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The prime spectrum of the algebra K,|X, Y] x U,(sly) and a
classification of simple weight modules

V. V. Bavula and T. Lu

Abstract

For the algebra A in the title, it is shown that its centre is generated by an explicit quartic
element. Explicit descriptions are given of the prime, primitive and maximal spectra of the
algebra A. A classification of simple weight A-modules is obtained. The classification is based
on a classification of (all) simple modules of the centralizer C'4(K) of the quantum Cartan
element K which is given in the paper. Explicit generators and defining relations are found
for the algebra C4(K) (it is generated by 5 elements subject to the defining relations two of
which are quadratic and one is cubic).

Key Words: Prime ideal, primitive ideal, weight module, simple module, centralizer.
Mathematics subject classification 2010: 17B10, 16D25, 16D60, 16D70, 16P50.
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1 Introduction

In this paper, module means a left module, K is a field, K* = K\ {0}, an element ¢ € K* is not a
root of unity, algebra means a unital K-algebra, N ={0,1,...} and Ny ={1,2,...}.

For a Hopf algebra and its module one can form a smash product algebra (see [22, 4.1.3] for
detail). The algebras obtained have rich structure. However, little is known about smash product
algebras; in particular, about their prime, primitive and maximal spectra and simple modules.
One of the classical objects in this area is the smash product algebra A := K,[X,Y] x U,(sl2)
where K, [X,Y] :=K(X,Y | XY = ¢Y X) is the quantum plane and g € K* is not a root of unity.
As an abstract algebra, the algebra A is generated over K by elements E, F, K, K~!, X and Y
subject to the defining relations (where K~ is the inverse of K):

K—-K1!
KEK'=¢*E, KFK'=¢%F, [E,F] = ——,

q—q
EX =¢XE, EY =X +q¢ 'YE, FX=YK '+ XF, FY =YF,
KXK™!=¢X, KYK™ ! =qty, Y X = XV.

The algebra A admits a PBW basis and the ordering of the generators can be arbitrary. The study
of semidirect product algebras has recently gained momentum: An important class of algebras—the
symplectic reflection algebras—was introduced by Etingof and Ginzburg, [13]. This led to study of
infinitesimal and continuous Hecke algebras by Etingof, Gan and Ginzburg, [14] (see also papers
of Ding, Khare, Losev, Tikaradze and Tsymbaliuk and others in this direction).



The centre of the algebra A. A PBW deformation of this algebra, the quantized symplectic
oscillator algebra of rank one, was studied by Gan and Khare [15] and some representations were
considered. They showed that the centre of the deformed algebra is K. In this paper, we show
that the centre of A is a polynomial algebra K[C] (Theorem 2.8) and the generator C has degree
4:

2
L yrix 4 g
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The method we use in finding the central element C' of A can be summarized as follows. The
algebra, A is ‘covered’ by a chain of large subalgebras. They turn out to be generalized Weyl
algebras. Their central/normal elements can be determined by applying Proposition 2.2. At
each step generators of the covering subalgebras are getting more complicated but their relations
become simpler. At the final step, we find a central element of a large subalgebra A of A which
turns out to be the central element C' of the algebra A.

The prime, primitive and maximal spectra of A. In Section 3, we classify the prime,
primitive and maximal ideals of the algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9,
respectively). It is shown that every nonzero ideal has nonzero intersection with the centre of the
algebra A (Corollary 3.8). In classifying prime ideals certain localizations of the algebra A are
used. The set of completely prime ideals is also described (Corollary 3.12).

A classification of simple weight A-modules. An A-module M is called a weight module
if M = @, cx- My, where My, = {m € M |Km = pm}. In Section 6, a classification of simple
weight A-modules is given. It is too technical to describe the result in the Introduction but we
give a flavour and explain main ideas. The set of isomorphism classes of simple weight A-modules
are partitioned into several subclasses, and each of them requires different techniques to deal with.
The key point is that each weight component of a simple weight A-module is a simple module
over the centralizer C'4(K) of the quantum Cartan element K and this simple C4 (K)-module can
be an arbitrary simple C4(K)-module. Therefore, first we study the algebra C4(K), classify its
simple modules and using this classification we classify simple weight A-modules. There are plenty
of them and a ‘generic/typical’ simple weight A-module depends on arbitrary many independent
parameters (the number of which is finite but can be arbitrary large).

The centralizer C4(K) and a classification of its simple modules. The algebra C4(K)
is generated by (explicit) elements K*', C, ©, t and u subject to the defining relations, Theorem
4.6 (K*! and C are central elements):

YKX.

C=(1-¢)FYXE+FX?-Y?K'E — .

O-t=¢t-0+(qg+qg Hu+(1-¢*)C, O u=q¢gu-0-—ql+t+1-¢>K'C
2 1 2 q

t-u=q“u-t, O-t-u q(l—qQ)u C'U71—q2
It is proved that the centre of the algebra Ca(K) is K[C, K*!]. The problem of classification of
simple C4(K)-modules is reduced to the one for the factor algebras € := C4(K)/C4(K)(C —
A, K — p) where A € K and g € K*. The algebra ¢*# is a domain (Theorem 4.11.(2)). The
algebra €** is simple iff A # 0 (Theorem 4.11.(1)). A classification of simple ¢ **-modules is
given in Section 5. One of the key observations is that the localization ‘5{\’“ of the algebra €+
at the powers of the element ¢ = Y X is a central, simple, generalized Weyl algebra (Proposition
4.9). The other one is that, for any A € K and u € K*, we can embed the algebra €** into a
generalized Weyl algebra 7 (which is also a central simple algebra), see Proposition 5.3. These
two facts enable us to give a complete classification of simple C'4(K)-modules. The problem of
classifying simple €**-modules splits into two distinct cases, namely the case when A\ = 0 and
the case when XA # 0. In the case A = 0, we embed the algebra €%# into a skew polynomial
algebra R = K[h*!][t; 0] where o(h) = ¢?h (it is a subalgebra of the algebra <) for which the
classification of simple modules is known. In the case A # 0, we use a close relation of €M with
the localization %’Q)"“ , and the arguments are more complicated.

The algebra A can be seen as a quantum analogue of another classical algebra, the enveloping
algebra U (V4 x sly) of the semidirect product Lie algebra V5 x sly (where V5 is the 2-dimensional
simple sla-module) which was studied in [9]. These two algebras are similar in many ways. For

t? —¢*KC -t



example, the prime spectra of these two algebras have similar structures; the representation theory
of A has many parallels with that of U (V3 xsl3); the quartic Casimir element C of A degenerates to
the cubic Casimir element of U(Vz x slz) as ‘¢ — 1’. The centre of U(Vz x sl) is generated by the
cubic Casimir element, [24]. The study of quantum algebras usually requires more computations
and the methods of this paper and [9] are quite different. Much work has been done on quantized
enveloping algebras of semisimple Lie algebras (see, e.g., [17, 18]). In the contrast, only few
examples can be found in the literature on the quantized algebras of enveloping algebras of non-
semisimple Lie algebras.

2 The centre of the algebra A

In this section, it is proved that the centre Z(A) of the algebra A is a polynomial algebra K[C]
(Theorem 2.8) and the element C' is given explicitly, (14)—(17). Several important subalgebras
and localizations of the algebra A are introduced, they are instrumental in finding the centre of
A. We also show that the quantum Gelfand—Kirillov conjecture holds for the algebra A.

The algebra A. In this paper, K is a field and an element ¢ € K* = K\ {0} is not a root of
unity. Recall that the quantized enveloping algebra of sly is the K-algebra U, (slz) with generators
E,F,K, K~ subject to the defining relations (see [17]):

KK '=K'K=1, KEK '=¢’E, KFK ' =¢%F, EF - FE = Iz_ff_ll.
The centre of Uy (sl2) is a polynomial algebra Z(U,(slz)) = K[Q2] where Q := FE + %. A
Hopf algebra structure on U, (sly) is defined as follows:
A(K)=K®K, e(K) =1, S(K)=K™",
A(E)=E®1+ K®E, e(E) =0, S(E)=-K'E,
AF)=F@K '+1®F, e(F) =0, S(F) = -FK,

where A is the comultiplication on U, (slz), ¢ is the counit and S is the antipode of U, (sl3). Note
that the Hopf algebra U,(slz) is neither cocommutative nor commutative. The quantum plane
KX, Y] =KX, Y | XY = ¢Y X) is a Uy(slz)-module algebra where

K X =¢X, E-X =0, F.X=Y,
K.Y =q'Y, E.Y =X, F.Y=0.

Then one can form the smash product algebra A :=K,[X,Y] x U,(slz). For details about smash
product algebras, see [22]. The generators and defining relations for this algebra are given in the
Introduction.

Generalized Weyl algebras. Definition, [1, 2, 3]. Let D be a ring, o be an automorphism
of D and a is an element of the centre of D. The generalized Weyl algebra A := D(o,a) :=
D[X,Y;0,a] is a ring generated by D, X and Y subject to the defining relations:

Xa=o0(a)X and Ya=0"!a)Y forall a € D, YX =a and XY = o(a).

The algebra A = @,z Ay, is Z-graded where A,, = Dv,, v, = X" forn >0, v, =Y " forn <0
and vg = 1.

Definition, [6]. Let D be a ring and o be its automorphism. Suppose that elements b and p
belong to the centre of the ring D, p is invertible and o(p) = p. Then E := D[X,Y;0,b,p] is a
ring generated by D, X and Y subject to the defining relations:

Xa=oc(a)X and Ya=0"'(a)Y forall a € D, and XY —pY X =b.

An element d of a ring D is normal if dD = Dd. The next proposition shows that the rings E
are GWAs and under a (mild) condition they have a ‘canonical’ normal element.



Proposition 2.1. Let E = D[X,Y;0,b,p|. Then
1. [6, Lemma 1.8] The following statements are equivalent:
(a) [6, Corollary 1.4] C = p(YX + a) = XY + o(a) is a normal element in E for some
central element o € D,
(b) pa—o(a) =b for some central element o € D.
2. [6, Corollary 1.4] If one of the equivalent conditions of statement 1 holds then the ring
E =DI[C|[X,Y;0,a=p~tC — o] is a GWA where a(C) = pC.

The next proposition is a corollary of Proposition 2.1 when p = 1. The rings F with p =1
admit a ‘canonical’ central element (under a mild condition).

Proposition 2.2. Let E = D[X,Y;0,b,p =1]. Then
1. [6, Lemma 1.5] The following statements are equivalent:

(o) C=YX+a=XY +o(«) is a central element in E for some central element o € D,
(b) o —o(a) =D for some central element o € D.
2. [6, Corollary 1.6] If one of the equivalent conditions of statement 1 holds then the ring
E =D[C|[X,Y;0,a =C —qa] is a GWA where o(C) = C.

An involution 7 of A. The algebra A admits the following involution 7 (see [15], p. 693):
7(E)=~-FK, 7(F)=-K'E, 7(K)=K, 7K Y)Y =K', 7(X)=Y, 7(Y)=X. (1)

For an algebra B, we denote by Z(B) its centre.
The algebra E is a GWA. Let E be the subalgebra of A which is generated by the elements
E, X and Y. The elements E, X and Y satisfying the defining relations

EX =¢XE, YX=q 'XY, and EY —¢ 'YE = X.

Therefore, E = K[X][E,Y;0,b = X,p = ¢~'] where 0(X) = ¢X. The polynomial o = quX
. q

1
is a solution to the equation ¢ 'a — o(a) = X. Hence, by Proposition 2.1, the element C' =
¢ (YE + X)=FEY + 4" X is a normal element of E and the algebra E is a GWA

1—q?

q
1—q?

E = K[C, X][E,Y;0,a = ¢C - 1 _X] where o(C)=q7'C, o(X)=qX.
—dq

Let
pi=(1-¢)C. (2)
Then o = X + (¢! —q)YE = (1 — ¢*)EY + ¢*X. Hence,

p—X

E =K[p, X][E,Y;0,a = ——
qa " —q

} 3)

where o(¢) = ¢ ¢ and o(X) = ¢X. Using the defining relations of the GWA E, we see that the
set {Y?|i € N} is a left and right Ore set in E. The localization of the algebra E at this set,
Ey = K[p, X][Y*!;0] is the skew Laurent polynomial ring. Similarly, the set {X?|i € N} is a
left and right Ore set in Ey and the algebra

Ey x = Klp, X[V 0] = K[®] @ K[XE![Y*; 0] (4)

is the tensor product of the polynomial algebra K[®] where & = X ¢ and the Laurent polynomial
algebra K[X*!][Y; 0] which is a central simple algebra. In particular, Z(Ey x) = K[®]. So, we
have the inclusion of algebras E C Ey C Ey x.

The next lemma describes the centre of the algebras E, Ey and Ey x.

Lemma 2.3. Z(E) = Z(Ey) = Z(Ey,x) = K[®] is a polynomial algebra where ® := X .



Proof. By (4), K[®] C Z(E) C Z(Ey) C Z(Ey, x) = K[®], and the result follows. O
We have the following commutation relations

Xo=pX, Yo = qpY, Ep=q '¢E, Ko = qpK. (5)
Xo = X, Yo = Y, Ed = OF, K® = ¢*0K. (6)

Lemma 2.4. 1. [F,¢] =YK.

2. The powers of ¢ form a left and right Ore set in A.

3. The powers of X form a left and right Ore set in A.

4. The powers of Y form a left and right Ore set in A.
Proof. 1. [F,o] =[F, X+ (¢! —q)YE| =YK '+ (¢' - q)Y(—I;:TK:ll) =YK.

2. Statement 2 follows at once from the equalities (5) and statement 1.

3. The statement follows at once from the defining relations of the algebra A where X is
involved.

4. The statement follows at once from the defining relations of the algebra A where Y is
involved. O

The algebra F is a GWA. Let F be the subalgebra of A which is generated by the elements
F, X and Y’ := YK~'. The elements F, X and Y” satisfy the defining relations

FY'=¢%Y'F, XY'=¢Y'X and FX - XF=Y".

Therefore, the algebra F = K[Y'][F, X;0,b = Y',p = 1] where o(Y’) = ¢~2Y’. The polynomial

o= 17;,2 Y’ € K[Y"] is a solution to the equation o —o(«) = Y'. By Proposition 2.2, the element

"= XF Y =FX Y’
C + [ + -
belongs to the centre of the GWA
1
F = K[C",Y'|[F,X;0,a=C" — Y.
1—q2
Let
Y= (1-¢*)C". (7)
Then ¢ = (1 - ¢>)FX - Y' = (1 - ¢*>)XF — ¢*Y' € Z(F) and
2yl
F = K[, Y[, Xio.a = 0] 0

where o(¢)) = 1 and o(Y”’) = ¢~2Y". Similar to the algebra E, the localization of the algebra F
at the powers of the element X is equal to Fx := K[, Y/][XT1;07!] = K[¢] @ K[Y'][X ;071
where o is defined in (8). The centre of the algebra K[Y'][X*!; 07! is K. Hence, Z(Fx) = K[¢].

Lemma 2.5. Z(F) = Z(Fx) = K[¢].
Proof. The result follows from the inclusions K[¢] C Z(F) C Z(Fx) = K[¢]. O

The GWA A. Let T be the subalgebra of A generated by the elements K*!, X and Y.
Clearly,

T:=A[K*;7] where A :=K(X,Y | XY = qYX) and 7(X) = ¢X and 7(Y) = ¢~ 'Y.  (9)

It is easy to determine the centre of the algebra 7.



Lemma 2.6. Z(T) = K[z] where z :== KY X.

Proof. Clearly, the element z = KY X belongs to the centre of the algebra T'. The centralizer
Cr(K) is equal to K[K*!, Y X]. Then the centralizer Cr (K, X) is equal to K[z], hence Z(T) =
K[2]. O

Let A be the subalgebra of A generated by the algebra T and the elements ¢ and 1. The
generators K1, X, Y, ¢ and 1 satisfy the following relations:

pX = Xop, ¢Y =q Yo, ¢K =q 'Ke,

VX = X1, VY = qY, VK = qK¢, o — o= —q(1 - ¢*)z.
These relations together with the defining relations of the algebra T are defining relations of the
algebra A. In more detail, let, for a moment, A’ be the algebra generated by the defining relations
as above. We will see A’ = A. Indeed, A’ = T|[p,;0,b = —q(1 — ¢*)z, p = 1]. Hence, the set of
elements { K X7Y*ply™ |i € Z, 7, k,1,m € N} is a basis of the algebra A’. This set is also a basis
for the algebra A. This follows from the explicit expressions for the elements ¢ = (¢7! —q)Y E+ X
and ¢ = (1—¢*>) X F—¢?Y K~!. In particular, the leading terms of ¢ and 1 are equal to (¢~ *—q)Y E
and (1 — ¢%) X F, respectively (deg(K*!') =0). So, A = A/, i.e.,

A=Tp,;0,b=—q(1—¢*)z,p=1] where 0(X)=X, 0(Y)=¢ 'Y and o(K)=q 'K.
Recall that the element b belongs to the centre of the algebra T' (Lemma 2.6). The element o = ¢32
is a solution to the equation o — o(a) = b. Then, by Proposition 2.2, the element
C" =g+ ¢’z =g+ qz
is a central element of the algebra A (since o(z) = ¢~22) which is the GWA
A =T[C"|[p,;0,a =C" —¢*2] where o(C")=C",0(X)=X,0(Y)=q¢"'Y,0(K)=q 'K.
Let C := 1?—”2 Then
q

C=(1-¢)"Wo+d*2) =1~ gy +a2), (10)
is a central element of the GWA
A =T[Cllp,v50,a=(1-¢*)C —¢*] (11)
where 0(C) = C,0(X) = X,0(Y) = ¢~ 'Y and 0(K) = ¢ ' K. Using expressions of the elements
=X+ (¢ '-1)YEand ¢y = (1-¢*>)XF — ¢®Y K1, we see that
Axy =Axy. (12)

Hence, C' € Z(A). We now show our first main result: Z(A4) = K[C] (Theorem 2.8). In order to
show this fact we need to consider the localization Ax y, . Let T :=Txy = Ax,y[Kil; 7] where
7 is defined in (9) and Ax y is the localization of the algebra A at the powers of the elements X
and Y. By (12) and (11),

Axye = Axy,p = Txy[C)lp™;0] =K[C] @ Tlp™ ;0] = K[C] @ A’ (13)
where A’ = T[¢*!; 0] and o is as in (11).
Lemma 2.7. 1. Z(AN) =K.
2. The algebra N is a simple algebra.

Proof. 1. Let u = Y X\ jx K XY ol € Z(A), where \; ., € K. Since [K,u] = 0, we have
j —k+1 = 0. Similarly, since [X,u] = [Y,u] = [p,u] = 0, we have the following equations:
—1+k=0,1—754+1=0, —t — k =0, respectively. These equations imply that t =j =k =1=0.
Thus Z(A) = K.

2. Since the algebra A’ is central, it is a simple algebra, by [16, Corollary 1.5.(a)] O



Theorem 2.8. The centre Z(A) of the algebra A is the polynomial algebra in one variable K[C].

Proof. By (13) and Lemma 2.7.(1), Z(Ax y,,) = K[C]. Hence, Z(A) = K[C]. O
Using the defining relations of the algebra A, we can rewrite the central element C' as follows:
2 2 27-—1 1 -1 ¢
C=01-¢ ) FYXE+FX*-Y°K E—1 YK X—i—l SYKX. (14)
—q —4q
C=(FE—-@EF)YX +¢FX* - K 'EY? (15)
3
C=FX(EY —qYE) - K 'EY? + : 1 S(K - K hHYX. (16)
¢’ X
C=(1-¢)FEYX + : S(K-K WYX+ ¢@*FX?— K 'EY”. (17)

The subalgebra A of A. Let A be the subalgebra of A generated by the elements K+, £, X
and Y. The properties of this algebra were studied in [8] where the prime, maximal and primitive
spectrum of A were found. In particular, the algebra

A =E[K*; 7] (18)

is a skew Laurent polynomial algebra where 7(E) = ¢*E,7(X) = ¢X and 7(Y) = ¢~'Y. The
elements X, ¢ € A are normal elements of the algebra A. The set Sx ,, := {X %7 |4,j € N} is a left
and right denominator set of the algebras A and A. Clearly Ax , := S)_(}W.A CAx,:= 8;(,147‘4'

Lemma 2.9. ([8]) The algebra Ax,, is a central simple algebra.
Using the defining relations of the algebra A, the algebra A is a skew polynomial algebra
A= A[F;0,0] (19)

where ¢ is an automorphism of A such that o(K) = ¢?K,0(E) = E,0(X) = X,0(Y) = Y; and
§ is a o-derivation of the algebra A such that §(K) = 0,6(F) = I;:f:ll,é(X) = YK~ and
d(Y) = 0. For an element a € A, let degp(a) be its F-degree. Since the algebra A is a domain,
degp(ab) = degp(a) + degp(b) for all elements a,b € A.

Lemma 2.10. The algebra Ax , = K[C] ® Ax o is a tensor product of algebras.

Proof. Recall that ¢ = EY — qY E. Then the equality (16) can be written as C = FX¢ —

K 'EY? + 1322 (K — K71)Y X. The element X is invertible in Ax . Now, using (19), we see

that Ay, = Ax ,[F0,0] = Ay ,[C] = K[C] ® Ax .. 0

Quantum Gelfand—Kirillov conjecture for A. If we view A as the quantum analogue of
the enveloping algebra U (V5 xs5ls), a natural question is whether A satisfies the quantum Gelfand—
Kirillov conjecture. Recall that a quantum Weyl field over K is the field of fractions of a quantum
affine space. We say that a K-algebra A admitting a skew field of fractions Frac(A) satisfies the
quantum Gelfand—Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl field over a
purely transcendental field extension of K; see [11, 11.10, p. 230].

Theorem 2.11. The quantum Gelfand-Kirillov conjecture holds for the algebra A.
Proof. This follows immediately from (13). O

3 Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal ideals of the
algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9). It is proved that every nonzero ideal of
the algebra A has nonzero intersection with the centre of A (Corollary 3.8). The set of completely
prime ideals of the algebra A is described in Corollary 3.12. Our goal is a description of the prime
spectrum of the algebra A together with their inclusions. Next several results are steps in this
direction, they are interesting in their own right.



Lemma 3.1. The following identities hold in the algebra A.
. . 24 .
1 FX' = X'F+ =L YK IXL
2. XF'=FiX - S0y p-ig-L
Proof. By induction on ¢ and using the defining relations of A. O

Let R be a ring. For an element r € R, we denote by (r) the (two-sided) ideal of R generated
by the element 7.

Lemma 3.2. 1. In the algebra A, (X) = (V) = (¢) = AX + AY.
2. A)(X) = Uy(sla).

Proof. 1. The equality (X) = (Y) follows from the equalities FX = YK~! + XF and EY =
X + ¢ 'YE. The inclusion (¢) C (Y) follows from the equality ¢ = EY — qY E. The reverse
inclusion (¢) 2 (V) follows from Y = [F, ] K ! (Lemma 2.4). Let us show that XA C AX + AY.
Recall that X is a normal element of A. Then by (19), XA = Y7, AXF¥ = AX 4+, | AXF* C
AX + AY (the inclusion follows from Lemma 3.1.(2)). Then (X) = AXA C AX+AY C (X,Y) =
(X), ie., (X)=AX + AY.

2. By statement 1, A/(X) = A/(X,Y) ~ U,(sl2). O

The next result shows that the elements X and ¢ are rather special.

Lemma 3.3. 1. Foralli>1, (X*) = (X).
2. Foralli>1, (¢))x = (p) = Ax.

Proof. 1. To prove the statement we use induction on i. The case ¢ = 1 is obvious. Suppose that
i > 1 and the equality (X7) = (X)? holds for all 1 < j <4 — 1. By Lemma 3.1.(1), the element
VX1 e (X1). Now, (X)! = (X)(X)! = (X)(X"1) = AXAX* 1A C (Xi) + AYX"14 C
(X%). Therefore, (X)* = (X*).

2. Tt suffices to show that (¢%)x = Ax for all i > 1. The case i = 1 follows from the equality of
ideals (¢) = (X) in the algebra A (Lemma 3.2). We use induction on . Suppose that the equality
is true for all i’ < i. By Lemma 2.4.(1), [F,¢'] = 111‘2:221 YK¢'~! hence Ypi=! € (¢%). Using the

equalities EY — ¢~ 'YE = X and Ep = ¢~ 'pFE, we see that

EYQ"™ —q Yo" 'E=(EY — ¢ 'YE)p' T = X¢'
Now, (¢%)x 2 (¢*~1)x = Ax, by induction. Therefore, (¢*)x = Ax for all 4. O

One of the most difficult steps in classification of the prime ideals of the algebra A is to show
that each maximal ideal q of the centre Z(A) = K[C] generates the prime ideal Aq of the algebra
A. There are two distinct cases: q # (C) and q = (C). The next theorem deals with the first case.

Theorem 3.4. Let q € Max(K[C]) \ {(C)}. Then
1. The ideal (q) := Aq of A is a mazimal, completely prime ideal.
2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q' where ¢ = ¢/(C) is an irreducible monic polynomial such that
¢'(0) € K*.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a mazimal ideal of A: Consider the
chain of localizations

A A
Al(q) — — — K
(@x  (@xe
By Lemma 2.10, (;‘)XT’Z ~ L4 ® Ax,, where Ly := K[C]/q is a finite field extension of K. By

Lemma, 2.9, the algebra Ax , is a central simple algebra. Hence, the algebra (ﬁT); is simple iff



(p%,q)x = Ax for all i > 1. By Lemma 3.3.(2), (¢*)x = Ax for all i > 1. Therefore, the algebra

(‘:ﬁ is simple. Hence, the algebra A/(q) is simple iff (X q) = A for all i > 1.

By Lemma 3.3.(1), (X*) = (X)® for all i > 1. Therefore, (X*,q) = (X)*+ (q) for all s > 1. It
remains to show that (X)+ (q) = A for all i > 1. By Lemma 3.2.(1), (X) = (X,Y). If i = 1 then
(X)+(q) = (X,Y.q) = (X,Y,¢'(0)) = A, by (14) and ¢'(0) € K*. Now, A = A’ = ((X) +(q))’ C
(X)P+(q) C A, ie., (X)"+(q) = 4, as required.

(ii) (q) is a completely prime ideal of A: The set S = {X'¢’|i,j € N} is a denominator
set of the algebra A. Since (‘:));i ~ S1(A/(q)) is a (nonzero) algebra and (q) is a maximal
ideal of the algebra A, we have that tors(A/(q)) is an ideal of the algebra A/(q) distinct from
A/(q), hence tors(A/(q)) = 0. This means that the algebra A/(q) is a subalgebra of the algebra

~ Ly ® Ax , which is a domain. Therefore, the ideal (q) of A is a completely prime ideal.

X, ¢

()x.
(i) Z(A/(q)) = Lq: By Lemma 2.9, Z(Ax,,) = K, and A/(q) C (:1));’“‘; ~ Ly ® Ax,,, hence
Z(A/@)) = Ly O

The case where q = (C) is dealt with in the next proposition.
Proposition 3.5. AN (C)x,, = (C) and the ideal (C') of A is a completely prime ideal.

Proof. Recall that A = A[F;0,0] (see (19)), ® = X € A is a product of normal elements X and
¢ in A and, by (16), the central element C' can be written as C = ®F + s where
~ L]4 -1 1

= YK —
4 1—¢2 1—¢?2

YK and s=—¢°K 'EY? - Xj.

(i) If X f € (C) for some f € A then f € (C): Notice that X f = Cg for some g € A. To prove
the statement (i), we use induction on the degree m = degp(f) of the element f € A. Notice
that A is a domain and degp(fg) = degpr(f) + degr(g) for all f,g € A. The case when m < 0
ie., f € A, is obvious since the equality X f = Cg holds iff f = g = 0 (since degp (X f) < 0 and
degr(Cyg) > 1 providing g # 0). So, we may assume that m > 1. We can write the element f as
asum f = fo+ fiF + -+ fin F'™ where f; € A and f,;, # 0. The equality X f = C¢ implies that
degr(g) = degp(X f) — degp(C) = m — 1. Therefore, g = go + g1 F + -+ + gm_1F™ ! for some
gi € Aand gn,,—1 # 0. Then (where § is defined in (19))

XfotXfiF + -+ X [ F™ = (PF +5)(go + 1 F + - + g1 F™ )
=®(o(go)F +6(90)) + ®(c(91)F +6(g1)) F + -+ - + ®(0(gm-1)F + 5(9m—1))Fm_1
+ 590+ $g1 F + -+ + 8g_ F™ 71
= ®5(go) + sgo + (Pa(go) + P(g1) +591)F + -+ ®o(gm—1)F™. (20)

Comparing the terms of degree zero we have the equality X fo = ®0(go) + sgo = X¢d(go) +
(—¢*K~'EY? - X7)go, i.e., X(fo—¢d(g0) +Tg0) = —¢>*K 1 EY?gy. All the terms in this equality
belong to the algebra A. Recall that X is a normal element in A such that A4/ AX is a domain
(see [8]) and the element K~!EY? does not belong to the ideal AX. Hence we have gy € AX,
i.e., go = Xhg for some hg € A. Now the element g can be written as g = Xhg+ g’ F where ¢’ =0
if m=1, and degp(g’) = m —2 = degp(g) — 1 if m > 2. Now, Xf = C(Xho + ¢'F) and so
X(f — Chy) = C¢'F. Notice that C¢’F has zero constant term as a noncommutative polynomial
in F (where the coefficients are written on the left). Therefore, the element f — Chg has zero
constant term, and hence can be written as f — Chg = f'F for some f’ € A with

degp(f') + degp(F) = degp(f'F) = degp(f') +1
= degp(f — Cho) < max (degF(f)a degF(C’ho)) =m

Notice that, degp(f’) < degp(f). Now, Cg'F = X(f — Chg) = Xf'F, hence X f' = C¢’ € (C)
(by deleting F'). By induction, f’ € (C), and then f = Chg+ f'F € (C), as required.



(ii) If of € (C) for some f € A then f € (C): Notice that ¢ f = Cg for some g € A. To prove
the statement (ii) we use similar arguments to the ones given in the proof of the statement (i). We
use induction on m = degp(f). The case where m < 0, i.e., f € A is obvious since the equality
of = Cgholds iff f =g =0 (since degp(pf) < 0 and deg(Cyg) > 1 providing g # 0). So we may
assume that m > 1. We can write the element f as asum f = fo+ f1F+---+ f,, F™ where f; € A
and f,, # 0. Then the equality ¢f = Cg implies that degp(g) = degp(pf) — degp(C) = m — 1.
Therefore, g = go + g1 F + -+ + gm_1F™ ! where g; € A and g,,,_1 # 0. Then replacing X by ¢
in (20), we have the equality

ofo+ofiF + -+ ofm ™ = ®5(g0) + sg0 + -+ + Po(gm—1)F™. (21)

The element s can be written as a sum s = (fl_qq2 oK1 + 1_142 KX)Y. Then equating the
constant terms of the equality (21) and then collecting terms that are multiple of ¢ we obtain the
equality in the algebra A: ¢(fo — Xd(g0) + 1_‘1(12 K=Ygq) = ﬁKXYgO. The element ¢ € A
is a normal element such that the factor algebra A/ Ay is a domain (see [8]) and the element
KXY does not belong to the ideal Ap. Therefore, g9 € Ap, i.e., go = phg for some element
ho € A. Recall that degp(g) = m — 1. Now, g = ¢hg + ¢'F where ¢’ € A and ¢’ = 0 if
m =1, and degp(g’) = m — 2 = degp(g) — 1 if m > 2. So, pf = Cg = C(pho + ¢'F). Hence,
o(f = Chg) =Cg¢g'F, and so f — Chy = f'F for some f’ € A with

degp(f') + degp(F) = degp(f'F) = degp(f') +1
= degp(f — Cho) < max (degp(f), degp(Cho)) = m.

Notice that, degp(f") < degp(f). Now, Cg'F = o(f — Cho) = ¢f'F, hence pf' = Cq¢’ € (C) (by
deleting F'). Now, by induction, f' € (C), and then f = Chy + f'F € (C), as required.

(iii) AN (C)x,p = (C): Let ue AN (C)x,,. Then X'pu € (C) for some i, j € N. It remains
to show that u € (C). By the statement (i), ¢’u € (C), and then by the statement (ii), u € (C).

(iv) The ideal (C) of A is a completely prime ideal: By Lemma 2.10, Ax ,/(C)x,, ~ Ax e, in
particular, Ax ,/(C)x,, is a domain. By the statement (iii), the algebra A/(C) is a subalgebra
of Ax »/(C) x4, 80 A/(C) is a domain. This means that the ideal (C) is a completely prime ideal
of A. O

Let R be a ring. Then each element r» € R determines two maps from R to R, r-: x — rz and
v 2 — xr where x € R. The next proposition is used in the proof of one of the main results of
the paper, Theorem 3.7. It explains why the elements (like X and () that satisfy the property of
Lemma 3.3 are important in description of prime ideals.

Proposition 3.6. (/8].) Let R be a Noetherian ring and s be an element of R such that Ss :=
{s'|i € N} is a left denominator set of the ring R and (s*) = (s)" for all i > 1 (e.g., s is a
normal element such that ker(-s) C ker(s-)). Then Spec(R) = Spec(R,s) U Specy(R) where
Spec(R, s) := {p € Spec(R) | s € p}, Spec,(R) := {q € Spec(R) | s ¢ q} and
(a) the map Spec(R,s) + Spec (R/(s)),p = p/(s), is a bijection with the inverse q — 7 1(q)
where m: R — R/(s),r — r+ (s),
(b) the map Spec,(R) — Spec (Rs), p +— S 1p, is a bijection with the inverse q — o~ 1(q) where
0:R— R, :=8'R,r— =
(c) For all p € Spec (R, s) and q € Spec,(R),p Z q.

The next theorem gives an explicit description of the poset (Spec (4), C).

Theorem 3.7. Let U := Uy(sly). The prime spectrum of the algebra A is o disjoint union

Spec(A) = Spec(U) U Spec(Ax ) = {(X,p) [p € Spec(U)} U{Aq|q € Spec(K[C])}.  (22)
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Furthermore,

(©)  {AqlaeMax(K[C)\ {(O)}}
N/
0 (23)

Proof. By Lemma 3.2.(2), A/(X) ~ U. By Lemma 3.3.(1) and Proposition 3.6, Spec(A) =
Spec (A, X) U Spec(Ax). By Lemma 3.3.(2) and Proposition 3.6, Spec (Ax) = Spec(Ax,,).
Therefore,

Spec (A) = {(X,p) |p € Spec (U)} U{AN Ax »q]q € Spec (K[C])}.

Finally, by Theorem 3.4.(1), AN Ax ,q = (q) for all g € Max (K[C]) \ {(C)}. By Proposition 3.5,
ANAx,C = (C). Therefore, (22) holds. For all q € Max (K[C]) \ {(C)}, the ideals Aq of A are
maximal. By (14), AC C (X). Therefore, (23) holds. O

The next corollary shows that every nonzero ideal of the algebra A meets the centre of A.
Corollary 3.8. If I is a nonzero ideal of the algebra A then I NK[C] # 0.

Proof. Suppose that the result is not true, let us choose an ideal J # 0 maximal such that
JNK[C] = 0. We claim that J is a prime ideal. Otherwise, suppose that J is not prime, then
there exist ideals p and q such that J S p, J S q and pq € J. By the maximality of J, pNK[C] # 0
and g NK|[C] # 0. Then J NK[C] 2 pgNK[C] # 0, a contradiction. So, J is a prime ideal, but by
Theorem 3.7 for all nonzero primes P, P NK[C] # 0, a contradiction. Therefore, for any nonzero
ideal I, INK[C] # 0. O

The next result is an explicit description of the set of maximal ideals of the algebra A.
Corollary 3.9. Max (A) = Max (U) U {Aq|q € Max (K[C]) \ {(C)}}.
Proof. Tt is clear by (23). O

In the following lemma, we define a family of left A-modules that has bearing of Whittaker
modules. It shows that these modules are simple A-modules and their annihilators are equal to

(©).

Lemma 3.10. For A € K*, we define the left A-module W (X) := AJA(X — N\, Y, F). Then
1. The module W () is a simple A-module.
2. anny(W(X)) = (O).

Proof. 1. Let 1 =1+ A(X — \,Y, F) be the canonical generator of the A-module W(\). Then
W(A) = 3,y E'K[K*! 1. Suppose that V is a nonzero submodule of W (), we have to show
that V =W ()). Let v = 31" E'f;1 be a nonzero element of the module V where f; € K[K*!]
and f, # 0. Then

n ) ) 1 23 n 2
vo= Y@y - =D xpenpa =y D ey
1=1 i=1

By induction, we see that Y"v = P1 € V where P is a nonzero Laurent polynomial in K[K*!].

Then it follows that 1 € V, and so V = W(\).
2. Tt is clear that annyg (W (X)) 2 (C) and X ¢ anns (W(A)). By (23), anng (W(A)) = (C). O
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The next theorem is a description of the set of primitive ideals of the algebra A.
Theorem 3.11. Prim (A) = Prim (U) U {Aq|q € SpecK[C]\ {0}}.

Proof. Clearly, Prim (U) C Prim (A) and {Aq|q € Max (K[C]) \ {CK[C]}} C Prim (A) since Aq
is a maximal ideal (Corollary 3.9). By Corollary 3.8, 0 is not a primitive ideal. In view of (23) it
suffices to show that (C) € Prim (A4). But this follows from Lemma 3.10. O

The next corollary is a description of the set Spec,.(A) of completely prime ideals of the algebra
A.

Corollary 3.12. The set Spec,(A) of completely prime ideals of A is equal to

Spec,(A) = Spec,(U) U {Aq]|q € Spec(K[C])}
= {(X,p) |p € Spec (U), p # anny (M) for some simple finite dimensional
U-module M of dimg (M) >2} U {Aq|q € Spec(K[C])}.

Proof. The result follows from Theorem 3.4.(1) and Proposition 3.5. O

4 The centralizer C4(K) of the element K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer C'4(K) of
the element K in the algebra A.

Proposition 4.1. The algebra Cy(K) = K(K*', FE, YX, EY?, FX?) is a Noetherian do-
main.

Proof. Since A is a domain, then so is its subalgebra C'4 (K'). Notice that the algebra A = @, , A;
is a Z-graded Noetherian algebra where A; = {a € A| KaK~! = g'a}. Then the algebra Ag =
Ca(K) is a Noetherian algebra.

The algebra U, (slz) is a GWA:

qK + qflel

(¢—q71)?
where Q = FE + %, o(K) = ¢ ?K and () = Q. In particular, U,(sls) is a Z-graded
algebra U, (sly) = @, Dv; where D := K[K*!,Q] = K[K*', FE], v; = E" if i > 1, v; = FIl if
i < —1 and vg = 1. The quantum plane K,[X,Y] is also a GWA:

Uy(sle) ~ K[K*!, Q][E, Fy0,a:=Q —

KqX,Y] ~K[t][X,Y;0,t] where t:=YX and o(t) = qt.

Therefore, the quantum plane is a Z-graded algebra Ky[X,Y] = €D, K[tJw; where w; = X7 if
j=1,w; =Yllif j < —1and wy = 1. Since A = U,(sly) ® K,[X, Y] (tensor product of vector
spaces), and notice that Bt = tE + X%, Ft =tF + ¢ ?K~1Y?, we have

A =Uy,(sly) @ K[X, Y] = P Dv; @ P K[tlw; = D DitJviw;. (24)
i€z jez ijEL
By (24), for each_k € Z, A, = @i,_jeZ,_2i+j:kD[t]viwj = @,y Dlt]Jviwg—2;. Then Cx(K) =
Ao = @5 DIHIE'Y? © @5, D[t]F7 X?). Notice that EY? -t = ¢~ *t- EY? 4 qt* and FX? -t =
¢*t - FX? + ¢~ ' K~ '2. By induction, one sees that for all 4,j > 0,
E'Y* e DKH(EY?)" and FIX¥ ¢ KE* #(FX?)".
neN neN

Hence, Ca(K) = Ao = @5, DII(EY?)" ® @;5, D[t|(FX?)’. In particular, the centralizer
Ca(K) = K(K*', FE, YX, EY?, FX2). 0
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Lemma 4.2. 1. Cay, (K ) = K[C, K*1] @ K2 [(Y X)*L, (Y)F!] is a tensor product of al-
gebras where K,2[(YX)TL, (Yp)*!] is a central, simple, quantum torus with YX - Y =
Yo -YX.

2. GK (Cax,.,(K)) = 4.
3. GK(Ca(K)) =4.
4 Axye = @icz Cax vy ()Y

Proof. 1. By (13), Ax,y,, = K[C] ® A" where A" is a quantum torus. Then Ca, , ,(K) =K[C]®
Ca(K). Since A’ is a quantum torus, it is easy to see that Ca/(K) = €D, ; rez K{ (Y X)I(Yp)k,
Le., On(K) =KIKF] @ Kp[(YX)*, (Ye)*!]. Then statement 1 follows.

2. Statement 2 follows from statement 1.

3. Let R be the subalgebra of C4(K) generated by the elements C, K*! Y X and Y.
Then R = K[C, K] ® K,2[Y X, Y] is a tensor product of algebras. Clearly R is a Noetherian
algebra of Gelfand-Kirillov dimension 4. So GK (C4(K)) > GK(R) = 4. By statement 2,
GK (Ca(K)) < GK(Cay,,(K)) = 4. Hence, GK (Cx(K)) = 4.

4. Statement 4 follows from statement 1 and (13). O

Proposition 4.3. Let h:= X' e:= EX "2 and t := Y X. Then
1. Cay (K) =K[C,K* @ & is a tensor product of algebras where o/ := K[h®!][t,e;0,a =

qf_};;l] is a central simple GWA (where o(h) = ¢*h).
2. GK(Cay ,(K)) = 4.

3. Ax,o = Dy C’AXW(K)X?

Proof. 1. Let </ be the subalgebra of Cx,  (K) generated by the elements h*!, e and t.
(i) o is a central simple GWA: The elements h*!, e and t satisfy the follovvlng relations

—2h—1 h—1
hh'=h 'h=1, th=q¢ht, eh=q 2he, et— qu =1 (25)

Hence, <7 is an epimorphic image of the GWA &/’ = K[h*!][t,e;0,a = ql_h 1] where o(h) = ¢%h.
Now, we prove that &/’ is a central simple algebra. Let 27/ be the localization of &/’ at the powers
of the element e. Then &7/ = K[h*!]|[e*!;0’] where o/(h) = ¢ 2h. Clearly, Z(&/) = K and 7’
is a simple algebra. So, Z(#') = Z(<)) N &/’ = K. To show that &’ is simple, it suffices to
prove that «/’e'.e/’ = /' for any i € N. The case i = 1 is obvious, since 1 = ¢?et — te € o'ed’.
By induction, for z > 1 it suffices to show that e’~! € .@’e’e/’. This follows from the equality

te! = ¢%e’t — 11 ‘fl . So, &' is a simple algebra. Now, the epimorphism of algebras &/ — &
is an isomorphism. Hence, &/ ~ &/’ is a central simple GWA.

(i) Cay,(K) = K[C,K*| ® &: By Lemma 2.10, Ax,, = K[C] ® Ax,. So, Cay (K) =
K[C] ® Cay ,(K). By (18), Ax,, = Ex ,[K*!; 7] where 7(E) = ¢*E, 7(X) = ¢X,7(Y) = ¢"'YV
and 7(¢) = qp. Then Ca, (K) = K[K*!] ®E% . To finish the proof of statement (ii), it suffices
to show that E% , = «/. By (3), /

]

isa GWA. Then Ex , = @5, KIXF, o |E @@, KX, TV = B, pep KIWFNE XF @
B ,>1. ke KIPEYIXF. Now, it is clear that B , = @, K[h*']e! © @5, K[p=H = o7.

2. Notice that GK (&) = 2, statement 2 follows from statement 1.

3. Notice that Ax , = @,y Cay, (K)X', statement 3 then follows from Lemma 2.10. O

- X
Ex, = K[X*', o*[E,Y;0,a0 = —
q —q

Defining relations of the algebra C4(K). We have to select appropriate generators of the
algebra C'4 (K) to make the corresponding defining relations simpler.

Lemma 4.4. We have the following relations
1.YX - Yo=¢*Yp-YX.
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2. FE-YX =YX - FE+ S K~y Tt KDy y 4 o

8. FE-Yo=q Yo FE+ Y Ky, aQtigyx .

1—q?
Proof. 1. Obvious.
2. Using the defining relations of A, the expression (14) of C, and Y¢ = ¢*Y X +¢(1—¢?)EY?,

FE-YX=FX+q'YE)X=FX?+YFXE=FX?+Y(YK '+ XF)E
=FX?+¢ 2K 'Y?’E+YXFE
K+ (q-¢ - @)K
1—¢g2
1 2 K —lK—l
1—g¢2
3. FE-Yp=F(X+q¢'YE)p=FX¢o+q *YFpE =FXp+q °Y(pF +YK)E
@K -K™")
1—¢2
K+q'K! 1+¢?
9K +q Yo q(1+4%)
1—¢g2 1—g¢2

-1
= ?(YX)(FE)+(1+¢)K 'EY? — YX+C

q+

=¢’YX - -FFE + : YX +C.

q
q2

=q *YoFE+ (K + K" )EY? — ( +q1+PAK)YX +C

=q¢ %Yy -FE+ KYX + C. O

Let ©:=(1-¢*)Q=(1-¢*)FE + %{;Iﬁl) € Z(Uy(sl2)). By (15), we have

C=(0- gk WYX+ @PFX? - LK*W@ (26)
1—¢? q(1—¢?)
By Lemma 4.4.(2), (3), we have
O YX=¢YX -0+ (q+q HK 'Y+ (1-¢*C. (27)
0-Yo=q¢Yp-0—-q(1+¢)KYX+(1-¢*C. (28)

Lemma 4.5. In the algebra C4(K), the following relation holds

7
b K(YX)?-4¢'C-YX.

0 YX Yp-— S
—q

1 _
=gy e OYes

Proof. By (26), © - YX =C+ ;K'Y X — ¢*FX? +

1 —
mK 1Y90 SO,

O-YX - Yo=C-Yo+ KYWX - Yo—@?FX%2- Yo+ K1 (Yp)2

_
q(1—q¢?)
Then ©-YX - Yo — ﬁK’l(Y@)Q —C-Yp = 1_'1q2K’1YX Yo — ¢?FX?-Yyp. We have
that YX - Yo = ¢*(YX)2 +q(1 — ¢ )YX - EY? FX?. Yo = ¢°FX¢-YX and EY? . YX =
q(YX)?+q2YX - EYZ2 Then by (16) we obtain the identity as desired. O

q
1—¢2

Theorem 4.6. Let u := K~ 'Y and recall thatt = YX, © = (1 — ¢*)FE + %;Kﬂ'
Then the algebra C(K) is generated by the elements K*', C, ©, t and u subject to the following
defining relations:

t-u=qg*u-t, (29)
O t=¢"t-0+(g+q Hu+(1-¢°)C, (30)
O - u=qu-0—ql+¢)t+(1-¢)K'C, (31)
1 q’ _
Ot u———u?—C-u= 2 — KO -, 32
q(1-¢?) 1-¢? (32
[Ki17 ] =0, and [Cv ] =0 (33)
where (33) means that the elements K=* and C are central in C4(K). Furthermore, Z(Ca(K)) =

K[C, K*1].
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Proof. (i) Generators of C4(K): Notice that Y = ¢*Y' X + q(1 — ¢®)EY2. Then by Proposition
4.1 and (26), the algebra C4(K) is generated by the elements C', K*!, ©, t and u. By (27), (28)
and Lemma 4.5, the elements C', K*!, ©, ¢ and u satisfy the relations (29)—(33). It remains to
show that these relations are defining relations.

Let € be the K-algebra generated by the symbols C, K*!, ©, t and u subject to the defining
relations (29)—(33). Then there is a natural epimorphism of algebras f : € — C4(K). Our aim
is to prove that f is an algebra isomorphism.

(ii) GK (%) = 4 and Z(¥) = K[C, K*']: Let R be the subalgebra of ¢ generated by the
elements C, K*!, t and u. Then R = K[C, K*'] ® K2[t,u] is a tensor product of algebra where
Kg2[t,u] :=K(t,u|tu = ¢*ut) is a quantum plane. Clearly, R is a Noetherian algebra of Gelfand—
Kirillov dimension 4. Let %, be the localization of 4" at the powers of the elements ¢ and wu.
Then

Cru = K[C, KT @ K [t5 0] = Ry .

So, GK (%:..) = 4. Now, the inclusions R C ¢ C %, yield that 4 = GK(R) < GK(%¥) <
GK (6;u) = 4, ie., GK(¥) = 4. Moreover, since K2[t*1,u*!] is a central simple algebra,
Z(%:..) = K[C, K*1]. Hence, Z(%) = K[C, K*!].
By Lemma 4.2.(3), GK (%) = GK(C4(K)) = 4. In view of [20, Proposition 3.15], to show
that the epimorphism f : ¥ — C4(K) is an isomorphism it suffices to prove that ¢ is a domain.
Let 2 be the algebra generated by the symbols C, K*!', ©, t and u subject to the defining
relations (29)—(31) and (33). Then 2 is an Ore extension

2 = R[©;0,0]
where R = K[C, K*!] ® K,2[t,u] is a Noetherian domain; 0(C) = C, o(K*1) = K+, o(t) = ¢°t,

o(u) = g 2u; § is a o-derivation of R given by the rule 6(C) = 6(K*') =0, §(t) = (¢ +q¢ Hu +
(1-¢*)C and §(u) = —q(1 + ¢®)t + (1 — ¢*) K~1C. In particular, Z is a Noetherian domain. Let

1 7
Z:=0tu— ——u?—Cu d

— 2 4 7-—1 _ 2 2y 2 T
a(1—¢?) Tl POETOt =10 — g’ + %) —*Clu—Kt) € 7

where ¢ = 1322. Then Z is a central element of 2 and ¥ ~ 2/(Z). To prove that % is
a domain, it suffices to show that (Z) is a completely prime ideal of 2. Notice that 2, =

K[C, K*!, Z] ® K2 [t¥!, u*!] is a tensor product of algebras. Then
GCrou ™~ D) (Z)eu = K[C, KF @ Ko [t51, 0] = Ry .

In particular, €}, is a domain and (Z);,, is a completely prime ideal of Z, ,,.

(iii) If to € (Z) for some element x € 2 then x € (Z): Since Z is central in 9, tx = Zd for
some element d € . We prove statement (iii) by induction on the degree degg(z) of the element
x. Since 2 is a domain, degg(dd’) = degg(d) + degg(d') for all elements d, d' € 2. Notice that
degg(Z) = 1, the case x € R is trivial. So we may assume that m = degg(z) > 1 and then the
element x can be written as © = ag +a10 + - - - + @, 0™ where a; € R and a,, # 0. The equality
tz = Zd yields that degg(d) = m — 1 since degg(Z) = 1. Hence, d = dg + d10 + - - + dp,_1©™ 1
for some d; € R and d,,,—1 # 0. Now, the equality tx = Zd can be written as follows:

t(ap + @10 + - 4 4, O™) = (tu@ —qu? +t*) — ¢Cu — K_lt)) (do +d1O+---+ dm_lem_l).

Comparing the terms of degree zero in the equality we have tag = tud(do) — (qA(u2 +12) +¢*C(u —
K=1t))do, i.e., t(ao —ud(do) +gtdo — ¢*CK ~*dy) = —u(qu+¢>C)dp. All terms in this equality are
in the algebra R. Notice that t is a normal element of R, the elements u ¢ tR and qu + ¢*C ¢ tR,
we have dy € tR. So dy = tr for some element r € R. Then d = tr + w® where w = dy + --- +
dm_10™2ifm >2and w=0if m = 1. If m = 1 then d = tr and the equality tx = Zd yields
that tx = tZr, i.e., x = Zr € (Z) (by deleting t), we are done. So we may assume that m > 2.
Now, the equality tz = Zd can be written as tx = Z(tr + w®), i.e., t(x — Zr) = ZwO. This
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implies that x — Zr = 2’0 for some 2’ € 2 where degg(z') < degg(x). Now, t2'® = ZwO and
hence, tx’ = Zw (by deleting ©). By induction 2’ € (Z). Then © =2’ + Zr € (2).

(iv) If ux € (Z) for some element x € & then x € (Z): Notice that the elements u and ¢ are
‘symmetric’ in the algebra 2, statement (iv) can be proved similarly as that of statement (iii).

(v) 2N (Z)tw = (Z): The inclusion (Z) € 2 N (Z)1, is obvious. Let 2 € 2 N (Z)tu.
Then tiu’z € (Z) for some i,j € N. By statement (iii) and statement (iv), x € (Z). Hence,
2 (Z)t,u = (Z)

By statement (v), the algebra Z/(Z) is a subalgebra of 2, ,/(Z),.. Hence, 2/(Z) is a domain.
This completes the proof. O

The next proposition gives a K-basis for the algebra ¢ := C4(K).
Proposition 4.7. ¢ = K[C, K*'|ex ( D o1 KOV OD, 5, KO* &P, 51 KOUSD, 450 K“atb)-

Proof. The relations (29)—(32) can be written in the following equivalent form,

1 q’
_ -2 _ 2 2 dp—1
u-t=q “t-u, @~t~u-q(1_q2)u +Cou—|—1_q2t —q¢" K C -t

w0=¢0 ut1+¢)t—*(1-¢)K'C, t-0=¢20-t—q *(¢+q Yu—q?(1—¢°)C.
On the free monoid W generated by C, K, K’, ©, t and u (where K’ plays the role of K1), we
introduce the length-lexicographic ordering such that K/ < K < C < © < t < u. With respect to
this ordering the Diamond Lemma (see [10], [11, I.11]) can be applied to & as there is only one

ambiguity which is the overlap ambiguity ut© and it is resolvable as the following computations
show:

(ut)® — ¢~ *tu® — q*2t<q29u + @1+ ¢t — (1 - q2)K’C) — tOu +q(1+¢*)t* — (1 - A K'Ct
— (q*2®t —q¢ *(q+q¢ Hu—q?(1- q2)0>u +q(1+ ¢t — (1 - ¢*)K'Ct
= ¢ ?0tu—q *(g+q )’ —q 21— ¢*)Cu+q(1+¢*)t* — (1 - ¢*)K'Ct
q 2 K'Ct,

— 2u2—|—Cu—|—
—q

q
1 1—¢2
u(t0) — U<q*2®t —q g+q Hu—q (1~ QQ)C) = q 2uOt —q (g + ¢ N’ —q (1 - ¢*)Cu
—q? (q2@u + (1 + ¢t — (1 - qQ)K'C)t —q¢ %(q+q Hu?—q¢*(1 - ¢*Cu
= Out +q(1+¢Ht> — (1 —AK'Ct —q (¢ +q Hu? — ¢ 2(1 — ¢*)Cu
= ¢ ?0tu+q(1+¢*)t* — (1 - ¢*)K'Ct —q (g +q " )u* —¢*(1 — ¢*)Cu

T _2yout+—L 2 Kot

_>
1—¢2 1—¢2

So, by the Diamond Lemma, the result is proved. O

The algebra ¢**. For A € K and pu € K*, let " := ¢/(C — X\, K — uu). By Theorem 4.6,
the algebra €** is generated by the images of the elements ©, ¢t and u in €**. For simplicity,
we denote by the same letters their images.

Corollary 4.8. Let A € K and p € K*. Then
1. The algebra € " is generated by the elements ©, t and u subject to the following defining

relations
t-u=q*u-t, (34)
O-t=¢t-0+(g+q Hu+(1-g*)\ (35)
O - u=q¢g%u-0—-ql+¢)t+0—-¢u ) (36)
1 q _
O-t-u=——u’+Iu+ t2 — ¢ . 37
q(1 —q?) 1—g? . (37)
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2. €M =@, 5, KOV & P, KO & P, o, KO & P, ;50 Kut’.

Proof. 1. Statement 1 follows from Theorem 4.6.
2. Statement 2 follows from Proposition 4.7. O

Let 6, (resp. %"") be the localization of the algebra € (resp. €**) at the powers of the
element t = Y X. The next proposition shows that 4; and ‘éf"“ are GWAs.

Proposition 4.9. 1. Let v := Ot — ﬁu — C. The algebra ¢, = K[C, K+, t*][u,v; 0, a]
is a GWA of Gelfand-Kirillov dimension j where a = 13;2 t2 — ¢*K~'Ct and o is the
automorphism of the algebra K[C, K+ t*1] defined by the rule: o(C) = C, o(K*') = K*!
and o(t) = ¢ %t.

2. Let A€ K, p € K* and v := Ot — ﬁu — . Then the algebra €" = K[t [u, v; 0, d]

is a GWA of Gelfand—Kirillov dimension 2 where a = 1322 t2 — ¢*pu~ At and o is the auto-
morphism of the algebra K[tT1] defined by o(t) = ¢ 2t.
3. For any A € K and p € K*, the algebra ‘Kt)"“ s a central simple algebra.

4. Z(€M*) =K and GK (€M) = 2.

Proof. 1. By Theorem 4.6, the algebra %, is generated by the elements C', K*!, v, t*! and u.

2
Note that the element v can be written as v = — lqu X = 1fq2 7(u) where 7 is the involution

(1). It is straightforward to verify that the following relations hold in the algebra %;

7 e
2 —*K7Ct, w =
l—q

q
1—gq

ut = ¢ %tu, ot =¢*tv, vu= t? — 2 K~1Ct.

2 2

Then %; is an epimorphic image of the GWA T := K[C, K*',t*!][u, v;0,a]. Notice that T is a
Noetherian domain of Gelfand-Kirillov dimension 4. The inclusions ¢ C %; C %;,, yield that
4=GK (%) < GK (%) < 6,u =4 (see Lemma 4.2.(3)), i.e., GK (%) = 4. So, GK(T) = GK (%,).
By [20, Proposition 3.15], the epimorphism of algebras T'—» %; is an isomorphism.

2. Statement 2 follows from statement 1.

3. Let ‘Kt)"&“ be the localization of ‘Kf"“ at the powers of the element u. Then, by statement
2, ‘ftil” = K2 [t*!, u*!] is a central, simple quantum torus. So, Z(&;"*) = Z(‘ftﬁ’f‘) NeM =K.
For any nonzero ideal a of the algebra ‘Kt)"“ , ut € a for some i € N since ‘(ft),‘&“ is a simple
Noetherian algebra. Therefore, to prove that ‘Kt’\’“ is a simple algebra, it suffices to show that
EMPUIEM = €M for any i € N. The case i = 1 follows from the equality vu = ¢uv — ¢°t2. By
induction, for i > 1, it suffices to show that u'~1 € €*ui%;"". This follows from the equality

vt = ¢¥ulv + (17(1:732_27:)75%“1. Hence, €,"" is a simple algebra.
4. Since K C Z(€ ") C Z(€)) N €M = K, we have Z(€™ ") = K. It is clear that
GK (™M) = 2. O

Lemma 4.10. In the algebra €M where A € K and p € K*, the following equality holds

_ N g2t il -
ot' = ¢*'t'e + T T+ (1= )
—q
Proof. By induction on ¢ and using the equality (35). O

Theorem 4.11. Let A € K and p € K*.
1. The algebra €™ is a simple algebra iff A # 0.
2. The algebra €M is a domain.

Proof. 1. If A = 0 then the ideal (t) is a proper ideal of the algebra ¢’°*. Hence, € is not a
simple algebra. Now, suppose that A # 0, we have to prove that €** is a simple algebra. By
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Proposition 4.9.(3), %" is a simple algebra. Hence, it suffices to show that G #tigrm = grne
for all © € N. We prove this by induction on i.
Firstly, we prove the case for i = 1, i.e., a := €VHEM = €M, By (35), the element

(q+q¢ Hu+(1—¢*>)A€a,so0, u= q(iq_,ll)\ mod a. By (37), ﬁlﬂ + A\u € a. Hence,
1 -1 9 ¢ -1
AT+ A A) =0 mod a,
q(l—q2)(q+q‘1 ) (q+q‘1 )
; (P -1)N _ ; P : —_o\u
Le, =7 — =0 mod a. Since A # 0, this implies that 1 € a, thus, a = V",

Let us now prove that b := FVHEEMH = €M for any i € N. By induction, for i > 1, it suffices

to show that t*~! € b. By Lemma 4.10, the element u := qizir_ggmﬂtiflu + (1 - @)=t cb.

Then vu € b where v = Ot — ﬁu — A, see Proposition 4.9.(2). This implies that (1 —
?") Mt =1 € b and so, vt'~! € b. But then the inclusion vt~ = (Ot — ﬁuf)\)t’;l € b yields
:7;21 t" =Ly 4+ Xt'~! € b. By the expressions of the elements u and v we see
that t~1 € b, as required.

2. By Proposition 4.9.(2), the GWA € ~ %,/%,(C — A\, K — p) is a domain. Let

that the element v := ¢

a=%(C—-M\NK-pu), and a =€NEC—-\K—p).

To prove that €** is a domain, it suffices to show that a = a’. The inclusion a C a’ is obvious.
If A # 0 then, by statement 1, the algebra €** is a simple algebra, so the ideal a is a maximal
ideal of . Then we must have a = a’. Suppose that A = 0 and a C o', we seek a contradiction.
Notice that the ideal a’ is a prime ideal of €. Hence, a’/a is a nonzero prime ideal of the algebra
%Y. By Proposition 4.9.(3), the algebra %" is a simple algebra, so, t* € a’/a for some i € N.
Then (o /a); = €,"". But (¢’ /a), = a,/a; = 0, a contradiction. O

Proposition 4.12. 1. In the algebra €°*, (t) = (u) = (t,u) = €Ot + €O+,
2. €% /(t) ~ K[O].
3. In the algebra €OH, (t') = (t)* for all i > 1.
4. Spec(€%) ={0, (1), (t,p)|p € Max (K[O)])}.

Proof. 1. The equality () = (u) follows from (35) and (36). The second equality then is obvious.
To prove the third equality let us first show that t¢%# C €%#t + €%*u: In view of Corollary
4.8.(2), it suffices to prove that t@! € €%+t + ¢ Hu for all i > 1. This can be proved by induction
on . The case i = 1 follows from (35). Suppose that the inclusion holds for all i < i. Then

0! =0~ e e (%O’”t + CKO’”U)@ = g0 (q72®t — q72(q + qil)u) +¢OH (qz@u + q3(1 + q2)t)
C €Ot + €OFu.

Hence, we proved that t¢%# C €%+t + €% *u. Now, the inclusions (t) C €%+t + €O+ u C (t,u) =
(t) yield that (t) = €O+t + €O+ u.

2. By statement 1, €%*/(t) = €%*/(t,u) ~ K[O].

3. The inclusion (') C (¢)! is obvious. We prove the reverse inclusion (¢)* C (¢!) by induction
on i. The case i = 1 is trivial. Suppose that the inclusion holds for all i’ < 7. Then

) =) = @)t = €U0 e C () + ()

since t¢0* C €01t + €%+ u (see statement 1). By Lemma 4.10, the element ¢*~1u belongs to the
ideal (%) of €%*. Hence, (t)! C (t), as required.

4. By Proposition 3.6 and statement 3, Spec (¢%*) = Spec (¢%#,t) U Spec,(¢°*). Notice
that € is a simple algebra (see Proposition 4.9.(3)) and €+ /(t) ~ K[O] (see statement 2).

Then Spec (%) = {0} U Spec (K[O]) = {0, (¢), (¢,p)|p € Max (K[O])}. O
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5 Classification of simple C4(K)-modules

In this section, K is an algebraically closed field. A classification of simple Cy4(K)-modules is
given in Theorem 5.2, Theorem 5.6 and Theorem 5.10. For an algebra B, we denote by B the set
of isomorphism classes of simple B-modules. If P is an isomorphism invariant property on simple
B-modules then B (P) is the set of isomorphism classes of B-modules that satisfy the property P.

The set Cj-(} ) of isomorphism classes of simple C4 (K )-modules is partitioned (according to the
central character) as follows:

CaK)= || @ (38)
AeK, peK*

Given A € K and i € K*, the set ¥*# can be partitioned further into disjoint union of two subsets
consisting of t-torsion modules and ¢-torsionfree modules, respectively,
EMr = EME (t-torsion) L M (t-torsionfree). (39)

—

The set ¢ (t-torsion). An explicit description of the set €*:* (t-torsion) is given in Theorem
5.2. For \, i1 € K*, we define the left €**-modules

= @M M () and T = GG (tu — 5\)

where \ := ¢(¢? — 1)\. By Corollary 4.8.(2), t* = K[0] I =~ (g|K[O)] is a free K[O]-module where
1=1+4+%M(t,u) and TV = K[O] 1 ~ k(e K[O] is a free K[©]-module where I =14+6MH(t, u75\)
Clearly, the modules tM* and T are of Gelfand-Kirillov dimension 1. The concept of degg of
the elements of t** and T is well-defined (degg(©°1) =i and degg(©¢1) =i for all i > 0).

Lemma 5.1. Let A\, p € K*. Then
1. The €M*-module t\* is a simple module.
2. The € *-module TN is a simple module.
3. The modules t** and TM* are not isomorphic.

Proof. 1. Let us show that for all ¢ > 1,
t-0l=>01-¢*)N-0" 1+ (40)
w0 T= g1 — @) A0 114 ... (41)

where the three dots means terms of degg < ¢ — 1. We prove the equalities by induction on ¢. By
(35),t01 = (1—¢ )1, and by (36), uO1 = —¢*(1 — ¢*)u~tA1. So, the equalities (40) and (41)
hold for ¢ = 1. Suppose that the equalities hold for all integers i’ < 7. Then

t-0'1= (q‘Q@t —q (g +q u—q (1~ q2)/\) e 11
= 21— 2N T — g 21— PN T+
P W= Lt (T

w-0'1= (q2@u + 1+t — (1 - qz)u*u)@H i
= (1= @) N T — (1 — P NG T 4
= Q-0 T4

The simplicity of the module t** follows from the equality (40) (or the equality (41)).
2. Let us show that for all ¢ > 1,

-0 I=01-¢IN- 0 T4, (42)
w-0'T =X 01 -@Q - ) N0 4. (43)
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where the three dots means terms of smaller degrees. We prove the equalities by induction on .
The case i = 1 follows from (35) and (36). Suppose that the equalities (42) and (43) hold for all
integers i’ < 4. Then

(q —q X q+q” 1)ufq’z(lff)/\)@Hi

q 2(1_ (i— 1))/\@’ g2+ ¢ )00 T — ¢72(1 — A0 4 -
(1 21))\ @z 11+

(2@u+q 1+q)t—q(1—q) *1)\)6i*11

q ( (=131 — ¢2 (l_q(z 1) *1)\61'*11)—q2(1—q2)u*1)\@i*11—|—~~
q2i5\.®i q(l— )—1)\ @1 11+

The simplicity of the module T** follows from the equality (42).

3. By (41), the element u acts locally nilpotently on the module t** . But, by (43), the action
of the element u on the module TM* is not locally nilpotent. Hence, the modules t** and ThH
are not isomorphic. O

Theorem 5.2. 1. G0k (t-torsion) = {[€%# /€04 (t,u,0 — a) ~ K[O]/(© — a)] | a € K}.
2. Let A\, p € K*. Then 7z (t-torsion) = {[tM+], [TM#]}.

Proof. 1. We claim that anngo..(M) D (¢) for all M € 7 (t-torsion): In view of Proposition
4.12.(1), it suffices to show that there exists a nonzero element m € M such that ¢t = 0 and
um = 0. Since M is t-torsion, there exists a nonzero element m’ € M such that tm’ = 0. Then,
by the equality (37) (where A = 0), we have u?m’ = 0. If um’ = 0, we are done. Otherwise, the
element m := wm’ is a nonzero element of M such that tm = um = 0 (since tu = q?ut). Now,
statement 1 follgvi from the claim immediately.

2. Let M € €+ (t-torsion). Then there exists a nonzero element m € M such that tm = 0. By
(37), we have (u— A)um = 0. Therefore, either um = 0 or otherwise the element m/ := um € M is
nonzero and (v — \)m’ = 0. If wmn = 0 then the module M is an epimorphic image of the module
t**. By Lemma 5.1.(1), t** is a simple €**-module. Hence, M ~ t*. If m’ = um # 0 then
tm’ =0 and (u — A)m/ = 0. So, the € #-module M is an epimorphic image of the module TA#.
By Lemma 5.1.(2), TM* is a simple €*#-module. Then M ~ T*#. By Lemma 5.1.(3), the two
modules t** and TM* are not isomorphic, this completes the proof. O

Recall that the algebra Ca, (K) = K[C, K*'] ® & where &/ is a central simple GWA, see
Proposition 4.3. The algebra C4(K) is a subalgebra of the algebra Ca, ,(K) where

u=K Yo=K 1. YX -pX'=K 1th, (44)

K-t 3K
q h+ q

:1_2 —1
O =(1-q¢*)Ceh +1—q -

=t (45)

In more detail: by (16), F' = (C’ + K 1EY? —
FE can be written as

332 (K — K )Y X)X 'p~!l. Then the element
q

2
FE=CEX ' '+ K'EY?EX '~ -

S(K— K )YEp™*

l—q
_ . -2y, -1 -1, -2 3 2 —2 . —1_q3(K_K_1) - ~1
=C-EX X"+ K EX ¢ (YX)*-EX X 1 5 YX -FEX X
—4q

307 _ pe—1

=Ceh ' + K tet?’eh™! — %t@hil
—q
gk~ °K gk +q ' K")
=Ceh™ + h + Rt —
(1=¢)?  (1-¢%)? (1—-¢%)?
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where the last equality follows from (25). Then the equality (45) follows immediately since © =
2 a?(gK+q 'K~1)
(1-¢*)FE+ 51—

For A € K and p € K*, let %Xfw = Cax (K)/(C = X\ K — p). Then by Proposition

4.3.(1), %jfg’ ~ o is a central simple GWA. So, there is a natural algebra homomorphism

BAE %j“’;w ~ of. The next proposition shows that this homomorphism is a monomorphism.

Proposition 5.3. Let A € K and p € K*. The following map is an algebra homomorphism

-1 3
A, - - qp ap
p:%kqu%A;q;z;z{, t—t, u— plth, G)»—>(1—q2))\eh1+17q2h+17q2h L

Moreover, the homomorphism p is a monomorphism.

Proof. The fact that the map p is an algebra homomorphism follows from (44) and (45). Now,
we prove that p is an injection. If A # 0 then by Theorem 4.11.(1), the algebra €** is a simple
algebra. Hence, the kernel ker p of the homomorphism p must be zero, i.e., p is an injection. If
A = 0 and suppose that ker p is nonzero, we seek a contradiction. Then ¢’ € ker p for some i € N.
But p(t') = ' # 0, a contradiction. O

Let <% be the localization of the algebra /' at the powers of the element t. Then « =
K[h*!][t*1; 0] is a central simple quantum torus where o(h) = ¢2h. It is clear that €% ~ .
Let % be the localization of o7 at the set § = K[h*!]\ {0}. Then & = S—1o7 = K(h)[t1; 0] is a
skew Laurent polynomial algebra where K(h) is the field of rational functions in h and o(h) = ¢*h.
The algebra % is a Euclidean ring with left and right division algorithms. In particular, 4 is a
principle left and right ideal domain. For all A € K and p € K*, we have the following inclusions
of algebras

cg)\,y, % %

]

A,
EH —— G =y —— B

The set G0 (t-torsionfree). An explicit description of the set Zm (t-torsionfree) is given
in Theorem 5.6. The idea is to embed the algebra €** in a skew polynomial algebra R for which
the simple modules are/cl\assiﬁed. The simple modules over these two algebras are closely related.
It will be shown that €0# (t-torsionfree) = R (t-torsionfree).

Let R be the subalgebra of &/ generated by the elements h*! and t. Then R = K[h*!][t; 0] is
a skew polynomial algebra where o(h) = ¢*>h. By Proposition 5.3, the algebra ¢’** is a subalgebra
of R. Hence, we have the inclusions of algebras

€' CRCACRi= C B
We identify the algebra €%* with its image in the algebra R.

Lemma 5.4. Let p € K*. Then
1. 6" = @5, K[h*='t' @ K[O)].
2. R = €% & K[O]h.
3. (1) =D K[hTt = Rt where (t) is the ideal of €%* generated by the element t.

Proof. 1 and 2. Notice that K[©] C K[h*!] and K[h*!] = K[O] ® K[O]h. Multiplying this equality
on the right by the element t yields that K[h™!]t = K[O]t & K[O]u C €°*. Then for all i > 1,
K[t = K[pH1)t - 171 C €0#ti—1 C €%+, Notice that

R = P KR = P KR @ K] = P KR @ K[O] & K[O]h. (46)

i>0 i>1 i>1

21



Then €% = €% NR = @,>, K[p*F]t' ® K[O] since €% NK[O]h = 0. The statement 2 then
follows from (46).

3. By Proposition 4.12.(1), (t) = €%#t + € *u. Then the first equality follows from statement
1. The second equality is obvious. O

The set K[h%!]\ {0} is an Ore set of the ring R. Abusing the language, we say K[h*!]-torsion
meaning K[A*!]\ {0}-torsion. In particular, we denote by R (K[h]-torsion) the set of isomorphism
classes of K[h]-torsion simple R-modules.

Proposition 5.5. Let Irr(%) be the set of irreducible elements of the algebra A.
1. R (K[h*!]-torsion) = R (t-torsion) = R/(t) = {[R/R(h — a, t)]|a € K*}.

2. R (K[h*!]-torsionfree) = R (t-torsionfree) = {[M,]|b € Irr(#B), R = Rt + R N Bb} where
My = R/R N PBb; My ~ My iff the elements b and b’ are similar (iff B)Bb ~ B/BY as

PB-modules).

Proof. 1. The last two equalities are obvious, since ¢ is a normal element of the algebra R. Then
it is clear that R (K[h*!]-torsion) D R (t-torsion). Now, we show the reverse inclusion holds. Let
M € R (K[h*!]-torsion). Then M is an epimorphic image of the R-module R/R(h — o) = K[t]1
for some o € K* where 1 = 1+ R(h — «). Notice that tK[t]1 is the only maximal R-submodule of
R/R(h — a). Then M ~ R/R(h — o, t) € R (t-torsion), as required.

2. The first equality follows from the first equality in statement 1. By [7, Theorem 1.3]

R (K[h*']-torsionfree) = {[M;]| b € Irr(#B), R = Rt + R N Bb}
(the condition (LO) of [7, Theorem 1.3] is equivalent to the condition R = Rt + R N .%b). O

Theorem 5.6. €0/ (t-torsionfree) = R (t-torsionfree) = R (K[h*1]-torsionfree) = {[M, = R/RN
B |b e Irr(B), R=Rt+RNABb} (see Proposition 5.5).

Proof. In view of Proposition 5.5.(2), it remains to show that the first equality holds. Let [M] €
GO (t-torsionfree). Then M = (t)M = RtM € R (t-torsionfree). Given [N] € R (t-torsionfree).
To finish the proof of statement 2, it suffices to show that N is a simple €%#-module. If L
is a nonzero €%*-submodule of N then N D L D (t)L # 0, since N is t-torsionfree. Then
(t)L = RtL = N, since N is a simple R-module. Hence, L = N, i.e., N is a simple ¥**-module,
as required. O

The set ¢+ (t-torsionfree) where A € K*. An explicit description of the set 7z (t-torsionfree)
where A € K* is given in Theorem 5.10. Recall that the algebra €,"* = K[t=!][u, v; 0, a] is a GWA

where a = 13—;2t2—q4u_1)\t and ¢ is the automorphism of the algebra K[t*!] defined by o (t) = ¢~ 2t
(Proposition 4.9.(2)). Clearly,

7z (t-torsionfree) = 7z (t-torsionfree, K[t]-torsion) LI 7z (K[¢t]-torsionfree).  (47)

Lemma 5.7. Let \,u € K* and v := ¢ 3(1 — ¢*)u~*X\. Then

1. The module fM := €2 H |EM(t — v,u) is a simple € -module.

2. The module FM 1= €M /G 1 (t — q?v,v) is a simple € -module.

3. Let~y,y € K*\{¢*v|i € Z}. The module F* := €M /M1 (t—) is a simple € -module.

The simple modules f,i"" ~ ‘7:?'7# iff v = q*y for somei € Z.

Proof. 1. Note that a = 13;2 (t —v)t and o(a) = %(t — ¢?v)t. By Corollary 4.8.(2) and the
expression of the element v, ** = K[O]1 = K[v]1 where 1 = 1 + €*#(t — v,u). The simplicity of
the module fM* follows from the equality: uv'l = v~ to?(a)l € K*v'~ 1 for all i > 1.

2. Notice that FM* = K[u]1 where 1 = 1+ € *(t — ¢*v,v). The simplicity of the module F**
follows from the equality: vu‘l = u'~"to~*1(a)1 € K*u'~!1 for all i > 1.
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3. Notice that o o ) .
Fpr= Ku'®'l= Y Kuv'l=Kul+K
i,j>0 i,j >0

where 1 = 1+ ¢ #(t — ). Since v € K*\ {¢*v|i € Z}, ¢'(a)l € K*1 for all i € Z. Then
the simplicity of the module ]-:?’“ follows from the equalities in the proof of statements 1 and 2.
The set of eigenvalues of the element ¢z, is Evau(t) = {¢*v[i € Z}. If F+ ~ ]-";\,’” then
Evﬂx,u (t) = EV}.:;u(t), so v = ¢*~' for some i € Z. Conversely, suppose that v = ¢~/ for
some i € Z. Let 1 and 1’ be the canonical generators of the modules .7::/\’” and ]:i‘,’” , respectively.

The map f?’” — f;\,’“, 1+ u'1’ defines an isomorphism of €**#-modules if i > 0, and the map
.7:7)"” — .7-"5‘,’“, 1+ v'1’ defines an isomorphism of €**-modules if i < 0. O

Definition. ([4], l-normal elements of the algebra &;"*.)
1. Let a and 3 be nonzero elements of the Laurent polynomial algebra K[t*!]. We say that
a < [ if there are no roots A and p of the polynomials o and [, respectively, such that,
A = ¢*'p for some i > 0.
2. An element b = v™Bp 4+ 0™ Bt + ... + Bo € EVF where m > 0, §; € K[t*!] and
Bo, Bm # 0 is called I-normal if By < By, and By < 13—7(12t2 —q*p

Theorem 5.8. [2, 3]. Let \,u € K*. Then

€ (K[t]-torsionfree) = {[N}, := € /€"" N b | b is I-normal, b € Irr(AB)}.

Simple ‘Kt/\’”—modules Ny and Ny are isomorphic iff the elements b and b’ are similar.

Recall that, the algebra €»* is generated by the canonical generators t, v and ©. Let F =
{Fn}n>0 be the standard filtration associated with the canonical generators. By Corollary 4.8,

forn >0,
Fo= P KOt & (P K" P Keum e P Kuth.
i,5>1, 1<k<n 1,m>1, a,b>0,
iti<n I+m<n at+b<n

Foralln > 1, dimF, = 3n?+3n+1 = f(n) (where f(s) = 35>+ 3s+1 € Q[s]). For each nonzero
element a € €**, the unique natural number n such that a € F,, \ F,,_1 is called the total degree
of the element a, denoted by deg(a). Set deg(0) := —oo. Then deg(ab) < deg(a) + deg(d) for all
elements a, b € €M .

For an R-module M, we denote by Iz (M) the length of the R-module M. The next proposition
shows that lgx. (€M* /1) < oo for all left ideals I of the algebra €.

Proposition 5.9. Let A\, u € K*. For each element nonzero element a € €™*, the length of the
EMH-module €XH /€M a is finite, more precisely, lgxu (€M )€ Ha) < 3deg(a).

Proof. Let M := €M /€Ma = €M1 = ;5 Fil be the standard filtration on M where 1 =
1+ %**a. Then

Let d := deg(a). Since, for all i > 0, F;_qa C F;NE M a, we see that dim (F;1) < f(i) — f(i—d) =
3di + %d — %dQ. Recall that the algebra €** is a simple, infinite dimensional algebra since A # 0
(Theorem 4.11.(1)). So, if N = €*#n is a nonzero cyclic €**-module (where 0 # n € N) and
{Fin}i>o is the standard filtration on N then dim (F;n) > i+ 1 for all ¢ > 0. This implies that

L (M) < 3d. O

The group ¢*2 = {¢*'|i € Z} acts on K* by multiplication. For each v € K*, let O(y) =
{q*~|i € Z} be the orbit of the element v € K* under the action of the group ¢?Z. For each orbit
O € K*/¢?*%, we fix an element 7o € O(7).
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Theorem 5.10. Let A\, u € K*. Then
1. €># (t-torsionfree, K[t]-torsion) = {[fM*], [FMH], [f:/\é“] |0 € K*/¢?* \ {O(v)}}.

2. The map 7z (K[t]-torsionfree) — " (K|[t]-torsionfree), [M] — [My] is a bijection with
the inverse [N] + socer.u(N).
3. €* 1 (K[t]-torsionfree) = {[M}, := € H /€ *NABbt ]| bis [-normal, b € Irr(A), i > 3deg(b)}.

Proof. 1. Let M € 7z (t-torsionfree, K[t]-torsion). There exists a nonzero element m € M such
that tm = ym for some v € K*. Then M is an epimorphic image of the module G /€ H(t — ).
If v ¢ O(v) then M ~ GMH/EM(t — ) = .7-2‘7“ by Lemma 5.7.(3). It remains to consider the
case when v € O(v), i.e., v = ¢*v for some i € Z.

(i) If v = ¢*v where i > 1 then o%(a)m = 0. Notice that u'~'v'="tm = oi=1(a)---o(a)m # 0,
the element m’ := v*~!m is a nonzero element of M. If vm’ = 0, notice that tm’ = tv*"lm =
¢®vm/, then M is an epimorphic image of the simple module FM*. Hence, M ~ FM*. If m” :=
vm/ # 0, notice that tm” = tvim = vm” and um” = wv'm = v~ lo*(a)m = 0, then M is an
epimorphic image of the simple module f**. Hence, M ~ §*#,

(ii) If v = ¢ %v where i > 0 then o~ %(a)m = 0. The element e := u'm is a nonzero
element of M. (The case i = 0 is trivial, for i > 1, it follows from the equality viu‘m =
o~ a) - o7 (a)am # 0). If ue = 0, notice that te = tu'm = ve, then M is an epimorphic image
of the simple module . Hence, M ~ M. If €’ := ue # 0, notice that te/ = tut'm = ¢?ve’
and ve' = vu'™lm = u’c~%(a)m = 0, then M is an epimorphic image of the simple module [
Hence, M ~ FM*. This proves statement 1.

2. The result follows from Proposition 5.9.

3. Let [M] € @(K[t]—torsionfree). Then [M;] € %" (K[t]-torsionfree), and so M, ~
EMH /6 N B where

b=0"Bm + 0" B -+ By € G (B; € K[t], m >0 and B, By #0)

is [-normal and irreducible in %. Clearly, 0 # M, := € /€ N Bb C My and M =
socgru (M) = socgru(My), by statement 2. Let I, := €N N Bb, J, = €M™ + I, for all
n > 0 and d = deg(a). By Proposition 5.9, the following descending chain of left ideals of the
algebra €M* stabilizes:

M =Jg 2N 2Dy =Jpy1=--, n=3d

Hence, socgru(My) = J, /Iy = CM/ENH N Bbt—™. O

6 Simple weight A-modules

The aim of this section is to give a classification of simple weight A-modules. The set A (weight)
of isomorphism classes of simple weight A-modules is partitioned into the disjoint union of four
subsets, see (48). We will describe each of them separately.

An A-module M is called a weight module provided that M = @ueK* M,, where M, = {m €
M | Km = pm}. We denote by Wt(M) the set of all weights of M, i.e., the set {u € K*| M, # 0}.

Verma modules and simple highest weight A-modules. For each A € K*, we define the
Verma module M(\) := A/A(K —\, E, X). Then M()\) = K[Y, F]1 where 1 = 1+ A(K — )\, E, X).
If M is an A-module, a highest weight vector is any 0 # m € M such that m is an eigenvector of
K and K~! and Em = Xm = 0.

Lemma 6.1. The set of highest weight vectors of the Verma module M()\) is H := { kY"1 |k €
K*, neN}.

Proof. 1t is clear that any element of H is a highest weight vector. Suppose that m = Y a;; Y F7 le
M (\) is a highest weight vector of weight @ where «;; € K. Then

Km = Zaij/\q*i*QjYiFji = um.
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This implies that i+2j is a constant, say i+2j = n. Then m can be written as m = 3~ o Y2 FIT
for some o € K. By Lemma 3.1.(2), Xm = Y —¢" % =0 a; A1y 2+ i1 = 0. Thus,
aj = 0 for all j > 1 and hence, m € H.

O

By Lemma 6.1, there are infinitely many linear independent highest weight vectors. Let N,, :=
K[Y, F]Y"1 where n € N. Then N,, is a Verma A-module with highest weight ¢~"\, i.e., N, =~
M (g~ ")). Furthermore, M () is a submodule of M (g™ ) for all n € N. Thus, for any A € K*,
there exists an infinite sequence of Verma modules

—o D M(g*N) D M(g\) D M(N) D M(g*X) D M(g2\)D---.
The following result of Verma U, (sl3)-modules is well-known; see [17, p. 20].

Lemma 6.2. [17] Suppose that q is not a root of unity. Let V() be a Verma U,(sly)-module.
Then V(A) is simple if and only if X # £q™ for all integer n = 0. When X\ = ¢" (resp. —q")
there is a unique simple quotient L(n,+) (resp. L(n,—)) of V(X). Each simple Uy(sl2)-module of
dimension n + 1 is isomorphic to L(n,+) or L(n,—).

Let V(\) := M(\)/Ny. Then V() ~ K[F]1, where 1:=1+ A(K — \, E, X,Y).

Theorem 6.3. Up to isomorphism, the simple A-modules of highest weight A are as follows
(i) V(X), when XA # £q" for any n € N.
(i) L(n,+), when A =q"™ for some n € N.
(iii) L(n,—), when A= —q" for somen € N.
In each case, the elements X and Y act trivially on the modules, and these modules are in fact
simple highest weight Ugy(sla)-modules.

Proof. In view of Lemma 3.2.(1), anna (V' () 2 (X). So, V(A\) ~ U/U(K — )\, E) where U =

Uq(sl2). Then the theorem follows immediately from Lemma 6.2. O

Simple weight modules that not highest and lowest weight A-modules. Let N be
the set of simple weight A-modules M such that XM # 0 or YM # 0. Then A (weight) =

m) (weight) U N.

Lemma 6.4. Let M be a simple A-module. If x € {X,Y, E, F} annihilates a non-zero element
m € M, then x acts locally nilpotently on M.

Proof. For each element x € {X,Y, E, F}, the set S = {2’ |i € N} is an Ore set in the algebra A.
Then torg(M) is a nonzero submodule of M. Since M is a simple module, M = torg(M), i.e., the
element x acts locally nilpotently on M. O

Theorem 6.5. Let M € N, then
1. dim My = dim M,, for any \,un € Wt (M).
2. Wt (M) = {q"A|n € Z} for any A € Wt (M).

Proof. 1. Suppose that there exists A € Wt (M) such that dim My > dim M,5. Then the map
X : My — My, is not injective. Hence Xm = 0 for some non-zero element m € M,. By Lemma
6.4, X acts locally nilpotently on M.

If dim M1, > dim My, then the linear map E : M,-1y — Mgy is not injective. So Em' =0
for some non-zero element m’ € M,-1,. By Lemma 6.4, E acts on M locally nilpotently. Since
EX = ¢qXFE, there exists a non-zero weight vector m’” such that Xm” = Em’ = 0. Therefore,
M is a highest weight module. By Theorem 6.3, XM = Y M = 0, which contradicts to our
assumption that M € N.

If dim M1 < dim Mg, then dim M1 < dimM). Hence the map Y : M — M, -1, is not
injective. It follows that Ym; = 0 for some non-zero element m, € M,. By Lemma 6.4, Y acts
on M locally nilpotently. Since XY = qY X, there exists some non-zero weight vector mg € M
such that Xms = Yms = 0. By Lemma 3.2.(1), anng (M) 2 (X,Y), a contradiction. Similarly,
one can show that there does not exist A € Wt(M) such that dim M) < dim M
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2. Clearly, Wt(M) C {q"A|n € Z}. By the above argument we see that Wt(M) 2 {¢"\|n €
Z}. Hence Wt(M) = {¢"\|n € Z}. O

Let M be an A-module and x € A. We say that M is z-torsion provided that for each element
m € M there exists some ¢ € N such that x*m = 0. We denote by x5; the map M — M, m — xm.

Lemma 6.6. Let M ¢ N.
1. If M is X-torsion, then M is (¢,Y)-torsionfree.
2. If M is Y -torsion, then M is (X, p)-torsionfree.
3. If M is p-torsion, then M is (X,Y)-torsionfree.

Proof. 1. Since M € N is an X-torsion module, by the proof of Theorem 6.5, Y3 and Ej; are
injections. Let us show that @/ is injective. Otherwise, there exists a nonzero element m € M such
that om = 0, i.e., Xm = (¢ — ¢~ )Y Em. Since X*m = 0 for some i € N and X(YFE) = (YE)X,
we have X'm = (¢q— ¢ 1)"(Y E)*m = 0. This contradicts the fact that Y and E are injective maps
on M.

2. Clearly, Xjs is an injection. Let us show that ¢j; is an injective map. Otherwise, there
exists a nonzero element m € M such that ¢om = Ym = 0 (since Y = qpY). Then Xm =0
(since o = (1 — ¢*)EY + ¢*X), a contradiction.

3. Statement 3 follows from statements 1 and 2. O

By Lemma 6.6,

A (weight) = m) (weight) U N

=U,(sl2) (weight) U N (X-torsion) L N (Y-torsion) U N ((X,Y)-torsionfree).  (48)

o~

It is clear that A ((X,Y)-torsionfree) = A (weight, (X, Y)-torsionfree).
Lemma 6.7. If M € N (X-torsion) LI N (p-torsion) U N (Y -torsion) then Chys # 0.

Proof. Suppose that M € N (X-torsion), and let m be a weight vector such that Xm = 0. If
Cir = 0, then by (15), Cm = —K " 'EY?m = 0 i.e., EY?m = 0. This implies that Ej; or Yy is
not injective. By the proof of Theorem 6.5, this is a contradiction. Similarly, one can prove that
for M € N (Y-torsion), Cps # 0. Now, suppose that M € N (p-torsion), and let m € M, be a
weight vector such that ¢m = 0. Since Y = q(1 — ¢>)EY? + ¢*Y X, we have

Yom = q(1 — ¢*)EY?m +¢*Y Xm =0, (49)

If Cpr = 0, then by (16), 3
Cm =~ BY*m + - . A=Y Xm =0, (50)
The equalities (49) and (50) yield that EY?m = 0 and Y Xm = 0, a contradiction. O

Theorem 6.8. Let M € N. Then dim M,, = oo for all € Wt(M).

Proof. Since M is a simple A-module, the weight space M, of M is a simple ¢ +-module for
some A € K. If M € N (X-torsion) U N (Y-torsion) then by Lemma 6.7, A = Cy # 0. By
Proposition 4.9.(4) and Theorem 4.11.(1), €** is an infinite dimensional central simple algebra.
Hence, dim M,, = co. It remains to consider the case where M € N ((X,Y)-torsionfree). Suppose
that there exists a weight space M, of M such that dim M, = n < oo, we seek a contradiction.
Then by Theorem 6.5, dim M,, = n for all u € Wt(M) and Wt(M) = {q'v|i € Z}. Notice that
the elements X and Y act injectively on M, then they act bijectively on M (since all the weight
spaces are finite dimensional and of the same dimension). In particular, the element ¢ = Y X
acts bijectively on each weight space M,
4.9.(2,3), the algebra %{\’“ is an infinite dimensional central simple algebra for any A € K and
w € K*. Then, dim M,, = oo, a contradiction. O

and so, M, is a simple %t’\’“—module. By Proposition
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Description of the set N (X-torsion). An explicit description of the set N (X-torsion)
is given in Theorem 6.10. It consists of a family of simple modules constructed below (see
Proposition 6.9). For each p € K*, we define the left A-module X¥ := A/A(K — p, X). Then
XM =@, j k5o KF'EIYFT where T = 1+ A(K — p, X). Let A € K. By (15), we see that the
submodule of X,

(C-NX = D KFEY (' BY? + ) 1= @ KF (i BHY2 4 ABYE) 1, (51)
1,5,k=0 1,7,k>0

is a proper submodule and the map (C — A)- : X# — X¥ v — (C — A)v, is an injection, which
is not a bijection. It is obvious that GK (X#) = 3.
For A € K and u € K*, we define the left A-module X** := A/A(C — A\, K — p, X). Then,

XM~ XE/(C = N)XH £ 0. (52)
We have a short exact sequence of A-modules: 0 — X¥ 4(0—73)—> Xt —s XM 3 0. The next

proposition shows that the module X*# is a simple module if \ is nonzero. Moreover, the K-basis,
the weight space decomposition and the annihilator of the module X** are given.

Proposition 6.9. For A\, u € K*, consider the left A-module X’ = AJA(C — \, K — p, X).
1. The A-module XM = @ KFYi1ad @ KFEFT® @ KYFEFT is a simple A-
B 20,722 i,k>0 i,k>0
module where 1 =1+ A(C — X\, K — pu, X).

2. o _ a5 KFiyjIEB( P xretiePretis P KE’O’“I)

i>0,5>2 i>1,k>0 E>0 i>1,k>0
D xvrerio@Prretio @ KyEetl )
i>21,k>0 k>0 i>1,k>0

3. The weight subspace X of XME that corresponds to the weight ¢°u is

K[O]1, s =0,
E"K[O]1, s=2r, r>1,
E’"K[@]i s=2r—1,r>1,
. F'KO]1® ‘ @ KFiY? 1, s=—-2r, r>1,
q° 1 H;J;lr,
YK[@] 17 S = —1,
YF-KO]1e @ KFYIL, s=-2(r—1)—-1,r>2.
2i4j=2r—1,
iz2

4. anna (XM = (C = \).
5. XME s an X -torsion and Y -torsionfree A-module.
6. Let (A, ), (N, ') € K x K*. Then XM o XMo# iff X=X and = ¢'1/ for some i € Z.

Proof. 1. By (52), X»* £ 0 and 1 # 0. Using the PBW basis for the algebra A, we have
X =3 i k>0 KF'YJE*1. Using (15), we have A\1 = C1= —pu 'EY21. Hence EY?1 = —pA 1,
and then Y2E 1 = —¢?u) 1. By induction on k, we deduce that

EFY?T = (—p)\)Fq " DT and VBRI = (—¢p)fgtD 1 (53)
Therefore, -, - KYTE*1 = Y?K[Y]1 + K[E]1 + YK[E]1, and then
M= S KFY/T+ Y KFEFI+ Y KYFEMT = K[F) (K[Y]Y2 + K[E] +YK[E])1
i>0,5>2 i,k>0 i,k>0

So, any element u of X* can be written as u = (31— F'a;)1 where a; € ¥ :=K[Y]Y? + K[E] +
YK[E]. Statement 1 follows from the following claim: if a,, # 0, then there is an element ¢ € A
such that au = 1.
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(i) X™u = a' 1 for some nonzero element o’ € ¥: Using Lemma 3.1, we have Xu = 31" Fib; 1
for some b; € ¥ and b,_1 # 0. Repeating this step n — 1 times (or using induction on n), we
obtain the result as required. So, we may assume that u = agl where 0 # ag € 2.

(ii) Notice that the element ay € ¥ can be written as ag = pY? + > 1~ ((\; + p;Y)E* where
p € K[Y], A\; and p; € K. Then, by (53),

Y2y = Y2qe1 = (py2m+2 + Z(’\i + MY)YQW*Z')Y%EZ') 1
1=0

m
= (pY2m+2 +) i+ MiY)Yz(m_i)’Yi) 1=/f1
i=0

for some 7; € K* where f is a nonzero polynomial in K[Y] (since ag # 0). Hence, we may assume
that uw = f1 where 0 # f € K[Y].

(iii) Let f = Zi:o v Y" where 7; € K and 7, # 0. Since KY*1 = ug~"Y*1 and all eigenvalues
{ug=%|i > 0} are distinct, there is a polynomial g € K[K] such that gf1 = Y'1. If | = 0, we
are done. We may assume that [ > 1. By multiplying by Y (if necessary) on the equality above
we may assume that [ = 2k for some natural number k. Then, by (53), w; 'E*¥Y?* 1 = 1 where
wi = (—pX)Eq *F=1) as required.

2. Recall that the algebra U,(sly) is a GWA

*(gK +q¢ 'K
(1—¢?)?
where 0(0) = © and 0(K) = ¢ 2K. Then for all i > 1, F'E' = ac~1(a) - - - 0~""!(a). Therefore,

P rreFi= P KretiaPkreriec @ KEOFL

i,k>0 i>1,k>0 k>0 i>1,k>0

Uy(sl) =K[0, K*'|[E, F;0,a = (1 - ¢*)7'O© —

] (54)

Then statement 2 follows from statement 1.

3. Statement 3 follows from statement 2.

4. Clearly, (C — \) C anng(XM). Since A € K*, by Corollary 3.9, the ideal (C — \) is a
maximal ideal of A. Then we must have (C' — \) = ann 4 (X*#).

5. Clearly, X™* is an X-torsion weight module. Since X** is a simple module, then by Lemma
6.6, XM is Y-torsionfree.

6. (=) Suppose that X+ ~ X #" By statement 4, (C'— A) = ann 4 (XM#) = ann 4 (XY #)
(C — X). Hence, A = X. By Theorem 6.5 (or by statement 3), {¢’u|i € Z} = Wt(X}#) =
W(XNo#) = {¢'y/ | i € Z}. Hence, u = ¢'y/ for some i € Z.

(<) Suppose that A = X and p = ¢*’ for some i € Z. Let 1 and 1’ be the canonical generators
of the modules XM* and XX’”/, respectively. If i < 0 then the map XM* — XN T s Yl T
defines an isomorphism of A-modules. If i > 1 then the map X** — X)#' 1 (YE)*1’ defines
an isomorphism of A-modules. O

We define an equivalence relation ~ on the set K* as follows: for pand v € K*, pu ~ v iff u = ¢'v
for some i € Z. Then the set K* is a disjoint union of equivalence classes O(u) = {¢'u|i € Z}.
Let K*/ ~ be the set of equivalence classes. Clearly, K*/ ~ can be identified with the factor
group K*/{q) where (q) = {¢"|i € Z}. For each orbit O € K*/{q), we fix an element po in the
equivalence class O.

Theorem 6.10. N (X -torsion) = {[XM0]| X e K*, O € K*/(q)}.

Proof. Let M € N(X-torsion). By Lemma 6.7, the central element C' acts on M as a nonzero
scalar, say A. Then M is an epimorphic image of the module X** for some p € K*. By Proposition
6.9.(1), XM is a simple A-module, hence M ~ X*#. Then the theorem follows from Proposition
6.9.(6). O
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Lemma 6.11. 1. For all A € K and p € K*, GK (XM) = 2.
2. A(C7K7,UJ5X) ,C,_ A(K 7#7X7Y7E) ,C,_ A.
3. For all i € K*, the module X%* is not a simple A-module.

Proof. 1. By [20, Proposition 5.1.(e)], GK (X*#) < GK (X#) — 1 = 2. If A # 0 then it follows from
Proposition 6.9.(1) that GK (X*#) = 2. If A = 0 then consider the subspace V = D ;>0 KFiEI 1
of the A-module X¥. By (51), we see that V N CX* = 0. Hence, the vector space V can be seen
as a subspace of the A-module X%#. In particular, GK (X%#) > 2. Therefore, GK (X"#) = 2.

2. Let a = A(C,K — p,X) and b = A(K — 4, X, Y, E). Since C € b we have the equality
b=A(C,K — nu, XY, E). Clearly, a C b. Notice that A/b ~ U/U(K — p, E) where U = U,(sls).
Then GK (A/b) = 1, in particular, b C A is a proper left ideal of A. It follows from statement 1
that, 2 = GK (A/a) > GK (A4/b), hence the inclusion a C b is strict.

3. By statement 2, the left ideal A(C, K —pu, X) is not a maximal left ideal. Thus, the A-module
X%# is not a simple module. O

Corollary 6.12. Let A € K and p € K*. The A-module XM is a simple module iff \ # 0.
Proof. The result follows from Proposition 6.9.(1) and Lemma 6.11.(3). O

Description of the set N (Y-torsion). An explicit description of the set N (Y-torsion) is
given in Theorem 6.14. It consists of a family of simple modules constructed below (see Proposition
6.13). The results and arguments are similar to that of the case for X-torsion modules. But for
completeness, we present the results and their proof in detail. For p € K*, we define the left
A-module Y* := A/A(K — p, Y). Then Y* =P, ;- KE'FIX*T where 1 = 1+ A(K — p, Y).
It is obvious that GK (Y#) = 3. Let A € K. By (15), we have (C' — A\)1 = (¢*FX? — \) 1. Then
using Lemma 3.1, we see that the submodule of Y#,

(C-NY'= @ KEFXHC-Ni= @ KEF/XK(PFX?-)\)1
4,7,k=0 4,7,k=0
= P KEF/ (@PFX"? - X)L (55)

i,5,k20

Therefore, the submodule (C' — A)Y* of Y* is a proper submodule, and the map (C — A)- : Y¥ —
Y#, v (C — N)wv, is an injection, which is not a bijection.
For A € K and p € K*, we define the left A-module YM* := A/A(C — A\, K — , V). Then

YA~ YF/(C = N)YH £ 0. (56)
We have a short exact sequence of A-modules: 0 — Y# M) Y# — YN — 0. The next

proposition shows that the module Y*# is a simple module if \ is nonzero. Moreover, the K-basis,
the weight space decomposition and the annihilator of the module Y* are given.

Proposition 6.13. For \, u € K*, consider the left A-module Y = AJA(C — X\, K —u, Y).
1. The A-module Y™ = @ KEX'1¢ @ KEF:1e @ KEFEXT is a simple A-
120,52 i,k>0 i,k>0

module where 1 =1+ A(C — X\, K —u, Y).

2.
o= P keEx e ( @ Ke‘'EToPKreTe P KO FI)

120,522 i>1,k>0 k>0 i>1,k>0
o P xo'Exie@Kre‘Xie P KO'FXI)
i>1,k>0 k>0 i>1,k>0
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3. The weight subspace Y:t of YN that corresponds to the weight ¢°pu is

q‘p
K[O]1, s =0,
KOJE"1e @ KEX¥I, s=2r, r>1,
p_ ) KOIXT, o1,
“rn =\ KOE¥X1e @ KEXIT, s=2+1,r>1,
2ifj=2r+1,
i>2
K[O]F"1, s=-=2r, r>1,
K[OJF"X 1, s=-=2r+1, r>1.

4. anng (YMH) = (C — )).
5. YN s a Y -torsion and X -torsionfree A-module. _
6. Let (\, i), (N, p') € K x K*. Then Y M ~ YA+ iff X=X and p = ¢'y’ for some i € Z.

Proof. 1. Notice that YM* = > iik>0 KEFIX*1. By (15), we have A1 = C'1 = ¢*FX?21, i.e.,
FX?21= ¢ 2)1. By induction on k and using Lemma 3.1.(1), we deduce that

FFX?T = (FX?)FT = ¢ 2N L (57)
Therefore, 35, -0 KF/ X*1T = K[X]X?1 + K[F] 1+ K[F]X 1, and so

YM = > KE'X/T+ Y KE'FF1I+ ) KE'FFXL

i>0,5>2 i,k>0 i,k>0

So, any element u of Y»* can be written as u = Y, E'a;1 where a; € I' := K[X]X? + K[F] +
K[F]X. Statement 1 follows from the following claim: if a,, # 0, then there exists an element
a € A such that au = 1.

(i) Y™u = a’1 for some nonzero element o’ € I': Notice that Yu = Z?;OI E'b; for some b; € T
and b,_1 # 0. Repeating this step n— 1 times, we obtain the result as desired. So, we may assume
that u = a1 for some nonzero a’ € I

(ii) Notice that the element a’ can be written as a’ = pX?+> " ; F*(A\;+p; X ) where p € K[X],
A; and p; € K. By Lemma 3.1, we see that F*X1 = XF*1. Then

m m

X2y = (pX2mt? 4 Z()\i + i X)XPFYT = (pX2mt? 4 Z()\i + i X)X 20 x 2 iy |
i=0 =0
= (PXPT2 4 (A p X)Xy T = f 1
1=0

for some ; € K* (by (57)) and f is a nonzero element in K[Y]. Hence, we may assume that
u= f1 where f € K[X]\ {0}.

(iii) Let f =Y\, ;X where a; € K and oy # 0. Since KX'T = ¢'uX*1 and all eigenvalues
{¢'11|i € N} are distinct, there is a polynomial g € K[K] such that gf 1 = X'1. If | = 0, we are
done. We may assume that [ > 1. By multiplying by X (if necessary) on the equality we may
assume that [ = 2k for some natural number k. Then, by (57), we have ¢?* \"¥FF¥X2F 1 = 1, as
required.

2. Recall that U, (sl2) is a generalized Weyl algebra (see (54)), then E'F* = ¢*(a)o"*(a) - - o(a)
holds for all 4 > 1. Hence,

@ KF'EFT = @ KO*E'1a @K@k 1 @ KO*F'1.

i,k>0 i>1,k>0 k>0 i>1,k>0

Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.
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4. Clearly, (C' — \) C anny (YM#). Then we must have (C' — \) = ann 4 (X*#) since (C — \) is
a maximal ideal of A.

5. Clearly, YV is Y-torsion. Since Y is a simple module, then by Lemma 6.6, YV is
X-torsionfree.

6. (=) Suppose that Y»* ~ YA#'. By statement 4, (C'— A) = anny (YM#) = ann (Y2 #') =
(C — X). Hence, A = X. By Theorem 6.5 (or by statement 3), {¢’u|i € Z} = Wt(Y ) =
Wt(YN#) = {¢'y/ | i € Z}. Hence, u = q'yi/ for some i € Z.

(<) Suppose that A = X and u = ¢'y’ for some i € Z. Let 1 and 1’ be the canonical generators
of the modules Y and Y’\/’“/, respectively. If i > 0 then the map YN — YA+ 1 X1’ defines
an isomorphism of A-modules. If i < —1 then the map YM* — YA T s (FX)'1' defines an
isomorphism of A-modules. O

Theorem 6.14. N (Y -torsion) = {[Y*°]|X e K*, O € K*/(q)}.

Proof. Let M € N (Y-torsion). By Lemma 6.7, the central element C' acts on M as a nonzero
scalar, say A. Then M is an epimorphic image of the module Y** for some ;1 € K*. By Proposition
6.13.(1), YM* is a simple A-module, hence M ~ Y*»#. Then the theorem follows from Proposition
6.13.(6). O

Lemma 6.15. 1. For all A € K and u € K*, GK (YM) = 2.
3. For all i1 € K*, the module Yo" is not a simple A-module.

Proof. 1. By [20, Proposition 5.1.(e)], GK (Y**) < GK (Y#) —1 = 2. If A # 0 then it follows from
Proposition 6.13.(1) that GK (Y»*) = 2. If A = 0 then consider the subspace V = D ;>0 KE‘FI 1
of the A-module Y*. By (55), we see that V N CY# = 0. Hence, the vector space V' can be seen
as a subspace of the A-module Y%#. In particular, GK (Y%#) > 2. Therefore, GK (Y%#) = 2.

2. Let o/ = A(C,K — p,Y) and b = A(K — 4, X,Y, E). Since C' € b we have the equality
b=A(C,K — u,X,Y,E). Clearly, a’ C b. By Lemma 6.11.(2) and its proof, b is a proper left
ideal of A and GK (A/b) = 1. Then it follows from statement 1 that, 2 = GK (4/a’) > GK (A/b),
hence the inclusion @’ C b is strict.

3. By statement 2, the left ideal A(C, K —pu,Y") is not a maximal left ideal. Thus, the A-module
YO# is not a simple module. O

Corollary 6.16. Let A € K and pn € K*. The A-module Y M is a simple module iff X\ # 0.
Proof. The result follows from Proposition 6.13.(1) and Lemma 6.15.(3). O

The set N'((X,Y)- torsionfree). Theorem 6.18 and Theorem 6.19 give explicit description of

the set N ((X, Y)-torsionfree). Recall that N ((X,Y)-torsionfree) = A (weight, (X, Y)-torsionfree).
Then clearly,

N ((X,Y)-torsionfree) = m (weight, (X,Y)-torsionfree) Ui |_| m (weight, (X,Y)-torsionfree).
AeK*
(58)

Let A; be the localization of the algebra at the powers of the element t = Y X. Recall that the
algebra %; is a GWA, see Proposition 4.9.(1).

Lemma 6.17. A, = €,[X*';1] is a skew polynomial algebra where v is the automorphism of the
algebra €, defined by 1(C) = C, o(KT1) = ¢FLK*! 1(t) = qt, 1(u) = ¢*u and 1(v) = v.

Proof. Clearly, the algebra %;[X*!;.] is a subalgebra of A;. Notice that all the generators of the
algebra A; are contained in the algebra %;[X*';4], then A; C €;[XT!;4]. Hence, A; = €[ XT1;4],
as required. O
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The set /T(B) (weight, (X,Y)-torsionfree). Let [M] € @(t-torsionfree). By Theorem
5.6, the element ¢ acts bijectively on the module M (since ¢ is a normal element of R). Therefore,
the ¥-module M is also a €;-module. Then by Lemma 6.17, we have the induced A;-module

M=AosM=PXoM=FPveMaPX oM
i€Z i>1 i>0

Clearly, M is an (X,Y)-torsionfree, weight A-module and Wt (M M) = {q'uli € Z} = O(p). We
claim that M is a simple A-module. Suppose that N is a nonzero A-submodule of M then
X'®@m € N for some i € Z and m € M. Ifz—,()vthenN—Am_M. If i > 1, since
YZ(XZ@m) € K*(1at'm m), then 1®tm € N andso N = M. Ifi < 1 then Xl Xigm = 1om € N,

so N = M. It M € GO (t-torsionfree) then the A-modules M and M’ are isomorphic iff the
¢ *-modules M and X°® ® M’ are isomorphic where u = ¢*y/ for a unique i € Z.

Theorem 6.18. /T(B) (weight, (X,Y)-torsionfree) = {[]\7] |[M] € @00 (t-torsionfree), O €
K* /qZ}.

Proof. Let V € 1?(6) (Weigh‘c7 (X, Y)-torsionfree). Then the elements X and Y act injectively on
the module V. For any p € Wt (V), the weight space V,, is a simple t-torsionfree ¢%#-module.
Then V 2 @, ViV, ® Do X?®V, =V,. Hence, V =V, since V is a simple module. [

The set A/(X) (weight, (X,Y)-torsionfree) where A € K*. Below, we use notation and

results from Lemma 5.7. Let M € €M (t-torsionfree). Then M, € €. By Lemma 6.17, we
have the induced A;-module

M* = Ay @q, My = (P X' © M,. (59)
i€z
Clearly, M* is a simple weight A;-module and Wt (M*) = {¢'p|i € Z} = O(p). For all i € Z,

the weight space M¥ := X?® M; ~ M} " as €;-modules where M} ' is the %;-module twisted by
the automorphism ¢ =% of the algebra %; (the automorphism ¢ is defined in Lemma 6.17). The set

Grn (t-torsionfree) is described explicitly in Theorem 5.10.(1,3). If M = fAH then X! ® ff"” ~
(FOF) "~ NP as %-modules. Tt is clear that socg (f*) = . Hence, soce (X' ® fiH) =
soce (F7 1) = P2 Then the A-module

soc 4 ((f”\’“)’) = @SOC%(Xi ® fH) ~ @f’\’qi“. (60)

€L €L

Similarly, if M = FM then X' @ F)* ~ (FPM) " ~ F’\’q " as €j-modules. It is clear that
soce (FM") = FM. Hence, socy (XE @ F)P) = SOC<g(F>\’q my = A . Then the A-module

S0CA ((FA’”)’> = @ soce (X' @ FPH) o~ @ Frae, (61)
i€Z i€z
If M = F* where v € K*\ {¢*v|i € Z}, then X' ® ]-'i‘:“ ~ (.7: ’”)L ~ fq ’qw”t as ¢;-modules.
It is clear that soce (]-'A 1) = ]—',i““. Hence, socy (X* ®.7:,§‘7’t ) = ]-"qA ,y“ is a simple ¢-module. Then
the A-module

q "y
€L 1€EL

socA< (FH) ) @so&g (X'® ) Fhae (62)

32



If M € ¢ e (K[t]-torsionfree) then, by Theorem 5.10.(3), M ~ €™M /EM* N Bbt~™ for some
[-normal element b € Irr (#) and for all n > 0. For all i € Z,

)\'L
i cgt7Q#

> —— 4
G A Bui(b)tn

MtL = Mﬂ'(b)t*"-

k3

Then soce (M} ) = soceg (M,iyi-—n) = M,iy-n; for all n; > 0. Then the A-module

soc (M*) = EDso&g(Xi ® M) ~ @Mﬁ-(b)tini. (63)
i€z i€z

The next theorem describes the set A()\) (weight, (X, Y)-torsionfree) where A € K*.

Theorem 6.19. Let A\, € K*. Then m (weight, (X,Y)-torsionfree) = {[soc(M*)]|[M] €

GAmo (t-torsionfree), O € K*/q%} and soca(M?*) is explicitly described in (60), (61), (62) and
(63).

Proof. Let M € A()) (weight, (X,Y)-torsionfree). Then Wt (M) = O(u) € K*/q” for any p €

Wt (M). Then M := M, € €M Ho (t-torsionfree) and My € €10 Clearly, M* = M, D M. So,
M =socs(M?). O
By (48) and (58), Theorem 6.10, Theorem 6.14, Theorem 6.18 and Theorem 6.19 give a com-
plete classification of simple weight A-modules.
Acknowledgements. We would like to thank the referee for valuable comments, interesting
questions and for the careful reading of the paper.

7 List of Notations

B A U e 14
o R 14
A By 6 B e 16
P e A4 BMH 16
D 5 B(P) ot 19
C oo 6, 7 19
A A R 19
SPEC(R) oot 10 FVF 22
SPEC (R, 8) wvveeei e L 22
SPEC,(R) w o Y 22
Max (A) oo 11 N 25
Prim (A) ..o 12 XM 27
SPECL(A) ot 12 Y 29
CA(K) o 120 M® 32
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