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The prime spectrum of the algebra Kq[X, Y ]⋊ Uq(sl2) and a

classification of simple weight modules

V. V. Bavula and T. Lu

Abstract

For the algebra A in the title, it is shown that its centre is generated by an explicit quartic
element. Explicit descriptions are given of the prime, primitive and maximal spectra of the
algebra A. A classification of simple weight A-modules is obtained. The classification is based
on a classification of (all) simple modules of the centralizer CA(K) of the quantum Cartan
element K which is given in the paper. Explicit generators and defining relations are found
for the algebra CA(K) (it is generated by 5 elements subject to the defining relations two of
which are quadratic and one is cubic).
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Mathematics subject classification 2010: 17B10, 16D25, 16D60, 16D70, 16P50.
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1 Introduction

In this paper, module means a left module, K is a field, K∗ = K \ {0}, an element q ∈ K∗ is not a
root of unity, algebra means a unital K-algebra, N = {0, 1, . . .} and N+ = {1, 2, . . .}.

For a Hopf algebra and its module one can form a smash product algebra (see [22, 4.1.3] for
detail). The algebras obtained have rich structure. However, little is known about smash product
algebras; in particular, about their prime, primitive and maximal spectra and simple modules.
One of the classical objects in this area is the smash product algebra A := Kq[X,Y ] ⋊ Uq(sl2)
where Kq[X,Y ] := K〈X,Y |XY = qY X〉 is the quantum plane and q ∈ K∗ is not a root of unity.
As an abstract algebra, the algebra A is generated over K by elements E, F, K, K−1, X and Y
subject to the defining relations (where K−1 is the inverse of K):

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
,

EX = qXE, EY = X + q−1Y E, FX = Y K−1 +XF, FY = Y F,

KXK−1 = qX, KY K−1 = q−1Y, qY X = XY.

The algebra A admits a PBW basis and the ordering of the generators can be arbitrary. The study
of semidirect product algebras has recently gained momentum: An important class of algebras–the
symplectic reflection algebras–was introduced by Etingof and Ginzburg, [13]. This led to study of
infinitesimal and continuous Hecke algebras by Etingof, Gan and Ginzburg, [14] (see also papers
of Ding, Khare, Losev, Tikaradze and Tsymbaliuk and others in this direction).
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The centre of the algebra A. A PBW deformation of this algebra, the quantized symplectic
oscillator algebra of rank one, was studied by Gan and Khare [15] and some representations were
considered. They showed that the centre of the deformed algebra is K. In this paper, we show
that the centre of A is a polynomial algebra K[C] (Theorem 2.8) and the generator C has degree
4:

C = (1− q2)FY XE + FX2 − Y 2K−1E −
1

1− q2
Y K−1X +

q2

1− q2
Y KX.

The method we use in finding the central element C of A can be summarized as follows. The
algebra A is ‘covered’ by a chain of large subalgebras. They turn out to be generalized Weyl
algebras. Their central/normal elements can be determined by applying Proposition 2.2. At
each step generators of the covering subalgebras are getting more complicated but their relations
become simpler. At the final step, we find a central element of a large subalgebra A of A which
turns out to be the central element C of the algebra A.

The prime, primitive and maximal spectra of A. In Section 3, we classify the prime,
primitive and maximal ideals of the algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9,
respectively). It is shown that every nonzero ideal has nonzero intersection with the centre of the
algebra A (Corollary 3.8). In classifying prime ideals certain localizations of the algebra A are
used. The set of completely prime ideals is also described (Corollary 3.12).

A classification of simple weight A-modules. An A-module M is called a weight module
if M =

⊕
µ∈K∗ Mµ where Mµ = {m ∈ M |Km = µm}. In Section 6, a classification of simple

weight A-modules is given. It is too technical to describe the result in the Introduction but we
give a flavour and explain main ideas. The set of isomorphism classes of simple weight A-modules
are partitioned into several subclasses, and each of them requires different techniques to deal with.
The key point is that each weight component of a simple weight A-module is a simple module
over the centralizer CA(K) of the quantum Cartan element K and this simple CA(K)-module can
be an arbitrary simple CA(K)-module. Therefore, first we study the algebra CA(K), classify its
simple modules and using this classification we classify simple weight A-modules. There are plenty
of them and a ‘generic/typical’ simple weight A-module depends on arbitrary many independent
parameters (the number of which is finite but can be arbitrary large).

The centralizer CA(K) and a classification of its simple modules. The algebra CA(K)
is generated by (explicit) elements K±1, C, Θ, t and u subject to the defining relations, Theorem
4.6 (K±1 and C are central elements):

Θ · t = q2t ·Θ+ (q + q−1)u+ (1− q2)C, Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)K−1C

t · u = q2u · t, Θ · t · u−
1

q(1− q2)
u2 − C · u =

q7

1− q2
t2 − q4K−1C · t.

It is proved that the centre of the algebra CA(K) is K[C,K±1]. The problem of classification of
simple CA(K)-modules is reduced to the one for the factor algebras C λ,µ := CA(K)/CA(K)(C −
λ,K − µ) where λ ∈ K and µ ∈ K∗. The algebra C λ,µ is a domain (Theorem 4.11.(2)). The
algebra C λ,µ is simple iff λ 6= 0 (Theorem 4.11.(1)). A classification of simple C λ,µ-modules is

given in Section 5. One of the key observations is that the localization C
λ,µ
t of the algebra C λ,µ

at the powers of the element t = Y X is a central, simple, generalized Weyl algebra (Proposition
4.9). The other one is that, for any λ ∈ K and µ ∈ K∗, we can embed the algebra C λ,µ into a
generalized Weyl algebra A (which is also a central simple algebra), see Proposition 5.3. These
two facts enable us to give a complete classification of simple CA(K)-modules. The problem of
classifying simple C λ,µ-modules splits into two distinct cases, namely the case when λ = 0 and
the case when λ 6= 0. In the case λ = 0, we embed the algebra C 0,µ into a skew polynomial
algebra R = K[h±1][t;σ] where σ(h) = q2h (it is a subalgebra of the algebra A ) for which the
classification of simple modules is known. In the case λ 6= 0, we use a close relation of C λ,µ with
the localization C

λ,µ
t , and the arguments are more complicated.

The algebra A can be seen as a quantum analogue of another classical algebra, the enveloping
algebra U(V2 ⋊ sl2) of the semidirect product Lie algebra V2 ⋊ sl2 (where V2 is the 2-dimensional
simple sl2-module) which was studied in [9]. These two algebras are similar in many ways. For
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example, the prime spectra of these two algebras have similar structures; the representation theory
of A has many parallels with that of U(V2⋊sl2); the quartic Casimir element C of A degenerates to
the cubic Casimir element of U(V2 ⋊ sl2) as ‘q → 1’. The centre of U(V2 ⋊ sl2) is generated by the
cubic Casimir element, [24]. The study of quantum algebras usually requires more computations
and the methods of this paper and [9] are quite different. Much work has been done on quantized
enveloping algebras of semisimple Lie algebras (see, e.g., [17, 18]). In the contrast, only few
examples can be found in the literature on the quantized algebras of enveloping algebras of non-
semisimple Lie algebras.

.

2 The centre of the algebra A

In this section, it is proved that the centre Z(A) of the algebra A is a polynomial algebra K[C]
(Theorem 2.8) and the element C is given explicitly, (14)–(17). Several important subalgebras
and localizations of the algebra A are introduced, they are instrumental in finding the centre of
A. We also show that the quantum Gelfand–Kirillov conjecture holds for the algebra A.

The algebra A. In this paper, K is a field and an element q ∈ K∗ = K \ {0} is not a root of
unity. Recall that the quantized enveloping algebra of sl2 is the K-algebra Uq(sl2) with generators
E,F,K,K−1 subject to the defining relations (see [17]):

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

The centre of Uq(sl2) is a polynomial algebra Z(Uq(sl2)) = K[Ω] where Ω := FE+ qK+q−1K−1

(q−q−1)2 . A

Hopf algebra structure on Uq(sl2) is defined as follows:

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = E ⊗ 1 +K ⊗ E, ε(E) = 0, S(E) = −K−1E,

∆(F ) = F ⊗K−1 + 1⊗ F, ε(F ) = 0, S(F ) = −FK,

where ∆ is the comultiplication on Uq(sl2), ε is the counit and S is the antipode of Uq(sl2). Note
that the Hopf algebra Uq(sl2) is neither cocommutative nor commutative. The quantum plane
Kq[X,Y ] := K〈X,Y |XY = qY X〉 is a Uq(sl2)-module algebra where

K ·X = qX, E ·X = 0, F ·X = Y,

K · Y = q−1Y, E · Y = X, F · Y = 0.

Then one can form the smash product algebra A := Kq[X,Y ]⋊ Uq(sl2). For details about smash
product algebras, see [22]. The generators and defining relations for this algebra are given in the
Introduction.

Generalized Weyl algebras. Definition, [1, 2, 3]. Let D be a ring, σ be an automorphism
of D and a is an element of the centre of D. The generalized Weyl algebra A := D(σ, a) :=
D[X,Y ;σ, a] is a ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, Y X = a and XY = σ(a).

The algebra A = ⊕n∈ZAn is Z-graded where An = Dvn, vn = Xn for n > 0, vn = Y −n for n < 0
and v0 = 1.

Definition, [6]. Let D be a ring and σ be its automorphism. Suppose that elements b and ρ
belong to the centre of the ring D, ρ is invertible and σ(ρ) = ρ. Then E := D[X,Y ;σ, b, ρ] is a
ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, and XY − ρY X = b.

An element d of a ring D is normal if dD = Dd. The next proposition shows that the rings E
are GWAs and under a (mild) condition they have a ‘canonical’ normal element.
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Proposition 2.1. Let E = D[X,Y ;σ, b, ρ]. Then
1. [6, Lemma 1.3] The following statements are equivalent:

(a) [6, Corollary 1.4] C = ρ(Y X + α) = XY + σ(α) is a normal element in E for some
central element α ∈ D,

(b) ρα− σ(α) = b for some central element α ∈ D.
2. [6, Corollary 1.4] If one of the equivalent conditions of statement 1 holds then the ring

E = D[C][X,Y ;σ, a = ρ−1C − α] is a GWA where σ(C) = ρC.

The next proposition is a corollary of Proposition 2.1 when ρ = 1. The rings E with ρ = 1
admit a ‘canonical’ central element (under a mild condition).

Proposition 2.2. Let E = D[X,Y ;σ, b, ρ = 1]. Then
1. [6, Lemma 1.5] The following statements are equivalent:

(a) C = Y X + α = XY + σ(α) is a central element in E for some central element α ∈ D,
(b) α− σ(α) = b for some central element α ∈ D.

2. [6, Corollary 1.6] If one of the equivalent conditions of statement 1 holds then the ring
E = D[C][X,Y ;σ, a = C − α] is a GWA where σ(C) = C.

An involution τ of A. The algebra A admits the following involution τ (see [15], p. 693):

τ(E) = −FK, τ(F ) = −K−1E, τ(K) = K, τ(K−1) = K−1, τ(X) = Y, τ(Y ) = X. (1)

For an algebra B, we denote by Z(B) its centre.
The algebra E is a GWA. Let E be the subalgebra of A which is generated by the elements

E, X and Y . The elements E, X and Y satisfying the defining relations

EX = qXE, Y X = q−1XY, and EY − q−1Y E = X.

Therefore, E = K[X][E, Y ;σ, b = X, ρ = q−1] where σ(X) = qX. The polynomial α = q
1−q2

X

is a solution to the equation q−1α − σ(α) = X. Hence, by Proposition 2.1, the element C̃ =

q−1(Y E + q
1−q2

X) = EY + q2

1−q2
X is a normal element of E and the algebra E is a GWA

E = K[C̃,X][E, Y ;σ, a := qC̃ −
q

1− q2
X] where σ(C̃) = q−1C̃, σ(X) = qX.

Let

ϕ := (1− q2)C̃. (2)

Then ϕ = X + (q−1 − q)Y E = (1− q2)EY + q2X. Hence,

E = K[ϕ,X][E, Y ;σ, a =
ϕ−X

q−1 − q
] (3)

where σ(ϕ) = q−1ϕ and σ(X) = qX. Using the defining relations of the GWA E, we see that the
set {Y i | i ∈ N} is a left and right Ore set in E. The localization of the algebra E at this set,
EY := K[ϕ,X][Y ±1;σ] is the skew Laurent polynomial ring. Similarly, the set {Xi | i ∈ N} is a
left and right Ore set in EY and the algebra

EY,X = K[ϕ,X±1][Y ±1;σ] = K[Φ]⊗K[X±1][Y ±1;σ] (4)

is the tensor product of the polynomial algebra K[Φ] where Φ = Xϕ and the Laurent polynomial
algebra K[X±1][Y ;σ] which is a central simple algebra. In particular, Z(EY,X) = K[Φ]. So, we
have the inclusion of algebras E ⊆ EY ⊆ EY,X .

The next lemma describes the centre of the algebras E, EY and EY,X .

Lemma 2.3. Z(E) = Z(EY ) = Z(EY,X) = K[Φ] is a polynomial algebra where Φ := Xϕ.
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Proof. By (4), K[Φ] ⊆ Z(E) ⊆ Z(EY ) ⊆ Z(EY,X) = K[Φ], and the result follows.

We have the following commutation relations

Xϕ = ϕX, Y ϕ = qϕY, Eϕ = q−1ϕE, Kϕ = qϕK. (5)

XΦ = ΦX, Y Φ = ΦY, EΦ = ΦE, KΦ = q2ΦK. (6)

Lemma 2.4. 1. [F,ϕ] = Y K.
2. The powers of ϕ form a left and right Ore set in A.
3. The powers of X form a left and right Ore set in A.
4. The powers of Y form a left and right Ore set in A.

Proof. 1. [F,ϕ] = [F,X + (q−1 − q)Y E] = Y K−1 + (q−1 − q)Y (−K−K−1

q−q−1 ) = Y K.

2. Statement 2 follows at once from the equalities (5) and statement 1.
3. The statement follows at once from the defining relations of the algebra A where X is

involved.
4. The statement follows at once from the defining relations of the algebra A where Y is

involved.

The algebra F is a GWA. Let F be the subalgebra of A which is generated by the elements
F,X and Y ′ := Y K−1. The elements F,X and Y ′ satisfy the defining relations

FY ′ = q−2Y ′F, XY ′ = q2Y ′X and FX −XF = Y ′.

Therefore, the algebra F = K[Y ′][F,X;σ, b = Y ′, ρ = 1] where σ(Y ′) = q−2Y ′. The polynomial
α = 1

1−q−2Y
′ ∈ K[Y ′] is a solution to the equation α−σ(α) = Y ′. By Proposition 2.2, the element

C ′ := XF +
1

1− q−2
Y ′ = FX +

1

q2 − 1
Y ′

belongs to the centre of the GWA

F = K[C ′, Y ′][F,X;σ, a = C ′ −
1

1− q−2
Y ′].

Let

ψ := (1− q2)C ′. (7)

Then ψ = (1− q2)FX − Y ′ = (1− q2)XF − q2Y ′ ∈ Z(F) and

F = K[ψ, Y ′][F,X;σ, a =
ψ + q2Y ′

1− q2
] (8)

where σ(ψ) = ψ and σ(Y ′) = q−2Y ′. Similar to the algebra E, the localization of the algebra F
at the powers of the element X is equal to FX := K[ψ, Y ′][X±1;σ−1] = K[ψ] ⊗ K[Y ′][X±1;σ−1]
where σ is defined in (8). The centre of the algebra K[Y ′][X±1;σ−1] is K. Hence, Z(FX) = K[ψ].

Lemma 2.5. Z(F) = Z(FX) = K[ψ].

Proof. The result follows from the inclusions K[ψ] ⊆ Z(F) ⊆ Z(FX) = K[ψ].

The GWA A. Let T be the subalgebra of A generated by the elements K±1, X and Y .
Clearly,

T := Λ[K±1; τ ] where Λ := K〈X,Y |XY = qY X〉 and τ(X) = qX and τ(Y ) = q−1Y. (9)

It is easy to determine the centre of the algebra T .
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Lemma 2.6. Z(T ) = K[z] where z := KYX.

Proof. Clearly, the element z = KYX belongs to the centre of the algebra T . The centralizer
CT (K) is equal to K[K±1, Y X]. Then the centralizer CT (K,X) is equal to K[z], hence Z(T ) =
K[z].

Let A be the subalgebra of A generated by the algebra T and the elements ϕ and ψ. The
generators K±1, X, Y, ϕ and ψ satisfy the following relations:

ϕX = Xϕ, ϕY = q−1Y ϕ, ϕK = q−1Kϕ,

ψX = Xψ, ψY = qY ψ, ψK = qKψ, ϕψ − ψϕ = −q(1− q2)z.

These relations together with the defining relations of the algebra T are defining relations of the
algebra A. In more detail, let, for a moment, A′ be the algebra generated by the defining relations
as above. We will see A′ = A. Indeed, A′ = T [ϕ, ψ;σ, b = −q(1 − q2)z, ρ = 1]. Hence, the set of
elements {KiXjY kϕlψm | i ∈ Z, j, k, l,m ∈ N} is a basis of the algebra A′. This set is also a basis
for the algebra A. This follows from the explicit expressions for the elements ϕ = (q−1−q)Y E+X
and ψ = (1−q2)XF−q2Y K−1. In particular, the leading terms of ϕ and ψ are equal to (q−1−q)Y E
and (1− q2)XF , respectively (deg(K±1) = 0). So, A = A′, i.e.,

A = T [ϕ, ψ;σ, b = −q(1− q2)z, ρ = 1] where σ(X) = X, σ(Y ) = q−1Y and σ(K) = q−1K.

Recall that the element b belongs to the centre of the algebra T (Lemma 2.6). The element α = q3z
is a solution to the equation α− σ(α) = b. Then, by Proposition 2.2, the element

C ′′ = ψϕ+ q3z = ϕψ + qz

is a central element of the algebra A (since σ(z) = q−2z) which is the GWA

A = T [C ′′][ϕ, ψ;σ, a = C ′′ − q3z] where σ(C ′′) = C ′′, σ(X) = X, σ(Y ) = q−1Y, σ(K) = q−1K.

Let C := C′′

1−q2
. Then

C = (1− q2)−1(ψϕ+ q3z) = (1− q2)−1(ϕψ + qz), (10)

is a central element of the GWA

A = T [C][ϕ, ψ;σ, a = (1− q2)C − q3z] (11)

where σ(C) = C, σ(X) = X,σ(Y ) = q−1Y and σ(K) = q−1K. Using expressions of the elements
ϕ = X + (q−1 − 1)Y E and ψ = (1− q2)XF − q2Y K−1, we see that

AX,Y = AX,Y . (12)

Hence, C ∈ Z(A). We now show our first main result: Z(A) = K[C] (Theorem 2.8). In order to
show this fact we need to consider the localization AX,Y,ϕ. Let T := TX,Y = ΛX,Y [K

±1; τ ] where
τ is defined in (9) and ΛX,Y is the localization of the algebra Λ at the powers of the elements X
and Y . By (12) and (11),

AX,Y,ϕ = AX,Y,ϕ = TX,Y [C][ϕ
±1;σ] = K[C]⊗ T[ϕ±1;σ] = K[C]⊗ Λ′ (13)

where Λ′ = T[ϕ±1;σ] and σ is as in (11).

Lemma 2.7. 1. Z(Λ′) = K.
2. The algebra Λ′ is a simple algebra.

Proof. 1. Let u =
∑
λi,j,k,lK

iXjY kϕl ∈ Z(Λ), where λi,j,k,l ∈ K. Since [K,u] = 0, we have
j − k + l = 0. Similarly, since [X,u] = [Y, u] = [ϕ, u] = 0, we have the following equations:
−i+ k = 0, i− j + l = 0, −i− k = 0, respectively. These equations imply that i = j = k = l = 0.
Thus Z(Λ) = K.

2. Since the algebra Λ′ is central, it is a simple algebra, by [16, Corollary 1.5.(a)]

6



Theorem 2.8. The centre Z(A) of the algebra A is the polynomial algebra in one variable K[C].

Proof. By (13) and Lemma 2.7.(1), Z(AX,Y,ϕ) = K[C]. Hence, Z(A) = K[C].

Using the defining relations of the algebra A, we can rewrite the central element C as follows:

C = (1− q2)FY XE + FX2 − Y 2K−1E −
1

1− q2
Y K−1X +

q2

1− q2
Y KX. (14)

C = (FE − q2EF )Y X + q2FX2 −K−1EY 2. (15)

C = FX(EY − qY E)−K−1EY 2 +
q3

1− q2
(K −K−1)Y X. (16)

C = (1− q2)FEY X +
q3

1− q2
(K −K−1)Y X + q2FX2 −K−1EY 2. (17)

The subalgebra A of A. Let A be the subalgebra of A generated by the elements K±1, E,X
and Y . The properties of this algebra were studied in [8] where the prime, maximal and primitive
spectrum of A were found. In particular, the algebra

A = E[K±1; τ ] (18)

is a skew Laurent polynomial algebra where τ(E) = q2E, τ(X) = qX and τ(Y ) = q−1Y . The
elements X,ϕ ∈ A are normal elements of the algebra A. The set SX,ϕ := {Xiϕj | i, j ∈ N} is a left
and right denominator set of the algebras A and A. Clearly AX,ϕ := S−1

X,ϕA ⊆ AX,ϕ := S−1
X,ϕA.

Lemma 2.9. ([8]) The algebra AX,ϕ is a central simple algebra.

Using the defining relations of the algebra A, the algebra A is a skew polynomial algebra

A = A[F ;σ, δ] (19)

where σ is an automorphism of A such that σ(K) = q2K,σ(E) = E, σ(X) = X,σ(Y ) = Y ; and

δ is a σ-derivation of the algebra A such that δ(K) = 0, δ(E) = K−K−1

q−q−1 , δ(X) = Y K−1 and

δ(Y ) = 0. For an element a ∈ A, let degF (a) be its F -degree. Since the algebra A is a domain,
degF (ab) = degF (a) + degF (b) for all elements a, b ∈ A.

Lemma 2.10. The algebra AX,ϕ = K[C]⊗AX,ϕ is a tensor product of algebras.

Proof. Recall that ϕ = EY − qY E. Then the equality (16) can be written as C = FXϕ −

K−1EY 2 + q3

1−q2
(K −K−1)Y X. The element Xϕ is invertible in AX,ϕ. Now, using (19), we see

that AX,ϕ = AX,ϕ[F ;σ, δ] = AX,ϕ[C] = K[C]⊗AX,ϕ.

Quantum Gelfand–Kirillov conjecture for A. If we view A as the quantum analogue of
the enveloping algebra U(V2⋊sl2), a natural question is whether A satisfies the quantum Gelfand–
Kirillov conjecture. Recall that a quantum Weyl field over K is the field of fractions of a quantum
affine space. We say that a K-algebra A admitting a skew field of fractions Frac(A) satisfies the
quantum Gelfand–Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl field over a
purely transcendental field extension of K; see [11, II.10, p. 230].

Theorem 2.11. The quantum Gelfand–Kirillov conjecture holds for the algebra A.

Proof. This follows immediately from (13).

3 Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal ideals of the
algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9). It is proved that every nonzero ideal of
the algebra A has nonzero intersection with the centre of A (Corollary 3.8). The set of completely
prime ideals of the algebra A is described in Corollary 3.12. Our goal is a description of the prime
spectrum of the algebra A together with their inclusions. Next several results are steps in this
direction, they are interesting in their own right.
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Lemma 3.1. The following identities hold in the algebra A.

1. FXi = XiF + 1−q2i

1−q2
Y K−1Xi−1.

2. XF i = F iX − 1−q2i

1−q2
Y F i−1K−1.

Proof. By induction on i and using the defining relations of A.

Let R be a ring. For an element r ∈ R, we denote by (r) the (two-sided) ideal of R generated
by the element r.

Lemma 3.2. 1. In the algebra A, (X) = (Y ) = (ϕ) = AX +AY .
2. A/(X) ≃ Uq(sl2).

Proof. 1. The equality (X) = (Y ) follows from the equalities FX = Y K−1 + XF and EY =
X + q−1Y E. The inclusion (ϕ) ⊆ (Y ) follows from the equality ϕ = EY − qY E. The reverse
inclusion (ϕ) ⊇ (Y ) follows from Y = [F,ϕ]K−1 (Lemma 2.4). Let us show that XA ⊆ AX+AY .
Recall thatX is a normal element ofA. Then by (19),XA =

∑
k>0 AXF

k = AX+
∑

k>1 AXF
k ⊆

AX+AY (the inclusion follows from Lemma 3.1.(2)). Then (X) = AXA ⊆ AX+AY ⊆ (X,Y ) =
(X), i.e., (X) = AX +AY .

2. By statement 1, A/(X) = A/(X,Y ) ≃ Uq(sl2).

The next result shows that the elements X and ϕ are rather special.

Lemma 3.3. 1. For all i > 1, (Xi) = (X)i.
2. For all i > 1, (ϕi)X = (ϕ)iX = AX .

Proof. 1. To prove the statement we use induction on i. The case i = 1 is obvious. Suppose that
i > 1 and the equality (Xj) = (X)j holds for all 1 6 j 6 i − 1. By Lemma 3.1.(1), the element
Y Xi−1 ∈ (Xi). Now, (X)i = (X)(X)i−1 = (X)(Xi−1) = AXAXi−1A ⊆ (Xi) + AYXi−1A ⊆
(Xi). Therefore, (X)i = (Xi).

2. It suffices to show that (ϕi)X = AX for all i > 1. The case i = 1 follows from the equality of
ideals (ϕ) = (X) in the algebra A (Lemma 3.2). We use induction on i. Suppose that the equality

is true for all i′ < i. By Lemma 2.4.(1), [F,ϕi] = 1−q−2i

1−q−2 Y Kϕ
i−1, hence Y ϕi−1 ∈ (ϕi). Using the

equalities EY − q−1Y E = X and Eϕ = q−1ϕE, we see that

EY ϕi−1 − q−iY ϕi−1E = (EY − q−1Y E)ϕi−1 = Xϕi−1.

Now, (ϕi)X ⊇ (ϕi−1)X = AX , by induction. Therefore, (ϕi)X = AX for all i.

One of the most difficult steps in classification of the prime ideals of the algebra A is to show
that each maximal ideal q of the centre Z(A) = K[C] generates the prime ideal Aq of the algebra
A. There are two distinct cases: q 6= (C) and q = (C). The next theorem deals with the first case.

Theorem 3.4. Let q ∈ Max(K[C]) \ {(C)}. Then
1. The ideal (q) := Aq of A is a maximal, completely prime ideal.
2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q′ where q′ = q′(C) is an irreducible monic polynomial such that
q′(0) ∈ K∗.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a maximal ideal of A: Consider the
chain of localizations

A/(q) −→
AX

(q)X
−→

AX,ϕ

(q)X,ϕ

.

By Lemma 2.10,
AX,ϕ

(q)X,ϕ
≃ Lq ⊗ AX,ϕ where Lq := K[C]/q is a finite field extension of K. By

Lemma 2.9, the algebra AX,ϕ is a central simple algebra. Hence, the algebra AX

(q)X
is simple iff

8



(ϕi, q)X = AX for all i > 1. By Lemma 3.3.(2), (ϕi)X = AX for all i > 1. Therefore, the algebra
AX

(q)X
is simple. Hence, the algebra A/(q) is simple iff (Xi, q) = A for all i > 1.

By Lemma 3.3.(1), (Xi) = (X)i for all i > 1. Therefore, (Xi, q) = (X)i + (q) for all i > 1. It
remains to show that (X)i+(q) = A for all i > 1. By Lemma 3.2.(1), (X) = (X,Y ). If i = 1 then

(X) + (q) = (X,Y, q) =
(
X,Y, q′(0)

)
= A, by (14) and q′(0) ∈ K∗. Now, A = Ai =

(
(X) + (q)

)i
⊆

(X)i + (q) ⊆ A, i.e., (X)i + (q) = A, as required.
(ii) (q) is a completely prime ideal of A: The set S = {Xiϕj | i, j ∈ N} is a denominator

set of the algebra A. Since
AX,ϕ

(q)X,ϕ
≃ S−1(A/(q)) is a (nonzero) algebra and (q) is a maximal

ideal of the algebra A, we have that torS(A/(q)) is an ideal of the algebra A/(q) distinct from
A/(q), hence torS(A/(q)) = 0. This means that the algebra A/(q) is a subalgebra of the algebra
AX,ϕ

(q)X,ϕ
≃ Lq ⊗AX,ϕ which is a domain. Therefore, the ideal (q) of A is a completely prime ideal.

(iii) Z(A/(q)) = Lq: By Lemma 2.9, Z(AX,ϕ) = K, and A/(q) ⊆ AX,ϕ

(q)X,ϕ
≃ Lq ⊗ AX,ϕ, hence

Z(A/(q)) = Lq.

The case where q = (C) is dealt with in the next proposition.

Proposition 3.5. A ∩ (C)X,ϕ = (C) and the ideal (C) of A is a completely prime ideal.

Proof. Recall that A = A[F ;σ, δ] (see (19)), Φ = Xϕ ∈ A is a product of normal elements X and
ϕ in A and, by (16), the central element C can be written as C = ΦF + s where

ỹ :=
q4

1− q2
Y K−1 −

1

1− q2
Y K and s = −q2K−1EY 2 −Xỹ.

(i) If Xf ∈ (C) for some f ∈ A then f ∈ (C): Notice that Xf = Cg for some g ∈ A. To prove
the statement (i), we use induction on the degree m = degF (f) of the element f ∈ A. Notice
that A is a domain and degF (fg) = degF (f) + degF (g) for all f, g ∈ A. The case when m 6 0
i.e., f ∈ A, is obvious since the equality Xf = Cg holds iff f = g = 0 (since degF (Xf) 6 0 and
degF (Cg) > 1 providing g 6= 0). So, we may assume that m > 1. We can write the element f as
a sum f = f0 + f1F + · · ·+ fmF

m where fi ∈ A and fm 6= 0. The equality Xf = Cg implies that
degF (g) = degF (Xf) − degF (C) = m − 1. Therefore, g = g0 + g1F + · · · + gm−1F

m−1 for some
gi ∈ A and gm−1 6= 0. Then (where δ is defined in (19))

Xf0+Xf1F + · · ·+XfmF
m = (ΦF + s)(g0 + g1F + · · ·+ gm−1F

m−1)

= Φ
(
σ(g0)F + δ(g0)

)
+Φ

(
σ(g1)F + δ(g1)

)
F + · · ·+Φ

(
σ(gm−1)F + δ(gm−1)

)
Fm−1

+ sg0 + sg1F + · · ·+ sgm−1F
m−1

= Φδ(g0) + sg0 +
(
Φσ(g0) + Φδ(g1) + sg1

)
F + · · ·+Φσ(gm−1)F

m. (20)

Comparing the terms of degree zero we have the equality Xf0 = Φδ(g0) + sg0 = Xϕδ(g0) +
(−q2K−1EY 2−Xỹ)g0, i.e., X(f0−ϕδ(g0)+ ỹg0) = −q2K−1EY 2g0. All the terms in this equality
belong to the algebra A. Recall that X is a normal element in A such that A/AX is a domain
(see [8]) and the element K−1EY 2 does not belong to the ideal AX. Hence we have g0 ∈ AX,
i.e., g0 = Xh0 for some h0 ∈ A. Now the element g can be written as g = Xh0+ g

′F where g′ = 0
if m = 1, and degF (g

′) = m − 2 = degF (g) − 1 if m > 2. Now, Xf = C(Xh0 + g′F ) and so
X(f −Ch0) = Cg′F . Notice that Cg′F has zero constant term as a noncommutative polynomial
in F (where the coefficients are written on the left). Therefore, the element f − Ch0 has zero
constant term, and hence can be written as f − Ch0 = f ′F for some f ′ ∈ A with

degF (f
′) + degF (F ) = degF (f

′F ) = degF (f
′) + 1

= degF (f − Ch0) 6 max
(
degF (f), degF (Ch0)

)
= m

Notice that, degF (f
′) < degF (f). Now, Cg′F = X(f − Ch0) = Xf ′F , hence Xf ′ = Cg′ ∈ (C)

(by deleting F ). By induction, f ′ ∈ (C), and then f = Ch0 + f ′F ∈ (C), as required.
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(ii) If ϕf ∈ (C) for some f ∈ A then f ∈ (C): Notice that ϕf = Cg for some g ∈ A. To prove
the statement (ii) we use similar arguments to the ones given in the proof of the statement (i). We
use induction on m = degF (f). The case where m 6 0, i.e., f ∈ A is obvious since the equality
ϕf = Cg holds iff f = g = 0 (since degF (ϕf) 6 0 and degF (Cg) > 1 providing g 6= 0). So we may
assume that m > 1. We can write the element f as a sum f = f0+f1F + · · ·+fmF

m where fi ∈ A
and fm 6= 0. Then the equality ϕf = Cg implies that degF (g) = degF (ϕf) − degF (C) = m − 1.
Therefore, g = g0 + g1F + · · ·+ gm−1F

m−1 where gi ∈ A and gm−1 6= 0. Then replacing X by ϕ
in (20), we have the equality

ϕf0 + ϕf1F + · · ·+ ϕfmF
m = Φδ(g0) + sg0 + · · ·+Φσ(gm−1)F

m. (21)

The element s can be written as a sum s = (− q
1−q2

ϕK−1 + 1
1−q2

KX)Y . Then equating the

constant terms of the equality (21) and then collecting terms that are multiple of ϕ we obtain the
equality in the algebra A: ϕ(f0 − Xδ(g0) +

q
1−q2

K−1Y g0) =
1

1−q2
KXY g0. The element ϕ ∈ A

is a normal element such that the factor algebra A/Aϕ is a domain (see [8]) and the element
KXY does not belong to the ideal Aϕ. Therefore, g0 ∈ Aϕ, i.e., g0 = ϕh0 for some element
h0 ∈ A. Recall that degF (g) = m − 1. Now, g = ϕh0 + g′F where g′ ∈ A and g′ = 0 if
m = 1, and degF (g

′) = m − 2 = degF (g) − 1 if m > 2. So, ϕf = Cg = C(ϕh0 + g′F ). Hence,
ϕ(f − Ch0) = Cg′F , and so f − Ch0 = f ′F for some f ′ ∈ A with

degF (f
′) + degF (F ) = degF (f

′F ) = degF (f
′) + 1

= degF (f − Ch0) 6 max
(
degF (f), degF (Ch0)

)
= m.

Notice that, degF (f
′) < degF (f). Now, Cg′F = ϕ(f − Ch0) = ϕf ′F , hence ϕf ′ = Cg′ ∈ (C) (by

deleting F ). Now, by induction, f ′ ∈ (C), and then f = Ch0 + f ′F ∈ (C), as required.
(iii) A ∩ (C)X,ϕ = (C): Let u ∈ A ∩ (C)X,ϕ. Then X

iϕju ∈ (C) for some i, j ∈ N. It remains
to show that u ∈ (C). By the statement (i), ϕju ∈ (C), and then by the statement (ii), u ∈ (C).

(iv) The ideal (C) of A is a completely prime ideal : By Lemma 2.10, AX,ϕ/(C)X,ϕ ≃ AX,ϕ, in
particular, AX,ϕ/(C)X,ϕ is a domain. By the statement (iii), the algebra A/(C) is a subalgebra
of AX,ϕ/(C)X,ϕ, so A/(C) is a domain. This means that the ideal (C) is a completely prime ideal
of A.

Let R be a ring. Then each element r ∈ R determines two maps from R to R, r· : x 7→ rx and
·r : x 7→ xr where x ∈ R. The next proposition is used in the proof of one of the main results of
the paper, Theorem 3.7. It explains why the elements (like X and ϕ) that satisfy the property of
Lemma 3.3 are important in description of prime ideals.

Proposition 3.6. ([8].) Let R be a Noetherian ring and s be an element of R such that Ss :=
{si | i ∈ N} is a left denominator set of the ring R and (si) = (s)i for all i > 1 (e.g., s is a
normal element such that ker(·s) ⊆ ker(s·)). Then Spec (R) = Spec (R, s) ⊔ Specs(R) where
Spec(R, s) := {p ∈ Spec (R) | s ∈ p}, Specs(R) := {q ∈ Spec (R) | s /∈ q} and
(a) the map Spec(R, s) 7→ Spec (R/(s)), p 7→ p/(s), is a bijection with the inverse q 7→ π−1(q)

where π : R→ R/(s), r 7→ r + (s),
(b) the map Specs(R) → Spec (Rs), p 7→ S−1

s p, is a bijection with the inverse q 7→ σ−1(q) where
σ : R→ Rs := S−1

s R, r 7→ r
1 .

(c) For all p ∈ Spec (R, s) and q ∈ Specs(R), p 6⊆ q.

The next theorem gives an explicit description of the poset (Spec (A),⊆).

Theorem 3.7. Let U := Uq(sl2). The prime spectrum of the algebra A is a disjoint union

Spec(A) = Spec(U) ⊔ Spec(AX,ϕ) = {(X, p) | p ∈ Spec(U)} ⊔ {Aq | q ∈ Spec(K[C])}. (22)
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Furthermore,

Spec (U) \ {0}

(X)

(C)

0

{
Aq | q ∈ Max (K[C]) \ {(C)}

}

(23)

Proof. By Lemma 3.2.(2), A/(X) ≃ U . By Lemma 3.3.(1) and Proposition 3.6, Spec (A) =
Spec (A,X) ⊔ Spec (AX). By Lemma 3.3.(2) and Proposition 3.6, Spec (AX) = Spec (AX,ϕ).
Therefore,

Spec (A) = {(X, p) | p ∈ Spec (U)} ⊔ {A ∩AX,ϕq | q ∈ Spec (K[C])}.

Finally, by Theorem 3.4.(1), A ∩AX,ϕq = (q) for all q ∈ Max (K[C]) \ {(C)}. By Proposition 3.5,
A ∩ AX,ϕC = (C). Therefore, (22) holds. For all q ∈ Max (K[C]) \ {(C)}, the ideals Aq of A are
maximal. By (14), AC ⊆ (X). Therefore, (23) holds.

The next corollary shows that every nonzero ideal of the algebra A meets the centre of A.

Corollary 3.8. If I is a nonzero ideal of the algebra A then I ∩K[C] 6= 0.

Proof. Suppose that the result is not true, let us choose an ideal J 6= 0 maximal such that
J ∩ K[C] = 0. We claim that J is a prime ideal. Otherwise, suppose that J is not prime, then
there exist ideals p and q such that J $ p, J $ q and pq ⊆ J. By the maximality of J , p∩K[C] 6= 0
and q∩K[C] 6= 0. Then J ∩K[C] ⊇ pq∩K[C] 6= 0, a contradiction. So, J is a prime ideal, but by
Theorem 3.7 for all nonzero primes P , P ∩K[C] 6= 0, a contradiction. Therefore, for any nonzero
ideal I, I ∩K[C] 6= 0.

The next result is an explicit description of the set of maximal ideals of the algebra A.

Corollary 3.9. Max (A) = Max (U) ⊔
{
Aq | q ∈ Max (K[C]) \ {(C)}

}
.

Proof. It is clear by (23).

In the following lemma, we define a family of left A-modules that has bearing of Whittaker
modules. It shows that these modules are simple A-modules and their annihilators are equal to
(C).

Lemma 3.10. For λ ∈ K∗, we define the left A-module W (λ) := A/A(X − λ, Y, F ). Then
1. The module W (λ) is a simple A-module.
2. annA(W (λ)) = (C).

Proof. 1. Let 1̄ = 1 + A(X − λ, Y, F ) be the canonical generator of the A-module W (λ). Then
W (λ) =

∑
i∈N

EiK[K±1] 1̄. Suppose that V is a nonzero submodule of W (λ), we have to show
that V = W (λ). Let v =

∑n
i=0E

ifi1̄ be a nonzero element of the module V where fi ∈ K[K±1]
and fn 6= 0. Then

Y v =

n∑

i=1

(qiEiY −
q(1− q2i)

1− q2
XEi−1)fi1̄ =

n∑

i=1

−
q(1− q2i)

1− q2
XEi−1fi1̄.

By induction, we see that Y nv = P 1̄ ∈ V where P is a nonzero Laurent polynomial in K[K±1].
Then it follows that 1̄ ∈ V , and so V =W (λ).

2. It is clear that annA(W (λ)) ⊇ (C) and X /∈ annA(W (λ)). By (23), annA(W (λ)) = (C).
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The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 3.11. Prim (A) = Prim (U) ⊔
{
Aq | q ∈ SpecK[C] \ {0}

}
.

Proof. Clearly, Prim (U) ⊆ Prim (A) and {Aq | q ∈ Max (K[C]) \ {CK[C]}} ⊆ Prim (A) since Aq
is a maximal ideal (Corollary 3.9). By Corollary 3.8, 0 is not a primitive ideal. In view of (23) it
suffices to show that (C) ∈ Prim (A). But this follows from Lemma 3.10.

The next corollary is a description of the set Specc(A) of completely prime ideals of the algebra
A.

Corollary 3.12. The set Specc(A) of completely prime ideals of A is equal to

Specc(A) = Specc(U) ⊔
{
Aq | q ∈ Spec (K[C])

}

=
{
(X, p) | p ∈ Spec (U), p 6= annU (M) for some simple finite dimensional

U -module M of dimK(M) > 2
}

⊔
{
Aq | q ∈ Spec (K[C])

}
.

Proof. The result follows from Theorem 3.4.(1) and Proposition 3.5.

4 The centralizer CA(K) of the element K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer CA(K) of
the element K in the algebra A.

Proposition 4.1. The algebra CA(K) = K〈K±1, FE, Y X, EY 2, FX2 〉 is a Noetherian do-
main.

Proof. Since A is a domain, then so is its subalgebra CA(K). Notice that the algebra A =
⊕

i∈Z
Ai

is a Z-graded Noetherian algebra where Ai = {a ∈ A |KaK−1 = qia}. Then the algebra A0 =
CA(K) is a Noetherian algebra.

The algebra Uq(sl2) is a GWA:

Uq(sl2) ≃ K[K±1,Ω]
[
E,F ;σ, a := Ω−

qK + q−1K−1

(q − q−1)2
]

where Ω = FE + qK+q−1K−1

(q−q−1)2 , σ(K) = q−2K and σ(Ω) = Ω. In particular, Uq(sl2) is a Z-graded
algebra Uq(sl2) =

⊕
i∈Z

Dvi where D := K[K±1,Ω] = K[K±1, FE], vi = Ei if i > 1, vi = F |i| if
i 6 −1 and v0 = 1. The quantum plane Kq[X,Y ] is also a GWA:

Kq[X,Y ] ≃ K[t][X,Y ;σ, t] where t := Y X and σ(t) = qt.

Therefore, the quantum plane is a Z-graded algebra Kq[X,Y ] =
⊕

j∈Z
K[t]wj where wj = Xj if

j > 1, wj = Y |j| if j 6 −1 and w0 = 1. Since A = Uq(sl2) ⊗ Kq[X,Y ] (tensor product of vector
spaces), and notice that Et = tE +X2, F t = tF + q−2K−1Y 2, we have

A = Uq(sl2)⊗Kq[X,Y ] =
⊕

i∈Z

Dvi ⊗
⊕

j∈Z

K[t]wj =
⊕

i,j∈Z

D[t]viwj . (24)

By (24), for each k ∈ Z, Ak =
⊕

i,j∈Z, 2i+j=kD[t]viwj =
⊕

i∈Z
D[t]viwk−2i. Then CA(K) =

A0 =
⊕

i>0D[t]EiY 2i ⊕
⊕

j>1D[t]F jX2j . Notice that EY 2 · t = q−2t · EY 2 + qt2 and FX2 · t =

q2t · FX2 + q−1K−1t2. By induction, one sees that for all i, j > 0,

EiY 2i ∈
⊕

n∈N

K[t](EY 2)n and F jX2j ∈
⊕

n∈N

K[K±1, t](FX2)n.

Hence, CA(K) = A0 =
⊕

i>0D[t](EY 2)i ⊕
⊕

j>1D[t](FX2)j . In particular, the centralizer

CA(K) = K〈K±1, FE, Y X, EY 2, FX2 〉.
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Lemma 4.2. 1. CAX,Y,ϕ
(K) = K[C,K±1] ⊗ Kq2 [(Y X)±1, (Y ϕ)±1] is a tensor product of al-

gebras where Kq2 [(Y X)±1, (Y ϕ)±1] is a central, simple, quantum torus with Y X · Y ϕ =
q2Y ϕ · Y X.

2. GK
(
CAX,Y,ϕ

(K)
)
= 4.

3. GK(CA(K)) = 4.
4. AX,Y,ϕ =

⊕
i∈Z

CAX,ϕ,Y
(K)Y i.

Proof. 1. By (13), AX,Y,ϕ = K[C]⊗Λ′ where Λ′ is a quantum torus. Then CAX,Y,ϕ
(K) = K[C]⊗

CΛ′(K). Since Λ′ is a quantum torus, it is easy to see that CΛ′(K) =
⊕

i,j,k∈Z
Ki(Y X)j(Y ϕ)k,

i.e., CΛ′(K) = K[K±1]⊗Kq2 [(Y X)±1, (Y ϕ)±1]. Then statement 1 follows.
2. Statement 2 follows from statement 1.
3. Let R be the subalgebra of CA(K) generated by the elements C, K±1, Y X and Y ϕ.

Then R = K[C,K±1] ⊗ Kq2 [Y X, Y ϕ] is a tensor product of algebras. Clearly R is a Noetherian
algebra of Gelfand–Kirillov dimension 4. So GK (CA(K)) > GK(R) = 4. By statement 2,
GK (CA(K)) 6 GK(CAX,Y,ϕ

(K)) = 4. Hence, GK (CA(K)) = 4.
4. Statement 4 follows from statement 1 and (13).

Proposition 4.3. Let h := ϕX−1, e := EX−2 and t := Y X. Then
1. CAX,ϕ

(K) = K[C,K±1] ⊗ A is a tensor product of algebras where A := K[h±1][t, e;σ, a =
q−2h−1
1−q2

] is a central simple GWA (where σ(h) = q2h).

2. GK(CAX,ϕ
(K)) = 4.

3. AX,ϕ =
⊕

i∈Z
CAX,ϕ

(K)Xi.

Proof. 1. Let A be the subalgebra of CAX,ϕ
(K) generated by the elements h±1, e and t.

(i) A is a central simple GWA: The elements h±1, e and t satisfy the following relations

hh−1 = h−1h = 1, th = q2ht, eh = q−2he, et =
q−2h− 1

1− q2
, te =

h− 1

1− q2
. (25)

Hence, A is an epimorphic image of the GWA A ′ = K[h±1][t, e;σ, a = q−2h−1
1−q2

] where σ(h) = q2h.

Now, we prove that A ′ is a central simple algebra. Let A ′
e be the localization of A ′ at the powers

of the element e. Then A ′
e = K[h±1][e±1;σ′] where σ′(h) = q−2h. Clearly, Z(A ′

e ) = K and A ′
e

is a simple algebra. So, Z(A ′) = Z(A ′
e ) ∩ A ′ = K. To show that A ′ is simple, it suffices to

prove that A ′eiA ′ = A ′ for any i ∈ N. The case i = 1 is obvious, since 1 = q2et− te ∈ A ′eA ′.
By induction, for i > 1, it suffices to show that ei−1 ∈ A ′eiA ′. This follows from the equality

tei = q2ieit− 1−q2i

1−q2
ei−1. So, A ′ is a simple algebra. Now, the epimorphism of algebras A ′ −։ A

is an isomorphism. Hence, A ≃ A ′ is a central simple GWA.
(ii) CAX,ϕ

(K) = K[C,K±1] ⊗ A : By Lemma 2.10, AX,ϕ = K[C] ⊗ AX,ϕ. So, CAX,ϕ
(K) =

K[C] ⊗ CAX,ϕ
(K). By (18), AX,ϕ = EX,ϕ[K

±1; τ ] where τ(E) = q2E, τ(X) = qX, τ(Y ) = q−1Y
and τ(ϕ) = qϕ. Then CAX,ϕ

(K) = K[K±1]⊗Eτ
X,ϕ. To finish the proof of statement (ii), it suffices

to show that Eτ
X,ϕ = A . By (3),

EX,ϕ = K[X±1, ϕ±1]
[
E, Y ;σ, a =

ϕ−X

q−1 − q

]

is a GWA. Then EX,ϕ =
⊕

i>0 K[X±1, ϕ±1]Ei⊕
⊕

j>1 K[X±1, ϕ±1]Y j =
⊕

i>0,k∈Z
K[h±1]EiXk⊕⊕

j>1,k∈Z
K[h±1]Y jXk. Now, it is clear that Eτ

X,ϕ =
⊕

i>0 K[h±1]ei ⊕
⊕

j>1 K[h±1]tj = A .
2. Notice that GK (A ) = 2, statement 2 follows from statement 1.
3. Notice that AX,ϕ =

⊕
i∈Z

CAX,ϕ
(K)Xi, statement 3 then follows from Lemma 2.10.

Defining relations of the algebra CA(K). We have to select appropriate generators of the
algebra CA(K) to make the corresponding defining relations simpler.

Lemma 4.4. We have the following relations
1. Y X · Y ϕ = q2Y ϕ · Y X.

13



2. FE · Y X = q2Y X · FE + q+q−1

1−q2
K−1Y ϕ− q2(qK+q−1K−1)

1−q2
Y X + C.

3. FE · Y ϕ = q−2Y ϕ · FE + qK+q−1K−1

1−q2
Y ϕ− q(1+q2)

1−q2
KYX + C.

Proof. 1. Obvious.
2. Using the defining relations of A, the expression (14) of C, and Y ϕ = q4Y X+q(1−q2)EY 2,

FE · Y X = F (X + q−1Y E)X = FX2 + Y FXE = FX2 + Y (Y K−1 +XF )E

= FX2 + q−2K−1Y 2E + Y XFE

= q2(Y X)(FE) + (1 + q2)K−1EY 2 −
q3K + (q − q3 − q5)K−1

1− q2
Y X + C

= q2Y X · FE +
q + q−1

1− q2
K−1Y ϕ−

q2(qK + q−1K−1)

1− q2
Y X + C.

3. FE · Y ϕ = F (X + q−1Y E)ϕ = FXϕ+ q−2Y FϕE = FXϕ+ q−2Y (ϕF + Y K)E

= q−2Y ϕFE + (q2K +K−1)EY 2 − (
q3(K −K−1)

1− q2
+ q(1 + q2)K)Y X + C

= q−2Y ϕ · FE +
qK + q−1K−1

1− q2
Y ϕ−

q(1 + q2)

1− q2
KYX + C. �

Let Θ := (1− q2)Ω = (1− q2)FE + q2(qK+q−1K−1)
1−q2

∈ Z(Uq(sl2)). By (15), we have

C = (Θ−
qK−1

1− q2
)Y X + q2FX2 −

1

q(1− q2)
K−1Y ϕ. (26)

By Lemma 4.4.(2), (3), we have

Θ · Y X = q2Y X ·Θ+ (q + q−1)K−1Y ϕ+ (1− q2)C. (27)

Θ · Y ϕ = q−2Y ϕ ·Θ− q(1 + q2)KYX + (1− q2)C. (28)

Lemma 4.5. In the algebra CA(K), the following relation holds

Θ · Y X · Y ϕ−
1

q(1− q2)
K−1(Y ϕ)2 − C · Y ϕ =

q7

1− q2
K(Y X)2 − q4C · Y X.

Proof. By (26), Θ · Y X = C + q
1−q2

K−1Y X − q2FX2 + 1
q(1−q2)K

−1Y ϕ. So,

Θ · Y X · Y ϕ = C · Y ϕ+
q

1− q2
K−1Y X · Y ϕ− q2FX2 · Y ϕ+

1

q(1− q2)
K−1(Y ϕ)2.

Then Θ · Y X · Y ϕ − 1
q(1−q2)K

−1(Y ϕ)2 − C · Y ϕ = q
1−q2

K−1Y X · Y ϕ − q2FX2 · Y ϕ. We have

that Y X · Y ϕ = q4(Y X)2 + q(1 − q2)Y X · EY 2, FX2 · Y ϕ = q2FXϕ · Y X and EY 2 · Y X =
q(Y X)2 + q−2Y X · EY 2. Then by (16) we obtain the identity as desired.

Theorem 4.6. Let u := K−1Y ϕ and recall that t = Y X, Θ = (1 − q2)FE + q2(qK+q−1K−1)
1−q2

.

Then the algebra CA(K) is generated by the elements K±1, C, Θ, t and u subject to the following
defining relations:

t · u = q2u · t, (29)

Θ · t = q2t ·Θ+ (q + q−1)u+ (1− q2)C, (30)

Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)K−1C, (31)

Θ · t · u−
1

q(1− q2)
u2 − C · u =

q7

1− q2
t2 − q4K−1C · t, (32)

[K±1, ·] = 0, and [C, ·] = 0 (33)

where (33) means that the elements K±1 and C are central in CA(K). Furthermore, Z(CA(K)) =
K[C,K±1].
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Proof. (i) Generators of CA(K): Notice that Y ϕ = q4Y X + q(1− q2)EY 2. Then by Proposition
4.1 and (26), the algebra CA(K) is generated by the elements C, K±1, Θ, t and u. By (27), (28)
and Lemma 4.5, the elements C, K±1, Θ, t and u satisfy the relations (29)–(33). It remains to
show that these relations are defining relations.

Let C be the K-algebra generated by the symbols C, K±1, Θ, t and u subject to the defining
relations (29)–(33). Then there is a natural epimorphism of algebras f : C −։ CA(K). Our aim
is to prove that f is an algebra isomorphism.

(ii) GK (C ) = 4 and Z(C ) = K[C,K±1]: Let R be the subalgebra of C generated by the
elements C, K±1, t and u. Then R = K[C,K±1]⊗Kq2 [t, u] is a tensor product of algebra where
Kq2 [t, u] := K〈t, u | tu = q2ut〉 is a quantum plane. Clearly, R is a Noetherian algebra of Gelfand–
Kirillov dimension 4. Let Ct,u be the localization of C at the powers of the elements t and u.
Then

Ct,u = K[C,K±1]⊗Kq2 [t
±1, u±1] = Rt,u.

So, GK (Ct,u) = 4. Now, the inclusions R ⊆ C ⊆ Ct,u yield that 4 = GK(R) 6 GK(C ) 6

GK(Ct,u) = 4, i.e., GK (C ) = 4. Moreover, since Kq2 [t
±1, u±1] is a central simple algebra,

Z(Ct,u) = K[C,K±1]. Hence, Z(C ) = K[C,K±1].
By Lemma 4.2.(3), GK (C ) = GK (CA(K)) = 4. In view of [20, Proposition 3.15], to show

that the epimorphism f : C −։ CA(K) is an isomorphism it suffices to prove that C is a domain.
Let D be the algebra generated by the symbols C, K±1, Θ, t and u subject to the defining

relations (29)–(31) and (33). Then D is an Ore extension

D = R[Θ;σ, δ]

where R = K[C,K±1]⊗Kq2 [t, u] is a Noetherian domain; σ(C) = C, σ(K±1) = K±1, σ(t) = q2t,
σ(u) = q−2u; δ is a σ-derivation of R given by the rule δ(C) = δ(K±1) = 0, δ(t) = (q + q−1)u +
(1− q2)C and δ(u) = −q(1 + q2)t+ (1− q2)K−1C. In particular, D is a Noetherian domain. Let

Z := Θtu−
1

q(1− q2)
u2 − Cu−

q7

1− q2
t2 + q4K−1Ct = tuΘ− q̂(u2 + t2)− q2C(u−K−1t) ∈ D

where q̂ = q3

1−q2
. Then Z is a central element of D and C ≃ D/(Z). To prove that C is

a domain, it suffices to show that (Z) is a completely prime ideal of D . Notice that Dt,u =
K[C,K±1, Z]⊗Kq2 [t

±1, u±1] is a tensor product of algebras. Then

Ct,u ≃ Dt,u/(Z)t,u ≃ K[C,K±1]⊗Kq2 [t
±1, u±1] ≃ Rt,u.

In particular, Ct,u is a domain and (Z)t,u is a completely prime ideal of Dt,u.
(iii) If tx ∈ (Z) for some element x ∈ D then x ∈ (Z): Since Z is central in D , tx = Zd for

some element d ∈ D . We prove statement (iii) by induction on the degree degΘ(x) of the element
x. Since D is a domain, degΘ(dd

′) = degΘ(d) + degΘ(d
′) for all elements d, d′ ∈ D . Notice that

degΘ(Z) = 1, the case x ∈ R is trivial. So we may assume that m = degΘ(x) > 1 and then the
element x can be written as x = a0 + a1Θ+ · · ·+ amΘm where ai ∈ R and am 6= 0. The equality
tx = Zd yields that degΘ(d) = m− 1 since degΘ(Z) = 1. Hence, d = d0 + d1Θ+ · · ·+ dm−1Θ

m−1

for some di ∈ R and dm−1 6= 0. Now, the equality tx = Zd can be written as follows:

t(a0 + a1Θ+ · · ·+ amΘm) =
(
tuΘ− q̂(u2 + t2)− q2C(u−K−1t)

)(
d0 + d1Θ+ · · ·+ dm−1Θ

m−1
)
.

Comparing the terms of degree zero in the equality we have ta0 = tuδ(d0)−
(
q̂(u2+ t2)+ q2C(u−

K−1t)
)
d0, i.e., t

(
a0−uδ(d0)+ q̂td0−q

2CK−1d0
)
= −u(q̂u+q2C)d0. All terms in this equality are

in the algebra R. Notice that t is a normal element of R, the elements u /∈ tR and q̂u+ q2C /∈ tR,
we have d0 ∈ tR. So d0 = tr for some element r ∈ R. Then d = tr + wΘ where w = d1 + · · · +
dm−1Θ

m−2 if m > 2 and w = 0 if m = 1. If m = 1 then d = tr and the equality tx = Zd yields
that tx = tZr, i.e., x = Zr ∈ (Z) (by deleting t), we are done. So we may assume that m > 2.
Now, the equality tx = Zd can be written as tx = Z(tr + wΘ), i.e., t(x − Zr) = ZwΘ. This
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implies that x − Zr = x′Θ for some x′ ∈ D where degΘ(x
′) < degΘ(x). Now, tx′Θ = ZwΘ and

hence, tx′ = Zw (by deleting Θ). By induction x′ ∈ (Z). Then x = x′ + Zr ∈ (Z).
(iv) If ux ∈ (Z) for some element x ∈ D then x ∈ (Z): Notice that the elements u and t are

‘symmetric’ in the algebra D , statement (iv) can be proved similarly as that of statement (iii).
(v) D ∩ (Z)t,u = (Z): The inclusion (Z) ⊆ D ∩ (Z)t,u is obvious. Let x ∈ D ∩ (Z)t,u.

Then tiujx ∈ (Z) for some i, j ∈ N. By statement (iii) and statement (iv), x ∈ (Z). Hence,
D ∩ (Z)t,u = (Z).

By statement (v), the algebra D/(Z) is a subalgebra of Dt,u/(Z)t,u. Hence, D/(Z) is a domain.
This completes the proof.

The next proposition gives a K-basis for the algebra C := CA(K).

Proposition 4.7. C = K[C,K±1]⊗K

(⊕
i,j>1 KΘitj⊕

⊕
k>1 KΘk⊕

⊕
l,m>1 KΘlum⊕

⊕
a,b>0 Ku

atb
)
.

Proof. The relations (29)–(32) can be written in the following equivalent form,

u · t = q−2t · u, Θ · t · u =
1

q(1− q2)
u2 + C · u+

q7

1− q2
t2 − q4K−1C · t,

u ·Θ = q2Θ · u+ q3(1 + q2)t− q2(1− q2)K−1C, t ·Θ = q−2Θ · t− q−2(q + q−1)u− q−2(1− q2)C.

On the free monoid W generated by C, K, K ′, Θ, t and u (where K ′ plays the role of K−1), we
introduce the length-lexicographic ordering such that K ′ < K < C < Θ < t < u. With respect to
this ordering the Diamond Lemma (see [10], [11, I.11]) can be applied to C as there is only one
ambiguity which is the overlap ambiguity utΘ and it is resolvable as the following computations
show:

(ut)Θ → q−2tuΘ → q−2t
(
q2Θu+ q3(1 + q2)t− q2(1− q2)K ′C

)
→ tΘu+ q(1 + q2)t2 − (1− q2)K ′Ct

→
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)C

)
u+ q(1 + q2)t2 − (1− q2)K ′Ct

→ q−2Θtu− q−2(q + q−1)u2 − q−2(1− q2)Cu+ q(1 + q2)t2 − (1− q2)K ′Ct

→
q

1− q2
u2 + Cu+

q

1− q2
t2 −K ′Ct,

u(tΘ) → u
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)C

)
→ q−2uΘt− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ q−2
(
q2Θu+ q3(1 + q2)t− q2(1− q2)K ′C

)
t− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ Θut+ q(1 + q2)t2 − (1− q2)K ′Ct− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ q−2Θtu+ q(1 + q2)t2 − (1− q2)K ′Ct− q−2(q + q−1)u2 − q−2(1− q2)Cu

→
q

1− q2
u2 + Cu+

q

1− q2
t2 −K ′Ct.

So, by the Diamond Lemma, the result is proved.

The algebra C λ,µ. For λ ∈ K and µ ∈ K∗, let C λ,µ := C /(C − λ,K − µ). By Theorem 4.6,
the algebra C λ,µ is generated by the images of the elements Θ, t and u in C λ,µ. For simplicity,
we denote by the same letters their images.

Corollary 4.8. Let λ ∈ K and µ ∈ K∗. Then
1. The algebra C λ,µ is generated by the elements Θ, t and u subject to the following defining

relations

t · u = q2u · t, (34)

Θ · t = q2t ·Θ+ (q + q−1)u+ (1− q2)λ, (35)

Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)µ−1λ, (36)

Θ · t · u =
1

q(1− q2)
u2 + λu+

q7

1− q2
t2 − q4µ−1λt. (37)
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2. C λ,µ =
⊕

i,j>1 KΘitj ⊕
⊕

k>1 KΘk ⊕
⊕

l,m>1 KΘlum ⊕
⊕

a,b>0 Ku
atb.

Proof. 1. Statement 1 follows from Theorem 4.6.
2. Statement 2 follows from Proposition 4.7.

Let Ct (resp. C
λ,µ
t ) be the localization of the algebra C (resp. C λ,µ) at the powers of the

element t = Y X. The next proposition shows that Ct and C
λ,µ
t are GWAs.

Proposition 4.9. 1. Let v := Θt − 1
q(1−q2)u − C. The algebra Ct = K[C,K±1, t±1][u, v;σ, a]

is a GWA of Gelfand-Kirillov dimension 4 where a = q7

1−q2
t2 − q4K−1Ct and σ is the

automorphism of the algebra K[C,K±1, t±1] defined by the rule: σ(C) = C, σ(K±1) = K±1

and σ(t) = q−2t.

2. Let λ ∈ K, µ ∈ K∗ and v := Θt − 1
q(1−q2)u − λ. Then the algebra C

λ,µ
t = K[t±1][u, v;σ, a]

is a GWA of Gelfand–Kirillov dimension 2 where a = q7

1−q2
t2 − q4µ−1λt and σ is the auto-

morphism of the algebra K[t±1] defined by σ(t) = q−2t.

3. For any λ ∈ K and µ ∈ K∗, the algebra C
λ,µ
t is a central simple algebra.

4. Z(C λ,µ) = K and GK(C λ,µ) = 2.

Proof. 1. By Theorem 4.6, the algebra Ct is generated by the elements C, K±1, v, t±1 and u.

Note that the element v can be written as v = − q2

1−q2
ψX = q

1−q2
τ(u) where τ is the involution

(1). It is straightforward to verify that the following relations hold in the algebra Ct

ut = q−2tu, vt = q2tv, vu =
q7

1− q2
t2 − q4K−1Ct, uv =

q3

1− q2
t2 − q2K−1Ct.

Then Ct is an epimorphic image of the GWA T := K[C,K±1, t±1][u, v;σ, a]. Notice that T is a
Noetherian domain of Gelfand–Kirillov dimension 4. The inclusions C ⊆ Ct ⊆ Ct,u yield that
4 = GK(C ) 6 GK(Ct) 6 Ct,u = 4 (see Lemma 4.2.(3)), i.e., GK (Ct) = 4. So, GK (T ) = GK(Ct).
By [20, Proposition 3.15], the epimorphism of algebras T −։ Ct is an isomorphism.

2. Statement 2 follows from statement 1.
3. Let C

λ,µ
t,u be the localization of C

λ,µ
t at the powers of the element u. Then, by statement

2, C
λ,µ
t,u = Kq2 [t

±1, u±1] is a central, simple quantum torus. So, Z(C λ,µ
t ) = Z(C λ,µ

t,u ) ∩ C
λ,µ
t = K.

For any nonzero ideal a of the algebra C
λ,µ
t , ui ∈ a for some i ∈ N since C

λ,µ
t,u is a simple

Noetherian algebra. Therefore, to prove that C
λ,µ
t is a simple algebra, it suffices to show that

C
λ,µ
t uiC λ,µ

t = C
λ,µ
t for any i ∈ N. The case i = 1 follows from the equality vu = q2uv − q5t2. By

induction, for i > 1, it suffices to show that ui−1 ∈ C
λ,µ
t uiC λ,µ

t . This follows from the equality

vui = q2iuiv + q7(1−q−2i)
1−q2

t2ui−1. Hence, C
λ,µ
t is a simple algebra.

4. Since K ⊆ Z(C λ,µ) ⊆ Z(C λ,µ
t ) ∩ C λ,µ = K, we have Z(C λ,µ) = K. It is clear that

GK (C λ,µ) = 2.

Lemma 4.10. In the algebra C λ,µ where λ ∈ K and µ ∈ K∗, the following equality holds

Θti = q2itiΘ+
q−2i+1 − q2i+1

1− q2
ti−1u+ (1− q2i)λti−1.

Proof. By induction on i and using the equality (35).

Theorem 4.11. Let λ ∈ K and µ ∈ K∗.
1. The algebra C λ,µ is a simple algebra iff λ 6= 0.
2. The algebra C λ,µ is a domain.

Proof. 1. If λ = 0 then the ideal (t) is a proper ideal of the algebra C 0,µ. Hence, C 0,µ is not a
simple algebra. Now, suppose that λ 6= 0, we have to prove that C λ,µ is a simple algebra. By
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Proposition 4.9.(3), C
λ,µ
t is a simple algebra. Hence, it suffices to show that C λ,µtiC λ,µ = C λ,µ

for all i ∈ N. We prove this by induction on i.
Firstly, we prove the case for i = 1, i.e., a := C λ,µtC λ,µ = C λ,µ. By (35), the element

(q + q−1)u+ (1− q2)λ ∈ a, so, u ≡ q2−1
q+q−1λ mod a. By (37), 1

q(1−q2)u
2 + λu ∈ a. Hence,

1

q(1− q2)
(
q2 − 1

q + q−1
λ)2 + λ(

q2 − 1

q + q−1
λ) ≡ 0 mod a,

i.e., q2(q2−1)λ2

q2+1 ≡ 0 mod a. Since λ 6= 0, this implies that 1 ∈ a, thus, a = C λ,µ.

Let us now prove that b := C λ,µtiC λ,µ = C λ,µ for any i ∈ N. By induction, for i > 1, it suffices

to show that ti−1 ∈ b. By Lemma 4.10, the element u := q−2i+1−q2i+1

1−q2
ti−1u + (1 − q2i)λti−1 ∈ b.

Then vu ∈ b where v = Θt − 1
q(1−q2)u − λ, see Proposition 4.9.(2). This implies that (1 −

q2i)λvti−1 ∈ b and so, vti−1 ∈ b. But then the inclusion vti−1 = (Θt− 1
q(1−q2)u−λ)t

i−1 ∈ b yields

that the element v := q−2i+1

1−q2
ti−1u+ λti−1 ∈ b. By the expressions of the elements u and v we see

that ti−1 ∈ b, as required.
2. By Proposition 4.9.(2), the GWA C

λ,µ
t ≃ Ct/Ct(C − λ,K − µ) is a domain. Let

a = C (C − λ,K − µ), and a′ = C ∩ Ct(C − λ,K − µ).

To prove that C λ,µ is a domain, it suffices to show that a = a′. The inclusion a ⊆ a′ is obvious.
If λ 6= 0 then, by statement 1, the algebra C λ,µ is a simple algebra, so the ideal a is a maximal
ideal of C . Then we must have a = a′. Suppose that λ = 0 and a ( a′, we seek a contradiction.
Notice that the ideal a′ is a prime ideal of C . Hence, a′/a is a nonzero prime ideal of the algebra
C 0,µ. By Proposition 4.9.(3), the algebra C

0,µ
t is a simple algebra, so, ti ∈ a′/a for some i ∈ N.

Then (a′/a)t = C
λ,µ
t . But (a′/a)t = a′t/at = 0, a contradiction.

Proposition 4.12. 1. In the algebra C 0,µ, (t) = (u) = (t, u) = C 0,µt+ C 0,µu.
2. C 0,µ/(t) ≃ K[Θ].
3. In the algebra C 0,µ, (ti) = (t)i for all i > 1.
4. Spec (C 0,µ) = {0, (t), (t, p) | p ∈ Max (K[Θ])}.

Proof. 1. The equality (t) = (u) follows from (35) and (36). The second equality then is obvious.
To prove the third equality let us first show that tC 0,µ ⊆ C 0,µt + C 0,µu: In view of Corollary
4.8.(2), it suffices to prove that tΘi ∈ C 0,µt+C 0,µu for all i > 1. This can be proved by induction
on i. The case i = 1 follows from (35). Suppose that the inclusion holds for all i′ < i. Then

tΘi = tΘi−1Θ ∈ (C 0,µt+ C
0,µu)Θ = C

0,µ
(
q−2Θt− q−2(q + q−1)u

)
+ C

0,µ
(
q2Θu+ q3(1 + q2)t

)

⊆ C
0,µt+ C

0,µu.

Hence, we proved that tC 0,µ ⊆ C 0,µt+C 0,µu. Now, the inclusions (t) ⊆ C 0,µt+C 0,µu ⊆ (t, u) =
(t) yield that (t) = C 0,µt+ C 0,µu.

2. By statement 1, C 0,µ/(t) = C 0,µ/(t, u) ≃ K[Θ].
3. The inclusion (ti) ⊆ (t)i is obvious. We prove the reverse inclusion (t)i ⊆ (ti) by induction

on i. The case i = 1 is trivial. Suppose that the inclusion holds for all i′ < i. Then

(t)i = (t)(t)i−1 = (t)(ti−1) = C
0,µtC 0,µti−1

C
0,µ ⊆ (ti) + (ti−1u)

since tC 0,µ ⊆ C 0,µt+C 0,µu (see statement 1). By Lemma 4.10, the element ti−1u belongs to the
ideal (ti) of C 0,µ. Hence, (t)i ⊆ (ti), as required.

4. By Proposition 3.6 and statement 3, Spec (C 0,µ) = Spec (C 0,µ, t) ⊔ Spect(C
0,µ). Notice

that C
0,µ
t is a simple algebra (see Proposition 4.9.(3)) and C 0,µ/(t) ≃ K[Θ] (see statement 2).

Then Spec (C 0,µ) = {0} ⊔ Spec (K[Θ]) = {0, (t), (t, p) | p ∈ Max (K[Θ])}.
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5 Classification of simple CA(K)-modules

In this section, K is an algebraically closed field. A classification of simple CA(K)-modules is

given in Theorem 5.2, Theorem 5.6 and Theorem 5.10. For an algebra B, we denote by B̂ the set
of isomorphism classes of simple B-modules. If P is an isomorphism invariant property on simple
B-modules then B̂ (P) is the set of isomorphism classes of B-modules that satisfy the property P.

The set ĈA(K) of isomorphism classes of simple CA(K)-modules is partitioned (according to the
central character) as follows:

ĈA(K) =
⊔

λ∈K,µ∈K∗

Ĉ λ,µ. (38)

Given λ ∈ K and µ ∈ K∗, the set Ĉ λ,µ can be partitioned further into disjoint union of two subsets
consisting of t-torsion modules and t-torsionfree modules, respectively,

Ĉ λ,µ = Ĉ λ,µ (t-torsion) ⊔ Ĉ λ,µ (t-torsionfree). (39)

The set Ĉ λ,µ (t-torsion). An explicit description of the set Ĉ λ,µ (t-torsion) is given in Theorem
5.2. For λ, µ ∈ K∗, we define the left C λ,µ-modules

tλ,µ := C
λ,µ/C λ,µ(t, u) and T

λ,µ := C
λ,µ/C λ,µ

(
t, u− λ̂

)

where λ̂ := q(q2−1)λ. By Corollary 4.8.(2), tλ,µ = K[Θ] 1̄ ≃ K[Θ]K[Θ] is a free K[Θ]-module where

1̄ = 1+C λ,µ(t, u) and T
λ,µ = K[Θ] 1̃ ≃ K[Θ]K[Θ] is a free K[Θ]-module where 1̃ = 1+C λ,µ

(
t, u−λ̂

)
.

Clearly, the modules tλ,µ and T
λ,µ are of Gelfand–Kirillov dimension 1. The concept of degΘ of

the elements of tλ,µ and Tλ,µ is well-defined (degΘ(Θ
i 1̄) = i and degΘ(Θ

i 1̃) = i for all i > 0).

Lemma 5.1. Let λ, µ ∈ K∗. Then
1. The C λ,µ-module tλ,µ is a simple module.
2. The C λ,µ-module Tλ,µ is a simple module.
3. The modules tλ,µ and Tλ,µ are not isomorphic.

Proof. 1. Let us show that for all i > 1,

t ·Θi 1̄ = (1− q−2i)λ ·Θi−1 1̄ + · · · , (40)

u ·Θi 1̄ = −q2(1− q2i)µ−1λ ·Θi−1 1̄ + · · · (41)

where the three dots means terms of degΘ < i− 1. We prove the equalities by induction on i. By
(35), tΘ 1̄ = (1− q−2)λ 1̄, and by (36), uΘ 1̄ = −q2(1− q2)µ−1λ 1̄. So, the equalities (40) and (41)
hold for i = 1. Suppose that the equalities hold for all integers i′ < i. Then

t ·Θi 1̄ =
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)λ

)
Θi−1 1̄

= q−2(1− q−2(i−1))λΘi−1 1̄− q−2(1− q2)λΘi−1 1̄ + · · ·

= (1− q−2i)λ ·Θi−1 1̄ + · · · ,

u ·Θi 1̄ =
(
q2Θu+ q3(1 + q2)t− q2(1− q2)µ−1λ

)
Θi−1 1̄

= −q4(1− q2(i−1))µ−1λΘi−1 1̄− q2(1− q2)µ−1λΘi−1 1̄ + · · ·

= −q2(1− q2i)µ−1λ ·Θi−1 1̄ + · · · .

The simplicity of the module tλ,µ follows from the equality (40) (or the equality (41)).
2. Let us show that for all i > 1,

t ·Θi 1̃ = (1− q2i)λ ·Θi−1 1̃ + · · · , (42)

u ·Θi 1̃ = q2iλ̂ ·Θi 1̃− q2(1− q2i)µ−1λ ·Θi−1 1̃ + · · · (43)
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where the three dots means terms of smaller degrees. We prove the equalities by induction on i.
The case i = 1 follows from (35) and (36). Suppose that the equalities (42) and (43) hold for all
integers i′ < i. Then

t ·Θi 1̃ =
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)λ

)
Θi−1 1̃

= q−2(1− q2(i−1))λΘi−1 1̃− q−2(q + q−1)q2(i−1)λ̂Θi−1 1̃− q−2(1− q2)λΘi−11̃ + · · ·

= (1− q2i)λ ·Θi−1 1̃ + · · · ,

u ·Θi 1̃ =
(
q2Θu+ q3(1 + q2)t− q2(1− q2)µ−1λ

)
Θi−1 1̃

= q2
(
q2(i−1)λ̂Θi 1̃− q2(1− q2(i−1))µ−1λΘi−1 1̃

)
− q2(1− q2)µ−1λΘi−1 1̃ + · · ·

= q2iλ̂ ·Θi 1̃− q2(1− q2i)µ−1λ ·Θi−1 1̃ + · · · .

The simplicity of the module Tλ,µ follows from the equality (42).
3. By (41), the element u acts locally nilpotently on the module tλ,µ . But, by (43), the action

of the element u on the module Tλ,µ is not locally nilpotent. Hence, the modules tλ,µ and T
λ,µ

are not isomorphic.

Theorem 5.2. 1. Ĉ 0,µ (t-torsion) =
{
[C 0,µ/C 0,µ(t, u,Θ− α) ≃ K[Θ]/(Θ− α)] |α ∈ K

}
.

2. Let λ, µ ∈ K∗. Then Ĉ λ,µ (t-torsion) =
{
[tλ,µ], [Tλ,µ]

}
.

Proof. 1. We claim that annC 0,µ(M) ⊇ (t) for all M ∈ Ĉ 0,µ (t-torsion): In view of Proposition
4.12.(1), it suffices to show that there exists a nonzero element m ∈ M such that tm = 0 and
um = 0. Since M is t-torsion, there exists a nonzero element m′ ∈ M such that tm′ = 0. Then,
by the equality (37) (where λ = 0), we have u2m′ = 0. If um′ = 0, we are done. Otherwise, the
element m := um′ is a nonzero element of M such that tm = um = 0 (since tu = q2ut). Now,
statement 1 follows from the claim immediately.

2. LetM ∈ Ĉ λ,µ (t-torsion). Then there exists a nonzero elementm ∈M such that tm = 0. By

(37), we have (u− λ̂)um = 0. Therefore, either um = 0 or otherwise the element m′ := um ∈M is

nonzero and (u− λ̂)m′ = 0. If um = 0 then the module M is an epimorphic image of the module
tλ,µ. By Lemma 5.1.(1), tλ,µ is a simple C λ,µ-module. Hence, M ≃ tλ,µ. If m′ = um 6= 0 then

tm′ = 0 and (u− λ̂)m′ = 0. So, the C λ,µ-module M is an epimorphic image of the module Tλ,µ.
By Lemma 5.1.(2), Tλ,µ is a simple C λ,µ-module. Then M ≃ Tλ,µ. By Lemma 5.1.(3), the two
modules tλ,µ and Tλ,µ are not isomorphic, this completes the proof.

Recall that the algebra CAX,ϕ
(K) = K[C,K±1] ⊗ A where A is a central simple GWA, see

Proposition 4.3. The algebra CA(K) is a subalgebra of the algebra CAX,ϕ
(K) where

u = K−1Y ϕ = K−1 · Y X · ϕX−1 = K−1th, (44)

Θ = (1− q2)Ceh−1 +
qK−1

1− q2
h+

q3K

1− q2
h−1. (45)

In more detail: by (16), F =
(
C +K−1EY 2 − q3

1−q2
(K −K−1)Y X

)
X−1ϕ−1. Then the element

FE can be written as

FE = CEX−1ϕ−1 +K−1EY 2EX−1ϕ−1 −
q2

1− q2
(K −K−1)Y Eϕ−1

= C · EX−2 ·Xϕ−1 +K−1 · EX−2 · q3(Y X)2 · EX−2 ·Xϕ−1 −
q3(K −K−1)

1− q2
· Y X · EX−2 ·Xϕ−1

= Ceh−1 + q3K−1et2eh−1 −
q3(K −K−1)

1− q2
teh−1

= Ceh−1 +
qK−1

(1− q2)2
h+

q3K

(1− q2)2
h−1 −

q2(qK + q−1K−1)

(1− q2)2
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where the last equality follows from (25). Then the equality (45) follows immediately since Θ =

(1− q2)FE + q2(qK+q−1K−1)
1−q2

.

For λ ∈ K and µ ∈ K∗, let C
λ,µ
AX,ϕ

:= CAX,ϕ
(K)/(C − λ,K − µ). Then by Proposition

4.3.(1), C
λ,µ
AX,ϕ

≃ A is a central simple GWA. So, there is a natural algebra homomorphism

C λ,µ → C
λ,µ
AX,ϕ

≃ A . The next proposition shows that this homomorphism is a monomorphism.

Proposition 5.3. Let λ ∈ K and µ ∈ K∗. The following map is an algebra homomorphism

ρ : C
λ,µ −→ C

λ,µ
AX,ϕ

≃ A , t 7→ t, u 7→ µ−1th, Θ 7→ (1− q2)λeh−1 +
qµ−1

1− q2
h+

q3µ

1− q2
h−1.

Moreover, the homomorphism ρ is a monomorphism.

Proof. The fact that the map ρ is an algebra homomorphism follows from (44) and (45). Now,
we prove that ρ is an injection. If λ 6= 0 then by Theorem 4.11.(1), the algebra C λ,µ is a simple
algebra. Hence, the kernel ker ρ of the homomorphism ρ must be zero, i.e., ρ is an injection. If
λ = 0 and suppose that ker ρ is nonzero, we seek a contradiction. Then ti ∈ ker ρ for some i ∈ N.
But ρ(ti) = ti 6= 0, a contradiction.

Let At be the localization of the algebra A at the powers of the element t. Then At =
K[h±1][t±1;σ] is a central simple quantum torus where σ(h) = q2h. It is clear that C

λ,µ
t,u ≃ At.

Let B be the localization of A at the set S = K[h±1] \ {0}. Then B = S−1A = K(h)[t±1;σ] is a
skew Laurent polynomial algebra where K(h) is the field of rational functions in h and σ(h) = q2h.
The algebra B is a Euclidean ring with left and right division algorithms. In particular, B is a
principle left and right ideal domain. For all λ ∈ K and µ ∈ K∗, we have the following inclusions
of algebras

C λ,µ

C
λ,µ
t

A

C
λ,µ
t,u = At B

ρ

The set Ĉ 0,µ (t-torsionfree). An explicit description of the set Ĉ 0,µ (t-torsionfree) is given
in Theorem 5.6. The idea is to embed the algebra C 0,µ in a skew polynomial algebra R for which
the simple modules are classified. The simple modules over these two algebras are closely related.

It will be shown that Ĉ 0,µ (t-torsionfree) = R̂ (t-torsionfree).
Let R be the subalgebra of A generated by the elements h±1 and t. Then R = K[h±1][t;σ] is

a skew polynomial algebra where σ(h) = q2h. By Proposition 5.3, the algebra C 0,µ is a subalgebra
of R. Hence, we have the inclusions of algebras

C
0,µ ⊂ R ⊂ A ⊂ Rt = At ⊂ B.

We identify the algebra C 0,µ with its image in the algebra R.

Lemma 5.4. Let µ ∈ K∗. Then
1. C 0,µ =

⊕
i>1 K[h±1]ti ⊕K[Θ].

2. R = C 0,µ ⊕K[Θ]h.
3. (t) =

⊕
i>1 K[h±1]ti = Rt where (t) is the ideal of C 0,µ generated by the element t.

Proof. 1 and 2. Notice that K[Θ] ⊂ K[h±1] and K[h±1] = K[Θ]⊕K[Θ]h. Multiplying this equality
on the right by the element t yields that K[h±1]t = K[Θ]t ⊕ K[Θ]u ⊆ C 0,µ. Then for all i > 1,
K[h±1]ti = K[h±1]t · ti−1 ⊆ C 0,µti−1 ⊆ C 0,µ. Notice that

R =
⊕

i>0

K[h±1]ti =
⊕

i>1

K[h±1]ti ⊕K[h±1] =
⊕

i>1

K[h±1]ti ⊕K[Θ]⊕K[Θ]h. (46)
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Then C 0,µ = C 0,µ ∩ R =
⊕

i>1 K[h±1]ti ⊕ K[Θ] since C 0,µ ∩ K[Θ]h = 0. The statement 2 then
follows from (46).

3. By Proposition 4.12.(1), (t) = C 0,µt+C 0,µu. Then the first equality follows from statement
1. The second equality is obvious.

The set K[h±1] \ {0} is an Ore set of the ring R. Abusing the language, we say K[h±1]-torsion

meaning K[h±1]\{0}-torsion. In particular, we denote by R̂ (K[h]-torsion) the set of isomorphism
classes of K[h]-torsion simple R-modules.

Proposition 5.5. Let Irr(B) be the set of irreducible elements of the algebra B.

1. R̂ (K[h±1]-torsion) = R̂ (t-torsion) = R̂/(t) =
{
[R/R(h− α, t)] |α ∈ K∗

}
.

2. R̂ (K[h±1]-torsionfree) = R̂ (t-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt + R ∩ Bb} where
Mb := R/R ∩ Bb; Mb ≃ Mb′ iff the elements b and b′ are similar (iff B/Bb ≃ B/Bb′ as
B-modules).

Proof. 1. The last two equalities are obvious, since t is a normal element of the algebra R. Then
it is clear that R̂ (K[h±1]-torsion) ⊇ R̂ (t-torsion). Now, we show the reverse inclusion holds. Let

M ∈ R̂ (K[h±1]-torsion). Then M is an epimorphic image of the R-module R/R(h − α) = K[t]1̄
for some α ∈ K∗ where 1̄ = 1+R(h−α). Notice that tK[t]1̄ is the only maximal R-submodule of

R/R(h− α). Then M ≃ R/R(h− α, t) ∈ R̂ (t-torsion), as required.
2. The first equality follows from the first equality in statement 1. By [7, Theorem 1.3]

R̂ (K[h±1]-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt+R∩ Bb}

(the condition (LO) of [7, Theorem 1.3] is equivalent to the condition R = Rt+R∩ Bb).

Theorem 5.6. Ĉ 0,µ (t-torsionfree) = R̂ (t-torsionfree) = R̂ (K[h±1]-torsionfree) = {[Mb = R/R∩
Bb] | b ∈ Irr(B), R = Rt+R∩ Bb} (see Proposition 5.5).

Proof. In view of Proposition 5.5.(2), it remains to show that the first equality holds. Let [M ] ∈

Ĉ 0,µ (t-torsionfree). Then M = (t)M = RtM ∈ R̂ (t-torsionfree). Given [N ] ∈ R̂ (t-torsionfree).
To finish the proof of statement 2, it suffices to show that N is a simple C 0,µ-module. If L
is a nonzero C 0,µ-submodule of N then N ⊇ L ⊇ (t)L 6= 0, since N is t-torsionfree. Then
(t)L = RtL = N , since N is a simple R-module. Hence, L = N , i.e., N is a simple C 0,µ-module,
as required.

The set Ĉ λ,µ (t-torsionfree) where λ ∈ K∗. An explicit description of the set Ĉ λ,µ (t-torsionfree)

where λ ∈ K∗ is given in Theorem 5.10. Recall that the algebra C
λ,µ
t = K[t±1][u, v;σ, a] is a GWA

where a = q7

1−q2
t2−q4µ−1λt and σ is the automorphism of the algebraK[t±1] defined by σ(t) = q−2t

(Proposition 4.9.(2)). Clearly,

Ĉ λ,µ (t-torsionfree) = Ĉ λ,µ (t-torsionfree, K[t]-torsion) ⊔ Ĉ λ,µ (K[t]-torsionfree). (47)

Lemma 5.7. Let λ, µ ∈ K∗ and ν := q−3(1− q2)µ−1λ. Then
1. The module fλ,µ := C λ,µ/C λ,µ(t− ν, u) is a simple C λ,µ-module.
2. The module Fλ,µ := C λ,µ/C λ,µ(t− q2ν, v) is a simple C λ,µ-module.
3. Let γ, γ′ ∈ K∗\{q2iν | i ∈ Z}. The module Fλ,µ

γ := C λ,µ/C λ,µ(t−γ) is a simple C λ,µ-module.

The simple modules Fλ,µ
γ ≃ Fλ,µ

γ′ iff γ = q2iγ′ for some i ∈ Z.

Proof. 1. Note that a = q7

1−q2
(t − ν)t and σ(a) = q3

1−q2
(t − q2ν)t. By Corollary 4.8.(2) and the

expression of the element v, fλ,µ = K[Θ]1̄ = K[v]1̄ where 1̄ = 1 + C λ,µ(t− ν, u). The simplicity of
the module fλ,µ follows from the equality: uvi1̄ = vi−1σi(a)1̄ ∈ K∗vi−11̄ for all i > 1.

2. Notice that Fλ,µ = K[u]1̄ where 1̄ = 1+C λ,µ(t− q2ν, v). The simplicity of the module F
λ,µ

follows from the equality: vui1̄ = ui−1σ−i+1(a)1̄ ∈ K∗ui−11̄ for all i > 1.
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3. Notice that
Fλ,µ

γ =
∑

i,j>0

KuiΘj 1̃ =
∑

i,j>0

Kuivj 1̃ = K[u]1̃ +K[v]1̃

where 1̃ = 1 + C λ,µ(t − γ). Since γ ∈ K∗ \ {q2iν | i ∈ Z}, σi(a)1̄ ∈ K∗1̄ for all i ∈ Z. Then
the simplicity of the module Fλ,µ

γ follows from the equalities in the proof of statements 1 and 2.

The set of eigenvalues of the element tFλ,µ
γ

is EvFλ,µ
γ

(t) = {q2iγ | i ∈ Z}. If Fλ,µ
γ ≃ Fλ,µ

γ′ then

EvFλ,µ
γ

(t) = EvFλ,µ

γ′

(t), so γ = q2iγ′ for some i ∈ Z. Conversely, suppose that γ = q2iγ′ for

some i ∈ Z. Let 1̃ and 1̃′ be the canonical generators of the modules Fλ,µ
γ and Fλ,µ

γ′ , respectively.

The map Fλ,µ
γ → Fλ,µ

γ′ , 1̃ 7→ ui1̃′ defines an isomorphism of C λ,µ-modules if i > 0, and the map

Fλ,µ
γ → Fλ,µ

γ′ , 1̃ 7→ vi1̃′ defines an isomorphism of C λ,µ-modules if i < 0.

Definition. ([4], l-normal elements of the algebra C
λ,µ
t .)

1. Let α and β be nonzero elements of the Laurent polynomial algebra K[t±1]. We say that
α < β if there are no roots λ and µ of the polynomials α and β, respectively, such that,
λ = q2iµ for some i > 0.

2. An element b = vmβm + vm−1βm−1 + . . . + β0 ∈ C
λ,µ
t where m > 0, βi ∈ K[t±1] and

β0, βm 6= 0 is called l-normal if β0 < βm and β0 <
q7

1−q2
t2 − q4µ−1λt.

Theorem 5.8. [2, 3]. Let λ, µ ∈ K∗. Then

Ĉ
λ,µ
t (K[t]-torsionfree) = {[Nb := C

λ,µ
t /C λ,µ

t ∩ Bb] | b is l-normal, b ∈ Irr(B)}.

Simple C
λ,µ
t -modules Nb and Nb′ are isomorphic iff the elements b and b′ are similar.

Recall that, the algebra C λ,µ is generated by the canonical generators t, u and Θ. Let F =
{Fn}n>0 be the standard filtration associated with the canonical generators. By Corollary 4.8,
for n > 0,

Fn =
⊕

i,j>1,

i+j6n

KΘitj ⊕
⊕

16k6n

KΘk ⊕
⊕

l,m>1,

l+m6n

KΘlum ⊕
⊕

a,b>0,

a+b6n

Kuatb.

For all n > 1, dimFn = 3
2n

2+ 3
2n+1 = f(n) (where f(s) = 3

2s
2+ 3

2s+1 ∈ Q[s]). For each nonzero
element a ∈ C λ,µ, the unique natural number n such that a ∈ Fn \ Fn−1 is called the total degree
of the element a, denoted by deg(a). Set deg(0) := −∞. Then deg(ab) 6 deg(a) + deg(b) for all
elements a, b ∈ C λ,µ.

For an R-moduleM , we denote by lR(M) the length of the R-moduleM . The next proposition
shows that lCλ,µ(C λ,µ/I) <∞ for all left ideals I of the algebra C λ,µ.

Proposition 5.9. Let λ, µ ∈ K∗. For each element nonzero element a ∈ C λ,µ, the length of the
C λ,µ-module C λ,µ/C λ,µa is finite, more precisely, lCλ,µ(C λ,µ/C λ,µa) 6 3 deg(a).

Proof. Let M := C λ,µ/C λ,µa = C λ,µ1̄ =
⋃

i>0 Fi1̄ be the standard filtration on M where 1̄ =

1 + C λ,µa. Then

Fi1̄ ≃
Fi + C λ,µa

C λ,µa
≃

Fi

Fi ∩ C λ,µa
.

Let d := deg(a). Since, for all i > 0, Fi−da ⊆ Fi∩C λ,µa, we see that dim (Fi1̄) 6 f(i)−f(i−d) =
3di+ 3

2d−
3
2d

2. Recall that the algebra C λ,µ is a simple, infinite dimensional algebra since λ 6= 0
(Theorem 4.11.(1)). So, if N = C λ,µn is a nonzero cyclic C λ,µ-module (where 0 6= n ∈ N) and
{Fin}i>0 is the standard filtration on N then dim (Fin) > i + 1 for all i > 0. This implies that
lCλ,µ(M) 6 3d.

The group q2Z = {q2i | i ∈ Z} acts on K∗ by multiplication. For each γ ∈ K∗, let O(γ) =
{q2iγ | i ∈ Z} be the orbit of the element γ ∈ K∗ under the action of the group q2Z. For each orbit
O ∈ K∗/q2Z, we fix an element γO ∈ O(γ).
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Theorem 5.10. Let λ, µ ∈ K∗. Then

1. Ĉ λ,µ (t-torsionfree, K[t]-torsion) = {[fλ,µ], [Fλ,µ], [Fλ,µ
γO

] | O ∈ K∗/q2Z \ {O(ν)}}.

2. The map Ĉ λ,µ (K[t]-torsionfree) → Ĉ
λ,µ
t (K[t]-torsionfree), [M ] 7→ [Mt] is a bijection with

the inverse [N ] 7→ socCλ,µ(N).

3. Ĉ λ,µ (K[t]-torsionfree) = {[Mb := C λ,µ/C λ,µ∩Bbt−i] | b is l-normal, b ∈ Irr(B), i > 3 deg(b)}.

Proof. 1. Let M ∈ Ĉ λ,µ (t-torsionfree, K[t]-torsion). There exists a nonzero element m ∈M such
that tm = γm for some γ ∈ K∗. Then M is an epimorphic image of the module C λ,µ/C λ,µ(t−γ).
If γ /∈ O(ν) then M ≃ C λ,µ/C λ,µ(t − γ) = Fλ,µ

γ by Lemma 5.7.(3). It remains to consider the

case when γ ∈ O(ν), i.e., γ = q2iν for some i ∈ Z.
(i) If γ = q2iν where i > 1 then σi(a)m = 0. Notice that ui−1vi−1m = σi−1(a) · · ·σ(a)m 6= 0,

the element m′ := vi−1m is a nonzero element of M . If vm′ = 0, notice that tm′ = tvi−1m =
q2νm′, then M is an epimorphic image of the simple module F

λ,µ. Hence, M ≃ F
λ,µ. If m′′ :=

vm′ 6= 0, notice that tm′′ = tvim = νm′′ and um′′ = uvim = vi−1σi(a)m = 0, then M is an
epimorphic image of the simple module fλ,µ. Hence, M ≃ fλ,µ.

(ii) If γ = q−2iν where i > 0 then σ−i(a)m = 0. The element e := uim is a nonzero
element of M . (The case i = 0 is trivial, for i > 1, it follows from the equality viuim =
σ−i+1(a) · · ·σ−1(a)am 6= 0). If ue = 0, notice that te = tuim = νe, thenM is an epimorphic image
of the simple module fλ,µ. Hence, M ≃ fλ,µ. If e′ := ue 6= 0, notice that te′ = tui+1m = q2νe′

and ve′ = vui+1m = uiσ−i(a)m = 0, then M is an epimorphic image of the simple module F
λ,µ.

Hence, M ≃ F
λ,µ. This proves statement 1.

2. The result follows from Proposition 5.9.

3. Let [M ] ∈ Ĉ λ,µ (K[t]-torsionfree). Then [Mt] ∈ Ĉ
λ,µ
t (K[t]-torsionfree), and so Mt ≃

C
λ,µ
t /C λ,µ

t ∩ Bb where

b = vmβm + vm−1βm−1 + · · ·+ β0 ∈ C
λ,µ (βi ∈ K[t], m > 0 and βm, β0 6= 0)

is l-normal and irreducible in B. Clearly, 0 6= Mb := C λ,µ/C λ,µ ∩ Bb ⊆ Mt and M =
socCλ,µ(Mt) = socCλ,µ(Mb), by statement 2. Let Ib := C λ,µ ∩ Bb, Jn = C λ,µtn + Ib for all
n > 0 and d = deg(a). By Proposition 5.9, the following descending chain of left ideals of the
algebra C λ,µ stabilizes:

C
λ,µ = J0 ⊇ J1 ⊇ · · · ⊇ Jn = Jn+1 = · · · , n > 3d.

Hence, socCλ,µ(Mb) = Jn/Ib ≃ C λ,µ/C λ,µ ∩ Bbt−n.

6 Simple weight A-modules

The aim of this section is to give a classification of simple weight A-modules. The set Â (weight)
of isomorphism classes of simple weight A-modules is partitioned into the disjoint union of four
subsets, see (48). We will describe each of them separately.

An A-module M is called a weight module provided that M =
⊕

µ∈K∗ Mµ where Mµ = {m ∈
M |Km = µm}. We denote by Wt(M) the set of all weights of M , i.e., the set {µ ∈ K∗ |Mµ 6= 0}.

Verma modules and simple highest weight A-modules. For each λ ∈ K∗, we define the
Verma moduleM(λ) := A/A(K−λ,E,X). ThenM(λ) = K[Y, F ]1̃ where 1̃ = 1+A(K−λ,E,X).
If M is an A-module, a highest weight vector is any 0 6= m ∈ M such that m is an eigenvector of
K and K−1 and Em = Xm = 0.

Lemma 6.1. The set of highest weight vectors of the Verma module M(λ) is H := { kY n1̃ | k ∈
K∗, n ∈ N }.

Proof. It is clear that any element of H is a highest weight vector. Suppose thatm =
∑
αijY

iF j 1̃ ∈
M(λ) is a highest weight vector of weight µ where αij ∈ K. Then

Km =
∑

αijλq
−i−2jY iF j 1̃ = µm.
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This implies that i+2j is a constant, say i+2j = n. Thenm can be written asm =
∑
αjY

n−2jF j 1̃

for some αj ∈ K. By Lemma 3.1.(2), Xm =
∑

−qn−2j 1−q2j

1−q2
αjλ

−1Y n−2j+1F j−11̃ = 0. Thus,
αj = 0 for all j > 1 and hence, m ∈ H.

By Lemma 6.1, there are infinitely many linear independent highest weight vectors. Let Nn :=
K[Y, F ]Y n1̃ where n ∈ N. Then Nn is a Verma A-module with highest weight q−nλ, i.e., Nn ≃
M(q−nλ). Furthermore, M(λ) is a submodule of M(qnλ) for all n ∈ N. Thus, for any λ ∈ K∗,
there exists an infinite sequence of Verma modules

· · · ⊃M(q2λ) ⊃M(qλ) ⊃M(λ) ⊃M(q−1λ) ⊃M(q−2λ) ⊃ · · · .

The following result of Verma Uq(sl2)-modules is well-known; see [17, p. 20].

Lemma 6.2. [17] Suppose that q is not a root of unity. Let V (λ) be a Verma Uq(sl2)-module.
Then V (λ) is simple if and only if λ 6= ±qn for all integer n > 0. When λ = qn (resp. −qn)
there is a unique simple quotient L(n,+) (resp. L(n,−)) of V (λ). Each simple Uq(sl2)-module of
dimension n+ 1 is isomorphic to L(n,+) or L(n,−).

Let V (λ) :=M(λ)/N1. Then V (λ) ≃ K[F ]1̄, where 1̄ := 1 +A(K − λ,E,X, Y ).

Theorem 6.3. Up to isomorphism, the simple A-modules of highest weight λ are as follows
(i) V (λ), when λ 6= ±qn for any n ∈ N.
(ii) L(n,+), when λ = qn for some n ∈ N.
(iii) L(n,−), when λ = −qn for some n ∈ N.
In each case, the elements X and Y act trivially on the modules, and these modules are in fact
simple highest weight Uq(sl2)-modules.

Proof. In view of Lemma 3.2.(1), annA(V (λ)) ⊇ (X). So, V (λ) ≃ U/U(K − λ,E) where U =
Uq(sl2). Then the theorem follows immediately from Lemma 6.2.

Simple weight modules that not highest and lowest weight A-modules. Let N be
the set of simple weight A-modules M such that XM 6= 0 or YM 6= 0. Then Â (weight) =

Ûq(sl2) (weight) ⊔ N .

Lemma 6.4. Let M be a simple A-module. If x ∈ {X,Y,E, F} annihilates a non-zero element
m ∈M , then x acts locally nilpotently on M .

Proof. For each element x ∈ {X,Y,E, F}, the set S = {xi | i ∈ N} is an Ore set in the algebra A.
Then torS(M) is a nonzero submodule of M . Since M is a simple module, M = torS(M), i.e., the
element x acts locally nilpotently on M .

Theorem 6.5. Let M ∈ N , then
1. dimMλ = dimMµ for any λ, µ ∈ Wt (M).
2. Wt (M) = {qnλ |n ∈ Z} for any λ ∈ Wt (M).

Proof. 1. Suppose that there exists λ ∈ Wt (M) such that dimMλ > dimMqλ. Then the map
X : Mλ → Mqλ is not injective. Hence Xm = 0 for some non-zero element m ∈ Mλ. By Lemma
6.4, X acts locally nilpotently on M .

If dimMq−1λ > dimMqλ, then the linear map E :Mq−1λ →Mqλ is not injective. So Em′ = 0
for some non-zero element m′ ∈ Mq−1λ. By Lemma 6.4, E acts on M locally nilpotently. Since
EX = qXE, there exists a non-zero weight vector m′′ such that Xm′′ = Em′′ = 0. Therefore,
M is a highest weight module. By Theorem 6.3, XM = YM = 0, which contradicts to our
assumption that M ∈ N .

If dimMq−1λ 6 dimMqλ, then dimMq−1λ < dimMλ. Hence the map Y : Mλ → Mq−1λ is not
injective. It follows that Y m1 = 0 for some non-zero element m1 ∈ Mλ. By Lemma 6.4, Y acts
on M locally nilpotently. Since XY = qY X, there exists some non-zero weight vector m2 ∈ M
such that Xm2 = Y m2 = 0. By Lemma 3.2.(1), annA(M) ⊇ (X,Y ), a contradiction. Similarly,
one can show that there does not exist λ ∈ Wt(M) such that dimMλ < dimMqλ.
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2. Clearly, Wt(M) ⊆ {qnλ |n ∈ Z}. By the above argument we see that Wt(M) ⊇ {qnλ |n ∈
Z}. Hence Wt(M) = {qnλ |n ∈ Z}.

Let M be an A-module and x ∈ A. We say that M is x-torsion provided that for each element
m ∈M there exists some i ∈ N such that xim = 0.We denote by xM the mapM →M, m 7→ xm.

Lemma 6.6. Let M ∈ N .
1. If M is X-torsion, then M is (ϕ, Y )-torsionfree.
2. If M is Y -torsion, then M is (X,ϕ)-torsionfree.
3. If M is ϕ-torsion, then M is (X,Y )-torsionfree.

Proof. 1. Since M ∈ N is an X-torsion module, by the proof of Theorem 6.5, YM and EM are
injections. Let us show that ϕM is injective. Otherwise, there exists a nonzero elementm ∈M such
that ϕm = 0, i.e., Xm = (q − q−1)Y Em. Since Xim = 0 for some i ∈ N and X(Y E) = (Y E)X,
we have Xim = (q− q−1)i(Y E)im = 0. This contradicts the fact that Y and E are injective maps
on M .

2. Clearly, XM is an injection. Let us show that ϕM is an injective map. Otherwise, there
exists a nonzero element m ∈ M such that ϕm = Y m = 0 (since Y ϕ = qϕY ). Then Xm = 0
(since ϕ = (1− q2)EY + q2X), a contradiction.

3. Statement 3 follows from statements 1 and 2.

By Lemma 6.6,

Â (weight) = Ûq(sl2) (weight) ⊔ N

=Ûq(sl2) (weight) ⊔ N (X-torsion) ⊔ N (Y -torsion) ⊔ N ((X,Y )-torsionfree). (48)

It is clear that N ((X,Y )-torsionfree) = Â (weight, (X,Y )-torsionfree).

Lemma 6.7. If M ∈ N (X-torsion) ⊔ N (ϕ-torsion) ⊔ N (Y -torsion) then CM 6= 0.

Proof. Suppose that M ∈ N (X-torsion), and let m be a weight vector such that Xm = 0. If
CM = 0, then by (15), Cm = −K−1EY 2m = 0 i.e., EY 2m = 0. This implies that EM or YM is
not injective. By the proof of Theorem 6.5, this is a contradiction. Similarly, one can prove that
for M ∈ N (Y -torsion), CM 6= 0. Now, suppose that M ∈ N (ϕ-torsion), and let m ∈ Mµ be a
weight vector such that ϕm = 0. Since Y ϕ = q(1− q2)EY 2 + q4Y X, we have

Y ϕm = q(1− q2)EY 2m+ q4Y Xm = 0, (49)

If CM = 0, then by (16),

Cm = −µ−1EY 2m+
q3

1− q2
(µ− µ−1)Y Xm = 0. (50)

The equalities (49) and (50) yield that EY 2m = 0 and Y Xm = 0, a contradiction.

Theorem 6.8. Let M ∈ N . Then dimMµ = ∞ for all µ ∈ Wt(M).

Proof. Since M is a simple A-module, the weight space Mµ of M is a simple C λ,µ-module for
some λ ∈ K. If M ∈ N (X-torsion) ⊔ N (Y -torsion) then by Lemma 6.7, λ = CM 6= 0. By
Proposition 4.9.(4) and Theorem 4.11.(1), C λ,µ is an infinite dimensional central simple algebra.
Hence, dimMµ = ∞. It remains to consider the case where M ∈ N ((X,Y )-torsionfree). Suppose
that there exists a weight space Mν of M such that dimMν = n < ∞, we seek a contradiction.
Then by Theorem 6.5, dimMµ = n for all µ ∈ Wt(M) and Wt(M) = {qiν | i ∈ Z}. Notice that
the elements X and Y act injectively on M , then they act bijectively on M (since all the weight
spaces are finite dimensional and of the same dimension). In particular, the element t = Y X

acts bijectively on each weight space Mµ, and so, Mµ is a simple C
λ,µ
t -module. By Proposition

4.9.(2,3), the algebra C
λ,µ
t is an infinite dimensional central simple algebra for any λ ∈ K and

µ ∈ K∗. Then, dimMµ = ∞, a contradiction.
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Description of the set N (X-torsion). An explicit description of the set N (X-torsion)
is given in Theorem 6.10. It consists of a family of simple modules constructed below (see
Proposition 6.9). For each µ ∈ K∗, we define the left A-module Xµ := A/A(K − µ, X). Then
Xµ =

⊕
i,j,k>0 KF

iEjY k 1̄ where 1̄ = 1 + A(K − µ, X). Let λ ∈ K. By (15), we see that the
submodule of Xµ,

(C − λ)Xµ =
⊕

i,j,k>0

KF iEjY k
(
µ−1EY 2 + λ

)
1̄ =

⊕

i,j,k>0

KF i
(
µ−1qkEj+1Y k+2 + λEjY k

)
1̄, (51)

is a proper submodule and the map (C − λ)· : Xµ −→ Xµ, v 7→ (C − λ)v, is an injection, which
is not a bijection. It is obvious that GK (Xµ) = 3.

For λ ∈ K and µ ∈ K∗, we define the left A-module Xλ,µ := A/A(C − λ, K − µ, X). Then,

Xλ,µ ≃ Xµ/(C − λ)Xµ 6= 0. (52)

We have a short exact sequence of A-modules: 0 −→ Xµ (C−λ)·
−−−−−→ Xµ −→ Xλ,µ −→ 0. The next

proposition shows that the module Xλ,µ is a simple module if λ is nonzero. Moreover, the K-basis,
the weight space decomposition and the annihilator of the module Xλ,µ are given.

Proposition 6.9. For λ, µ ∈ K∗, consider the left A-module Xλ,µ = A/A(C − λ, K − µ, X).
1. The A-module Xλ,µ =

⊕
i>0,j>2

KF iY j 1̄ ⊕
⊕

i,k>0

KF iEk 1̄ ⊕
⊕

i,k>0

KY F iEk 1̄ is a simple A-

module where 1̄ = 1 +A(C − λ, K − µ, X).
2. Xλ,µ =

⊕

i>0,j>2

KF iY j 1̄⊕
( ⊕

i>1,k>0

KF iΘk 1̄⊕
⊕

k>0

KΘk 1̄⊕
⊕

i>1,k>0

KEiΘk 1̄
)

⊕
( ⊕

i>1,k>0

KY F iΘk 1̄⊕
⊕

k>0

KYΘk 1̄⊕
⊕

i>1,k>0

KY EiΘk 1̄
)
.

3. The weight subspace Xλ,µ
qsµ of Xλ,µ that corresponds to the weight qsµ is

Xλ,µ
qsµ =





K[Θ] 1̄, s = 0,
ErK[Θ] 1̄, s = 2r, r > 1,
Y ErK[Θ] 1̄, s = 2r − 1, r > 1,
F rK[Θ] 1̄⊕

⊕
i+j=r,

j>1

KF iY 2j 1̄, s = −2r, r > 1,

YK[Θ] 1̄, s = −1,
Y F r−1K[Θ] 1̄⊕

⊕
2i+j=2r−1,

j>2

KF iY j 1̄, s = −2(r − 1)− 1, r > 2.

4. annA(Xλ,µ) = (C − λ).
5. Xλ,µ is an X-torsion and Y -torsionfree A-module.
6. Let (λ, µ), (λ′, µ′) ∈ K×K∗. Then Xλ,µ ≃ Xλ′,µ′

iff λ = λ′ and µ = qiµ′ for some i ∈ Z.

Proof. 1. By (52), Xλ,µ 6= 0 and 1̄ 6= 0. Using the PBW basis for the algebra A, we have
Xλ,µ =

∑
i,j,k>0 KF

iY jEk 1̄. Using (15), we have λ 1̄ = C 1̄ = −µ−1EY 2 1̄. Hence EY 2 1̄ = −µλ 1̄,

and then Y 2E 1̄ = −q2µλ 1̄. By induction on k, we deduce that

EkY 2k 1̄ = (−µλ)kq−k(k−1) 1̄ and Y 2kEk 1̄ = (−q2µλ)kqk(k−1) 1̄. (53)

Therefore,
∑

j,k>0 KY
jEk 1̄ = Y 2K[Y ] 1̄ +K[E] 1̄ + YK[E] 1̄, and then

Xλ,µ =
∑

i>0,j>2

KF iY j 1̄ +
∑

i,k>0

KF iEk 1̄ +
∑

i,k>0

KY F iEk 1̄ = K[F ]
(
K[Y ]Y 2 +K[E] + YK[E]

)
1̄.

So, any element u of Xλ,µ can be written as u = (
∑n

i=0 F
iai)1̄ where ai ∈ Σ := K[Y ]Y 2 +K[E] +

YK[E]. Statement 1 follows from the following claim: if an 6= 0, then there is an element a ∈ A
such that au = 1̄.
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(i) Xnu = a′ 1̄ for some nonzero element a′ ∈ Σ: Using Lemma 3.1, we have Xu =
∑n−1

i=0 F
ibi 1̄

for some bi ∈ Σ and bn−1 6= 0. Repeating this step n − 1 times (or using induction on n), we
obtain the result as required. So, we may assume that u = a01̄ where 0 6= a0 ∈ Σ.

(ii) Notice that the element a0 ∈ Σ can be written as a0 = pY 2 +
∑m

i=0(λi + µiY )Ei where
p ∈ K[Y ], λi and µi ∈ K. Then, by (53),

Y 2mu = Y 2ma0 1̄ =
(
pY 2m+2 +

m∑

i=0

(λi + µiY )Y 2(m−i)Y 2iEi
)
1̄

=
(
pY 2m+2 +

m∑

i=0

(λi + µiY )Y 2(m−i)γi

)
1̄ = f 1̄

for some γi ∈ K∗ where f is a nonzero polynomial in K[Y ] (since a0 6= 0). Hence, we may assume
that u = f 1̄ where 0 6= f ∈ K[Y ].

(iii) Let f =
∑l

i=0 γiY
i where γi ∈ K and γl 6= 0. Since KY i 1̄ = µq−iY i 1̄ and all eigenvalues

{µq−i | i > 0} are distinct, there is a polynomial g ∈ K[K] such that gf 1̄ = Y l 1̄. If l = 0, we
are done. We may assume that l > 1. By multiplying by Y (if necessary) on the equality above
we may assume that l = 2k for some natural number k. Then, by (53), ω−1

k EkY 2k 1̄ = 1̄ where
ωk = (−µλ)kq−k(k−1), as required.

2. Recall that the algebra Uq(sl2) is a GWA

Uq(sl2) = K[Θ,K±1]
[
E,F ;σ, a = (1− q2)−1Θ−

q2(qK + q−1K−1)

(1− q2)2
]

(54)

where σ(Θ) = Θ and σ(K) = q−2K. Then for all i > 1, F iEi = aσ−1(a) · · ·σ−i+1(a). Therefore,

⊕

i,k>0

KF iEk 1̄ =
⊕

i>1,k>0

KF iΘk 1̄⊕
⊕

k>0

KΘk 1̄⊕
⊕

i>1,k>0

KEiΘk 1̄.

Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.
4. Clearly, (C − λ) ⊆ annA(Xλ,µ). Since λ ∈ K∗, by Corollary 3.9, the ideal (C − λ) is a

maximal ideal of A. Then we must have (C − λ) = annA(Xλ,µ).
5. Clearly, Xλ,µ is an X-torsion weight module. Since Xλ,µ is a simple module, then by Lemma

6.6, Xλ,µ is Y -torsionfree.
6. (⇒) Suppose that Xλ,µ ≃ Xλ′,µ′

. By statement 4, (C − λ) = annA(Xλ,µ) = annA(Xλ′,µ′

) =
(C − λ′). Hence, λ = λ′. By Theorem 6.5 (or by statement 3), {qiµ | i ∈ Z} = Wt(Xλ,µ) =
Wt(Xλ′,µ′

) = {qiµ′ | i ∈ Z}. Hence, µ = qiµ′ for some i ∈ Z.
(⇐) Suppose that λ = λ′ and µ = qiµ′ for some i ∈ Z. Let 1̄ and 1̄′ be the canonical generators

of the modules Xλ,µ and Xλ′,µ′

, respectively. If i 6 0 then the map Xλ,µ → Xλ′,µ′

1̄ 7→ Y |i| 1̄′

defines an isomorphism of A-modules. If i > 1 then the map Xλ,µ → Xλ′,µ′

, 1̄ 7→ (Y E)i 1̄′ defines
an isomorphism of A-modules.

We define an equivalence relation ∼ on the set K∗ as follows: for µ and ν ∈ K∗, µ ∼ ν iff µ = qiν
for some i ∈ Z. Then the set K∗ is a disjoint union of equivalence classes O(µ) = {qiµ | i ∈ Z}.
Let K∗/ ∼ be the set of equivalence classes. Clearly, K∗/ ∼ can be identified with the factor
group K∗/〈q〉 where 〈q〉 = {qi | i ∈ Z}. For each orbit O ∈ K∗/〈q〉, we fix an element µO in the
equivalence class O.

Theorem 6.10. N (X-torsion) =
{
[Xλ,µO ] |λ ∈ K∗, O ∈ K∗/〈q〉

}
.

Proof. Let M ∈ N (X-torsion). By Lemma 6.7, the central element C acts on M as a nonzero
scalar, say λ. ThenM is an epimorphic image of the module Xλ,µ for some µ ∈ K∗. By Proposition
6.9.(1), Xλ,µ is a simple A-module, hence M ≃ Xλ,µ. Then the theorem follows from Proposition
6.9.(6).
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Lemma 6.11. 1. For all λ ∈ K and µ ∈ K∗, GK(Xλ,µ) = 2.
2. A(C,K − µ,X) ( A(K − µ,X, Y,E) ( A.
3. For all µ ∈ K∗, the module X0,µ is not a simple A-module.

Proof. 1. By [20, Proposition 5.1.(e)], GK (Xλ,µ) 6 GK(Xµ)− 1 = 2. If λ 6= 0 then it follows from
Proposition 6.9.(1) that GK (Xλ,µ) = 2. If λ = 0 then consider the subspace V =

⊕
i,j>0 KF

iEj 1̄
of the A-module Xµ. By (51), we see that V ∩ CXµ = 0. Hence, the vector space V can be seen
as a subspace of the A-module X0,µ. In particular, GK (X0,µ) > 2. Therefore, GK (X0,µ) = 2.

2. Let a = A(C,K − µ,X) and b = A(K − µ,X, Y,E). Since C ∈ b we have the equality
b = A(C,K − µ,X, Y,E). Clearly, a ⊆ b. Notice that A/b ≃ U/U(K − µ,E) where U = Uq(sl2).
Then GK (A/b) = 1, in particular, b ( A is a proper left ideal of A. It follows from statement 1
that, 2 = GK(A/a) > GK(A/b), hence the inclusion a ⊆ b is strict.

3. By statement 2, the left ideal A(C,K−µ,X) is not a maximal left ideal. Thus, the A-module
X0,µ is not a simple module.

Corollary 6.12. Let λ ∈ K and µ ∈ K∗. The A-module Xλ,µ is a simple module iff λ 6= 0.

Proof. The result follows from Proposition 6.9.(1) and Lemma 6.11.(3).

Description of the set N (Y -torsion). An explicit description of the set N (Y -torsion) is
given in Theorem 6.14. It consists of a family of simple modules constructed below (see Proposition
6.13). The results and arguments are similar to that of the case for X-torsion modules. But for
completeness, we present the results and their proof in detail. For µ ∈ K∗, we define the left
A-module Yµ := A/A(K − µ, Y ). Then Yµ =

⊕
i,j,k>0 KE

iF jXk1̄ where 1̄ = 1 + A(K − µ, Y ).

It is obvious that GK (Yµ) = 3. Let λ ∈ K. By (15), we have (C − λ) 1̄ = (q2FX2 − λ) 1̄. Then
using Lemma 3.1, we see that the submodule of Yµ,

(C − λ)Yµ =
⊕

i,j,k>0

KEiF jXk(C − λ) 1̄ =
⊕

i,j,k>0

KEiF jXk
(
q2FX2 − λ

)
1̄

=
⊕

i,j,k>0

KEiF j
(
q2FXk+2 − λXk

)
1̄. (55)

Therefore, the submodule (C − λ)Yµ of Yµ is a proper submodule, and the map (C − λ)· : Yµ →
Yµ, v 7→ (C − λ)v, is an injection, which is not a bijection.

For λ ∈ K and µ ∈ K∗, we define the left A-module Yλ,µ := A/A(C − λ, K − µ, Y ). Then

Yλ,µ ≃ Yµ/(C − λ)Yµ 6= 0. (56)

We have a short exact sequence of A-modules: 0 −→ Yµ (C−λ)·
−−−−−→ Yµ −→ Yλ,µ −→ 0. The next

proposition shows that the module Yλ,µ is a simple module if λ is nonzero. Moreover, the K-basis,
the weight space decomposition and the annihilator of the module Yλ,µ are given.

Proposition 6.13. For λ, µ ∈ K∗, consider the left A-module Yλ,µ = A/A(C − λ, K − µ, Y ).
1. The A-module Yλ,µ =

⊕
i>0,j>2

KEiXj 1̄ ⊕
⊕

i,k>0

KEiF k 1̄ ⊕
⊕

i,k>0

KEiF kX 1̄ is a simple A-

module where 1̄ = 1 +A(C − λ, K − µ, Y ).
2.

Yλ,µ =
⊕

i>0,j>2

KEiXj 1̄⊕
( ⊕

i>1,k>0

KΘkEi1̄⊕
⊕

k>0

KΘk 1̄⊕
⊕

i>1,k>0

KΘkF i 1̄
)

⊕
( ⊕

i>1,k>0

KΘkEiX 1̄⊕
⊕

k>0

KΘkX 1̄⊕
⊕

i>1,k>0

KΘkF iX 1̄
)
.
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3. The weight subspace Yλ,µ
qsµ of Yλ,µ that corresponds to the weight qsµ is

Yλ,µ
qsµ =





K[Θ] 1̄, s = 0,
K[Θ]Er 1̄⊕

⊕
i+j=r,

j>1

KEiX2j 1̄, s = 2r, r > 1,

K[Θ]X 1̄, s = 1,
K[Θ]E2rX 1̄⊕

⊕
2i+j=2r+1,

j>2

KEiXj 1̄, s = 2r + 1, r > 1,

K[Θ]F r 1̄, s = −2r, r > 1,
K[Θ]F rX 1̄, s = −2r + 1, r > 1.

4. annA(Yλ,µ) = (C − λ).
5. Yλ,µ is a Y -torsion and X-torsionfree A-module.
6. Let (λ, µ), (λ′, µ′) ∈ K×K∗. Then Yλ,µ ≃ Yλ′,µ′

iff λ = λ′ and µ = qiµ′ for some i ∈ Z.

Proof. 1. Notice that Yλ,µ =
∑

i,j,k>0 KE
iF jXk 1̄. By (15), we have λ 1̄ = C 1̄ = q2FX2 1̄, i.e.,

FX2 1̄ = q−2λ 1̄. By induction on k and using Lemma 3.1.(1), we deduce that

F kX2k 1̄ = (FX2)k 1̄ = q−2kλk 1̄. (57)

Therefore,
∑

j,k>0 KF
jXk 1̄ = K[X]X2 1̄ +K[F ] 1̄ +K[F ]X 1̄, and so

Yλ,µ =
∑

i>0,j>2

KEiXj 1̄ +
∑

i,k>0

KEiF k 1̄ +
∑

i,k>0

KEiF kX 1̄.

So, any element u of Yλ,µ can be written as u =
∑n

i=0E
iai1̄ where ai ∈ Γ := K[X]X2 + K[F ] +

K[F ]X. Statement 1 follows from the following claim: if an 6= 0, then there exists an element
a ∈ A such that au = 1̄.

(i) Y nu = a′ 1̄ for some nonzero element a′ ∈ Γ: Notice that Y u =
∑n−1

i=0 E
ibi for some bi ∈ Γ

and bn−1 6= 0. Repeating this step n−1 times, we obtain the result as desired. So, we may assume
that u = a′ 1̄ for some nonzero a′ ∈ Γ.

(ii) Notice that the element a′ can be written as a′ = pX2+
∑m

i=0 F
i(λi+µiX) where p ∈ K[X],

λi and µi ∈ K. By Lemma 3.1, we see that F iX 1̄ = XF i1̄. Then

X2mu = (pX2m+2 +

m∑

i=0

(λi + µiX)X2mF i) 1̄ = (pX2m+2 +

m∑

i=0

(λi + µiX)X2(m−i)X2iF i) 1̄

= (pX2m+2 +
m∑

i=0

(λi + µiX)X2(m−i)γi) 1̄ = f 1̄

for some γi ∈ K∗ (by (57)) and f is a nonzero element in K[Y ]. Hence, we may assume that
u = f 1̄ where f ∈ K[X] \ {0}.

(iii) Let f =
∑l

i=0 αiX
i where αi ∈ K and αl 6= 0. Since KXi1̄ = qiµXi1̄ and all eigenvalues

{qiµ | i ∈ N} are distinct, there is a polynomial g ∈ K[K] such that gf 1̄ = X l 1̄. If l = 0, we are
done. We may assume that l > 1. By multiplying by X (if necessary) on the equality we may
assume that l = 2k for some natural number k. Then, by (57), we have q2kλ−kF kX2k 1̄ = 1̄, as
required.

2. Recall that Uq(sl2) is a generalizedWeyl algebra (see (54)), then EiF i = σi(a)σi−1(a) · · ·σ(a)
holds for all i > 1. Hence,

⊕

i,k>0

KF iEk 1̄ =
⊕

i>1,k>0

KΘkEi 1̄⊕
⊕

k>0

KΘk 1̄⊕
⊕

i>1,k>0

KΘkF i 1̄.

Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.
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4. Clearly, (C − λ) ⊆ annA(Yλ,µ). Then we must have (C − λ) = annA(Xλ,µ) since (C − λ) is
a maximal ideal of A.

5. Clearly, Yλ,µ is Y -torsion. Since Yλ,µ is a simple module, then by Lemma 6.6, Yλ,µ is
X-torsionfree.

6. (⇒) Suppose that Yλ,µ ≃ Yλ′,µ′

. By statement 4, (C − λ) = annA(Yλ,µ) = annA(Yλ′,µ′

) =
(C − λ′). Hence, λ = λ′. By Theorem 6.5 (or by statement 3), {qiµ | i ∈ Z} = Wt(Yλ,µ) =
Wt(Yλ′,µ′

) = {qiµ′ | i ∈ Z}. Hence, µ = qiµ′ for some i ∈ Z.
(⇐) Suppose that λ = λ′ and µ = qiµ′ for some i ∈ Z. Let 1̄ and 1̄′ be the canonical generators

of the modules Yλ,µ and Yλ′,µ′

, respectively. If i > 0 then the map Yλ,µ → Yλ′,µ′

1̄ 7→ Xi 1̄′ defines
an isomorphism of A-modules. If i 6 −1 then the map Yλ,µ → Yλ′,µ′

, 1̄ 7→ (FX)i 1̄′ defines an
isomorphism of A-modules.

Theorem 6.14. N (Y -torsion) =
{
[Yλ,µO ] |λ ∈ K∗, O ∈ K∗/〈q〉

}
.

Proof. Let M ∈ N (Y -torsion). By Lemma 6.7, the central element C acts on M as a nonzero
scalar, say λ. ThenM is an epimorphic image of the module Yλ,µ for some µ ∈ K∗. By Proposition
6.13.(1), Yλ,µ is a simple A-module, hence M ≃ Yλ,µ. Then the theorem follows from Proposition
6.13.(6).

Lemma 6.15. 1. For all λ ∈ K and µ ∈ K∗, GK(Yλ,µ) = 2.
2. A(C,K − µ, Y ) ( A(K − µ,X, Y,E) ( A.
3. For all µ ∈ K∗, the module Y0,µ is not a simple A-module.

Proof. 1. By [20, Proposition 5.1.(e)], GK (Yλ,µ) 6 GK(Yµ)− 1 = 2. If λ 6= 0 then it follows from
Proposition 6.13.(1) that GK (Yλ,µ) = 2. If λ = 0 then consider the subspace V =

⊕
i,j>0 KE

iF j 1̄
of the A-module Yµ. By (55), we see that V ∩ CYµ = 0. Hence, the vector space V can be seen
as a subspace of the A-module Y0,µ. In particular, GK (Y0,µ) > 2. Therefore, GK (Y0,µ) = 2.

2. Let a′ = A(C,K − µ, Y ) and b = A(K − µ,X, Y,E). Since C ∈ b we have the equality
b = A(C,K − µ,X, Y,E). Clearly, a′ ⊆ b. By Lemma 6.11.(2) and its proof, b is a proper left
ideal of A and GK (A/b) = 1. Then it follows from statement 1 that, 2 = GK(A/a′) > GK(A/b),
hence the inclusion a′ ⊆ b is strict.

3. By statement 2, the left ideal A(C,K−µ, Y ) is not a maximal left ideal. Thus, the A-module
Y0,µ is not a simple module.

Corollary 6.16. Let λ ∈ K and µ ∈ K∗. The A-module Yλ,µ is a simple module iff λ 6= 0.

Proof. The result follows from Proposition 6.13.(1) and Lemma 6.15.(3).

The set N ((X,Y )- torsionfree). Theorem 6.18 and Theorem 6.19 give explicit description of

the setN ((X,Y )-torsionfree). Recall thatN ((X,Y )-torsionfree) = Â (weight, (X,Y )-torsionfree).
Then clearly,

N ((X,Y )-torsionfree) = Â(0)
(
weight, (X,Y )-torsionfree

)
⊔

⊔

λ∈K∗

Â(λ)
(
weight, (X,Y )-torsionfree

)
.

(58)

Let At be the localization of the algebra at the powers of the element t = Y X. Recall that the
algebra Ct is a GWA, see Proposition 4.9.(1).

Lemma 6.17. At = Ct[X
±1; ι] is a skew polynomial algebra where ι is the automorphism of the

algebra Ct defined by ι(C) = C, ι(K±1) = q∓1K±1, ι(t) = qt, ι(u) = q2u and ι(v) = v.

Proof. Clearly, the algebra Ct[X
±1; ι] is a subalgebra of At. Notice that all the generators of the

algebra At are contained in the algebra Ct[X
±1; ι], then At ⊆ Ct[X

±1; ι]. Hence, At = Ct[X
±1; ι],

as required.
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The set Â(0)
(
weight, (X,Y )-torsionfree

)
. Let [M ] ∈ Ĉ 0,µ (t-torsionfree). By Theorem

5.6, the element t acts bijectively on the module M (since t is a normal element of R). Therefore,
the C -module M is also a Ct-module. Then by Lemma 6.17, we have the induced At-module

M̃ := At ⊗Ct
M =

⊕

i∈Z

Xi ⊗M =
⊕

i>1

Y i ⊗M ⊕
⊕

i>0

Xi ⊗M.

Clearly, M̃ is an (X,Y )-torsionfree, weight A-module and Wt (M̃) = {qiµ | i ∈ Z} = O(µ). We

claim that M̃ is a simple A-module. Suppose that N is a nonzero A-submodule of M̃ then
Xi ⊗ m ∈ N for some i ∈ Z and m ∈ M . If i = 0 then N = Am = M̃ . If i > 1, since
Y i(Xi⊗m) ∈ K∗(1⊗tim), then 1⊗tm ∈ N and soN = M̃ . If i 6 −1 thenX |i|Xi⊗m = 1⊗m ∈ N ,

so N = M̃ . If M ′ ∈ Ĉ 0,µ′ (t-torsionfree) then the A-modules M̃ and M̃ ′ are isomorphic iff the
C 0,µ-modules M and Xi ⊗M ′ are isomorphic where µ = qiµ′ for a unique i ∈ Z.

Theorem 6.18. Â(0)
(
weight, (X,Y )-torsionfree

)
=

{
[M̃ ] | [M ] ∈ Ĉ 0,µO (t-torsionfree), O ∈

K∗/qZ
}
.

Proof. Let V ∈ Â(0)
(
weight, (X,Y )-torsionfree

)
. Then the elements X and Y act injectively on

the module V . For any µ ∈ Wt (V ), the weight space Vµ is a simple t-torsionfree C 0,µ-module.

Then V ⊇
⊕

i>1 Y
i ⊗ Vµ ⊕

⊕
i>0X

i ⊗ Vµ = Ṽµ. Hence, V = Ṽµ since V is a simple module.

The set Â(λ)
(
weight, (X,Y )-torsionfree

)
where λ ∈ K∗. Below, we use notation and

results from Lemma 5.7. Let M ∈ Ĉ λ,µ (t-torsionfree). Then Mt ∈ Ĉ
λ,µ
t . By Lemma 6.17, we

have the induced At-module

M� := At ⊗Ct
Mt =

⊕

i∈Z

Xi ⊗Mt. (59)

Clearly, M� is a simple weight At-module and Wt (M�) = {qiµ | i ∈ Z} = O(µ). For all i ∈ Z,
the weight space M�

i := Xi ⊗Mt ≃M ι−i

t as Ct-modules where M ι−i

t is the Ct-module twisted by
the automorphism ι−i of the algebra Ct (the automorphism ι is defined in Lemma 6.17). The set

Ĉ λ,µ (t-torsionfree) is described explicitly in Theorem 5.10.(1,3). If M = fλ,µ then Xi ⊗ f
λ,µ
t ≃

(fλ,µt )ι
−i

≃ f
λ,qiµ
t as Ct-modules. It is clear that socC (fλ,µt ) = fλ,µ. Hence, socC (Xi ⊗ f

λ,µ
t ) =

socC (fλ,q
iµ

t ) = fλ,q
iµ. Then the A-module

socA

((
fλ,µ

)�)
=

⊕

i∈Z

socC (Xi ⊗ f
λ,µ
t ) ≃

⊕

i∈Z

fλ,q
iµ. (60)

Similarly, if M = F
λ,µ then Xi ⊗ F

λ,µ
t ≃ (Fλ,µ

t )ι
−i

≃ F
λ,qiµ
t as Ct-modules. It is clear that

socC (Fλ,µ
t ) = F

λ,µ. Hence, socC (Xi ⊗ F
λ,µ
t ) = socC (Fλ,qiµ

t ) = F
λ,qiµ. Then the A-module

socA

((
F
λ,µ

)�)
=

⊕

i∈Z

socC (Xi ⊗ F
λ,µ
t ) ≃

⊕

i∈Z

F
λ,qiµ. (61)

If M = Fλ,µ
γ where γ ∈ K∗ \ {q2iν | i ∈ Z}, then Xi ⊗ Fλ,µ

γ,t ≃ (Fλ,µ
γ,t )

ι−i

≃ Fλ,qiµ

q−iγ,t
as Ct-modules.

It is clear that socC (Fλ,µ
γ,t ) = Fλ,µ

γ . Hence, socC (Xi⊗Fλ,µ
γ,t ) = Fλ,qiµ

q−iγ
is a simple C -module. Then

the A-module

socA

((
Fλ,µ

γ

)�)
=

⊕

i∈Z

socC (Xi ⊗Fλ,µ
γ,t ) ≃

⊕

i∈Z

Fλ,qiµ

q−iγ
. (62)
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If M ∈ Ĉ λ,µ (K[t]-torsionfree) then, by Theorem 5.10.(3), M ≃ C λ,µ/C λ,µ ∩ Bbt−n for some
l-normal element b ∈ Irr (B) and for all n≫ 0. For all i ∈ Z,

M ι−i

t ⊇
C

λ,qiµ
t

C
λ,qiµ
t ∩ Bιi(b)t−n

:= Mιi(b)t−n .

Then socC (M ι−i

t ) = socC (Mιi(b)t−n) = Mιi(b)t−ni for all ni ≫ 0. Then the A-module

socA
(
M�

)
=

⊕

i∈Z

socC (Xi ⊗Mt) ≃
⊕

i∈Z

Mιi(b)t−ni . (63)

The next theorem describes the set Â(λ)
(
weight, (X,Y )-torsionfree

)
where λ ∈ K∗.

Theorem 6.19. Let λ, µ ∈ K∗. Then Â(λ)
(
weight, (X,Y )-torsionfree

)
= {[socA(M

�)] | [M ] ∈

Ĉ λ,µO (t-torsionfree), O ∈ K∗/qZ} and socA(M
�) is explicitly described in (60), (61), (62) and

(63).

Proof. Let M ∈ Â(λ)
(
weight, (X,Y )-torsionfree

)
. Then Wt (M) = O(µ) ∈ K∗/qZ for any µ ∈

Wt (M). Then M := Mµ ∈ Ĉ λ,µO (t-torsionfree) and Mt ∈ Ĉ
λ,µO

t . Clearly, M� = Mt ⊇ M. So,
M = socA(M

�).
By (48) and (58), Theorem 6.10, Theorem 6.14, Theorem 6.18 and Theorem 6.19 give a com-

plete classification of simple weight A-modules.
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