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Computation Offloading and Resource Allocation in
Vehicular Networks Based on Dual-side Cost
Minimization

Jianbo Du!, F. Richard Yu? Fellow, IEEE, Xiaoli Chu?, Jie Feng?, and Guangyue Lu'*

Abstract—The proliferation of smart vehicular terminals (VTs)
and their resource hungry applications imposes serious challenges
to the processing capabilities of VTs and the delivery of vehicular
services. Mobile Edge Computing (MEC) offers a promising
paradigm to solve this problem by offloading VT applications to
proximal MEC servers, while TV white space (TVWS) bands can
be used to supplement the bandwidth for computation offloading.
In this paper, we consider a cognitive vehicular network (CVN)
that uses the TVWS band, and formulate a dual-side optimization
problem, to minimize the cost of VT's and that of the MEC server
at the same time. Specifically, the dual-side cost minimization is
achieved by jointly optimizing the offloading decision and local
CPU frequency on the VT side, and the radio resource allocation
and server provisioning on the server side, while guaranteeing
network stability. Based on Lyapunov optimization, we design
an algorithm called DDORYV to tackle the joint optimization
problem, where only current system states, such as channel
states and traffic arrivals, are needed. The closed-form solution
to the VT-side problem is obtained easily by derivation and
comparing two values. For MEC server side optimization, we
first obtain server provisioning independently, and then devise a
continuous relaxation and Lagrangian dual decomposition based
iterative algorithm for joint radio resource and power allocation.
Simulation results demonstrate that DDORYV converges fast, can
balance the cost-delay tradeoff flexibly, and can obtain more
performance gains in cost reduction as compared with existing
schemes.

Index Terms—Computation offloading, mobile edge comput-
ing, resource allocation, stochastic optimization, vehicular net-
works.

I. INTRODUCTION

With the rapid development of Internet of Vehicles (IoV),
vehicles become smarter in supporting intelligent applications,

*This work was supported in part by the Natural Science Foundation of
China under Grant 61701399, and in part by the Science and Technology
Innovation Team of Shaanxi Province for Broadband Wireless and Application
under Grant 2017KCT-30-02.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

J. Du and Guangyue Lu are with Shaanxi Key Laboratory of Infor-
mation Communication Network and Security, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China. (Email: dujianboo@ 163.com;
tonylugy @163.com)

F. Richard Yu is with Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada. (e-mail: Richard.Yu@carleton.ca).

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

J. Feng is with State Key Laboratory of ISN, Xidian University, No.2
Taibainan-lu, Xi’an, 710071, Shaanxi, China. (Email: jiefengcl@163.com).

Guangyue Lu is the corresponding author.

such as autonomous driving, video-aided real-time navigation,
and interactive gaming [1]-[4]. Many of these applications
are computationally-intensive, power-hungry, delay-sensitive,
and bandwidth-demanding, which on the one hand, consumes
a large amount of energy and imposes great pressures on the
processing capabilities of vehicular terminals (VTs) [5], and on
the other hand, poses a great burden on radio access networks
[6].

To tackle the issues such as poor terminal processing capa-
bilities and high energy consumption, mobile edge computing
(MEC) [7]-[18] enabled vehicular networking [20], [21] has
been regarded as a promising solution, where the processing
of VT applications is pushed to the adjacent radio access net-
works. By attaching MEC servers to roadside units, i.e., MEC
enabled roadside units (MRSU) which are deployed along
the roadside offering wireless access to VTs, an MEC based
integrated communication and computation platform can be
constituted. By offloading computations to MEC servers, many
complex VT applications can be enabled, and/or the energy
consumption of VTs can be reduced, and/or the response of
applications can be accelerated [9]-[14].

Since the input data for computation offloading should
be transmitted to MEC servers via radio access network-
s through vehicular-to-roadside (V2R) communications, the
chronic problem of radio spectrum scarcity has to be first
considered, otherwise the performance and efficiency of task
offloading may be deteriorated even neutralized. Long-term
evolution-vehicle (LTE-V) [22] and dedicated short-range
communications (DSRC) [23] both have limitations when
employed for computation offloading in vehicular networks.
The cellular network based LTE-V is facing issues of the
explosive growth of mobile data traffic (in contrast to the
scarcity of licensed cellular spectrum) and the relatively ex-
pensive cost of using the licensed spectrum. More importantly,
V2R communications are usually more appealing during long
journeys along motorways where cellular 3G/4G/5G coverage
and services are typically unsatisfactory [6], [24]. For DSRC,
many studies have shown that the bandwidth is insufficient
for supporting resource-demanding V2R communications [2],
[3], [25]. The short transmission range of WiFi systems have
limited their usage in V2R scenarios, where a large number
of WiFi APs along the road would be needed for seamless
coverage, which is uneconomical, and will result in frequent
handovers of high-speed VTs [6], [24].

In the meanwhile, plenty of TV White Spaces (TVWS)
bands, which have desirable long-distance propagation char-
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acteristics [6], [24], [25], can be used as a feasible supplement
to the limited DSRC bandwidth [3], [6], [24]-[27], and related
standards have been put forwarded by relevant organizations
such as U.S. Federal Communications Commission (FCC)
[28]. Therefore, to solve the related wireless spectrum prob-
lems, in this paper we will investigate vehicular computation
offloading using TVWS band for wireless data transmission.
However, new problem arises: to exploit TVWS band, the
basic principle is the protection of primary users (PUs), and the
IEEE 802.22 PUs could transmit with a power up to 4 W [29],
while the secondary users (SUs), such as VTs performing com-
putation offloading in a cognitive vehicular network (CVN),
are only permitted to use a power no more than 100 mW [29].
Consequently, the offloading from VTs may be blocked by
802.22 PUs. Therefore, the power asymmetry problem should
be settled when VTs reuse the TVWS spectrum.

In most existing works, computation offloading optimiza-
tions are usually performed unilaterally, i.e., only concerning
the user-side or the server-side performance. On the user side
(e.g., VTs), while offloading tasks to MEC servers to save
energy consumption, VTs need to minimize costs including
the energy consumption in data transmission and the fees for
the computation and communication services [17], by opti-
mizing offloading decisions and the allocation of local CPU
frequency. On the server side (e.g., MRSU), while it makes
profit from providing VTs with computing services and the
corresponding data transmission services in data offloading, it
needs to minimize costs including the cost for renting wireless
bandwidth, and the electricity bills for running edge servers, by
optimizing the allocation of radio resources and edge servers.

Considering that MRSU and VTs have conflict objectives
while each trying to minimize its own cost, in this paper,
we formulate two intercoupled dual-side cost minimization
problems in an integrated IEEE 802.22 based vehicular frame-
work. The dual-side cost minimization involves stochastic
optimization problems, which is much more challenging than
unilateral user-side or server-side optimization because on
the one hand, the two stochastic optimization problems are
intercoupled with each other and the optimization in each
frame is also intercoupled, and on the other hand, both
stochastic optimization problems involve a large amount of
state information as well as control variables. With the help
of Lyapunov optimization theory, we devise low complexity
algorithms to solve the two intertwined problems.

The main contributions are summarized as follows:

o We develop a task offloading framework for an IEEE
802.22-CVN coexisting network, where the IEEE 802.22
channel is reused by the CVN for computational task of-
floading, with the unique features of the TVWS wireless
channels such as temporal and spatial changes in channel
availability, and FCC’s requirements for the protection of
PUs taken into consideration.

e We formulate a dual-side cost minimization in an inte-
grated framework under a competition scenario where
VTs and MRSU aim to minimize their own costs. On the
VT-side, each VT optimizes its computation offloading
decision and local CPU frequency control independently
so as to minimize its cost, while on the MRSU-side, the

server provisioning, the IEEE 802.22 burst (which will
be detailed below) assignment, and the transmit power
control are jointly optimized to minimize the cost of
MRSU.

o Leveraging Lyapunov optimization, we decouple the two
stochastic optimization problems into independent per-
frame optimizations, without requiring any knowledge
of future task arrivals or network state information. In
each frame, the VT-side offloading decision is obtained
by comparing the cost of local processing and that of task
offloading, and the VT’s local CPU frequency is obtained
by the derivative of the objective function. For MRSU-
side optimization, we first devise simple algorithm for
server provisioning, and then we develop a continuous
relaxation and Lagrange dual decomposition based low-
complexity algorithm to obtain the joint IEEE 802.22
burst allocation and transmit power control policies.

o Simulation results verified the convergence of our pro-
posed iterative radio resource allocation algorithm, the
tradeoff between the cost and queue length, and the
performance of our proposed joint optimization algorithm
compared with other existing algorithms.

The remainder of this paper is organized as follows. Related
works are presented in Section II. Section III and Section
IV introduce the system model and the dual-side problem
formulation, respectively. In Section V, we transform the
original formulated problem into per-frame optimization by
employing Lyapunov optimization. The VT-side per-frame
optimization is solved in Section VI, and the MRSU-side per-
frame problem is settled in Section VII. In Section VIII we
present the complexity analysis of our proposed algorithms.
Simulation results are provided in Section IX. Finally, the
paper is concluded in Section X.

II. RELATED WORKS

Recent years, MEC-based (or fog computing based) com-
putation offloading has attracted a great deal of attentions and
has stimulated extensive researches from distinct perspectives
in terms of different metrics. Specifically, task partitioning and
offloading policy is jointly optimized to maximize the energy
conservation [9] or to minimize the energy consumption [10].
The works in [9], [10] were then extended to multi-user
scenarios, where except offloading decision is optimized, the
joint optimization of transmit power control and computation
resource allocation [11], of radio bandwidth and computation
resource allocation [12], of transmit power control, compu-
tation and radio bandwidth allocation [13] or resource block
(RB) allocation [14] were also studied in different multi-user
scenarios.

In the above references [9]-[14], the authors only consid-
ered the performance of processing a single task, nevertheless,
for applications like multi-media and file backup, etc., the cou-
pling among the random task arrivals should not be neglected,
so long-term performance metrics and stochastic task models
are more suitable. Reference [15] studied offloading decision
optimization to minimize the average execution cost. The
authors in [16] considered the joint optimization of offloading
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policy, the local CPU speed control, and network interface
selection to minimize the time-averaged expected total average
energy consumption.

However, the formulations in [9]-[16] are unilateral op-
timizations, which could not reflect the practical situation
very well. The authors in [17] designed a practical dual-side
optimization framework, where code offloading, computation
resource allocation, and network interface selection policies
were jointly optimized for mobile users, and service pricing
were optimized for the service provider. The formulation with
joint radio and computation resource allocation optimization
for multi-user MEC systems was proposed in [18] to minimize
the long-term averaged total power consumption of the MEC
server and all its served mobile devices.

MEC-enabled vehicular networks have also attracted much
attention from many researchers in recent years. The au-
thors in [5] proposed an MEC based computation offloading
framework for CVNs to minimize the VTs’ cost in task
offloading, while guaranteeing task processing delay and con-
sidering VTs’ mobility. In [20], in order to maximize the
economical profit of service providers while guaranteeing the
delay tolerance of tasks, the authors developed a distributed
algorithm to jointly optimize offloading decision making and
computation resource allocation. The authors in [21] presented
a vehicular fog computing architecture where vehicles acted
as the infrastructure nodes to provide communication and
computation services.

Nevertheless, since successful and efficient task offloading
highly depends on the wireless channels, opening source of
more available wireless band is more urgent to mitigate the
spectrum scarcity of DSRC. The authors in [6], [24], [25]
novelly proposed to open source of TVWS for wireless data
transmission. The authors in [26], [27] ulteriorly proposed
a coexistence framework including a CVN and an 802.22
network, by appropriate radio resource allocation scheme,
spare IEEE 802.22 TVWS channels could be reused by CVNs
and the spectrum shortage issue in CVNs could be relieved.

III. SYSTEM MODEL

A. Basic Concepts and Scenario Description

IEEE 802.22 [29] was designed for broadband access em-
ploying the TVWS band in low population density regions.
In the standard, the frame length is 10 milliseconds, and
each frame is partitioned into an uplink and a downlink
subframe. The uplink scheduling information of 802.22 PUs is
incorporated in the downlink messages, which are broadcasted
by the 802.22 base station (BS) at the beginning of each
frame. PUs then access the TVWS channel according to the
received uplink scheduling information. Through listening to
the 802.22 network deployed in the same area, VTs can obtain
the uplink scheduling information of 802.22 network. By
implementing appropriate resource allocation schemes, the low
power vehicular network could coexist with the high power
802.22 network, and reuse the TVWS channels of 802.22
network. To be in line with 802.22, in this paper, time is also
partitioned into discrete frames and each is with a length of
T = 10 milliseconds [29].

Fig. 1: Architecture of MEC-enabled vehicular networks.

As shown in Fig. 1, the road is partitioned into K segments,
and each is covered by an RSU. When a VT moves from a
segment to another, it needs to register with the new RSU.
Suppose a VT moves at an average speed of 20 m/s, and
the average coverage region of an RSU is 500 m, then the
vehicle needs to register with a new RSU every 50 seconds,
and can move at most 0.2 m during each frame. Consequently,
the network can be considered to be quasi-static where VTs
and wireless channels keep unchanged in each frame but
can vary in different frames. We focus on MEC enabled
V2R communication for the emerging intelligent nonsafety
applications [3]. Those applications are usually computation-
intensive and energy-demanding, however, contribute much
to the commercial success of vehicular MEC. In accordance
with the 802.22 standard and many existing works on CVN
[26], [27], we adopt a centralized periodic model for each
segment, i.e., scheduling is performed independently by each
RSU among all its covered VTs in each frame, so in the
following we will discuss the optimization within a certain
RSU as a representative.

frequency t s uplink frame with duration T

‘ PU 1 (burst 1)

PU 2 (burst 2)

PU 4 (burst 4)
Bhi={1,2,3} | Bla={1,4} time
Fig. 2: Structure of 802.22 uplink subframe.
frequency Scheduling of VTs
VT3
VT 1
VT2

VT2

I time

Fig. 3: Scheduling of VTs.

There’s a TVWS channel consisting of several sub-channels
to be reused by all the VTs. In 802.22, the basic resource
element can be scheduled is called a “burst” [29], which is
a two-dimensional element, consisting several subchannels in
frequency domain and some orthogonal frequency division
multiplexing (OFDM) symbols in time domain. There are two
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different types of uplink bursts in 802.22 standard. Type 1
burst occupies the whole uplink subframe in time domain,
while a type 2 burst occupies part of the uplink subframe,
which is called normal burst. For instance, burst 1 is a type 1
burst, and bursts 2—4 are type 2 bursts in Fig. 2. The uplink
subframe is divided into several “burst intervals” (BIs) [29]
on the basis of normal type 2 burst. We denote the set and
the number of Bls as £ = {1,2,...,L} and L, respectively.
In IEEE 802.22 standard, L € {1,2,3,4} [29], so there are
two Bls in Fig. 2, where bursts 1, 2, 3 are located in BI;, and
bursts 1, 4 belong to Bly. Let M = {1,2,..., M} and M be
the set and number of PUs, respectively, and C,,; € {0,1}
be the burst-BI indicator, where C',,; = 1 means burst m
locates in BI;, and C,,; = 0 otherwise. Each burst has been
allocated to a PU in advance. In order to avoid unacceptable
interference to PUs, FCC requires that the total transmit power
of all the secondary users (SUs, i.e., VTs in our framework)
sharing a TVWS channel should be no more than a threshold
P (which is currently defined as 100 mW [28]) in each
BI. For instance, both the total transmit power of VTs 1,3 in
BI; and the total transmit power of VTs 2,3 in Bl should be
no more than P™%" in Fig. 3.

B. Computation Tasks and Data Arrival Models

Let N = {1,2,..., N} and N be the set and the number
of VTs served by each MRSU, and assume that each VT
is running fine-grained tasks [18]: at the beginning of each
frame ¢, D,,(t) bits of computation task arrive at VT n, with
a processing density A, (in CPU cycles/bit). Without loss of
generality, we assume D, (t) is i.i.d. over frames and may
have an arbitrary probability distribution, and is limited by
0 < D,(t) < D** Since our system works in tiny frames
and the tasks are fine-grained and arriving at each frame, so
we can suppose the tasks do not have instantaneous delay
constraints in each frame similar to many existing works
[9], [16]-[19]. Then the task of VT n on frame ¢ can be
denoted as A, (t) = {Dn(t), A\n(t)}. In our MEC enabled
vehicular network, A, (¢) can be processed locally by VT n
or be offloaded and executed remotely by its attached MRSU
according to different offloading decisions. Our system works
in frames and scheduling is performed in each uplink sub-
frame (which is called frame for short) [26], [27].

C. Local processing Model

Let x,(t) denote the offloading decision of VT n on slot
t, where x,,(t) = 1 indicates the application is offloaded to
MRSU, and x,,(t) = 0 represents the application is processed
by VT n locally.

In each frame ¢, if task A, (t) is executed locally, the power
consumption of VT n is ploc(t) = k(flo°(t))3, where k is a
constant coefficient related to the CPU chip architecture [18],
and f°¢(t) denotes the local processing capability (in CPU
cycles/s) of VT n, which is constrained by 0 < floc(t) <
fme* Thus, in each frame ¢, the local execution time and
energy consumption of VT n are given by T¢(t) = Da(®n

free(t)
and E¢(t) = kD, (t)\,(fl°¢(t))? (in J), respectively.

D. Remote Processing Model

If VT n offloads its task A,,(¢) on slot ¢, then all its arrival
input data of size D,,(t) will be transmitted to MRSU through
the shared TVWS wireless links, afterwards A, () will be
processed by MRSU, and finally the processing result is sent
back to the VT. Since the processing result is usually very
tiny, we neglect the downlink output return process, and only
the uplink communication is discussed [12], [13], [18].

1) Communication Model: As the TVWS channel is
shared by all PUs and reused by all VTs, before we perform
burst allocation among all the VTs, we should first determine
how PUs occupy a TVWS channel in each frame. We define
the occupancy of a TVWS channel as a random variable ¢*'V,
which refers to the spare time before a PU returns and occupies
the 802.22 channel [26], [27]. Suppose the MRSUs know the
information of the probability density function (PDF) f(t'V)
and cumulative distribution function (CDF) F(t£'V) of t£U
[6], [27], [28], [30], while exact behaviors of PUs are not
clear.! Since PUs transmit with high power, consequently, the
data transmission of VTs can be interrupted by PUs’ return
with non-zero probabilities. We consider the data transmission
of a VT to be successful when the data is transmitted before
PU returns, while the remaining transmission is blocked by PU
and the transmitted data is deemed to be lost. Let ¢,, represent
the time duration between two start times, i.e., the start time
of burst m and the start time of the current uplink subframe.
Then the valid transmission duration T,,, of a VT on burst
m can be obtained as follows. (i) If PUs return to burst m
after the VT have finished the transmission, the whole burst
is usable and we have T}, = T,,. (ii) On the country, if PUs
disturb the VT’s transmission, then the valid transmission time
is T),, =tV —t,,,. As t"'V is a random variable, the expected
valid transmission time 7},, of a VT on burst m can be given
by the following Eq. (1). Since t,,,T}, and F(tF'V) are all
known at the MRSUs, and thus 7,, is a constant for each
burst m.

Next we discuss burst allocation among VTs. Define s, ()
as burst allocation indicator, where s,.,(t) = 1 represents
burst m is allocated to VT n in frame ¢, and $,,,(t) = 0
otherwise. Let 7, and B,, denote the time duration and
bandwidth of burst m, pLU(t) and GELV(t) represent the
transmit power and channel gain of PU m on burst m in
frame ¢, and py,(t) and Gy, (t) denote the transmit power
and channel gain of VT n on burst m, respectively. In order to
enable tractable analysis, we neglect the interference between
MRSUs. Then the maximum transmit (in bps) rate of VT n
on burst m in frame ¢ can be given by

o Pnm (t) Grm (t)
rom(0) = B g, (1 e v+ ) @

where o2 is the power of additive Gaussian white noise. Thus,

lAccording to FCC standards [28], SUs obtain the information of the
TVWS channels from a geotagged database [6], [27], [28], [30]. The informa-
tion stored in the database is updated according to the information provided
by PUs.
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the maximum transmit rate of VT n in frame ¢ is given by
ra(t) = > Snm(t)rn m(t)Tﬂ. 3)
) ) T

meM

Denote the transmit power of VT n in task offloading as
Pn(t) = Y Pnm(t), and thus, the energy consumption (in

meM
J) in task offloading is given by
E;IT(t) = pu(t)T. @)

2) Server Provisioning Model: Suppose there are ¢"*"
edge servers in each MRSU, and each is with a processing
capability s. (in CPU cycles/s). When VT n offloads it task to
MRSU, MRSU should determine the number of edge servers
gr (t) allocated to the task of VT n. The process is called server
provisioning [17], and the total number of allocated servers is
constrained by >\ gn(t) < ¢

E. Queueing Model and Related Concepts

In our system, two data queues are formulated for the
computation tasks of each VT n, i.e., the user-side queue
Qn(t) (in bits), and the MRSU-side queue Z,(¢) (in bits).
The queues @, () and Z,(t) stand for the unfinished tasks of
each VT n, and they evolve according to

Qn(t+1) =max [Qn(t) — Trp(t)z,(t)

loc
— (1 —z,(1)) ”A ®) T,0] + Dy (t), (5)
Zoat +1) = ma [ Za ()= aa(6) 3T (£), 0] +7 ()T 1)

(6)
Definition 1: A discrete time queue Q(t),t € {0,1,..} is
1

t—
strongly stable if satisfies: Q = tlg(r)lc sup1 > E{Q(7)} <
[31], [32]. =

Definition 2: If all the individual queues are stable, the
network is stable [31], [32].

Remark 1: According to the Little’s Theorem [31], [32],
under given traffic arrival rate, the average delay is in direct
proportion to the average queue length. Therefore, Definitions
1 and 2 indicate that, if the system is ensured to be stable, the
average delay can be guaranteed to be finite.

F. Cost Model

Next we discuss the monetary cost of VIs and MRSU,
respectively.

1) Cost of VTs: In local processing, the monetary cost
of VT n can be given by UkX¢(t) = a,El°°(t) =
ankDp () An(floc(t))?, where «,, (in $/J) is a human-
determined weight coefficient, which is used to convert en-
ergy consumption into money and depends on the human-
sensitiveness on money and and energy consumption [17].

When VT n offloads its task for remote processing, it will
consume different costs and need to pay different fees: (i) The
energy consumption of VT n in data transmission (in J). (ii)
The TVWS channel service fee 0r,(t) that VT n has to pay
to MRSU, where 6 (in $/bit) is the price of transmitting per
bit data. (iii) Task processing fee n\, 7, (t) that VT n needs to
pay to MRSU, where 7 (in $/cycle) is the price for processing
each unit CPU cycle task. So the monetary cost of VT n in
task offloading is U2/ (t) = [anpn (t) + 07, (t) + nAprn ()T

Thus, the cost (in $) of each VT n in frame ¢ is given by

Un(t) = (1 = @n(t)ank Dy (DA (£ (1))
+ zn (t) [anpn(t) + 0y, (t) + nAnTn(t)]Ta @)

and the total cost of all UEs can be given by U(t) =
Yn1 Un(t).

2) Cost of MRSU: MRSU possesses and operates the MEC
servers, and leases radio bandwidth (in bps) from wireless net-
work operator. By providing computation offloading services,
MRSU earns the same amount of money paid by VTs for
wireless data transmission and task processing. The price it
charge from VTs for data transmission is 6 (in $/bit), and
for task processing is 7 (in $/cycle). On the other hand,
it has to pay electricity bills to grid operator for operating
edge servers, and pay to wireless network operator for renting
radio bandwidth. Denoting e(t) as the electricity bills (in $)
for running an edge server, and the price for renting radio
bandwidth (in bps) from wireless network operator as ¢ (in
$/bit), the cost of each MRSU in frame ¢ is given by

Unrsu(t)

= 3" [an®et) + 5 (OT = 0ra(OT — nAura (VT |a(t)
neN

> an(®)e®) = 0+ nrn = )ra (T |wa(t). ®)
neN
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A summary of the mainly used notations are presented in
TABLE 1.

IV. DUAL SIDE PROBLEM FORMULATION

In this section, we construct two optimization problems
under a competition scenario. One is the VT-side problem
(Pv), while the other one is the MRSU-side problem (Pn),
respectively.

A. VT-side Optimization Problem

The objective of VT-side optimization problem (Py) is to
minimize the average total cost of all the VTs subjecting to
the queue stability of both VT-side and MRSU-side, so as
to guarantee all the computation tasks be executed within
a finite time. We need to optimize the offloading decision

() {z1(t),...,xn(t)} and the local CPU frequency
floe(t {fl"c s JRE(t)} under given MRSU’s policy.
Problem (PV) is given by

(Pv) : cn U= Th_r}r;O — Z E{U(t)
st. (Cyl): Qn < o0, Z, < oo, Vn EN,
(Cv2): z,(t) € {0,1}, VneWN,
(Cy3): 0< flec(ty < fmae Vne N, (9)

where (Cy 1) ensures the network is stable; (Cy2) is the
binary constraints on computation offloading decisions; and
(Cy3) is the CPU-cycle frequency constraint for each VT.

B. MRSU-side Optimization Problem

The MRSU-side optimization (Pyg) aims at minimizing
the average cost of MRSU, by jointly optimizing the burst
allocation S(t) = {spm(t)}, Vn € N, Vm € M, the transmit
power control P(t) = {p,m(t)}, Vn € N, Vm € M, and the
server provisioning q(t) = {q1(t), ..., qn (t)}, and the problem
is formulated as

=

Pm) i U = lim — E{U. t
(Pm) o din  Unrse = Hm 2 tz:; {Unmrsu(t)}
s.t. (Cuml): Z, < o0, ¥n €N,

(C2): 3 Sum(E)Pam ()G () < By ¥m € M,
neN

neN memM

E Snm

neN
Snm(t) € {0,1}, Vn € N,Vm € M,

Pam(t) >0, Yn € N,Vm € M,
Z qn(t) < g™,

neN

(Cu3) : P\l € L,

(Cm4) : ) <1, Yme M,

(Cumb) :
(Cm6) :
(Cm7) : (10)

where (C)s2) means that the interference caused by burst
reuse for VT’s uplink transmission should be no more than
a threshold 3, to ensure the QoS of PU m; (Cys3) is used
to satisfy FCC’s requirement that the total transmit power of

SUs on a TVWS channel should be no more than a threshold.
(Cy4) and (C)pr5) represent a burst can be allocated to at
most one VT to avoid interference within the MRSU; (C),6)
indicates the transmit power should be non-negative; (Cs7)
constraints the number of allocated edge servers cannot exceed
that MRSU possesses.

Remark 2: Problems (Pv) and (Pwm) are difficult to solve,
since they are stochastic optimization problems where opti-
mization should be performed at each time slot, and a great
deal of the channel and task buffer state information need to be
handled, and large amounts of optimization variables should
be determined. Moreover, the optimal decisions are temporally
correlated due to the random arrivals of tasks [18].

V. PROBLEM TRANSFORMATION

In the following, we propose online algorithms to tackle
problems (Py) and (Pn1) based on Lyapunov optimization
theory, leveraging which we can resolve the formulated s-
tochastic optimization problems efficiently by solving deter-
ministic problems at each frame [18], without requiring any
future information about task arrivals, network status, etc., and
only the current state information is required [31], [33].

Let Q(t) = {Q1(t). . Qn (1)}, Z() = {Z1(0), . Zn (D)},
and ©(t) = {Q(t),Z(t)}, basing on which the Lyapunov
functions for (Py/) and (PM) are given by

)£ 5 ZQ2 ZZQ .
ne/\f neJ\f

)&= ZZQ (12)
nGN

Then the Lyapunov drift functions A(
are given by

©(t)) and A(Q(?))

A(O(t) £ E{L(O(t +1)) — L(B(1))[©(1)}, (13)
A(Z(t) £ E{L(Z(t + 1)) — L(Z@®)|Z(1)}, (14)
where L(®(t + 1)) — L(©(t)) satisfies
L(O(t+1)) - L(O©(1))
_ TR /)
< Z Qn(t) | Dn(t) =1 (t) Tz (t) — (1—zn(t)) T
neN n
+Zn(t) Tn(t)T*QW(t)iicT In(t)} +Bl +327 (15)

and L(Z(t+ 1)) — L(Z(t)) satisfies

L(Z(t + 1)) — L(Z(t))
<3 Zu(t)|r T—qn(t)%T 2 (t) + Ba.(16)
neN n

The constants By and Bs in Eq. (11) are given by

mazx 2
By =- Z [ Dmam (’I“,ZLMET + f T)

nG/\/ An
Se -\ 2
By = = Z [ marT <qmaz)\7T) (17)
nG/\/ "
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TABLE I: Notation Definitions

Symbol Definition
D, (1) The size of the arrived task of VT n at frame ¢ (in bits)
An Processing density of the arrived tasks of VT n (in CPU cycles/bit)
fmae Maximum local processing capability of each VT (in CPU cycles/s)
qm*” The total number of edge servers each MRSU possess
pme The threshold of the total transmit power of all SUs on a TVWS channel
Bm The threshold of interference caused by burst reuse in VTs’ uplink transmission
Qn(t), Zn(t) VT-side and MRSU-side queue backlog of the task of VT n in frame ¢
T, Bm The time duration and bandwidth of burst m
T The valid transmission duration of a VT on burst m
pEU(t) The transmit power of PU m on burst m in frame ¢
GLU (1) The channel gain between PU m and the BS
Drom (£)s Grm (1), Trm (t) The transmit power, channel gain and transmit rate of VT n on burst m in frame ¢
x(t), xn(t) Offloading decision vector and offloading decision of VT n in frame ¢
£1°°(t), fleo(t) Local CPU clock frequency vector of all VTs and of VT n in frame ¢
S(t) Matrix of all VTs’ burst allocation in frame ¢
Snm/(t) Indicator of whether burst m is allocated to VT n in frame ¢
P(1) Matrix of all VTs’ transmit power control in frame ¢
q(t) Vector of server provisioning in frame ¢
gn(t) The number of edge servers allocated to the task of VT n in frame ¢
N,N The set and number of all VTs
Ni,N1 The set and number of remote processing VTs
L, L The set and number of burst intervals (Bls)
MM The set and number of primary users (PUs)
0 The price of transmitting per bit data via wireless channels (in $/bit)
0 The price MRSU rents radio bandwidth form operator for data transmission (in $/bit)
n The price for processing each unit CPU cycle task (in $/cycle)
Se The CPU clock frequency of an edge server (in cycles/s)
e(t) The price of electricity (in $) for running an edge server
Qn Coefficient used to convert energy consumption into money(in $/J)
k Coefficient used to model local processing energy consumption depending on chip architecture
Un(t), Unrsu(t) The cost of VT n and MRSU in frame ¢
U,Upmrsu The time averaged expected cost of all VTs’ and of MRSU
For notation simplicity, we denote B = By + Bs. and

In the above derivation procedure, we have adopted the

following inequality

A(Z(t)) + VE{Unmrsu (t)|Z(t)}

(max[Q —b,0] + A)? < Q* + A2 +b? +2Q(A — b),
VQ > 0,¥b > 0,YA >0. (18)

According to Lyapunov optimization theory, in order to
minimize U in (Py) and Uppsy in (Pa), the drift-plus-
penalty functions A(O(t)) + VE{U (¢)|©(t)} and A(Z(t)) +
VE{Unrsv (t)|Z(t)} should be considered, which are bound-
ed by

A(O(1)) + VE{U(1)|©(1)}

<> E{Qn(t)

neN

loc

An

Sc

Tn(t) - Qn(t)] xn(t)

Za®)T
+ Za(t) .

V(1) [oznpn(t) O (t) + nAnrn(t)} T

+ V(1= 2n(t))ankDy ()X (£7°(1))?

em}+&

Do(t) — 1 (T an(8) — (1 — (1)) Ly

<t B[ Z0T () - (035 )21

neN
+V neZJ\/E{ (qn(t)e(t) — (0 + A, — 6)rn(t)T>zn(t)‘Z(t)}
— By+ %jv E{Zn(t)T<rn(t) - qn(t))\—n)
+ Vag,(t)e(t) — V(0 +nA, — 5)r,n(t)T}, (20)

arameter used to strick a balance between the cost and
elay, i.e., how much we put our emphasis on cost reduc-
tion or processing delay reduction. The notations N; and
N = {1,2,..., N1} denote the number and the set of VTs who
offload their tasks for remote processing. Then, the original
long-term minimization problems (Py) and (Ppng) can be
transformed into the following optimization problems (Py;)

Ehere V € (0,00) (in bit?/$) is a non-negative control

(195“‘1 (P3;), which minimize the upper bound of the drift-plus-

penalty functions is (19)-(20) in each frame ¢, respectively.
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i &

neN

(Py) :

{u — (1)) [Vanwn(t»n(fé“(ﬂf - Qiit)

YT {v (anpn(t) +Or(t) + nAnrn(t))

Sc

+ Zn(t) (rn(t) — gu(t) An) - Qn(t)rn(ﬂ} }

s.t. (Cvz), (CVB) in (PV)v
and
(Pra) s min n;/ [(Z"(t)v(a * ”An*é))r"(t)T
n (Ve(t) - S;fzn(t))qn(t)]

By Little’s law [31], the average delay is proportional to the
average queue backlogs under given average data arrival rate,
so in the following, we will use the two terms, i.e., average
delay and average queue backlog interchangeably.

(22)

VI. SOLVE THE VT-SIDE PER FRAME OPTIMIZATION
PROBLEM (PY)

Each VT considers the VT-side and the MRSU-side queue
backlogs, the networks status, and then it needs to determine
the offloading decision and the corresponding CPU cycle
frequency optimization in local processing model, where the
following two cases should be taken into consideration:

1) : If VT n selects local processing model (z,(t) = 0),
it needs to further obtain the optimum local CPU clock
frequency fLo¢(t) as follows

Qloc(t)* = min Va, kD, () A (flo0(t))? — Qn(t)
free(t) A

sit. (Cy3): 0< floe(t) < fmae,

n

frewr
(23)

the closed form solution to which can be easily obtained as

e QT
t)" = N ) ()2
f(#)” = min { 2V ok Dy (A2 ™y
and we can obtain QL°(t)* = VankDy(t) A (f10°(t)*)? —
Q;i(t) floe(+)*T, consequently.

n

2) : If z,(t) = 1, we can directly obtain
Q21 (8) =V (npn(t) + 07 (1) + WA () ) T
s

+ Zn(t) (ra(t) - qn(t))\—c)T — Qu(t)ra(t)T. (25)
By comparing the values of Q/¢(#)* and Q2/7(t)*, the
offloading decision of each VT n can be given by

. loc(4)* of f *

() = 1, af Qf (t) > Q217 (t)

n 0, otherwise

Remark 3: In order to obtain offloading decision in (26),
each VT n needs to compare which decision, i.e., local

(24)

(26)

o]

2y

processing or task offloading, is more beneficial in the aspects
of cost reduction and queue stability. It can be observed that,
when the VT-side queue Q,(t) is much longer than the MRSU-
side queue Z,(t), and the wireless networks are in good
conditions, task offloading (x,,(t) = 1) is much preferred.

Remark 4: The VT-side optimization algorithm is low in
computational complexity, since each variable can be deter-
mined by comparing two values, and the two values can be
obtained in closed form.

VII. SOLVE THE MRSU-SIDE PER FRAME OPTIMIZATION
PROBLEM (Py)

Next we solve the MRSU-side problem (Pg;). It can be
decomposed into two sub-problems, i.e., the server provision-
ing subproblem and the radio resource allocation subproblem.
Since there’s no coupling between the two subproblems, we
can solve them independently.

A. Server Provisioning Subproblem

The server provisioning subproblem is given by

min [Ve(t) — SCTZn(t)]qn(t)
Q(t) nENl )\n
st (CuT): Y aalt) < g™ (27)
TIEN1

Observe problem (27) we can know that for a certain VT
n, if Ve(t) > L Z,(t), it will be allocated with no edge
server. Denote the set of the VTs who may be allocated with

n € Nl‘Ve(t) <

edge servers as J, and we have J =

SA“'HT Zn(t) } From the objective of problem (27) we can further
know that among the VTs in 7, MRSU prefers to assign edge
servers to the VT whose MRSU-side queue backlog Z,(t)
is large. The larger Z,(t) is, the more unfinished tasks are
queued, and MRSU will allocate the more edge servers to
VT n for delay reduction. The proposed server provisioning

algorithm is summarized in Algorithm 1.

B. Radio Resource Allocation Subproblem

In this section, we will tackle the radio resource allocation
subproblem embedded in (P4), where transmit power control
P(t) and burst assignment S(¢) among all the offloading VTs
in V; should be determined as follows

Z [V(G +nAp —0) — Zn(t):|7"n(t)T
neNy
s.t. (Cm2) — (Cub),

7 (t) =

meM
W%). However, (28) is still an MINLP

problem and can be generally NP-hard [19]. Observing
(28), the difficulty comes from two aspects, i.e., the integer
constraints and the non-convex objective function. Under
this observation, the proposed continuous relaxation and
Lagrangian dual decomposition based method works as
follows.

max
S(t),P(¥)

(28)

where > snm(t)%Bm log, (1 +



THE PAPER HAS BEEN ACCEPTED BY IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

Algorithm 1 Server Provisioning Algorithm

Initialization:

1: Initialize J = 0.
Iteration:

2: forn=1:N; do

3:  Calculate the value of Ve(t) — 5/\“: Zy(t).
4 if Ve(t) — 5T Z,(t) < 0 then

5: J = jUn

6: end if

7: end for

8:

Sort all the VTs in J in ascending order according to the
value of [Ve(t) — %L Z,(t)].

9: for j =1:|7| do

10 ¢j(t) = min { [LS(:%)” —‘ , qm‘”}.
11: qmaz — qmam _ st(ct%}j

12z if ¢™*" < 0 then

13: break.

14:  end if

15: end for

16: Output: q(t) = {q.(t)}, n € N1.

1) Convert Problem (28) to a Convex Programming
Problem: First, by relaxing the integer constraint into
sum(t) € [0,1], and replacing ppp(t) With yum(t) =
Snm (O)prm (t), Vn € N1,Vm € M, we can obtain

smyu)E: E:[V9+UA

neNT memM

—8) — Zn(t )] B Tonsnm(t)

(Cu2): Y Yam()Grm(t) < Bin, Ym € M,
neN;

Cu3): > D Yam(t)Cos < P, VI E L,
neN mem

(Cud): D sum(t) <1, VmeM,
neN;

(Cumb) : spm(t) € [0,1], Vn € N1,Vm € M,

(CMm6) : Ynm(t) >0, Yn € N7,¥Ym € M. (29)

Proposition 1: Problem (29) is jointly convex in S(¢) and
Y (t).
Proof: See Appendix A. ]
Although the convex problem (29) could be settled by
general algorithms such as Interior Point Method, which
however suffers from high time complexity. Next we use
Lagrangian dual decomposition technique to design a low-
complexity algorithm. The partial Lagrangian function of (29)
is given in (30), where u(t) = {um(t)} = 0,m € M and
w(t) = {wi(t)} = 0,1 € L are dual variables corresponding
to constraints (Cy2’) and (Cp3’) in (29), respectively.
As problem (29) is convex, zero duality gap can be guaran-
teed. Thus, we can solve the following dual problem to obtain

the optimal radio resource allocation.
min  max L(S(t),Y(t), u(t), w(t

hin | samax  L(S(8), Y (2), p(t), w(?))
= min maxmax L(S(t), Y (¢), u(t),w(t)).

| min maxmax L(S(). Y (1), p(t), (1)
2) Obtain Power Allocation: According to (31), assuming
dual variables p(t) and w(t) and burst allocation S(t) are
given, we can first obtain the optimal transmit power through
solving Y (¢). Using KKT conditions [34] and by letting
OLSH.Y®).nMw®) — 0 the optimal vk .. (t) can be given

(3D

OYnm (t)
by
ey = | Tn B[V A =) = Zu(t)]
Dt = 02 (s (8) G (£) + 5 @1 Co)
el
P ()G (t) + 0
_ o) Snm(t). (32)

Since 2, (t) = Snm(t)pL,,(t), we can obtain the optimal
transmit power control policy as

T B [V(0 + 1Ay — 8) — Z ()]
1n2(ﬂm( ) nm( )+ Z wl( ) ml)

*

Prm(t) =

pEUGEY (1) + 02|
Gnm(t)

; (33)

where 7 = max{z,0}.

3) Obtain Burst Assignment: In this step, by plugging the
obtained optimal transmit power allocation back to Lagrangian
function, we solve the optimal burst assignment. For notation
simplicity, we define d,,,,,(¢t) and E(t) as follows

(1) = [V(e F A, —0) — Zn(t)}

Ty B log, <1 +

PRl (OGLY(t) + o

- <um(t)G t) + sz(t)0m1> Prm(t):
leL
= Z Mm(t)ﬁm + Zwlpm(wa (34)
meM lel

where d,, (t) is the weight coefficient and E(t) is a constant.
Then the optimal burst assignment can be obtained by solving

max Yo D dum(D)sam(t) — E(1)

neN1 meM
s.t. (Cud”) : Z Sam(t) < 1, Ym € M,
nE/\fl
(CME)//) : Sum(t) € [0,1], Vn € Np,¥m € M. (35)

It is not difficult to know, problem (35) is the sum of a set
of linear functions w.r.t s,,,,,(t). Consequently, burst allocation
Snm(t) must be binary, since the optimal value of a linear
function is obtained at the endpoints. Therefore, the optimal
burst assignment s, (t) can be given by
"0 { 1, if n=argmaxdym(t) & dnm(t) >0,
nm 0,

s
otherwise.

(36)
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LS, Y (6), (), w(®) = 3 > [V(O+ 0 = 8) = Zu(t)] BuTomsum(t) log

neN; mem
= 3 (X v (OGun®
meM neNy

ynm(t)Gnm(t)

—Bn) =Y w®( X X vam®Cmi = P™). (30)

lel neN1 meM

Remark 5: Equation (36) manifests that a burst should be
allocated to the VT with the maximum positive weight upon it.
If all VTs are in deep fading and with negative weights, this
burst should not be allocated to any VT, since using it will
lead to more waste but less profit.

4) Dual Variables Update: To solve the outer minimization
problem in (31) (also called master dual problem), a subgra-
dient method [35] can be used to update the dual variables.
More specifically, the update can be performed as

- +
W) = L) — B0 (mn—z ynmamnmmﬂ |
L neNy
Ym e M, ((37)
- +
w () = |wi(t) — ki (t) (Pm”—z Z ynm(t)szﬂ ;
L neN; meM
VieLl,  (38)

where i is the iteration index; hl,(t) and kj(t) are the
sequences of scalar step sizes of the ¢th iteration. In this
paper we adopt square summable but not absolute summable
step sizes [35]. The Lagrangian dual variables are updated
iteratively until the required precision is satisfied.

The procedure for joint transmit power control and burst
assignment is summarized in Algorithm 1 as follows.

Algorithm 2 Lagrangian Dual Decomposition Based Burst
Assignment and Power Allocation Algorithm

Initialization:
1: Initialize p°(t), wO(t), ima®
Iteration:
2: while 7 < ™" do
3. Perform transmit power allocation pi, (t),Vn,m ac-
cording to (33).

and the precision €. Set 7 = 0.

4. Perform burst assignment s (¢),Vn, m based on (36).

5:  Update Lagrangian dual variables p(t),w(t) according
to (37) and (38), respectively.

6 if [p () —pi(t)| < € & |wT(t) —w'(t)] < € then

T S:LTYL(t) = Szzm(t)’ p:;m(t) = p%m (t)

8: break.

9: else

10: t=1+ L

11:  end if

12: end while

13: Output: S*(t) = {s*,.(t)}, P*(t) = {p%,.(H) }.

Till now, our dual-side optimization in a competition s-
cenario is solved, and the joint optimization of offloading
decision making and local CPU frequency control is obtained

for VT-side, and the joint optimization of transmit power
allocation, burst assignment and server provisioning is ob-
tained for MURS-side. Detailed procedure is summarized in
Algorithm 2, which is referred to as dual-side dynamic joint
task offloading and resource allocation algorithm in vehicular
networks (DDORYV).

Algorithm 3 Dual-side Dynamic Joint Task Offloading and
Resource Allocation Algorithm in Vehicular Networks (D-
DORYV)

1: At each frame ¢:

2: MRSU-side optimization

3. Observe the current MRSU-side queues Z,, (t) and channel
states in each frame ¢.

4: Obtain server provisioning q(¢) according to Algorithm 1.

5: Perform transmit power control P (¢) and burst assignment
S(t) according to Algorithm 2.

6: VT-side optimization

7. Observe the current queues @, (t) and Z,,(t) and channel
states in each frame ¢.

g: for n € N do

Obtain the values of Q/°¢(¢)* and Q°Ff(¢)*.

10: if Qc(t)* > QoFf(¢)* then

11: Set z,,(t) = 0;

12: Obtain fl°¢(¢) based on (24);
13:  else

14: Set z,(t) = 1;

15:  end if

16: end for

17: Base on the above obtained VT-side optimization results
{x(t), fl°¢(¢)} and MRSU-side results {S(¢), P(¢),q(t)},
update queues @, (t) and Z,,(t) according to Egs. (5) and
(6).

VIII. COMPLEXITY ANALYSIS

The computational complexity of our joint dual-side opti-
mization algorithm DDORYV in Algorithm 3 comes from two
aspects, i.e., the MRSU-side and the VT-side optimization.

The complexity of the MRSU-side complexity mainly de-
termined by Steps 4 and 5. In Step 4, the complexity comes
form server provisioning, i.e., Algorithm 1. In Algorithm 1,
the complexity of Steps 2-7 is O(N), the complexity of
sorting in Step 8 is O(N?), and the complexity of Steps 9-
15 is O(N). Therefore, the total complexity of Algorithm
1 is O(N) + O(N?) + O(N) = O(N?). The complexity
of Step 5 comes from Algorithm 2. In Algorithm 2, the
complexity of power allocation and burst allocation in Steps
3 and 4 are O(N M), the complexity of dual-variable-update
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in Step 5 is O(M) + O(L). The subgradients need O(Z%)
iterations to converge. So the complexity of Algorithm 2 is
1 (O(NM) +O(NM) +O(M) + O(L)) = o(Ngi). The

€

complexity of VT-side optimization is O(N). Therefore, the
complexity of DDORV in Algorithm 3 is O(N?)+0O (N M4

O(N):o(NEgW). 62

IX. SIMULATION RESULTS

In this section, we provide simulations to verify the per-
formance of our proposed algorithms. Our simulations are
conducted on a Matlab-based simulator. We simulate an MEC
enabled mixed CVN and 802.22 network in a 5km x Hkm
square area, where an MRSU locates at the center of the
region, PUs are scattered uniformly through the region, and
VTs are distributed in an 1km x 10m road [27]. A TVWS
channel with 6 M H z is reused by all the VTs, which is equally
divided into 20 subchannels in frequency domain. The channel
occupance t*'Y of PUs follows Gamma distribution, and the
CDF of tPV is F(tPV) = 1—¢=5"" —5tPUe=5"" [27]. For
simplicity, the wireless channel gain including the channel gain
Gpm(t) of VT n on burst m takes values randomly in [1, 5],
and the channel gain GLY(t) between PU m and the BS is
supposed to take values randomly in [5, 10], and be i.i.d. over
frames [36]. Time is divided into frames, suppose the length
of each uplink frame is 7' = 9 ms, and each frame contains
L = 4 BIs. There are M = 44 bursts, each of which occupies
one subchannel in frequency domain. Bursts 1 to 12 are type 1
burst, which covers the whole uplink subframe in time domain,
while the rest 32 bursts are type 2 bursts with a length 7'/4 in
time domain [27]. The PU interference limit at the BS for PU
m (i.e., B,,) is chosen based on the criterion that SINR at the

PU PU
BS is no less than 10 dB, i.e., SINR,, = En 0%u ) > 1
Detailed parameters are summarized in Table 1.

In the following, we will first evaluate the convergence of
the proposed iterative radio resource allocation algorithm, i.e.,
Algorithm 2. Then we verify how parameter V affects the
tradeoff between the cost of VTs and the length of queues.
Finally, we assess the performance of DDORV form the VT-
side and MRSU-side, respectively.

A. Convergence of Algorithm 2

In Fig. 4, we show the convergence of Algorithm 2 by
plotting the two sets of dual variables w = [w;],l € £ and
p = [wm], m € M versus the number of iterations in
the lhs and rhs subfigure, and there are |£| = 4 curves of
w = [w], | € L and 44 curves of p = [um], m € M,
respectively. Fig. 3 demonstrates that both the two sets of
dual variables converge at the 5th iteration, demonstrating our
Lagrangian dual decomposition based Algorithm 2 converges
considerably fast.

B. Performance of DDORV Versus Control Parameter V

Fig. 5 depicts how the control factor V' make a trade off
between the cost U and the average delay. When V' gets larger,
the cost U decrease, however, the length of queue Q + Z will

TABLE II: Simulation Parameters

Parameter Value
Number of VTs N 20
Length T' of uplink frame 9 (ms) [27]
Number of bursts M 44 [27]
Number of BIs L in each frame 4 [27]
Interference limit (3, for PU m 10 dB [27]
Power of Gaussian white noise o2 —100 dBm [27]
Transmit power pZU (t) of PU m 0~4 W [28]
VT transmit power threshold P™*** 100mW [29]
Bandwidth B, of burst m % (MHz) [27]
Number of Types 1 and 2 bursts 12, 32 [27]
Arrived input data size Dy, (t) 0.1 ~ 1 Mbit
Processing density A, (cycles/bit) 10 ~ 1000
Max. local processing capability f7*¢* 1.4 (G cycles/s) [17]
Coefficient & for modeling local 10—27 [18]
processing energy consumption
Number of edge servers g"*** N+ 10
Processing capability of each edge server s, 3 (G cycles/s) [17]
Electricity price per edge server e(t) 11078

Energy-money weight parameter oy,

2.44 x 10~ %(8/J) [17]

Price ¢ for MRSU renting
radio bandwidth from operator

0.5 % 10~ 19 ($/bit)

Price 6 that MRSU charges from
VTs for wireless data trans.

1.16 * 10~ 10 ($/bit)

Price 7 MRSU charges from
VTs for task processing

3+ 10~ 10 (in $/cycle)

Total cost of VTs ($)

Length of Q+Z (MB)

10

x10°
1.0005 1.0003
1.0004 1.0002
1.0003 1.0002
3
1.0002 1.0001
1.0001 1.0001
1 1
0 5 10 0 5
Number of iterations Number of iterations
Fig. 4: Convergence of Algorithm 2.
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Fig. 5: Tradeoff between cost and queue backlog.
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grow, which will lead to more delay in task processing. Thus,
it can be known that the control parameter V' can make a good
balance between the cost and the length of data queues.

C. Performance Comparison for VI-side

Next, we show the performance for VT-side optimization
of DDORYV, by comparing it with local processing (denoted
as Local-pro) and MRSU processing (denoted as MRSU-pro).
In Local-pro, all VTs process their tasks locally using the
maximum local CPU frequency. In MRSU-pro, all VTs offload
their tasks to MRSU, and MRSU-side resource allocation
optimization is performed among them.

1) Impact of the number of VIs N: In Fig. 6, we show
the comparison on the cost and the queue backlog of all VTs’
versus the number of VTs, respectively. As can be seen form
Fig. 6 (a), with the number of VTs IV increases, the user cost
keeps increasing, which is the same for all algorithms. On the
other hand, with the number of VTs increase, the available
bursts and edge servers allocated to each VT decrease, as a
result, the length of data queue increase, which is shown in
Fig. 6 (b). Therefore, the two sub-figures indicate a tradeoff
between the cost and the length of data queue. However, thanks
to a multi-dimensional optimization, DDORV can always
outperforms other algorithms, which perform only a certain
dimensional optimization and consequently, more cost will be
spend.

2) Impact of task parameter: In Figs. 7 and 8, we show how
the task parameters affect the cost of VTs, including the input
data arrival D,,(t) and the processing density A, respectively.
Observing the two figures, it can be known that the cost of
VTs grows linearly with respect to the two parameters, which
is in accordance with the VT-side cost model in Eq. (7), where
the cost of each VT n is proportional to both D,,(t) and A,,.

From the two figures it can also be known that the perfor-
mance of MRSU-pro is a little worst than DDORV in per-
formance, which indicates that the MRSU-side optimization
plays a bigger role in the dual-side optimization framework.

D. Performance Comparison for MRSU-side

Then we show the performance for MRSU-side optimization
of DDORYV, by comparing it with Ser-pro-only and Radio-
only algorithms. In Ser-pro-only, only server provisioning is
optimized, and in Radio-only, only radio resource alloca-
tion (including IEEE 802.22 burst and power allocation) is
optimized [26], [27], among all the VTs who choose task
offloading. According to (8), it can be known that the profit of
MRSU equals to the minus cost of MRSU, and the problem in
(10) to minimize the cost of MRSU equals to maximizing the
profit of MRSU. Therefore, we consider the profit of MRSU
instead of discussing the cost for easy observation.

Since the pricing policy (i.e., 8, ¢, 0, and e(t)) plays an
important role on the economical profit of MRSU, we show
the performance comparison between the algorithms under
different pricing policies in Figures 9, 10, 11, and 12.

As can be seen from Figs 8 and 10, the profit of MRSU
grows with the increase of the price that it rents radio and
computation resources to VTs, i.e., # and 7. Figs. 9 and 11

show that the profit of MRSU decrease with the price ¢ it
rents radio resource from wireless network operators, and the
electricity bill e(t) to active per edge server.

X. CONCLUSIONS

In this paper, we have studied a dual-side stochastic opti-
mization framework in an MEC enabled IEEE 802.22-CVN
coexistence system. Then two problems, i.e., the VT-side and
the MRSU-side optimization problems, were formulated, in
order to minimize the averaged cost of VTs and the MRSU,
respectively. Employing Lyapunov optimization theory, we
have proposed a low-complexity online algorithm DDORY,
where the two problems are solved in a integrated framework
in each frame. Simulation results have verified the convergence
of the iterative radio resource allocation algorithm, the tradeoff
between the average cost of VTs and the average queue length,
and have shown DDORV can performs well compared with
other schemes.

APPENDIX
Appendix A. Proof of Proposition 1

Proof: For notation simplicity, denote constant
V(@ + g\, — ) — Z,(t)]|BnTm as A. According to
convex optimization [34], when f(z) is concave, then
the perspective function g¢(z,t) = tf(z/t) is concave,

Aspm (t) log, (1 + Ynom (£) G (£)

Since
sum (8) (PEV (DGEY (t)+02)
perspective

too.

is the function of concave function

nm (£)Grnm (¢ . :
Alog, (1 + W) it  preserves  concavity,
too. As the sum of several concave functions is still concave,

Aspm(t) log, (1 + Ynm () Grnm (1)

nezj\/l EZM "m sum () (PEU ()GEY ()40
also concave. On the other hand, (C2) — (C6) are all linear
constraints. Thus, (28) is a convex optimization programming
that maximize a concave function over a convex set. |

is
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