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Abstract: Unit commitment is a traditional mixed-integer non-convex problem and remains a key optimisation
task in power system scheduling. The high penetration of intermittent renewable generations such as wind
and solar as well as mass roll-out of plug-in electric vehicles (PEVs) impose significant challenges to the
traditional unit commitment problem, not only by significantly increasing the complexity of the problem in
terms of the dimension and constraints, but also dramatically change the problem formulation. In this paper, a
new hybrid unit commitment problem considering renewable generation scenarios and charging and
discharging management of plug-in electric vehicles is first formulated. To effectively solve the problem, a
novel parallel-series hybrid meta-heuristic optimisation method is then proposed, which combines a hybrid
topology binary particle swarm optimisation, the self-adaptive differential evolution algorithm and a lambda
iteration method, to simultaneously and intelligently determine the binary on/off status of each thermal unit,
the generation power of online units, as well as the demand side management of plug-in electric vehicles. The
proposed parallel-series hybrid method is first assessed on a 10-unit benchmark, and then on a case where
renewable generation and smart PEV management are integrated. Numerical results confirm the superiority of

the proposed new algorithm in comparison with some popular meta-heuristic approaches.
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1. Introduction

Unit commitment (UC) is a crucial component of the power system operation, which aims to minimise the
economic cost considering the physical system limits. A small improvement in the optimisation like 0.5% would
bring millions of dollars cost reduction per year for a large utility grid [1]. The UC problem is a non-convex mix-
integer optimisation problem in which both the number of discrete and continuous variables increases
exponentially as the power system scale increases, leaving the UC problem remain to be a significant
challenging task. Numerous computational methods have been proposed for solving the UC problems.
Conventional methods, such as priority list [2,3], dynamic programming [4], Branch and Cut algorithm [5] and
Lagrangian Relaxation [6], can efficiently produce a reasonable good solution but often encounter difficulties
when the dimensionality of the problem increases or the problem becomes highly non-linear and non-convex.
Intelligent methods have been widely employed to solve the UC and other engineering optimisation problems
[7,8] including simulated annealing (SA) [9], genetic algorithm (GA) [10,11], particle swarm optimisation (PSO)
[12,13], gravitational search algorithm (GSA) [14], invasive weed optimisation [15], and some other methods
[16]. Some hybrid methods are also proposed using evolutionary programming (EP) [17] and EA [18] to update
the Lagrangian multipliers in the Lagrangian Relaxation. However, aforementioned intelligent and hybrid
methods often suffer from slow convergence due to the excessive number of iterations and mixed-integer
nature of the problem. To balance the optimisation speed and the exploitation ability, binary intelligent
optimisations such as binary PSO (BPSO) [19,20], quantum-inspired evolutionary algorithms (QEA) [21] and
guantum-inspired binary gravitational search algorithm (QGSA) [22] have been combined with lambda
iteration method to solve the problem in two stages. Though a number of researches have been carried out,
the traditional UC problem has become even more challenging due to the large penetration of renewable
energy generations (REG) [23] and mass roll-out of plug-in electric vehicles (PEVs) [24], all these call for more

powerful tools for solving the non-convex nonlinear mixed-integer high-dimensional problem.

Among various recent developments in decarbonising the whole energy chain, transportation electrification is
a key measure to reduce global dependency on fossil fuels. It is also a promising solution to reduce green-
house gas emissions and other air pollutants such as NOx and SOx produced by internal combustion engines

[25], especially given the ambitious target to limit the maximum temperature rise within 2°C by the end of this



century in the recent global agreement, forged in 2015 Paris Climate Conference [26]. Electric vehicles (EVs)
use electric motors to partly or completely replace the ICE and therefore see low or no fossil fuel consumption
as well as reduced tailgate emissions [27]. There are three main types of EVs including pure battery electric
vehicles (BEVs), hybrid electric vehicles (HEVs) (mainly referring to the none-plug-in EVs), as well as plug-in
hybrid electric vehicles (PHEVs), where both BEV and PHEV are referred as PEVs [28]. On one hand, the
increasing penetration of PEVs significantly challenges the existing power system operation strategy and
facility [29]. On the other hand, the large capacities of PEV batteries provide possibilities to vehicle to grid
(V2G) power feeding back [30] and other ancillary services such as frequency regulation [31], power reserve
[32] and increase renewable energy power penetration [33,34,35]. Meanwhile, the energy flow management
of individual PEVs is fundamental in supporting ancillary services and improving energy efficiency
[36,37,38,39,40,41]. From the system operator perspective, different PEV coordinated scheduling strategies
have shown significant impact on the economic and environmental cost [42,43,44]. In the references [45,46],
the original UC problem and the integer numbers of PEVs which are charged and discharged in each hour for
one day horizon are optimised together by binary and integer PSO methods. Generally speaking, the intelligent
charging and discharging dispatch of PEVs in day-ahead power system scheduling is a typical load shaping
demand side management (LSDSM) [47,48] and a crucial technique to level load curve and improve energy
efficiency [49]. Very few publications however have paid attention to the development of mathematical tools

to simultaneously solve the UC problem associated with the LSDSM of PEVs.

The main contributions of this paper are summarised below:

1. A new hybrid unit commitment problem, namely hybrid unit commitment (HUC) is formulated, which
integrates the traditional unit commitment problem with demand side management of PEV
charging/discharging and renewable generations.

2. A novel parallel-series hybrid meta-heuristic optimisation method (PSH) algorithm structure is
proposed by integrating a new hybrid topology binary PSO (HTBPSO), self-adaptive differential
evolution algorithm (SaDE) and the lambda iteration method which can effectively solve the complex

and challenging HUC problem.



3. A double-priority-list method is proposed to provide priority sequence for both unit commitment and
PEV charging/discharging dispatch.
4. Extensive simulation studies are conducted to assess the superb performance of the proposed PSH

method.

The rest of this paper is organised as follows: Section 2 proposes the HUC problem formulation. Preliminaries
for the PSH meta-heuristic method are presented in Section 3. Section 4 details the implementation procedure
of the proposed PSH method in solving the HUC problem. Two cases including the original 10-unit UC problem
and UC problem integrated with wind power and PV power generations as well as intelligent PEVs scheduling

are comparatively studied in Section 5; Section 6 summarises and concludes the paper.

2. Problem formulation

The new HUC problem is formulated on the conventional UC basis, which is integrated with renewable wind
and solar power generations and PEV aggregator as shown in Figure 1. The power flow from grid to users is
denoted as red solid and dash lines (colour edition) and the power flow from generation to grid is shown as
blue lines. The renewable energy generation is undispatchable due to the intermittent nature and assumed to
be fully accepted into the grid. The traditional power demand considered in this paper is assumed to be non-
controllable, while the PEV aggregator is a controllable demand, which coordinates all the PEV charging and

discharging behaviours and plays the LSDSM role.
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Figure 1. HUC problem structure

The aims of HUC is to minimise the economic cost by determining the on/off status of each thermal generation
unit, the charging/discharging power to/from the PEVs as well as the expected generated power to be
generated by each unit with ‘on” status. Meanwhile, the generation limit, power demand limit, spinning

reserve limit, minimum up/down limit and some other system constraints have to be met.
2.1 Objective function

The economic cost of a generation unit is composed of two parts, namely a quadratic formulation representing

the fuel cost with binary unit status, and a piece-wise formulation referring to the start-up cost.
2.1.1  Fuel cost

The fuel cost function defined below is a widely adopted quadratic formulation determining the fossil fuel

economic cost [10,13],
Fii(Pit) = @ + biPi + ¢;Pf, (1)

where P;: and Fj: denote the determined power and fuel cost of the j™ unit in the t time interval. a;, b and ¢;
are the fuel cost coefficients of the corresponding unit.

2.1.2  Start-up cost



Once a unit is de-committed (shut down), it needs to be reheated for restarting. The start-up cost SU;:includes
the cold start cost SUc; which is usually higher if the de-committed period of a unit is over the cold-start hour
Teola,j and the hot-start cost SUw; which is usually lower if the de-committed period of a unit does not exceed

the Teo;. The explicit expression is given below,

oy, — (SUnjsif MDT; < TOFF; < MDT; + Teoua, ,
it = {SUCJ, if TOFF;, > MDT; + T,o1q; 2)

where MDT; and MUT; denote the minimum down time and minimum up time for an off/on unit to re-commit

(turn on) /de-commit. The duration of the off-line status for the j unit is denoted as TOFFi:.

The final objective function Crotar is composed of the two parts defined above, associated with the binary
variables uj: to denote the on/off status for the j# unit in the specific time slot, and it accumulates the total

cost of N units in T time periods as shown below,
min Cropqr = ZZ=1 Zy=1[F}'(Pj,t)uj,t + SUj,t(1 - uj,t—l)uj,t] (3)

It should be noted that the start-up cost is related to the current on-line or off-line unit status and the status in
previous time slot. The operational costs of wind and solar, power released from PEVs, and the battery

degradation cost are not considered in this paper, and could be considered in the future work.
2.2 Constraints

In addition, several system constraints due to physical nature and power system mechanism should be
considered, including generation limits of thermal power, REG and V2G power, power demand limit, spinning
reserve limit, minimum up/down limit and PEV charging limit. It should be noted that some constraints such as

the ramping rate and valve point effect in the economic dispatch step [50] are not considered in this paper.
2.2.1 Thermal generation limit

Each of the thermal generation units is limited by the minimum and maximum power output. The generation

power needs to be dispatched within this range:

uj,tpj,min < Pj,t < uj,tpj,max (4)



where Pjmin, Pjmax represent the minimum and maximum power limit respectively.

2.2.2 Power balance constraints

Power demand in the HUC model is a predicted load that requires meeting by thermal unit generations. In
other words, the total generated power of all online units should balance the system load demand. The HUC
model considers both the thermal generation units and renewable energy sources including wind power, solar

power and day-ahead PEV power dispatch. The power demand balance equation is denoted as follows;

Z;'l=1 P e + Pwinat + Psotare = Poe + Preve (5)
where Pwind,t and Psolar,t are predicted wind power and solar power respectively, and Pp, is the predicted power
demand at time t. The V2G and G2V power are generally represented as Pprv,: Where a positive value denotes
the PEV aggregator is on the G2V mode, receiving energy from grid at time t. A negative value of Peeyt
represents the V2G mode through which PEVs batteries deliver power back.

2.2.3  Spinning reserve

The power demand is a predicted value. The spinning reserve limit is designed to reserve enough power
output ability to timely compensate the deviation between power supply and user demand to guarantee the
safety and flexibility of the grid,

27=1PimaxWi¢ + Pwinat + Psotart = Ppt + Ppgye + SR; (6)
As in the equation (6), SR: is the spinning reserve at time t. The generation capacity is calculated as the sum of
the maximum power output of on-line thermal units and the predicted REG.

2.2.4 Minimum up/down time constraints

Thermal units need to be heated up after de-committed and cooled down when over-committed, due to which
it endures a minimum up or down time. As denoted in (7), if the on-line duration of a unit TON;+1 is less than
the minimum up time, the unit status u;: needs to be forcedly turned on, and vice versa.

1, if 1 <TON;,_, < MUT;
u;, =40, ifl <TOFF;,_, < MDT; (7)
0 or 1, otherwise

2.2.5 Renewable generation limit



Wind and solar power sources are integrated in the power system under certain capacities according to the
system planning. The maximum power generation of both wind and solar power are limited by their capacities
due to the mechanical torque boundary for wind and chemical saturation of photovoltaic material for solar

radius. The limits are shown in (8) and (9) as below,

PWind,t < PWind,max (8)
PSolar,t < PSolar,max (9)

Note that as the wind and solar power is not dispatchable, typical scenarios are considered and analysed in
system scheduling [14,51]. In this paper, deterministic scenarios are considered, Pwind,max and Psoiar,maxare the
maximum generation of wind and solar power.

2.2.6  PEVs charging/discharging power limit

Load shaping demand side management (e.g. intelligent scheduling) of PEVs flexibly determines the V2G/G2V
mode and determine the exact power feeding back to or receiving from the grid for PEV batteries. Due to the
number and capacity of PEV chargers (for G2V use) and feeders (for V2G use), the maximum power Ppev,max and

minimum power Ppgv,min for PEVs are denoted in (10) as follows,

Ppgymin < Previt < Prevmax (10)

where Peev,max represents the maximal charging power (positive) in the G2V mode at time t and Ppev,min denotes
the maximal discharging power of PEVs (negative)in the V2G mode.

2.2.7  PEVs power demand limit

Another PEVs power limit is the PEV power demand limit. A certain amount of power necessity is expected for
commuter PEVs to fulfil their daily transportation utilisation. This expected power for PEVs is denoted as Pexp in

(11) which is the sum of PEV charging power from the grid.

Zgzl PPEV,t = Pexp (11)

All of these limits should be handled in the optimisation procedure, which is explicitly addressed in section 4.

3. Preliminaries of proposed algorithm



The new formulation of HUC problem reveals that it is a complex nonlinear mixed integer problem, calling for a
novel powerful tool to seek a solution which is composed of integer variables determining the on/off status of
each thermal unit, real valued variables for power output of online thermal units as well as real valued
variables for PEV power delivery. A parallel-series hybrid meta-heuristic based optimisation is proposed which
integrates a HTBPSO method to determine binary on/off status of units, a SaDE method to schedule the real
valued power delivery of PEVs and the Lambda iteration method for economic load dispatch (ELD). The
proposed PSH method takes the advantages of the high efficiency of the heuristic methods (e.g. the binary PSO
and the SaDE) in seeking solutions for high-dimensional strong constrained binary and continuous problems, as
well as the strong converging ability of lambda iteration method. Working in parallel and then series, the three

approaches work co-ordinately to achieve competitive solutions for the proposed HUC problem.

3.1 Hybrid topology BPSO for binary optimisation

3.1.1  Hybrid topology binary PSO

Binary particle swarm optimisation (BPSO) is a popular discrete intelligent methods proposed in [52]. It has
been utilised for solving the UC problem in [53] but endures slow convergence speed and easy to be trapped in
local minimum. Multiple variants of BPSO are proposed to improve the performance by changing the
probability function [54, 55, 56], to modify the evolutionary logic [57, 58, 59, 60] and to integrate within
guantum-inspired computation [13, 61]. Beheshti et al. [56] proposed a new hybrid topology binary PSO
(HTBPSO) for solving discrete optimisation problems. This method integrates the state-of-the-art techniques of
both binary and continuous PSO including a modified design of the sigmoid function for speeding up algorithm
convergence, a hybrid learning structure for sharing experience from global/local/neighbour best particles,
introduction of an Gaussian error function as a small disturbance to improve the exploitation ability, as well as
a new acceleration term to enhance the exploration ability. The procedure of HTBPSO shares similar variables

and parameters definition and the velocity update section as follows;

vi(t +1) =w(t) x v; ®+ G () x rand; X (plbest,i - ui(t)) + G, (t) x rand, X (pnbest,i - ui(t)) (17)
The difference of the HTBPSO compared with the original BPSO is that the global learning term has been
replaced by a neighbour learning term, where a local best particle from a neighbour position pnpes:i (t) is

selected to improve the learning of the current variable ui(t). This neighbour is a randomly selected one from
9



the whole population. The original social coefficient C(t) has a new role defined as the counterpart coefficient
to scale the neighbour learning step. This new term is designed to activate the internal information exchange
of the population in order to avoid the particles being trapped in the local optimum. However, the

replacement of the global learning may sacrifice the exploration ability and hinder the global convergence.

To compensate the lack of social learning term and increase the convergence speed, an acceleration is
designed with the social learning associated with the velocity updating as follows,

a;(t+1) =v;(t+1)+ C3(t) X rand; X (pgbest - ui(t)) (18)
where aift + 1) is an acceleration. It is formulated by the sum of the updated velocity from previous two

learning term and another term with the social coefficient Cs(t). The vector typology of the acceleration update

process is illustrated in Figure 2 below,

Cs*rand; *(PgBest'Xi(t))

vi(t)

Co*rand;*(Ppgest=xi(t))

i(t+
Pnbest,i 0,(1" 1)

@)

P Ibest,i
wi(t) *vi(t)

—@

P gbest

xi(t)

Figure 2. Hybrid typology for population update

By adding a new acceleration, the probability function of each position P(a) is given as follows,

P(a) = [tanh(a)| (19)
where the original sigmoid curve is modified as a symmetrical curve shown in figure 3. The large value of
acceleration represents high possibility to change from the current position while the zero value means that

the current value has approached the optimum and will stay at current position. The boundaries of

10



acceleration are limited as [-6, 6] due to that the value of probability function of this boundary has cover over

99.99% of all the possibility.

In addition to determining the final generation probability from the acceleration, a small perturbation is
introduced to increase the chance for the population to jump out of the local optimums. The disturbance

employed the Gaussian error function as follows,

E = erf (g) = j—Ef;;—fe—fz dt, (20)
where NF is the iteration number with the best position remaining unchanged in the iteration, associated with
a time constant T’. This Gaussian error function value E is embedded into the population function denoted as:

P(a;(t +1)) =E + (1 — E) x |tanh(a(t + 1)| (21)
The position is then updated by comparing the probability P(a) with a random number rands with the range of

(0,1) shown as:

1—wu; (t), if rand, < P(a; (t + 1))

u; (1), otherwise (22)

w(t+1) ={

As shown in (22), the new variables probability is calculated by the latest accelerations and compare with

rands, and if rands<P(ai(t+1)), the binary variable u;(t+1) will change to the opposite position of ui(t).

0.9
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Figure 3. Probability distribution of HTBPSO

This integration of complementary perturbation strategy with previously introduced symmetric acceleration
and neighbour learning strategy greatly enhance both the exploration and exploitation capability. The
proposed HTBPSO will not only speed up the convergence, but also avoid solutions being trapped within local
optimum.

3.2 SaDE method for real-valued optimisation problem

11



In parallel with the binary method, a real valued optimisation method is required to simultaneously determine
the PEVs power Ppey: in order to handle the system constraints (5) and (6). The DE algorithm is one of a
popular meta-heuristic due to the high efficiency and simple implementation. A number of DE variants have
been proposed to solve continuous constrained and unconstrained problems such as jDE [62], NSDE [63], SaDE
[64], JADE [65], DEGL [66] and so on. Among these variants, SaDE has a simple structure and less parameters
to tune, and therefore is used in this paper to schedule real valued Peev,r. Detailed process including mutation,

crossover and selection operations of SaDE is illustrated as follows:

Xrl,G +F- (XrZ,G - Xr3,G)' lf Ps < D1

. (23)
XigtF- (Xbesm - Xi,G) + F- (Xrl,G - sz,c), otherwise

MVL',G = {

where Xr1,6, Xr2,6 and Xi3.6 are three randomly selected particles in the optimisation population at G iteration
and F is the mutation factor. MV;q, X;c and Xsestc are the i mutant vector, it particle in the population as well
as best particle at G iteration. Two basic DE mutation strategies namely rand/1/bin and current to best/2/bin
are selected in (23) according to the probability p: determined by (24) comparing with a random number ps.
The probability p: depends on nsi, nsz, nf: and nfz which denote the success and failure times of corresponding

two strategies in (23).

nsy(nsy+nfz)

P11 = (24)

nsy-(nsq+nfy)+nsq-(nsy+nfy)

The crossover operation is denoted in (26) where CR is the crossover rate. mv;;s, X;ic and tav;;c represent
mutant vector, trial vector and target vector respectively.

mv; g, if randy, < CROT j = jrana

Xji,G» otherwise '’ J=12,..,n (25)

tavj,i’(; = {

The trial vector is evaluated by the cost function f and updates the trail particle X;s+: as show below.

v {TAVL-,G, if f(TAVig) < f(TVie) (26)

— '
LG+ Xic otherwise

The SaDE algorithm is a trade-off between the exploration capability and the exploitation capability by
selecting two mutation strategies and therefore can be integrated with the previously introduced binary
optimisation method to effectively solve the HUC problem in a parallel-series topology.

3.3 Two Priority lists for solving the HUC problem

12



The priority list of the original UC problem is established as the reference in determining the order of unit
commitments. However in the new HUC problem, two priority lists are produced for both the unit
commitment and the charging/discharging allocation of PEVs respectively.
The original UC priority list in this paper is created by formulating an index 7j, which represents the average
cost of full power generation of each unitj [71] and is calculated as in (27),

aj

P jmax

By ranking the index i in the ascending order, the units are committed sequentially from cheapest base load
units to expensive peak load units in handling the constraints (6).
Intelligent allocation of PEVs charging and discharging can shave the peak load and fill the load valley to reduce
the start-up cost and expensive fuel cost from peak units. Therefore, in addition to the widely used UC index rj,
a new index é: is created, linking the power demand with the allocation of PEVs charging and discharging as
shown below,

8¢ = Ppt — Pwina,t — Psotar,t (28)
where the renewable generation Pwing: and Psoar,t are taken as negative loads and removed from the original
load Pp,:. The index 6: is in ascending order for the charging allocation to schedule more PEVs load on off-peak
time to preferentially fill in the load valley. Meanwhile, a descending order of index é: is adopted for
scheduling the discharging power, providing V2G service during the peak time. Such priority list of PEVs is
utilised in handling the PEVs constraint (10) and (11) and the unit scheduled priority list sequence is denoted
as A discussed in the constraint handling subsections 4.2.

3.4 Proposed parallel-series hybrid method

The proposed PSH methods have three key components, including two parallel running algorithm blocks and a
series running algorithm block. The structure of PSH is proposed as figure 4, where Block A and B are
connected in parallel and Block C is linked in series with the others. Particularly, Block A is the binary algorithm
which determines the on/offline status of the thermal generators in a 24 hours horizon, and HTBPSO method
will be adopted in this block. Moreover, Block B runs parallelly to determine the LSDSM of PEVs in each hour of

a single day, and the continuous SaDE method is employed. To achieve the dispatching results for HUC

13



problem, both Block A and B are connected with Block C where the lambda iteration method is utilised. The

detailed implementation of the PSH method will be further addressed in Section 4.
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Figure 4. Proposed PSH algorithm structure

4. Implementation of the proposed parallel-series hybrid method for the HUC problems

The proposed two meta-heuristic methods are running in parallel first during the evolutionary process, one is
for optimising the binary on/off-line status of units, and the other is for optimising the real-valued PEV power
variables respectively, and the results are then merged during the lambda iteration for economic dispatch to

optimise the real valued power generation for each online unit. The population structure in the evolutionary
14



process is shown in figure 5, while the proposed hybrid algorithm structure is shown in figure 6. Several key

procedures are detailed in this subsection followed by the specific steps of the algorithm implementation.

4.1 Variables coding

In the proposed algorithm, three types of variables need to be optimised, including the binary on/offline

variables U;, charging/discharging power of PEVs Peey;, and dispatched power of online units P shown as below,

Ui Uiz Ui
Uiz1  Ui2p2 Uiz
U, = : : : : i=12,..,Np
Uing U2 o Uin,t
Pppy ;i = (Previi  Previz - Ppgyir) i=12,..,Np
Pl,l P1,2 “ee Pl,T
_ P2,1 PZ,Z e PZ,T
PN,l PN,Z e PN,T

(29)

(30)

(31)

where Np is the number of particles in a population of the proposed method. The dimension of the variables Ui

and Piare N*T and that of Ppeev, is 1*T. In the proposed PSH method, the binary population Ui and real value

population Ppeyiare updated by HTBPSO and SaDE respectively. The variable P is calculated by the lambda

iteration. The structure of a population maintained by the proposed PSH algorithm is shown as in Figure 5.

NxT Dimension T Dimension
Al N

Uz 1/0 1/0 1/0 PPEv,l Prev,1,1 Prev,1,2 Prev,1,m

U; 1/0 1/0 1/0 PPEV,Z Prev,2,1 Prev,22 Prev,22

1/0 1/0 1/0 Prevj1 Prevj,2 Prev,m

UNP 1/0 1/0 1/0 PPEV,Np PPEV,Np,l PPEV,Np,2 PpEv,Np,T

Unp,1,1 Unp,1,2 Unp,1,T Unp,2,1 Unp,2,2 Unp,2,T Unp,n,1 Unp,n,T Unp,n,T
J
Y Y Y
Unit 1 status Unit 2 status Unit N status

Figure 5. Structure of a population for the proposed PSH algorithm
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4.2 Handling of constraints

The proposed HUC problem consists of several important system constraints that need to be handled,
including the power demand limit, spinning reserve limit, minimum up/down time limit as well as PEVs power
demand limit. The rule-based heuristic handling method [13] is utilised to handle the minimum up/down time

and the spinning reserve limits. The detailed handling method is proposed as follows.

4.2.1  Handling of minimum up/down time limit

The minimum up/down time limit as in (7) directly affect the on/off-line status of the binary variables, and
thus other constraints to be handled. Therefore, it is handled first to ensure the binary solutions are valid. The

heuristic based handling method is illustrated by the pseudo-code shown below,

Begin
Forj=1to N
If uje=1
If ujr.1=1
If TOFF;+-1<MDT;
Uj,t=0;
Endif
Endif
Else
If ujt-1=1
If TON;t-1<MUT;
Uj,t=0;
Endif
Endif
Endif
Endfor
end

4.2.2  Spinning reserve limit handling

Spinning reserve provides additional fast responsive power capacity to compensate unpredicted load demand.
The detailed handling method is shown in the pseudo-code below:
Begin

Sort the generators in the ascending order of the priority list rt;
Set the generator sequence g=1

If ug=0
While (Z;‘lzl Pj,maxuj,t + PWind,t + PSolar,t 2 PD,t + PPEV,t + SRt )
If ug,=0
ug=1
If TOFFg,:>MDTyg
TOFFg,:=0
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TONg,t= TONg, t-1+1

Else
I=t-TOFFg+1
While (/>t)
ug,=1
TOFF4+=0
TONg,= TONg,.1+1
I=1+1
Endwhile
Endif
Endif
g=g+1
Endwhile
Endif

End

4.2.3  De-commitment for redundant units

The above introduced handling methods for the minimum up/down time and spinning reserve limit very likely
introduce redundant on-line units and lead to unnecessary cost. A de-commitment technique is employed

here to tackle this issue. The specific procedure is demonstrated below:

Begin
Sort the generators in the descending order of the priority list rt;
Set the generator sequence g=1
If ug,=1
While (Z;}=1 P maxWie — Pymax + Pwina,e + Psotar,e 2 Ppe + Ppgv e + SR; )
If TONg,:>MUTy
ugt=0
TONgy,+=0;
TOFFgt= TOFFgt1+1
Elseif TONg,=1
Ug,t=0
TONg,+=0
TOFFgt= TOFFgt1+1
Endif
g=g+1
Endwhile
Endif
End

4.2.4  Handling of PEVs limits

The PEVs charging/discharging limit (10) is the total power of PEVs that needs to be charged or the minimum
power capacity of PEVs that can provide V2G service. The power demand limit (11) is the total power needed

from the grid to the aggregator of PEVs for supporting the daily demand. We propose a load levelling based
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method to handle these limits. The power mismatch Ppe is handled according to the PEV scheduling priority list

6t defined in Subsection 3.3. The detailed procedure is given below.

Begin
Sort load demand according to the ascending order of the priority list &: in the sequence A
Fort=1to T
If Ppev,t<Ppev,t min
Ppgv,e = Ppgv,emin + 7and - (Ppgy tmax — Prev,tmin)
Elseif Ppev,t>Ppev,tmax
Ppgv,e = Pppv,emin + 7and - (Ppgy tmax — Prev,tmin)
Endif
Ppe = PExp - Z;'l=1 Ppgy ¢
If Ppe>0
while (Ppe>0)
j=j+1
Pperem = Prev,imax — PPEV,A(j)
|f PDe> PDe,Tem
P PEV,A(j) = Pogy tmax
PDe = PDe - PDe,Tem
Else
PPEV,A(j) = PPEV,A(j) + Ppe
Endif
Endwhile
Elseif Ppe<O
while (Ppe<0)
j=j+1
Pperem = Prev tmin — PPEV,A(T—j+1)
If Ppe< Ppe, Tem
PPEV,A(T—j+1) = Ppgy tmin
Ppe = Ppe — PDe,Tem
Else
Ppgyacr—j+1) = Prevacr—j+1) + Ppe
Endif
Endwhile
Endif
Endfor
End

In the procedure, Pperemdenotes the temporary power deviation between the limit and the scheduled PEVs
power in the priority list sequence A, which denoted as Ppev,ag or Peevarj+). In this method, the unsatisfied
power is met at the off-peak time and the excessive power is released at the peak time. In addition, the
intelligent load levelling method also limits the scheduled PEVs power within the charging/discharging

boundary.

4.3 Lambda iteration based ELD
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Lambda iteration method is a popular technique to solve constrained non-linear optimisation problems. It has
been widely employed in solving economic load dispatch problem [12,14,22,71]. The power demand limit and
generation limit is relaxed and handled during the iteration procedure. The specific pseudo-code of the lambda

iteration method is given below.

Begin
Given by an alternative solution U;t={ui 1z, Uizt,..., Uint },Ppt and system parameters;
Set permitted error £0=0.1, maximum iteration /terma=200;
Set initial value Ay;
While (| |2 &) do

Ac=b
Calculate P/ = =

Calculate P;, = min{max {P;, Pjmin} Pjmax};
—yn . _ — .
Calculate & = Zj:l Pie e —Ppe = Preve + Pwinae + Psotar,es

If (£ <0) then
Ae = A — 5
Else
A = A + By
Endif
calculate Ziy1 = S + 2L (P + Prsv.e ~ Puind.c — Psotar)
k=k+1;

Endwhile
End

The acceptable duality gap &ois set as 0.1 and the feasible A« is updated by an inertial parameter =, which is
dynamically determined at every iteration.

4.4 Implementation of the proposed PSH method

By employing the above constraints handling method, the algorithm structure can now be given in Figure 6. A

deterministic scenario is adopted in this paper for algorithm performance tests.
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Figure 6. Structure of the implementation for the proposed PSH algorithm

The implementation process is summarised in the following steps:

Step 1. Generation of scenario for renewable energy

a)
b)
Step 2. Initialisation

a)

time, fuel coefficients, start-up and shut-down cost of the units and predicted load demand etc.;

b)

c)

Import the renewable generation scenario.

20

Import predicted wind and solar power generations for a given period ;

Generate a deterministic combined scenario of renewable energy as the input of HUC problem;

Import the power system data and parameters including generation capacity, minimum up/down

Import the PEVs data including charging and discharging capacity and power demand;




d) Initialise HTBPSO algorithm parameters such as C;, Cz, C3, w, iteration and particle numbers;

e) Initialise SaDE algorithm parameters such as F, CR, iteration and particle numbers;

f)  Randomly generate populations for both algorithms, handling all the constraints using methods in 4.2;

g) Compute the objective function for each Ui in the binary population and real-valued Ppev,i using
Lambda iteration method to determine the local best and global best particles from the initial
population;

Step 3. Hybrid parallel-series process for HUC

a) Update the velocity according to (17) and (18), update the probability amplitude based on (20)-(21),
generate a new binary population according to (22) and repair the minimum up/down time limit as
detailed in 4.2.1;

b) Update real-valued variable according to (23)-(25) and repairs the PEV power limit as detailed in 4.2.4;

c) Repair all the new particles U; associated with renewable generation scenarios and PEVs variables to
avoid violating spinning reserve limit and over committing, as detailed in 4.2.2 and 4.2.3;

d) Compute the objective function for each Ui and Peev,i in the population using Lambda iteration method
as detailed in 4.3, update the local best and global best particles of HTBPSO and implement selection
operation of SaDE as in (26);

e) If theiteration is less than itermax, g0 back to Step 3-a, otherwise, go to the Step 4.

Step 4. Performance evaluation
a) Record the optimisation result, go back to Step 2.

b) The economic cost of the scenarios are compared and analysed.

It should be noted that the Step 3-a and 3-b illustrate the parallel Block A and Block B in Figure 4, whereas the
Step 3-d elaborates the series Block C in the same figure. The Using the proposed PSH method, various
scenarios of REG and LSDSM of PEVs in the conventional UC problem could be evaluated and compared in
terms of the economic impact on the power system operation.

5. Numerical results and analysis

The new PSH method provides a powerful tool to solve both the conventional UC problems and the HUC

problem considering intermittent REG and PEVs intelligent charging and discharging. In this section, the
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HTBPSO, is first compared with some state-of-the-art optimisation methods on conventional UC problem in
case 1. Then, the proposed PSH method is evaluated on a HUC problem considering a deterministic scenario of
renewable generations and intelligent scheduling of PEVs in case 2.

5.1 Case 1: 10 Units only

In this case, the widely used 10-unit 24 hour system is employed [67], and the detailed system data is
illustrated as Table 2. To fairly compare the performance of the HTBPSO with some other methods on the
conventional UC problem, REG and PEVs are not considered in this case study. The optimisation is
implemented in the MATLAB ®2014a on an Intel i5-3470 CPU at 3.20GHz and 8GB RAM personal computer.
Thirty independent trials were run to reduce the randomness effect, where the best, mean and worst values
for each run were calculated. In addition to the HTBPSO algorithm proposed in this paper, existing PSO
methods including NBPSO [54] and BLPSO [56] are tested. The parameters setting for these methods are given
in the Table 1 according to the original settings in [40] [41]. The number of particles in a population is 20 and
the maximum iteration as 1000 as utilised in other publications [13,14,22]. The spinning reserve is 10% of

predicted demand for this scenario test.

Table 1.
Parameter settings of some BPSO variants

Algorithm | Parameter settings

BLPSO w(t): 0.9-0.4, C;=C=2

NBPSO w(t): 0.9-0.4, C1=C>=2

HTBPSO w(t): 0.6-0.2, C1: 0.5-2.0, Cz: 1.0-2.0, C3: 0.5-1.5, T'=500

Table 2.
10-unit benchmark system data

Parameters Ul U2 u3 u4 us ue U7 U8 U9 u1o0
Prmax (MW) 455 455 130 130 162 80 85 55 55 55
Prmax (MW) 150 150 20 20 25 20 25 10 10 10

a(s/h) 1000 970 700 680 450 370 480 660 665 670

b (S/MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79

¢ (S/MWh?) 0.00048 | 0.00031 | 0.002 | 0.00211 | 0.00398 | 0.00712 | 0.00079 | 0.00413 | 0.00222 | 0.00173

MUT (h) 8 8 5 5 6 3 3 1 1 1
MDT (h) 8 8 5 5 6 3 3 1 1 1
SUK(S) 4500 5000 550 560 900 260 260 30 30 30
SUc(S) 9000 10000 | 1100 | 1120 1800 520 520 60 60 60
Teot () 5 5 4 4 4 2 2 0 0 0
Initial States (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1
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To make a comprehensive comparison, the results by a few other state-of-the-art methods, including an
efficient hybrid PSO (HPSO) [67], an improved PSO (IPSO) [68], a quantum inspired PSO (QPSO) [13], a binary
real coded firefly (BRCFF) algorithm [69], a Lagrangian Relaxation and PSO method (ELRPSO) [70], a quantum
inspired gravitational search algorithm (QGSA) [14], a gravitational search algorithm (GSA) [71], and an
advanced three-stage approach (ATHS) [72] are listed in table 3, together with the experimental results by

BLPSO, NBPSO and HTBPSO.

Table 3.
Simulation results of case 1-1 (10% spinning reserve)

Methods Best cost ($/day) | Worst cost ($/day) | Mean cost ($/day) | SD ($/day)
HPSO [67] 563,942 565,785 564,772 —
IPSO [68] 563,954 564,579 564,162 0.11%
QPSO [13] 563,977 563,977 563,977 0
BRCFF [69] 563,937 565,597 564,743 -
ELRPSO [70] 563,938 563,977 563,971 —
BGSA [71] 563,937 564,241 564,031 114
QGSA [14] 563,937 564,390 564,065 —
ATHS [72] 563,938 564,000 563,946 19
BLPSO 563,937 564,018 563,963 22
NBPSO 563,937 563,977 563,955 20
HTBPSO 563,937 563,937 563,937 0

From the Table 3, It is clear that, HTBPSO shows the best and robust performance, achieving the best results in
all 30 trials with 563,937 $/day. The results distributions of all the 30 runs by BLPSO, NBPSO and HTBPSO are

further illustrated in figure 7.

Table 4.
Best unit scheduling results for Case 1-1: 10 unit-only (10% spinning reserve)

Hour U1l U2 u3 ua us ueé u7 us U9 u1o Demand Spinning
Mw) | (Mw) | (Mw) | (Mw) | (Mw) | (Mw) | (mw) | (Mw) | (Mw) | (Mw) | (Mw) Reserve(MW)
1 455 245 0 0 0 0 0 0 0 0 700 210
2 455 295 0 0 0 0 0 0 0 0 750 160
3 455 370 0 0 25 0 0 0 0 0 850 222
4 455 455 0 0 40 0 0 0 0 0 950 122
5 455 390 0 130 25 0 0 0 0 0 1000 202
6 455 360 130 130 25 0 0 0 0 0 1100 232
7 455 410 130 130 25 0 0 0 0 0 1150 182
8 455 455 130 130 30 0 0 0 0 0 1200 132
9 455 455 130 130 85 20 25 0 0 0 1300 197
10 455 455 130 130 162 33 25 10 0 0 1400 152
11 455 455 130 130 162 73 25 10 10 0 1450 157
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12 455 455 130 130 162 80 25 43 10 10 1500 162
13 455 455 130 130 162 33 25 10 0 0 1400 152
14 455 455 130 130 85 20 25 0 0 0 1300 197
15 455 455 130 130 30 0 0 0 0 0 1200 132
16 455 310 130 130 25 0 0 0 0 0 1050 282
17 455 260 130 130 25 0 0 0 0 0 1000 332
18 455 360 130 130 25 0 0 0 0 0 1100 232
19 455 455 130 130 30 0 0 0 0 0 1200 132
20 455 455 130 130 162 33 25 10 0 0 1400 152
21 455 455 130 130 85 20 25 0 0 0 1300 197
22 455 455 0 0 145 20 25 0 0 0 1100 137
23 455 455 0 0 0 20 0 0 0 0 900 90
24 455 345 0 0 0 0 0 0 0 0 800 110
Total economic cost (563,937 $/day)
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Figure 7. Result distribution of all some BPSO variants

To analyse the convergence speed of the optimisers, their average evolution processes are shown in the Figure

8.
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Figure 8. Average iteration process of BPSO variants

In Figure. 8, it is shown that HTBPSO converged amazingly fastest, achieving the near-optimum within only 10
iterations, followed by the NBPSO which converged to the optimum within around 40 iterations. Table 5
details the average optimising results of the 30 different runs from 20 to 1000 iterations, along with the
corresponding computing time (CT).

Table 5.
Average optimising results in the iteration process

Iteration 20 CT(s) 50 CT(s) 100 CT(s) 200 CT (s) 500 CT (s) 1000 CT(s)
BLPSO 567,180 5.2 566,480 | 11.5 | 565,275 | 21.8 | 564,415 | 42.7 | 563,968 | 105.3 | 563,963 | 205.2
NBPSO | 566,016 4.7 564,035 | 10.0 | 563,975 | 18.8 | 563,970 | 37.9 | 563,970 | 90.6 | 563,955 | 180.4

HTBPSO | 563,977 4.7 563,977 | 10.1 | 563,959 | 18.8 | 563,937 | 36.2 | 563,937 | 88.8 | 563,937 | 175.7

It is clear from Table 5 that HTBPSO achieved the best result in all trials within 200 iterations, significantly
outperforming BLPSO and NBPSO. The computational times for the three algorithms were almost similar and
proportionally increased with the iteration numbers, and were better than other similar approaches like the

QGSA with lambda iteration method [14].

To further test the performance of the proposed HTBPSO algorithm, the 10-unit system with 5% spinning

reserve was evaluated. The number of particles and the maximum iterations are 20 and 200 respectively. The
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traditional BPSO [53], GA [53], an adaptive PSO (APSO) [73], a binary programming (BP) [73], a two-stage
based genetic algorithm (TSGB) [74], an improved IPSO [75], a three stage method B.SMP and A. SMP [76], and

a hybrid harmony search (HHS) [77] are all compared in Table 6.

Table 6.

Simulation results of case 1-2 (5% Spinning reserve)

Methods | Best cost ($/day) | Worst cost ($/day) | Mean cost ($/day)
BPSO[53] 565,804 567,251 566,992
GA[53] 570,781 576,791 574,280
APSO[73] 561,586 — —
BP[73] 565,450 — —
TSGB[74] 560,263.92 — —
IPSO[75] 558,114.80 - -
B.SMP[76] 558,844.76 559,154.98 558,937.24
A.SMP[76] 557,676.81 557,987.02 557,769.28
HHS[77] 557,905.64 558,682.01 558,267.2
BLPSO 557,443.93 557,965.27 557,613.19
NBPSO 557,265.02 557,982.87 557,529.98
HTBPSO 557,161.59 557,879.45 557,496.00

Again, it is confirmed from Table 6 that the proposed HTBPSO achieved the lowest cost 557,161.595/day,
remarkably outperforming other counterparts in all statistics. It is clear that the new HTBPSO method
outperformed state-of-the-art methods in this 10-unit commitment case. The proposed method provides a
powerful tool to schedule more complicated unit commitment problems which integrate the wind power, PV

generation as well as the flexible charging load of PEVs associated with SaDE method.

5.2 Case 2: 10 Units with integration of wind and solar generations and PEV charging/discharging

In this case, the HUC problem is solved by proposed PSH method where the aforementioned HTBPSO works
together with SaDE to simultaneously determine the on/off status of thermal power generating units and
LSDSM of PEVs power, followed by the lambda iteration method used for solving the power contributions of
online units. The deterministic wind and solar power generations and aggregation of a large number of PEVs
are integrated in the problem and need to be addressed all together. The spinning reserve in this case is
assumed to be 10% of the accumulated power demand, which need to be provided by thermal generators.
Here the PEV charging/discharging load is a positive/negative load depending on either the G2V or the V2G

mode, whereas the REG generation are considered as negative loads as shown in (32).
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SR, = SRR - (PD,t + PPEV,t - PWind,t - PSolar,t) (32)

where SRR is the spinning reserve rate as set as 10% in this case study. In the following section, the system test

data and algorithm configuration are first addressed, followed by extensive simulation studies.

5.2.1  System and algorithm configuration

It is assumed that a total 50,000 PEVs are involved in discharging and 36,125 PEVs are employed in charging of
LSDSM in the 10-unit commitment system with the average battery capacity of 15kWh. According to the
National Household Travel Survey [78], the average daily travel distance for a vehicle is 32.88 miles. An energy
necessity of 8.22kWh (0.25kWh/mile for PEVs) is therefore required to support this, and the total power
necessity of PEVs is calculated as 50,000x8.22kWh=411MWh. It is also assumed that the charging and
discharging efficiency of PEVs is 85% and at most 20% of total PEVs with 50% of their battery state of charge
are available for charging and discharging allocation at any time [46]. The discharging power boundaries of
PEVs Ppev,min is calculated as PEVs number 50,000 x battery capacity 15KWh x available SOC 50% x available
PEVs 20% x efficiency 85% / 1h x (-1)=-63.75MW, whereas the maximum charging power Ppcv,max is calculated
as PEVs number 36,125 x battery capacity 15KWh x available SOC 50% x available PEVs 20% / efficiency 85% /
1h = +63.75MW. In addition to PEVs, a deterministic wind and solar power generation scenario is integrated in
the HUC problem, using the data from [46]. The priority list index &: for PEVs power allocation is calculated as
in (28) and ranked in an ascending order shown in Table 7. According to this index, the priority order of hours

is produced as the reference for the charging/discharging allocation of PEVs LSDSM.

Table 7.
The priority list of PEV charging dispatch

Priority(a) 1 2 3 4 5 6 7 8 9 10 1 12
Hour 1:00 2:00 24:00 | 300 | 23:00 4:00 500 | 17:00 | 16:00 6:00 22:00 | 18:00
D(e“',':vav';d 700 750 800 850 900 950 1,000 | 1,000 1,050 1,100 1,100 1,100
(‘c’“:l'av') 0 0 0 0 0 0 0 0 12.92 0 0 0
Wind
(W) 1054 | 2227 2.55 255 0 255 255 25.5 14.62 25.5 21.42 19.04
& 680.46 | 727.73 | 797.45 | 8245 900 9245 | 9745 | 9745 | 1,022.46 | 1,074.5 | 1,078.58 | 1,080.96
Priority(a) 13 14 15 16 17 18 19 20 21 22 23 24
Hour 7:00 8:00 15:00 | 19:00 | 9:00 14:00 | 21:00 | 13:00 | 10:00 | 20:00 | 11:00 | 12:00
Da\'ﬂn‘;’;d 1,150 1,200 1,200 | 1,200 | 1,300 1,300 | 1,300 | 1,400 1,400 1,400 1,450 1,500
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(SI\;I‘:;) 0.09 17.46 9.7 0 31.45 31.59 0 36.78 36.01 0 38.06 35.93

Wind

(MW) 255 255 20.74 255 255 24.82 255 25.5 25.5 18.02 255 255
& 1,124.41 | 1,157.04 | 1,169.56 | 1,174.5 | 1,243.05 | 1,243.59 | 1,274.5 | 1,337.72 | 1,338.49 | 1,381.98 | 1,386.44 | 1,438.57

In the priority list of PEVs LSDSM, the off-peak load periods 1:00, 2:00 and 24:00 rank high to have the privilege
for charging power allocations, whereas the index &: are the largest during the peak time at 12:00, 11:00 and
20:00 which indicates that the discharging power from PEVs is preferred to offer V2G service. The solar and
wind power are accumulated as negative load. The detailed priority order with the corresponding index is
shown in Figure 9. By adopting this priority order, the PEVs power is consequently scheduled into the 24-hour

time horizon while the PEV power constraints formulated in (10) and (11) are handled.
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Figure 9. Priority list for charging and discharging of PEVs

Given the system data and priority lists, the proposed PSH method was then used to solve HUC problem. The
parameter settings for HTBPSO given in Table 1 were adopted in this case. For the SaDE method, the mutation
factor F and crossover rate CR are key parameters of the algorithm and need to be properly tuned [64]. To
achieve the best configuration, a comprehensive parameter study was employed with the both parameters
ranging from 0.1 to 0.9 respectively, and the results are shown in Table 8. The optimisation result for each
parameter set was the best performance achieved among 10 different runs, where the number of particles in a

population is 20 and the maximum iteration as 200.
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Table 8.

Results achieved for SaDE parameter tuning of the proposed PSH meta-heuristic method ($/day)

Parameter settings | CR=0.1 | CR=0.2 | CR=0.3 | CR=0.4 | CR=0.5 | CR=0.6 | CR=0.7 | CR=0.8 | CR=0.9
Best 547,404 | 546,782 | 546,941 | 547,324 | 547,110 | 547,901 | 546,934 | 548,355 | 547,948
Fod Mean 548,643 | 548,032 | 548,371 | 548,480 | 548,402 | 548,694 | 547,910 | 548,891 | 548,956
Best 546,377 | 546,274 | 546,389 | 546,388 | 546,767 | 546,986 | 547,342 | 547,390 | 548,443
Fro2 Mean 547,134 | 547,361 | 547,164 | 547,576 | 547,639 | 548,004 | 548,398 | 548,432 | 549,098
Best 545,986 | 546,115 | 545,696 | 545,966 | 546,323 | 546,517 | 546,475 | 546,262 | 547,929
P03 Mean 546,514 | 546,637 | 546,788 | 546,954 | 547,019 | 547,373 | 547,368 | 547,974 | 548,506
Best 545,847 | 545,715 | 545,823 | 545,459 | 545,679 | 545,706 | 545,686 | 546,279 | 547,433
Fo4 Mean 546,088 | 546,408 | 546,114 | 546,153 | 546,372 | 546,412 | 546,830 | 547,692 | 548,360
Best 545,455 | 545,703 | 545,652 | 545,382 | 545,379 | 545,469 | 545,815 | 545,467 | 546,219
P03 Mean 545,929 | 546,216 | 546,408 | 545,883 | 546,362 | 546,229 | 546,768 | 547,038 | 547,307
Best 545,902 | 545,807 | 547,595 | 545,468 | 545,404 | 545,423 | 545,421 | 545,361 | 545,801
Fo Mean 546,111 | 546,246 | 548,136 | 546,034 | 545,879 | 546,231 | 546,345 | 546,501 | 546,601
Best 545,375 | 545,390 | 545,404 | 545,363 | 545,416 | 545,416 | 545,409 | 545,688 | 545,405
Fo7 Mean 545,827 | 546,050 | 546,254 | 545,922 | 546,197 | 546,139 | 546,559 | 546,476 | 546,347
Best 545,848 | 545,482 | 545,294 | 545,433 | 545,506 | 545,431 | 545,836 | 545,856 | 545,716
Fo8 Mean 545,968 | 546,312 | 545,886 | 546,019 | 545,925 | 546,642 | 546,682 | 546,565 | 546,590
Best 545,642 | 545,369 | 545,496 | 545,438 | 545,470 | 545,547 | 545,481 | 545,477 | 545,440
P09 Mean 545,780 | 546,049 | 546,100 | 546,131 | 545,923 | 546,354 | 546,252 | 546,798 | 547,059

According to Table 8, the best result was achieved for the set F=0.8 and CR=0.3 and this parameter set was

adopted in the following case studies.

5.2.2  Case study 2-1, 411MW expected power for PEVs

Two scenarios with different expected power for PEVs are considered. In case study 2-1, Pex from the thermal

generations is set as aforementioned 411 MW to satisfy the daily commuting utilisation for users. In case study

2-2, Pexp from the thermal generation units is assumed to be 0 MW where PEVs are utilised as ‘energy sponge’

to intelligently absorb power from the grid or supply power back to the grid to fulfil the LSDSM, while the

power needed to support the daily utilisation for PEVs is supposed to be provided by renewable generations,

and the performance of proposed PSH algorithm is compared with the results from previous studies [44,46].
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In this case study 2-1, two BPSO variants counterparts BLPSO and NBPSO and six DE variants including
DE/rand/1, DE/current to best/1, DE/current to best/2, DE/best/1, DE/best/2 and DE/rand/2 were adopted [79]
in the hybrid algorithm structure to compare with the proposed HTBPSO+SaDE method. Each method was
tested with 10 independent runs, also the number of particles was set as 20 and the number of iterations was
200. The economic costs, the standard deviation and average computational time (CT) of these 10
independent runs are shown in Table 9, and the evolutionary process of different methods is illustrated in

figure 10.

Table 9.
Numerical results for HUC considering DSLSM of PEVs (411MW) and REG

Cost ($/day)

Scenarios CT (s)

Best Worst Mean SD
BLPSO+SaDE 546,461 547,341 546,792 342 47.9
NBPSO+SaDE 545,867 547,221 546,281 516 48.0
HTBPSO+DE/rand/1 545,390 548,104 546,033 783 51.3
HTBPSO+DE/current to best/1 545,396 546,336 545,979 326 50.7
HTBPSO+DE/current to best/2 546,244 547,841 547,422 491 45.1
HTBPSO+DE/best/1 545,746 547,281 546,177 478 46.8
HTBPSO+DE/best/2 545,778 547,325 546,263 527 48.0
HTBPSO+DE/rand/2 545,802 547,646 546,501 639 45.5
PSH 545,294 547,278 545,886 652 43.7

It is clear from Table 9 that the proposed PSH method outperforms the other methods. The average
computational time ranges from 43.7 to 51.3 seconds. The time difference is mainly due to the various
computational efforts in handling constraints. The second best method is HTBPSO+ DE/current to best/1,
achieving the smallest standard deviation 326 $/day. In terms of the convergence, it is clear from figure 10 that
the HTBPSO based algorithms converged noticeably faster than other BPSO variants. The proposed PSH

method achieved the best results within 200 iterations.
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Figure 10. Average evolutionary process of variants combinations

The best scheduling plan for supplying Pex,=411MW is shown in Table 10. In the G2V/V2G column of the table,
a positive number represents the G2V power and a negative number denotes the V2G power. The demand
shown in the table is the accumulated power of positive load including predicted demand and LSDSM of PEVs,
as well as negative demand of REG. The grids in green and orange denote the units that commitment was
avoided, and the extra units that are committed respectively compared with the best result presented in case
1-1 shown in Table 4. The grids in pink and blue represent that the PEVs are in G2V and V2G modes

respectively.

Table 10.
Best unit scheduling result of 411WM PEVs load achieved by proposed PSH method

Hour | U1 U2 us ua us Ue u7 us U9 U10 | G2V/V2G | Solar | Wind | Demand r;‘:’:e
MW) | (Mw) | (Mw) | (Mw) | (Mw) | (vw) | (Mw) | (Mw) | (mw) | (Mwy) | (Mw) (w) | (aw) | (mw) | O
1 | 45500 | 29821 | 000 | 000 | 000 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 6375 | 000 | 1054 | 75321 | 156.79
2 | 455.00 | 336.48 | 000 | 000 | 000 | 0.00 | 000 | 000 | 0.00 | 000 | 6375 | 000 | 2227 | 79148 | 11852
3 | 45500 | 40825 | 000 | 000 | 2500 | 0.00 | 000 | 0.00 | 0.00 | 000 | 6375 | 000 | 2550 | 888.25 | 183.75
4 | 45500 | 455.00 | 000 | 000 | 5891 | 0.00 | 0.00 | 000 | 0.00 | 000 | 4441 | 000 | 2550 | 968.91 | 103.00
5 | 455.00 | 428.25 | 130.00 | 0.00 | 25.00 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | €375 | 0.00 | 2550 | 1,038.25 | 163.75
6 | 455.00 | 398.25 | 130.00 | 130.00 | 25.00 | 0.00 | 000 | 0.00 | 0.00 | 000 | 6375 | 000 | 2550 | 1,138.25 | 193.75
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455.00 | 443.03 | 130.00 | 130.00 | 25.00 0.00 0.00 0.00 0.00 0.00 58.62 0.09 25.50 | 1,183.03 | 148.97

455.00 | 455.00 | 130.00 | 130.00 | 32.47 0.00 0.00 0.00 0.00 0.00 45.43 17.46 | 25.50 | 1,202.47 | 129.53

455.00 | 448.46 | 130.00 | 130.00 | 25.00 0.00 0.00 0.00 0.00 0.00 -54.59 31.45 | 25.50 | 1,188.46 | 143.54
10 455.00 | 455.00 | 130.00 | 130.00 | 84.74 | 20.00 | 0.00 0.00 0.00 0.00 -63.75 36.01 | 25.50 | 1,274.74 | 137.26
11 455.00 | 455.00 | 130.00 | 130.00 | 122.69 | 20.00 | 0.00 10.00 | 0.00 0.00 -63.75 38.06 | 25.50 | 1,322.69 | 144.31
12 455.00 | 455.00 | 130.00 | 130.00 | 162.00 | 22.82 0.00 10.00 | 10.00 | 0.00 -63.75 35.93 | 25.50 | 1,374.82 | 147.18
13 455.00 | 455.00 | 130.00 | 130.00 | 83.97 | 20.00 | 0.00 0.00 0.00 0.00 -63.75 36.78 | 25.50 | 1,273.97 | 138.03
14 455.00 | 455.00 | 130.00 | 130.00 | 29.23 0.00 0.00 0.00 0.00 0.00 -44.36 31.59 | 24.82 | 1,199.23 | 132.77
15 455.00 | 455.00 | 130.00 | 130.00 | 25.20 0.00 0.00 0.00 0.00 0.00 25.64 9.70 20.74 | 1,195.20 | 136.80
16 455.00 | 346.21 | 130.00 | 130.00 | 25.00 0.00 0.00 0.00 0.00 0.00 63.75 12,92 | 14.62 | 1,086.21 | 245.79
17 455.00 | 298.01 | 130.00 | 130.00 | 25.00 0.00 0.00 0.00 0.00 0.00 63.51 0.00 25.50 | 1,038.01 | 293.99
18 455.00 | 404.71 | 130.00 | 130.00 | 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 19.04 | 1,144.71 | 187.29
19 455.00 | 455.00 | 130.00 | 130.00 | 33.22 0.00 0.00 0.00 0.00 0.00 28.72 0.00 25.50 | 1,203.22 | 128.78
20 455.00 | 455.00 | 130.00 | 130.00 | 118.23 | 20.00 | 0.00 10.00 | 0.00 0.00 -63.75 0.00 18.02 | 1,318.23 | 148.77
21 455.00 | 450.75 | 130.00 | 130.00 | 25.00 | 20.00 | 0.00 0.00 0.00 0.00 -63.75 0.00 25.50 | 1,210.75 | 201.25
22 455.00 | 455.00 0.00 130.00 | 70.94 | 20.00 | 0.00 0.00 0.00 0.00 52.36 0.00 21.42 | 1,130.94 | 151.06
23 455.00 | 455.00 0.00 0.00 53.75 0.00 0.00 0.00 0.00 0.00 63.75 0.00 0.00 963.75 108.25
24 455.00 | 381.20 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 63.75 0.00 2.55 861.20 210.80

Total economic cost (545,294 $/day)

The results in Table 10 reveal that the expensive units U6-U8 are successfully avoided to commit or their
commitments are largely reduced compared with Table 4 due to significant discharging power support from
the PEVs during the peak hours 9:00 to 14:00 and the power output from the REG. The off-peak time from 1:00
to 8:00 and 22:00-24:00 are allocated for PEVs to guarantee the overall supply of 411MW expected power for
PEVs to satisfy the daily transportation necessity. It is also worth to note that the sub-peak hour 20:00 and

sub-off-peak hours 16:00-18:00 are scheduled with remarkable charging and discharging power as well.

5.2.3  Case study 2-2, OMW PEV expected power

In this case study, it is assumed that the expected power Pex is OMW, where the daily commuting power
necessity is provided by REG or other resources. It is an ideal situation and will become more and more
popular to only charge PEVs from the renewable power, instead of charging PEVs from thermal units. Given
the same simulation data settings, the proposed PSH method is compared with a GA-LR method in [44] where
there is no REG, and with a binary PSO associated by integer PSO approach in [46] where REG is presented. The
numerical results of 10 independent runs with 20 particles per population and 200 iterations are shown in

Table 11.

Table 11.
Numerical results for HUC considering DSLSM of PEVs (OMW) and REG
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GA-LR [44] BPSO+IPSO PSH

Scenarios of spinning ($/day) [46] Cost ($/day)
Cost
reserve Best Worst Mean s Best Worst Mean SD cr
($/day) (s)
Sl;évgh — — — 551,977 536,440 | 537,367 | 536,758 | 263 | 48.2
0 MW
Eexp BYYH
Sz.vl;/:atgout 561,821 | 566,281 | 564,050 — 556,360 | 556,981 | 556,646 | 397 | 47.5

It is clear from Table 11 that the proposed PSH method significantly outperformed GA-LR and BPSO+IPSO. The
lower economic cost obtained by the proposed method is remarkably 15,537$ less accounting for 2.8% cost
reduction compared with result optimised by the BPSO+IPSO method. Similar results were achieved in the
comparison with GA-LR, where 5,4615 are saved in a day-ahead unit schedule. Moreover, the LSDSM
scheduling of PEVs successfully reduced the cost by 7,577$ by comparing the best result of S2 with the optimal

result of 563,937S in case 1. The best scheduling result of S1 is shown in Table 12.

Table 12.
Best unit scheduling result of OWM PEV load achieved by PSH method

Hour | U1 U2 us ua us us u7 us U9 | Ul0 | G2v/V2G | Solar | Wind | Demand rPe‘;:’riL
(MW) | (W) | (VW) | (W) | (MW) | (MW) | (VW) | (W) | (W) | (Mw) | (vw) | (mw) | (aw) | (w) | O

1 | 45500 | 29821 | 000 | 000 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6375 | 000 | 1054 | 75321 | 167.33
2 | 45500 | 33648 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 6375 | 000 | 2227 | 79148 | 140.79
3 | 45500 | 37021 | 000 | 000 | 000 | 000 | 000 | 000 | 0.00 | 0.00 0.71 0.00 | 2550 | 82521 | 110.29
4 | 45500 | 45500 | 000 | 000 | 3179 | 000 | 000 | 000 | 000 | 000 | 2729 | 000 | 2550 | 941.79 | 155.71
5 | 45500 | 414.83 | 0.00 | 130.00 | 2500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5033 | 0.00 | 2550 | 1,024.83 | 202.67
6 | 455.00 | 455.00 | 0.00 | 130.00 | 35.44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.94 0.00 | 2550 | 1,075.44 | 152.06
7 | 455.00 | 446.92 | 130.00 | 130.00 | 25.00 | 0.00 | 0.00 | 000 | 0.00 | 000 | 6251 | 009 | 2550 | 1,186.92 | 170.67
8 | 455.00 | 455.00 | 130.00 | 130.00 | 40.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5302 | 17.46 | 25.50 | 1,210.06 | 164.90
9 | 455.00 | 439.30 | 130.00 | 130.00 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -63.75 | 31.45 | 2550 | 1,179.30 | 209.65
10 | 455.00 | 455.00 | 130.00 | 130.00 | 79.74 | 0.00 | 25.00 | 0.00 | 0.00 | 0.00 | -63.75 | 36.01 | 2550 | 1,274.74 | 203.77
11 | 455.00 | 455.00 | 130.00 | 130.00 | 107.69 | 20.00 | 25.00 | 0.00 | 0.00 | 0.00 | -63.75 | 38.06 | 25.50 | 1,322.69 | 237.87
12 | 455.00 | 455.00 | 130.00 | 130.00 | 149.82 | 20.00 | 25.00 | 10.00 | 0.00 | 0.00 | -63.75 | 3593 | 2550 | 1,374.82 | 238.61
13 | 455.00 | 455.00 | 130.00 | 130.00 | 83.97 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | -63.75 | 3678 | 25.50 | 1,273.97 | 200.31
14 | 455.00 | 439.84 | 130.00 | 130.00 | 2500 | 0.00 | 0.00 | 0.00 | 000 | 000 | -63.75 | 3159 | 24.82 | 1,179.84 | 208.57
15 | 455.00 | 444.36 | 130.00 | 130.00 | 2500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1480 | 970 | 2074 | 1,184.36 | 178.08
16 | 455.00 | 343.48 | 130.00 | 130.00 | 2500 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | 61.02 | 12.92 | 1462 | 1,083.48 | 276.06
17 | 455.00 | 294.53 | 130.00 | 130.00 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60.08 | 0.00 | 2550 | 1,034.53 | 322.97
18 | 455.00 | 403.55 | 130.00 | 130.00 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6259 | 0.00 | 19.04 | 1,143.55 | 207.49
19 | 455.00 | 397.07 | 130.00 | 130.00 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -3743 | 0.00 | 2550 | 1,137.07 | 220.43
20 | 455.00 | 455.00 | 130.00 | 130.00 | 118.23 | 20.00 | 0.00 | 10.00 | 000 | 000 | -63.75 | 0.00 | 18.02 | 1,318.23 | 166.79
21 | 455.00 | 450.75 | 130.00 | 130.00 | 25.00 | 20.00 | 0.00 | 0.00 | 000 | 000 | -6375 | 0.00 | 2550 | 1,210.75 | 226.75
22 | 455.00 | 45500 | 0.00 | 0.00 | 103.99 | 20.00 | 0.00 | 0.00 | 000 | 000 | -4459 | 0.00 | 2142 | 1,033.99 | 139.43
23 | 455.00 | 45500 | 0.00 | 000 | 46.88 | 0.00 | 0.00 | 0.00 | 000 | 000 | 5688 | 0.00 | 0.00 | 9s6.88 | 115.12
24 | 455.00 | 36684 | 0.00 | 000 | 000 | 000 | 000 | 0.00 | 000 | 000 | 2439 | 000 | 255 | 82184 | 9071
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Total economic cost (536,440 $/day)
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Figure 11. Accumulated power demand comparison of four HUC cases

Unsurprisingly as shown in Table 12, the commitment of expensive units U6-U10 were again largely reduced,
and only one unit was extra committed (U5 at 23:00) to compensate the valley filling load from LSDSM of PEVs.
Figure 11 illustrates the accumulated power demand with REG and different power expected for PEVs. It is
clear that the proposed algorithm has intelligently scheduled the charging loads at both off-peak and sub-off-
peak hours, and dispatched the power discharging of PEVs at peak hours, which successfully achieved the

smart load shifting using demand side management of PEVs.

As a result, the proposed algorithm solves the new HUC in an effective way that the unit commitment of
thermal power plants and the scheduling of charging and discharging for PEVs are simultaneously determined,
with the integration of REG. The online periods of expensive units are significantly reduced, and a remarkable
fossil fuel cost has been saved. A more comprehensive study in more scenarios of REGs and flexible PEVs could

be found in [80].

6. Conclusion

In this paper, a new HUC model is developed which combines the traditional UC model and the integration of

deterministic REG and intelligent LSDSM of PEVs. A novel PSH algorithm is proposed for solving the large scale
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constrained mixed-integer HUC problem. The algorithm is a parallel-series implementation of state-of-the-art
particle based methods including HTBPSO and SaDE as well as the lambda iteration. The superior performance
of the new algorithm is first validated in the conventional day-ahead 10-unit power system that the proposed
algorithm converged within 200 iterations and the results are stable in 30 trials. This algorithm is then applied
to the HUC cases where a deterministic scenario of REG and smart charging and discharging scheduling of PEVs
are both integrated. The demand side management of PEVs are conducted by allocating powers according to
the proposed novel priority list of PEVs. Comparatively study shows that the proposed algorithm, once proper
tuned, effectively saved 2.8% of the cost in the HUC problem with a deterministic scenario of REG and smart

management of PEVs.

Future work will be addressed on employing stochastic scenarios generation methods for integrating
uncertainty renewable generations into HUC problem solving, and the economic cost function may further
include bidirectional power flow from PEVs and the degradation of PEV batteries. The hybrid computational
tool proposed by this paper could also be extended to solve unit commitment integrating with other

dispatchable load types such as energy storages and virtual power plants for smart demand side management.
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