging allocation of PEVs respectively.  

The original UC priority list in this paper is created by formulating an index πj, which represents the average 

cost of full power generation of each unit j [71] and is calculated as in (27),  𝜋𝑗 = 𝑎𝑗𝑃𝑗,𝑚𝑎𝑥 + 𝑏𝑗 + 𝑐𝑗 ∙ 𝑃𝑗,𝑚𝑎𝑥                                                                (27) 

By ranking the index πj in the ascending order, the units are committed sequentially from cheapest base load 

units to expensive peak load units in handling the constraints (6). 

Intelligent allocation of PEVs charging and discharging can shave the peak load and fill the load valley to reduce 

the start-up cost and expensive fuel cost from peak units. Therefore, in addition to the widely used UC index πj, 

a new index δt is created, linking the power demand with the allocation of PEVs charging and discharging as 

shown below, 𝛿𝑡 = 𝑃𝐷,𝑡 − 𝑃𝑊𝑖𝑛𝑑,𝑡 − 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡                                                              (28) 

where the renewable generation PWind,t and PSolar,t are taken as negative loads and removed from the original 

load PD,t. The index δt is in ascending order for the charging allocation to schedule more PEVs load on off-peak 

time to preferentially fill in the load valley. Meanwhile, a descending order of index δt is adopted for 

scheduling the discharging power, providing V2G service during the peak time. Such priority list of PEVs is 

utilised in handling the PEVs constraint (10) and (11) and the unit scheduled priority list sequence is denoted 

as Δ discussed in the constraint handling subsections 4.2. 

3.4 Proposed parallel-series hybrid method 

The proposed PSH methods have three key components, including two parallel running algorithm blocks and a 

series running algorithm block. The structure of PSH is proposed as figure 4, where Block A and B are 

connected in parallel and Block C is linked in series with the others. Particularly, Block A is the binary algorithm 

which determines the on/offline status of the thermal generators in a 24 hours horizon, and HTBPSO method 

will be adopted in this block. Moreover, Block B runs parallelly to determine the LSDSM of PEVs in each hour of 

a single day, and the continuous SaDE method is employed. To achieve the dispatching results for HUC 
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problem, both Block A and B are connected with Block C where the lambda iteration method is utilised. The 

detailed implementation of the PSH method will be further addressed in Section 4. 

 

Figure 4. Proposed PSH algorithm structure 

 

4. Implementation of the proposed parallel-series hybrid method for the HUC problems 

The proposed two meta-heuristic methods are running in parallel first during the evolutionary process, one is 

for optimising the binary on/off-line status of units, and the other is for optimising the real-valued PEV power 

variables respectively, and the results are then merged during the lambda iteration for economic dispatch to 

optimise the real valued power generation for each online unit. The population structure in the evolutionary 
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process is shown in figure 5, while the proposed hybrid algorithm structure is shown in figure 6. Several key 

procedures are detailed in this subsection followed by the specific steps of the algorithm implementation. 

4.1 Variables coding 

In the proposed algorithm, three types of variables need to be optimised, including the binary on/offline 

variables Ui, charging/discharging power of PEVs PPEV,i, and dispatched power of online units P shown as below, 

𝑈𝑖 = (  𝑢𝑖,1,1   𝑢𝑖,1,2𝑢𝑖,2,1   𝑢𝑖,2,2  …     𝑢𝑖,1,𝑇 …     𝑢𝑖,2,𝑇 ⋮ ⋮ 𝑢𝑖,𝑁,1    𝑢𝑖,𝑁,2   ⋮ ⋮  …     𝑢𝑖,𝑁,𝑇    )         𝑖 = 1,2, … , 𝑁𝑝                                       (29) 

     𝑃𝑃𝐸𝑉,𝑖 = (𝑝𝑃𝐸𝑉,𝑖,1  𝑃𝑃𝐸𝑉,𝑖,2 …    𝑃𝑃𝐸𝑉,𝑖,𝑇)    𝑖 = 1,2, … , 𝑁𝑝                                      (30) 

𝑃 = ( 
  𝑃1,1   𝑃 1,2𝑃2,1   𝑃2,2  …     𝑃1,𝑇 …     𝑃2,𝑇 ⋮ ⋮ 𝑃𝑁,1    𝑃𝑁,2   ⋮ ⋮  …     𝑃𝑁,𝑇    ) 

                                                                   (31) 

where Np is the number of particles in a population of the proposed method. The dimension of the variables Ui 

and Pi are N*T and that of PPEV,I is 1*T. In the proposed PSH method, the binary population Ui and real value 

population PPEV,i are updated by HTBPSO and SaDE respectively. The variable P is calculated by the lambda 

iteration. The structure of a population maintained by the proposed PSH algorithm is shown as in Figure 5. 

U1 1/0 1/0 ... PPEV,1 PPEV,1,1 PPEV,1,2 ...

U2 1/0 1/0 ... PPEV,2 PPEV,2,1 PPEV,2,2 ...

... 1/0 1/0 ... ... PPEV,j,1 PPEV,j,2 ...

UNp 1/0 1/0 ... PPEV,Np PPEV,Np,1 PPEV,Np,2 ...

uNp,1,1 uNp,1,2 ... uNp,1,T

1/0

1/0

1/0

1/0

PPEV,1,T

PPEV,2,2

PPEV,j,T

PPEV,Np,T

N×T Dimension T Dimension

uNp,2,1 uNp,2,2 ... uNp,2,T uNp,N,1 uNp,N,T ... uNp,N,T...

Unit 1 status Unit 2 status Unit N status

 
 Figure 5. Structure of a population for the proposed PSH algorithm 
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4.2 Handling of constraints  

The proposed HUC problem consists of several important system constraints that need to be handled, 

including the power demand limit, spinning reserve limit, minimum up/down time limit as well as PEVs power 

demand limit. The rule-based heuristic handling method [13] is utilised to handle the minimum up/down time 

and the spinning reserve limits. The detailed handling method is proposed as follows. 

4.2.1 Handling of minimum up/down time limit 

The minimum up/down time limit as in (7) directly affect the on/off-line status of the binary variables, and 

thus other constraints to be handled. Therefore, it is handled first to ensure the binary solutions are valid. The 

heuristic based handling method is illustrated by the pseudo-code shown below,  

Begin 

For j=1 to N 

If uj,t=1 

If uj,t-1=1 

      If TOFFj,t-1<MDTj 

 uj,t=0; 

      Endif 

Endif 

          Else  

If uj,t-1=1 

      If TONj,t-1<MUTj 

 uj,t=0; 

      Endif 

Endif 

          Endif 

Endfor 

end 

4.2.2 Spinning reserve limit handling 

Spinning reserve provides additional fast responsive power capacity to compensate unpredicted load demand. 

The detailed handling method is shown in the pseudo-code below: 

Begin 

Sort the generators in the ascending order of the priority list πj 

Set the generator sequence g=1 

If ug,t=0 

While (∑ 𝑃𝑗,𝑚𝑎𝑥𝑢𝑗,𝑡 +𝑛𝑗=1 𝑃𝑊𝑖𝑛𝑑,𝑡 + 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡 ≥ 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡 + 𝑆𝑅𝑡 ) 
         If ug,t=0 

           ug,t=1 

If TOFFg,t>MDTg 

       TOFFg,t=0 
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       TONg,t= TONg,t-1+1 

Else 

      l=t-TOFFg,t+1 

      While (l>t) 

ug,l=1 

TOFFg,t=0 

TONg,l= TONg,l-1+1 

l=l+1 

      Endwhile 

Endif 

           Endif 

g=g+1 

Endwhile 

 Endif 

End 

4.2.3 De-commitment for redundant units  

The above introduced handling methods for the minimum up/down time and spinning reserve limit very likely 

introduce redundant on-line units and lead to unnecessary cost. A de-commitment technique is employed 

here to tackle this issue. The specific procedure is demonstrated below: 

Begin 

Sort the generators in the descending order of the priority list πj 

Set the generator sequence g=1 

If ug,t=1 

While (∑ 𝑃𝑗,𝑚𝑎𝑥𝑢𝑗,𝑡 − 𝑃𝑔,𝑚𝑎𝑥 +𝑛𝑗=1 𝑃𝑊𝑖𝑛𝑑,𝑡 + 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡 ≥ 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡 + 𝑆𝑅𝑡 ) 
If TONg,t>MUTg 

ug,t=0 

TONg,t=0; 

TOFFg,t= TOFFg,t-1+1 

Elseif TONg,t=1 

ug,t=0 

TONg,t=0 

TOFFg,t= TOFFg,t-1+1 

Endif 

g=g+1 

Endwhile 

 Endif 

End 

4.2.4 Handling of PEVs limits 

The PEVs charging/discharging limit (10) is the total power of PEVs that needs to be charged or the minimum 

power capacity of PEVs that can provide V2G service. The power demand limit (11) is the total power needed 

from the grid to the aggregator of PEVs for supporting the daily demand. We propose a load levelling based 
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method to handle these limits. The power mismatch PDe is handled according to the PEV scheduling priority list 

δt defined in Subsection 3.3. The detailed procedure is given below.  

Begin 

Sort load demand according to the ascending order of the priority list δt  in the sequence Δ 

For t=1 to T 

If PPEV,t<PPEV,t,min 𝑃𝑃𝐸𝑉,𝑡 = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑃𝐸𝑉,𝑡,𝑚𝑎𝑥 − 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛)  
Elseif PPEV,t>PPEV,t,max 𝑃𝑃𝐸𝑉,𝑡 = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑃𝐸𝑉,𝑡,𝑚𝑎𝑥 − 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛)  
Endif 𝑃𝐷𝑒 = 𝑃𝐸𝑥𝑝 − ∑ 𝑃𝑃𝐸𝑉,𝑡𝑛𝑗=1   

If PDe>0 

while (PDe>0) 

j=j+1 𝑃𝐷𝑒,𝑇𝑒𝑚 = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑎𝑥 − 𝑃𝑃𝐸𝑉,𝛥(𝑗)  
If PDe> PDe,Tem 

     𝑃𝑃𝐸𝑉,𝛥(𝑗) = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑎𝑥  

 𝑃𝐷𝑒 = 𝑃𝐷𝑒 − 𝑃𝐷𝑒,𝑇𝑒𝑚  

Else 

     𝑃𝑃𝐸𝑉,𝛥(𝑗) = 𝑃𝑃𝐸𝑉,𝛥(𝑗) + 𝑃𝐷𝑒  

Endif 

Endwhile  

  Elseif PDe<0 

while (PDe<0) 

j=j+1 𝑃𝐷𝑒,𝑇𝑒𝑚 = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛 − 𝑃𝑃𝐸𝑉,𝛥(𝑇−𝑗+1)  
If PDe< PDe,Tem 

     𝑃𝑃𝐸𝑉,𝛥(𝑇−𝑗+1) = 𝑃𝑃𝐸𝑉,𝑡,𝑚𝑖𝑛  

 𝑃𝐷𝑒 = 𝑃𝐷𝑒 − 𝑃𝐷𝑒,𝑇𝑒𝑚  

Else 

     𝑃𝑃𝐸𝑉,𝛥(𝑇−𝑗+1) = 𝑃𝑃𝐸𝑉,𝛥(𝑇−𝑗+1) + 𝑃𝐷𝑒  

Endif 

Endwhile  

  Endif 

 Endfor 

End 

In the procedure, PDe,Tem denotes the temporary power deviation between the limit and the scheduled PEVs 

power in the priority list sequence Δ, which denoted as PPEV,Δ(j) or PPEV,Δ(T-j+1). In this method, the unsatisfied 

power is met at the off-peak time and the excessive power is released at the peak time. In addition, the 

intelligent load levelling method also limits the scheduled PEVs power within the charging/discharging 

boundary. 

4.3 Lambda iteration based ELD 
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Lambda iteration method is a popular technique to solve constrained non-linear optimisation problems. It has 

been widely employed in solving economic load dispatch problem [12,14,22,71]. The power demand limit and 

generation limit is relaxed and handled during the iteration procedure. The specific pseudo-code of the lambda 

iteration method is given below.  

Begin 

Given by an alternative solution Ui,t={ui,1,t, ui,2,t,…, ui,N,t } ,PD,t and system parameters; 

Set permitted error ξ 0=0.1, maximum iteration IterMax=200; 

Set initial value 𝜆𝑘; 

While (│ξk│≥ ξ0) do 

Calculate  𝑃𝑗′ = 𝜆𝑡−𝑏2c   
Calculate  𝑃𝑗,𝑡 = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {𝑃𝑗′, 𝑃𝑗,𝑚𝑖𝑛}, 𝑃𝑗,𝑚𝑎𝑥}; 
Calculate  𝜉𝑘 = ∑ 𝑃𝑗,𝑡 ∙ 𝑢𝑗,𝑡 − 𝑃𝐷,𝑡𝑛𝑗=1 − 𝑃𝑃𝐸𝑉,𝑡 + 𝑃𝑊𝑖𝑛𝑑,𝑡 + 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡; 

If (ξ < 0) then 

     𝜆𝑘 = 𝜆𝑘 − 𝛯𝑘  

Else 

   𝜆𝑘 = 𝜆𝑘 + 𝛯𝑘  

Endif 

calculate 𝛯𝑘+1 = 𝛯𝑘 + ∆𝑘−∆𝑘−1𝜉𝑘−𝜉𝑘−1 ∙ (𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡 − 𝑃𝑊𝑖𝑛𝑑,𝑡 − 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡); 
k=k+1; 

Endwhile 

End 

The acceptable duality gap ξ0 is set as 0.1 and the feasible λk is updated by an inertial parameter Ξk, which is 

dynamically determined at every iteration. 

4.4 Implementation of the proposed PSH method 

By employing the above constraints handling method, the algorithm structure can now be given in Figure 6. A 

deterministic scenario is adopted in this paper for algorithm performance tests. 
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End

PEVs limit handling

(10)-(11)

 

Figure 6. Structure of the implementation for the proposed PSH algorithm 

 

 

The implementation process is summarised in the following steps: 

Step 1. Generation of scenario for renewable energy  

a) Import predicted wind and solar power generations for a given period ; 

b) Generate a deterministic combined scenario of renewable energy as the input of HUC problem; 

Step 2. Initialisation 

a) Import the power system data and parameters including generation capacity, minimum up/down 

time, fuel coefficients, start-up and shut-down cost of the units and predicted load demand etc.; 

b) Import the PEVs data including charging and discharging capacity and power demand; 

c) Import the renewable generation scenario.   
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d) Initialise HTBPSO algorithm parameters such as C1, C2, C3, w, iteration and particle numbers; 

e) Initialise SaDE algorithm parameters such as F, CR, iteration and particle numbers; 

f) Randomly generate populations for both algorithms, handling all the constraints using methods in 4.2; 

g) Compute the objective function for each Ui in the binary population and real-valued PPEV,i using 

Lambda iteration method to determine the local best and global best particles from the initial 

population; 

Step 3. Hybrid parallel-series process for HUC 

a) Update the velocity according to (17) and (18), update the probability amplitude based on (20)-(21), 

generate a new binary population according to (22) and repair the minimum up/down time limit as 

detailed in 4.2.1; 

b) Update real-valued variable according to (23)-(25) and repairs the PEV power limit as detailed in 4.2.4; 

c) Repair all the new particles Ui associated with renewable generation scenarios and PEVs variables to 

avoid violating spinning reserve limit  and over committing, as detailed in 4.2.2 and 4.2.3; 

d) Compute the objective function for each Ui and PPEV,i in the population using Lambda iteration method 

as detailed in 4.3, update the local best and global best particles of HTBPSO and implement selection 

operation of SaDE as in (26); 

e) If the iteration is less than itermax, go back to Step 3-a, otherwise, go to the Step 4.  

Step 4. Performance evaluation 

a) Record the optimisation result, go back to Step 2. 

b) The economic cost of the scenarios are compared and analysed.  

It should be noted that the Step 3-a and 3-b illustrate the parallel Block A and Block B in Figure 4, whereas the 

Step 3-d elaborates the series Block C in the same figure. The Using the proposed PSH method, various 

scenarios of REG and LSDSM of PEVs in the conventional UC problem could be evaluated and compared in 

terms of the economic impact on the power system operation.  

5. Numerical results and analysis 

The new PSH method provides a powerful tool to solve both the conventional UC problems and the HUC 

problem considering intermittent REG and PEVs intelligent charging and discharging. In this section, the 
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HTBPSO, is first compared with some state-of-the-art optimisation methods on conventional UC problem in 

case 1. Then, the proposed PSH method is evaluated on a HUC problem considering a deterministic scenario of 

renewable generations and intelligent scheduling of PEVs in case 2.  

5.1 Case 1: 10 Units only 

In this case, the widely used 10-unit 24 hour system is employed [67], and the detailed system data is 

illustrated as Table 2. To fairly compare the performance of the HTBPSO with some other methods on the 

conventional UC problem, REG and PEVs are not considered in this case study. The optimisation is 

implemented in the MATLAB ®2014a on an Intel i5-3470 CPU at 3.20GHz and 8GB RAM personal computer. 

Thirty independent trials were run to reduce the randomness effect, where the best, mean and worst values 

for each run were calculated. In addition to the HTBPSO algorithm proposed in this paper, existing PSO 

methods including NBPSO [54] and BLPSO [56] are tested. The parameters setting for these methods are given 

in the Table 1 according to the original settings in [40] [41]. The number of particles in a population is 20 and 

the maximum iteration as 1000 as utilised in other publications [13,14,22]. The spinning reserve is 10% of 

predicted demand for this scenario test. 

Table 1.  

Parameter settings of some BPSO variants 

Algorithm Parameter settings 

BLPSO w(t): 0.9-0.4, C1=C2=2 

NBPSO w(t): 0.9-0.4, C1=C2=2 

HTBPSO w(t): 0.6-0.2, C1: 0.5-2.0, C2: 1.0-2.0, C3: 0.5-1.5, T’=500 

 

Table 2.  

10-unit benchmark system data 

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

Pmax (MW) 455 455 130 130 162 80 85 55 55 55 

Pmax (MW) 150 150 20 20 25 20 25 10 10 10 

a ($/h) 1000 970 700 680 450 370 480 660 665 670 

b ($/MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79 

c ($/MWh2) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173 

MUT (h) 8 8 5 5 6 3 3 1 1 1 

MDT (h) 8 8 5 5 6 3 3 1 1 1 

SUH ($) 4500 5000 550 560 900 260 260 30 30 30 

SUC ($) 9000 10000 1100 1120 1800 520 520 60 60 60 

Tcold (h) 5 5 4 4 4 2 2 0 0 0 

Initial States (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1 
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To make a comprehensive comparison, the results by a few other state-of-the-art methods, including an 

efficient hybrid PSO (HPSO) [67], an improved PSO (IPSO) [68], a quantum inspired PSO (QPSO) [13], a binary 

real coded firefly (BRCFF) algorithm [69], a Lagrangian Relaxation and PSO method (ELRPSO) [70], a quantum 

inspired gravitational search algorithm (QGSA) [14], a gravitational search algorithm (GSA) [71], and an 

advanced three-stage approach (ATHS) [72] are listed in table 3, together with the experimental results by 

BLPSO, NBPSO and HTBPSO. 

Table 3.  

Simulation results of case 1-1 (10% spinning reserve) 

Methods Best cost ($/day) Worst cost ($/day) Mean cost ($/day) SD ($/day) 

HPSO [67]  563,942 565,785 564,772 ― 

IPSO [68]  563,954 564,579 564,162 0.11% 

QPSO [13]  563,977 563,977 563,977 0 

BRCFF [69]  563,937 565,597 564,743 ― 

ELRPSO [70]  563,938 563,977 563,971 ― 

BGSA [71]  563,937 564,241 564,031 114 

QGSA [14]  563,937 564,390 564,065 ― 

ATHS [72] 563,938 564,000 563,946 19 

BLPSO 563,937 564,018 563,963 22 

NBPSO 563,937 563,977 563,955 20 

HTBPSO 563,937 563,937 563,937 0 

 

From the Table 3, It is clear that, HTBPSO shows the best and robust performance, achieving the best results in 

all 30 trials with 563,937 $/day. The results distributions of all the 30 runs by BLPSO, NBPSO and HTBPSO are 

further illustrated in figure 7. 

Table 4.  

Best unit scheduling results for Case 1-1: 10 unit-only (10% spinning reserve) 

 

Hour 
U1 

(MW) 

U2 

(MW) 

U3 

(MW) 

U4 

(MW) 

U5 

(MW) 

U6 

(MW) 

U7 

(MW) 

U8 

(MW) 

U9 

(MW) 

U10 

(MW) 

Demand 

(MW) 

Spinning 

Reserve(MW) 

1 455 245 0 0 0 0 0 0 0 0 700 210 

2 455 295 0 0 0 0 0 0 0 0 750 160 

3 455 370 0 0 25 0 0 0 0 0 850 222 

4 455 455 0 0 40 0 0 0 0 0 950 122 

5 455 390 0 130 25 0 0 0 0 0 1000 202 

6 455 360 130 130 25 0 0 0 0 0 1100 232 

7 455 410 130 130 25 0 0 0 0 0 1150 182 

8 455 455 130 130 30 0 0 0 0 0 1200 132 

9 455 455 130 130 85 20 25 0 0 0 1300 197 

10 455 455 130 130 162 33 25 10 0 0 1400 152 

11 455 455 130 130 162 73 25 10 10 0 1450 157 
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12 455 455 130 130 162 80 25 43 10 10 1500 162 

13 455 455 130 130 162 33 25 10 0 0 1400 152 

14 455 455 130 130 85 20 25 0 0 0 1300 197 

15 455 455 130 130 30 0 0 0 0 0 1200 132 

16 455 310 130 130 25 0 0 0 0 0 1050 282 

17 455 260 130 130 25 0 0 0 0 0 1000 332 

18 455 360 130 130 25 0 0 0 0 0 1100 232 

19 455 455 130 130 30 0 0 0 0 0 1200 132 

20 455 455 130 130 162 33 25 10 0 0 1400 152 

21 455 455 130 130 85 20 25 0 0 0 1300 197 

22 455 455 0 0 145 20 25 0 0 0 1100 137 

23 455 455 0 0 0 20 0 0 0 0 900 90 

24 455 345 0 0 0 0 0 0 0 0 800 110 

Total economic cost (563,937 $/day) 

 

 

 

Figure 7. Result distribution of all some BPSO variants 

To analyse the convergence speed of the optimisers, their average evolution processes are shown in the Figure 

8. 
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Figure 8.  Average iteration process of BPSO variants 

In Figure. 8, it is shown that HTBPSO converged amazingly fastest, achieving the near-optimum within only 10 

iterations, followed by the NBPSO which converged to the optimum within around 40 iterations. Table 5 

details the average optimising results of the 30 different runs from 20 to 1000 iterations, along with the 

corresponding computing time (CT). 

Table 5.  

Average optimising results in the iteration process 

 

Iteration 20 CT (s) 50 CT (s) 100 CT (s) 200 CT (s) 500 CT (s) 1000 CT (s) 

BLPSO 567,180 5.2 566,480 11.5 565,275 21.8 564,415 42.7 563,968 105.3 563,963 205.2 

NBPSO 566,016 4.7 564,035 10.0 563,975 18.8 563,970 37.9 563,970 90.6 563,955 180.4 

HTBPSO 563,977 4.7 563,977 10.1 563,959 18.8 563,937 36.2 563,937 88.8 563,937 175.7 

 

It is clear from Table 5 that HTBPSO achieved the best result in all trials within 200 iterations, significantly 

outperforming BLPSO and NBPSO. The computational times for the three algorithms were almost similar and 

proportionally increased with the iteration numbers, and were better than other similar approaches like the 

QGSA with lambda iteration method [14]. 

To further test the performance of the proposed HTBPSO algorithm, the 10-unit system with 5% spinning 

reserve was evaluated. The number of particles and the maximum iterations are 20 and 200 respectively. The 

0 20 40 60 80 100 120 140 160 180 200
5.63

5.64

5.65

5.66

5.67

5.68

5.69

5.7

5.71
x 10

5

Iteration number

E
c
o

n
o

m
ic

 c
o

s
t 
($

/d
a

y
)

 

 

HTBPSO

NBPSO

BLPSO



26 

 

traditional BPSO [53], GA [53], an adaptive PSO (APSO) [73], a binary programming (BP) [73], a two-stage 

based genetic algorithm (TSGB) [74], an improved IPSO [75], a three stage method B.SMP and A. SMP [76], and 

a hybrid harmony search (HHS) [77] are all compared in Table 6.  

Table 6.  

Simulation results of case 1-2 (5% Spinning reserve) 

Methods Best cost ($/day) Worst cost ($/day) Mean cost ($/day) 

BPSO[53] 565,804 567,251 566,992 

GA[53] 570,781 576,791 574,280 

APSO[73] 561,586 ― ― 

BP[73] 565,450 ― ― 

TSGB[74] 560,263.92 ― ― 

IPSO[75] 558,114.80 ― ― 

B.SMP[76] 558,844.76 559,154.98 558,937.24 

A.SMP[76] 557,676.81 557,987.02 557,769.28 

HHS[77] 557,905.64 558,682.01 558,267.2 

BLPSO 557,443.93 557,965.27 557,613.19 

NBPSO 557,265.02 557,982.87 557,529.98 

HTBPSO 557,161.59 557,879.45 557,496.00 

 

Again, it is confirmed from Table 6 that the proposed HTBPSO achieved the lowest cost 557,161.59$/day, 

remarkably outperforming other counterparts in all statistics. It is clear that the new HTBPSO method 

outperformed state-of-the-art methods in this 10-unit commitment case. The proposed method provides a 

powerful tool to schedule more complicated unit commitment problems which integrate the wind power, PV 

generation as well as the flexible charging load of PEVs associated with SaDE method.  

5.2 Case 2: 10 Units with integration of wind and solar generations and PEV charging/discharging 

In this case, the HUC problem is solved by proposed PSH method where the aforementioned HTBPSO works 

together with SaDE to simultaneously determine the on/off status of thermal power generating units and 

LSDSM of PEVs power, followed by the lambda iteration method used for solving the power contributions of 

online units. The deterministic wind and solar power generations and aggregation of a large number of PEVs 

are integrated in the problem and need to be addressed all together. The spinning reserve in this case is 

assumed to be 10% of the accumulated power demand, which need to be provided by thermal generators. 

Here the PEV charging/discharging load is a positive/negative load depending on either the G2V or the V2G 

mode, whereas the REG generation are considered as negative loads as shown in (32). 
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𝑆𝑅𝑡 = 𝑆𝑅𝑅 ∙ (𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉,𝑡 − 𝑃𝑊𝑖𝑛𝑑,𝑡 − 𝑃𝑆𝑜𝑙𝑎𝑟,𝑡)                                                    (32) 

where SRR is the spinning reserve rate as set as 10% in this case study. In the following section, the system test 

data and algorithm configuration are first addressed, followed by extensive simulation studies. 

5.2.1 System and algorithm configuration 

It is assumed that a total 50,000 PEVs are involved in discharging and 36,125 PEVs are employed in charging of 

LSDSM in the 10-unit commitment system with the average battery capacity of 15kWh. According to the 

National Household Travel Survey [78], the average daily travel distance for a vehicle is 32.88 miles. An energy 

necessity of 8.22kWh (0.25kWh/mile for PEVs) is therefore required to support this, and the total power 

necessity of PEVs is calculated as 50,000×8.22kWh=411MWh. It is also assumed that the charging and 

discharging efficiency of PEVs is 85% and at most 20% of total PEVs with 50% of their battery state of charge 

are available for charging and discharging allocation at any time [46]. The discharging power boundaries of 

PEVs PPEV,min is calculated as PEVs number 50,000 × battery capacity 15KWh × available SOC 50% × available 

PEVs 20% × efficiency 85% / 1h × (-1)=-63.75MW, whereas the maximum charging power PPEV,max is calculated 

as PEVs number 36,125 × battery capacity 15KWh × available SOC 50% × available PEVs 20% / efficiency 85% / 

1h = +63.75MW. In addition to PEVs, a deterministic wind and solar power generation scenario is integrated in 

the HUC problem, using the data from [46]. The priority list index δt for PEVs power allocation is calculated as 

in (28) and ranked in an ascending order shown in Table 7.  According to this index, the priority order of hours 

is produced as the reference for the charging/discharging allocation of PEVs LSDSM.  

Table 7.  

The priority list of PEV charging dispatch 

 

Priority(Δ) 1 2 3 4 5 6 7 8 9 10 11 12 

Hour 1:00 2:00 24:00 3:00 23:00 4:00 5:00 17:00 16:00 6:00 22:00 18:00 

Demand 

(MW) 
700 750 800 850 900 950 1,000 1,000 1,050 1,100 1,100 1,100 

Solar 

(MW) 
0 0 0 0 0 0 0 0 12.92 0 0 0 

Wind 

(MW) 
10.54 22.27 2.55 25.5 0 25.5 25.5 25.5 14.62 25.5 21.42 19.04 

δt 689.46 727.73 797.45 824.5 900 924.5 974.5 974.5 1,022.46 1,074.5 1,078.58 1,080.96 

Priority(Δ) 13 14 15 16 17 18 19 20 21 22 23 24 

Hour 7:00 8:00 15:00 19:00 9:00 14:00 21:00 13:00 10:00 20:00 11:00 12:00 

Demand 

(MW) 
1,150 1,200 1,200 1,200 1,300 1,300 1,300 1,400 1,400 1,400 1,450 1,500 
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Solar 

(MW) 
0.09 17.46 9.7 0 31.45 31.59 0 36.78 36.01 0 38.06 35.93 

Wind 

(MW) 
25.5 25.5 20.74 25.5 25.5 24.82 25.5 25.5 25.5 18.02 25.5 25.5 

δt 1,124.41 1,157.04 1,169.56 1,174.5 1,243.05 1,243.59 1,274.5 1,337.72 1,338.49 1,381.98 1,386.44 1,438.57 

 

In the priority list of PEVs LSDSM, the off-peak load periods 1:00, 2:00 and 24:00 rank high to have the privilege 

for charging power allocations, whereas the index δt are the largest during the peak time at 12:00, 11:00 and 

20:00 which indicates that the discharging power from PEVs is preferred to offer V2G service. The solar and 

wind power are accumulated as negative load. The detailed priority order with the corresponding index is 

shown in Figure 9. By adopting this priority order, the PEVs power is consequently scheduled into the 24-hour 

time horizon while the PEV power constraints formulated in (10) and (11) are handled. 

 

Figure 9.  Priority list for charging and discharging of PEVs  

Given the system data and priority lists, the proposed PSH method was then used to solve HUC problem. The 

parameter settings for HTBPSO given in Table 1 were adopted in this case. For the SaDE method, the mutation 

factor F and crossover rate CR are key parameters of the algorithm and need to be properly tuned [64]. To 

achieve the best configuration, a comprehensive parameter study was employed with the both parameters 

ranging from 0.1 to 0.9 respectively, and the results are shown in Table 8. The optimisation result for each 

parameter set was the best performance achieved among 10 different runs, where the number of particles in a 

population is 20 and the maximum iteration as 200.  
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Table 8.  

Results achieved for SaDE parameter tuning of the proposed PSH meta-heuristic method ($/day) 

 

Parameter settings CR=0.1 CR=0.2 CR=0.3 CR=0.4 CR=0.5 CR=0.6 CR=0.7 CR=0.8 CR=0.9 

F=0.1 
Best 547,404 546,782 546,941 547,324 547,110 547,901 546,934 548,355 547,948 

Mean 548,643 548,032 548,371 548,480 548,402 548,694 547,910 548,891 548,956 

F=0.2 
Best 546,377 546,274 546,389 546,388 546,767 546,986 547,342 547,390 548,443 

Mean 547,134 547,361 547,164 547,576 547,639 548,004 548,398 548,432 549,098 

F=0.3 
Best 545,986 546,115 545,696 545,966 546,323 546,517 546,475 546,262 547,929 

Mean 546,514 546,637 546,788 546,954 547,019 547,373 547,368 547,974 548,506 

F=0.4 
Best 545,847 545,715 545,823 545,459 545,679 545,706 545,686 546,279 547,433 

Mean 546,088 546,408 546,114 546,153 546,372 546,412 546,830 547,692 548,360 

F=0.5 
Best 545,455 545,703 545,652 545,382 545,379 545,469 545,815 545,467 546,219 

Mean 545,929 546,216 546,408 545,883 546,362 546,229 546,768 547,038 547,307 

F=0.6 
Best 545,902 545,807 547,595 545,468 545,404 545,423 545,421 545,361 545,801 

Mean 546,111 546,246 548,136 546,034 545,879 546,231 546,345 546,501 546,601 

F=0.7 
Best 545,375 545,390 545,404 545,363 545,416 545,416 545,409 545,688 545,405 

Mean 545,827 546,050 546,254 545,922 546,197 546,139 546,559 546,476 546,347 

F=0.8 
Best 545,848 545,482 545,294 545,433 545,506 545,431 545,836 545,856 545,716 

Mean 545,968 546,312 545,886 546,019 545,925 546,642 546,682 546,565 546,590 

F=0.9 
Best 545,642 545,369 545,496 545,438 545,470 545,547 545,481 545,477 545,440 

Mean 545,780 546,049 546,100 546,131 545,923 546,354 546,252 546,798 547,059 

 

According to Table 8, the best result was achieved for the set F=0.8 and CR=0.3 and this parameter set was 

adopted in the following case studies. 

5.2.2 Case study 2-1, 411MW expected power for PEVs 

Two scenarios with different expected power for PEVs are considered. In case study 2-1, Pexp from the thermal 

generations is set as aforementioned 411 MW to satisfy the daily commuting utilisation for users. In case study 

2-2, Pexp from the thermal generation units is assumed to be 0 MW where PEVs are utilised as ‘energy sponge’ 

to intelligently absorb power from the grid or supply power back to the grid to fulfil the LSDSM, while the 

power needed to support the daily utilisation for PEVs is supposed to be provided by renewable generations, 

and the performance of proposed PSH algorithm is compared with the results from previous studies [44,46].  
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In this case study 2-1, two BPSO variants counterparts BLPSO and NBPSO and six DE variants including 

DE/rand/1, DE/current to best/1, DE/current to best/2, DE/best/1, DE/best/2 and DE/rand/2 were adopted [79] 

in the hybrid algorithm structure to compare with the proposed HTBPSO+SaDE method. Each method was 

tested with 10 independent runs, also the number of particles was set as 20 and the number of iterations was 

200. The economic costs, the standard deviation and average computational time (CT) of these 10 

independent runs are shown in Table 9, and the evolutionary process of different methods is illustrated in 

figure 10. 

Table 9.  

Numerical results for HUC considering DSLSM of PEVs (411MW) and REG 

 

Scenarios 
Cost ($/day) 

CT (s) 
Best Worst Mean SD 

BLPSO+SaDE 546,461  547,341  546,792  342 47.9 

NBPSO+SaDE 545,867  547,221  546,281  516 48.0 

HTBPSO+DE/rand/1 545,390  548,104  546,033  783 51.3 

HTBPSO+DE/current to best/1 545,396  546,336  545,979  326 50.7 

HTBPSO+DE/current to best/2 546,244  547,841  547,422  491 45.1 

HTBPSO+DE/best/1 545,746  547,281  546,177  478 46.8 

HTBPSO+DE/best/2 545,778  547,325  546,263  527 48.0 

HTBPSO+DE/rand/2 545,802  547,646  546,501  639 45.5 

PSH 545,294  547,278  545,886 652 43.7 

 

It is clear from Table 9 that the proposed PSH method outperforms the other methods. The average 

computational time ranges from 43.7 to 51.3 seconds. The time difference is mainly due to the various 

computational efforts in handling constraints. The second best method is HTBPSO+ DE/current to best/1, 

achieving the smallest standard deviation 326 $/day. In terms of the convergence, it is clear from figure 10 that 

the HTBPSO based algorithms converged noticeably faster than other BPSO variants. The proposed PSH 

method achieved the best results within 200 iterations. 



31 

 

  

Figure 10.  Average evolutionary process of variants combinations 

The best scheduling plan for supplying Pexp=411MW is shown in Table 10. In the G2V/V2G column of the table, 

a positive number represents the G2V power and a negative number denotes the V2G power. The demand 

shown in the table is the accumulated power of positive load including predicted demand and LSDSM of PEVs, 

as well as negative demand of REG. The grids in green and orange denote the units that commitment was 

avoided, and the extra units that are committed respectively compared with the best result presented in case 

1-1 shown in Table 4. The grids in pink and blue represent that the PEVs are in G2V and V2G modes 

respectively. 

 

Table 10.  

Best unit scheduling result of 411WM PEVs load achieved by proposed PSH method 

 

Hour 
U1 

(MW) 

U2 

(MW) 

U3 

(MW) 

U4 

(MW) 

U5 

(MW) 

U6 

(MW) 

U7 

(MW) 

U8 

(MW) 

U9 

(MW) 

U10 

(MW) 

G2V/V2G 

(MW) 

Solar 

(MW) 

Wind 

(MW) 

Demand 

(MW) 

Power 

reserve 

(MW) 

1 455.00 298.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 10.54 753.21 156.79 

2 455.00 336.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 22.27 791.48 118.52 

3 455.00 408.25 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 25.50 888.25 183.75 

4 455.00 455.00 0.00 0.00 58.91 0.00 0.00 0.00 0.00 0.00 44.41 0.00 25.50 968.91 103.09 

5 455.00 428.25 130.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 25.50 1,038.25 163.75 

6 455.00 398.25 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 25.50 1,138.25 193.75 
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7 455.00 443.03 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 58.62 0.09 25.50 1,183.03 148.97 

8 455.00 455.00 130.00 130.00 32.47 0.00 0.00 0.00 0.00 0.00 45.43 17.46 25.50 1,202.47 129.53 

9 455.00 448.46 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -54.59 31.45 25.50 1,188.46 143.54 

10 455.00 455.00 130.00 130.00 84.74 20.00 0.00 0.00 0.00 0.00 -63.75 36.01 25.50 1,274.74 137.26 

11 455.00 455.00 130.00 130.00 122.69 20.00 0.00 10.00 0.00 0.00 -63.75 38.06 25.50 1,322.69 144.31 

12 455.00 455.00 130.00 130.00 162.00 22.82 0.00 10.00 10.00 0.00 -63.75 35.93 25.50 1,374.82 147.18 

13 455.00 455.00 130.00 130.00 83.97 20.00 0.00 0.00 0.00 0.00 -63.75 36.78 25.50 1,273.97 138.03 

14 455.00 455.00 130.00 130.00 29.23 0.00 0.00 0.00 0.00 0.00 -44.36 31.59 24.82 1,199.23 132.77 

15 455.00 455.00 130.00 130.00 25.20 0.00 0.00 0.00 0.00 0.00 25.64 9.70 20.74 1,195.20 136.80 

16 455.00 346.21 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 12.92 14.62 1,086.21 245.79 

17 455.00 298.01 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 63.51 0.00 25.50 1,038.01 293.99 

18 455.00 404.71 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 19.04 1,144.71 187.29 

19 455.00 455.00 130.00 130.00 33.22 0.00 0.00 0.00 0.00 0.00 28.72 0.00 25.50 1,203.22 128.78 

20 455.00 455.00 130.00 130.00 118.23 20.00 0.00 10.00 0.00 0.00 -63.75 0.00 18.02 1,318.23 148.77 

21 455.00 450.75 130.00 130.00 25.00 20.00 0.00 0.00 0.00 0.00 -63.75 0.00 25.50 1,210.75 201.25 

22 455.00 455.00 0.00 130.00 70.94 20.00 0.00 0.00 0.00 0.00 52.36 0.00 21.42 1,130.94 151.06 

23 455.00 455.00 0.00 0.00 53.75 0.00 0.00 0.00 0.00 0.00 63.75 0.00 0.00 963.75 108.25 

24 455.00 381.20 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 2.55 861.20 210.80 

Total economic cost (545,294 $/day) 

 

The results in Table 10 reveal that the expensive units U6-U8 are successfully avoided to commit or their 

commitments are largely reduced compared with Table 4 due to significant discharging power support from 

the PEVs during the peak hours 9:00 to 14:00 and the power output from the REG. The off-peak time from 1:00 

to 8:00 and 22:00-24:00 are allocated for PEVs to guarantee the overall supply of 411MW expected power for 

PEVs to satisfy the daily transportation necessity. It is also worth to note that the sub-peak hour 20:00 and 

sub-off-peak hours 16:00-18:00 are scheduled with remarkable charging and discharging power as well.  

 

5.2.3 Case study 2-2, 0MW PEV expected power 

In this case study, it is assumed that the expected power Pexp is 0MW, where the daily commuting power 

necessity is provided by REG or other resources. It is an ideal situation and will become more and more 

popular to only charge PEVs from the renewable power, instead of charging PEVs from thermal units. Given 

the same simulation data settings, the proposed PSH method is compared with a GA-LR method in [44] where 

there is no REG, and with a binary PSO associated by integer PSO approach in [46] where REG is presented. The 

numerical results of 10 independent runs with 20 particles per population and 200 iterations are shown in 

Table 11.  

 

Table 11.  

Numerical results for HUC considering DSLSM of PEVs (0MW) and REG 
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Scenarios of spinning 

reserve 

GA-LR [44] 

($/day) 

BPSO+IPSO 

[46] 

Cost 

($/day) 

PSH 

Cost ($/day) 

Best Worst Mean Best Worst Mean SD 
CT 

(s) 

0 MW 

Eexp 

S1:with 

REG 
― ― ― 551,977 536,440  537,367  536,758  263 48.2 

S2:without 

REG 
561,821 566,281 564,050 ― 556,360  556,981  556,646  397 47.5 

 

It is clear from Table 11 that the proposed PSH method significantly outperformed GA-LR and BPSO+IPSO. The 

lower economic cost obtained by the proposed method is remarkably 15,537$ less accounting for 2.8% cost 

reduction compared with result optimised by the BPSO+IPSO method. Similar results were achieved in the 

comparison with GA-LR, where 5,461$ are saved in a day-ahead unit schedule. Moreover, the LSDSM 

scheduling of PEVs successfully reduced the cost by 7,577$ by comparing the best result of S2 with the optimal 

result of 563,937$ in case 1. The best scheduling result of S1 is shown in Table 12. 

Table 12.  

Best unit scheduling result of 0WM PEV load achieved by PSH method 

 

Hour 
U1 

(MW) 

U2 

(MW) 

U3 

(MW) 

U4 

(MW) 

U5 

(MW) 

U6 

(MW) 

U7 

(MW) 

U8 

(MW) 

U9 

(MW) 

U10 

(MW) 

G2V/V2G 

(MW) 

Solar 

(MW) 

Wind 

(MW) 

Demand 

(MW) 

Power 

reserve 

(MW) 

1 455.00 298.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 10.54 753.21 167.33 

2 455.00 336.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 22.27 791.48 140.79 

3 455.00 370.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 25.50 825.21 110.29 

4 455.00 455.00 0.00 0.00 31.79 0.00 0.00 0.00 0.00 0.00 17.29 0.00 25.50 941.79 155.71 

5 455.00 414.83 0.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 50.33 0.00 25.50 1,024.83 202.67 

6 455.00 455.00 0.00 130.00 35.44 0.00 0.00 0.00 0.00 0.00 0.94 0.00 25.50 1,075.44 152.06 

7 455.00 446.92 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 62.51 0.09 25.50 1,186.92 170.67 

8 455.00 455.00 130.00 130.00 40.06 0.00 0.00 0.00 0.00 0.00 53.02 17.46 25.50 1,210.06 164.90 

9 455.00 439.30 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -63.75 31.45 25.50 1,179.30 209.65 

10 455.00 455.00 130.00 130.00 79.74 0.00 25.00 0.00 0.00 0.00 -63.75 36.01 25.50 1,274.74 203.77 

11 455.00 455.00 130.00 130.00 107.69 20.00 25.00 0.00 0.00 0.00 -63.75 38.06 25.50 1,322.69 237.87 

12 455.00 455.00 130.00 130.00 149.82 20.00 25.00 10.00 0.00 0.00 -63.75 35.93 25.50 1,374.82 238.61 

13 455.00 455.00 130.00 130.00 83.97 20.00 0.00 0.00 0.00 0.00 -63.75 36.78 25.50 1,273.97 200.31 

14 455.00 439.84 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -63.75 31.59 24.82 1,179.84 208.57 

15 455.00 444.36 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 14.80 9.70 20.74 1,184.36 178.08 

16 455.00 343.48 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 61.02 12.92 14.62 1,083.48 276.06 

17 455.00 294.53 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 60.03 0.00 25.50 1,034.53 322.97 

18 455.00 403.55 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 62.59 0.00 19.04 1,143.55 207.49 

19 455.00 397.07 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -37.43 0.00 25.50 1,137.07 220.43 

20 455.00 455.00 130.00 130.00 118.23 20.00 0.00 10.00 0.00 0.00 -63.75 0.00 18.02 1,318.23 166.79 

21 455.00 450.75 130.00 130.00 25.00 20.00 0.00 0.00 0.00 0.00 -63.75 0.00 25.50 1,210.75 226.75 

22 455.00 455.00 0.00 0.00 103.99 20.00 0.00 0.00 0.00 0.00 -44.59 0.00 21.42 1,033.99 139.43 

23 455.00 455.00 0.00 0.00 46.88 0.00 0.00 0.00 0.00 0.00 56.88 0.00 0.00 956.88 115.12 

24 455.00 366.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.39 0.00 2.55 821.84 90.71 
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Total economic cost (536,440 $/day) 

 
Figure 11.  Accumulated power demand comparison of four HUC cases  

Unsurprisingly as shown in Table 12, the commitment of expensive units U6-U10 were again largely reduced, 

and only one unit was extra committed (U5 at 23:00) to compensate the valley filling load from LSDSM of PEVs. 

Figure 11 illustrates the accumulated power demand with REG and different power expected for PEVs. It is 

clear that the proposed algorithm has intelligently scheduled the charging loads at both off-peak and sub-off-

peak hours, and dispatched the power discharging of PEVs at peak hours, which successfully achieved the 

smart load shifting using demand side management of PEVs. 

As a result, the proposed algorithm solves the new HUC in an effective way that the unit commitment of 

thermal power plants and the scheduling of charging and discharging for PEVs are simultaneously determined, 

with the integration of REG. The online periods of expensive units are significantly reduced, and a remarkable 

fossil fuel cost has been saved. A more comprehensive study in more scenarios of REGs and flexible PEVs could 

be found in [80]. 

6. Conclusion 

In this paper, a new HUC model is developed which combines the traditional UC model and the integration of 

deterministic REG and intelligent LSDSM of PEVs. A novel PSH algorithm is proposed for solving the large scale 
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constrained mixed-integer HUC problem. The algorithm is a parallel-series implementation of state-of-the-art 

particle based methods including HTBPSO and SaDE as well as the lambda iteration. The superior performance 

of the new algorithm is first validated in the conventional day-ahead 10-unit power system that the proposed 

algorithm converged within 200 iterations and the results are stable in 30 trials. This algorithm is then applied 

to the HUC cases where a deterministic scenario of REG and smart charging and discharging scheduling of PEVs 

are both integrated. The demand side management of PEVs are conducted by allocating powers according to 

the proposed novel priority list of PEVs. Comparatively study shows that the proposed algorithm, once proper 

tuned, effectively saved 2.8% of the cost in the HUC problem with a deterministic scenario of REG and smart 

management of PEVs.  

Future work will be addressed on employing stochastic scenarios generation methods for integrating 

uncertainty renewable generations into HUC problem solving, and the economic cost function may further 

include bidirectional power flow from PEVs and the degradation of PEV batteries. The hybrid computational 

tool proposed by this paper could also be extended to solve unit commitment integrating with other 

dispatchable load types such as energy storages and virtual power plants for smart demand side management. 
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