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Abstract 

Solvent-based post combustion capture (PCC) is a well-developed technology for CO2 capture 

from power plants and industry. A reliable model that captures the dynamics of the solvent-

based capture process is essential to implement suitable control design. Typically, first 

principle models are used, however they usually require comprehensive knowledge and deep 

understanding of the process. System identification approach is adopted to obtain a model 

that accurately describes the dynamics between key variables in the process. The nonlinear 

auto-regressive with exogenous (NARX) inputs model is employed to represent the 

relationship between the input variables and output variables as two Multiple-Input Single-

Output (MISO) sub-models. The forward regression with orthogonal least squares (FROLS) 

algorithm is implemented to select an accurate model structure that best describes the 

dynamics within the process. The prediction performance of the identified NARX models is 

promising and shows that the models capture the underlying dynamics of the CO2 capture 

process.    

Keywords: Solvent-based post-combustion capture; chemical absorption; System 

Identification; NARX; FROLS-ERR 

Highlights  

 First principle dynamic model for solvent-based carbon capture process used to 

generate data 

 Solvent-based carbon capture process exhibits a highly nonlinear behaviour  

 System Identification of solvent-based CO2 capture process using NARX model 

 Significant model term selection using the FROLS-ERR algorithm 

  Developed NARX model accurately predicts CO2 concentration at absorber outlet and 

CO2 lean loading 
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Abbreviations 
BIC   - Bayesian Information Criterion  
CCL  - CO2 Capture level 
CCS  - Carbon Capture and Storage 
ERR  - Error Reduction Ratio 
FROLS  - Forward Regression with Orthogonal Least Squares 
LL   - Lean loading 
MIMO  - Multiple Input Multiple Output 
MISO  - Multiple Input Single Output   
MP   - Mass percentage 
MPO  - Multi step-ahead Prediction Output 
MSE  - Mean Square Error 
NARX  - Nonlinear Auto-regressive with exogenous inputs 
NARMAX - Nonlinear Auto-regressive moving average with exogenous inputs 
OSA - One-Step Ahead Prediction 
PCC  - Post Combustion Capture  
SISO   - Single Input Single Output 

 

Nomenclature ܦ   - Dictionary  ܨைమௌ   - Flue gas flowrate at the absorber inlet, kg/s ܨைమௌೠ   - Treated gas flowrate at the absorber outlet, kg/s ݊ைమௌ   - CO2 mass fraction at the absorber inlet ݊ைమௌೠ   - CO2 mass fraction at the absorber outlet ݊   - Time delay ݊௨   - Maximum lag in the input  ݊௬   - Maximum lag in the output ݕሺݐሻ   - Response Vector  ݔሺݐሻ   - Regressors Vector  ߮   - Parameter Estimate Ȱ   - Parameter Vector ݊   - Number of terms 
y1   - CO2 mass percentage at the absorber gas outlet (measured output) 
y2   - CO2 lean loading (measured output) 
u1   - Flue gas flowrate (measured input) 
u2   - Lean MEA flowrate (measured input) 
u3   - Reboiler Temperature (measured input) 
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1 Introduction 

1.1 Background 

The utilisation of fossil fuels, particularly coal, for electricity generation is recognised as the single 

largest source of greenhouse gas emissions[1]. CO2 is the largest anthropogenic greenhouse gas 

accounting for about three quarters of the global greenhouse gas emitted to the atmosphere[2]. This 

has resulted in a steady rise in the global average temperature and brought awareness among 

scientific communities to tackle issues rising from greenhouse gas (GHG) emissions.  

Carbon capture and Storage (CCS) is acknowledged to play a major role in the reduction of CO2 

emission from fossil fuel fired power plants. Amongst various CCS technologies, the utilisation of 

solvent-based post-combustion capture (PCC) process to treat fuel gas from coal fired plant has 

gained much attention[3]. This is attributed to its suitability to be retrofitted into an existing power 

plant and its capacity to treat flue gas with low CO2 partial pressure, giving the solvent-based PCC 

an edge over other carbon capture technologies[1]. As a result, there has been notable progress in 

the solvent-based PCC technology development, which has made it the first and only commercial 

technology that is operational for large-scale coal-fired power plants. Some completed CCS projects 

include SaskPower Boundary Dam Carbon Capture and Petra Nova Carbon Capture Project[4]. 

Stringent environmental legislations around the world to reduce CO2 emissions have prompted the 

need to deploy new energy sources such as nuclear and renewable energy. This will bring a 

significant shift in the dominant role of fossil fuel, especially coal, in the energy system and the need 

for flexible operation of coal fired power plants[5]. The flexible operation of a coal-fired power plant 

involves the variation of power plant load in accordance to the volatile electricity demand and 

prices[6]. This result in the fluctuation of the flue gas flowrate and composition to the absorber, as 

well as steam provided to the reboiler for solvent regeneration, which affects the operation of the 

capture plant. Thus, the flexible operation of the solvent-based PCC plant (i.e. variation of the 

capture rate in accordance with electricity demand) is important to cope with the coal-fired power 

plant operation. Investigation of the capture plant response to disturbances during various flexible 

operation modes such as start-up, shutdown and load following has gain much attention as well as 

the need to develop a suitable control strategy for the capture plant to handle these disturbances.  

1.2 Literature Review 

An accurate and reliable dynamic model is necessary to carry out a comprehensive study on the 

solvent-based CO2 capture process. Many studies on dynamic modelling of a solvent-based PCC 

were carried out on first principle (i.e. mechanistic) models[1,7–12]. Challenges with high 

computational time when developing a detailed solvent-based PCC model especially when 

integrated with coal fired power plant and its high level of complexity makes it difficult to implement 

relevant process control strategies. Thus, simplification of the mechanistic model is required to 
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reduce the computational time for simulation[13,14]. This has significantly motivated the use of data 

driven modelling approach and system identification techniques, to represent the solvent-based PCC 

model. This involves constructing a suitable model that best describes the relationship between the 

process input and output variables. 

In the past, most studies have represented the capture process as a linear model[15–20]. It should 

be noted that the capture process exhibits highly nonlinear behaviour[21]. The linear model is an 

approximation of the actual model, which tend to deviate from the actual model when large 

substantial changes in the input variables enter the carbon capture process[17], especially during 

flexible operation. Thus, a nonlinear model is essential to capture the actual dynamics within the 

carbon capture process. Only a few studies have applied non-linear modelling techniques such as 

neural networks[22–24] and non-linear autoregressive with exogenous input (NARX) model[21] to 

analyse the CO2 capture process.  

The key steps of system identification include data collection, model structure detection, and model 

validation[25]. Various studies on system Identification of nonlinear systems have focused on 

different classes of system, which included volterra series model[26–28], Hammerstein model, 

Wiener model, Hammerstein-Wiener model[29] and NARMAX model[30,31]. Amongst these classes 

of nonlinear models, NARMAX model is one of the commonly used representations suitable for a 

large range of nonlinear systems[30,31]. The key task in system identification using NARMAX and 

related models centres on model structure detection. The well-known forward regression with 

orthogonal least squares (FROLS) algorithm has proven to be one of the most efficient approach for 

nonlinear model structure determination[30,32–34] for the NARMAX model. The FROLS algorithm 

selects the important model terms one by one, in a stepwise manner, based on their significance, 

which is measured using a simple but useful index called the error reduction ratio (ERR). 

1.3 Aim and Objectives 

This paper aims to introduce a data- driven dynamic modelling approach for the solvent-based PCC 

plant. In this study, the solvent-based CO2 capture process is represented as NARX models (a 

special form of NARMAX model).  The FROLS algorithm is used to find a most parsimonious (with 

least parameters) model to represent the relationship between the input variables (flue gas flowrate, 

lean MEA flowrate and reboiler temperature) and output variables (CO2 concentration in wt% and 

CO2 lean loading). 

1.4 Novelty and Structure of Paper  

A key novelty of this study is that for the first time, the FROLS algorithm to develop a transparent 

NARX model that captures the relationship between the input variables and output variables in the 

carbon capture process. This algorithm enabled us to identify and rank key model terms that 

contribute to the response variable based on ERR and remove model terms that least contribute to 
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the system output. The FROLS-ERR algorithm has been extensively used in the literature as an 

effective system identification technique for various systems[35–38]. To our knowledge, the 

advantages and potentials of nonlinear system identification techniques, especially dynamic 

NARMAX models identification with the FROLS-ERR algorithm, have not been well explored for PCC 

processes. 

The paper is structured as follows. Section 2 gives a description of the solvent-based PCC process. 

The system identification approach using FROLS-ERR algorithm is described in Section 3. Data 

collection and model identification are presented in Section 4, while Section 5 demonstrates the 

model performance and discusses the results obtained, statistical analysis as well as the step 

response analysis. Section 6 provides a brief but useful conclusion and future research 

consideration. 

2 Solvent-based PCC Description  

2.1 Solvent-based PCC Process  

The solvent-based PCC process mainly consists of absorber and stripper with an aqueous mono-

ethanolamine solution (MEA) as a chemical solvent. The schematic diagram is shown in Fig 1. The 

absorber typically receives flue gas from the power plants, which flows in from the bottom. The lean 

solvent is introduced from the top of the absorber and flows counter-currently to strip out CO2 from 

the flue gas. Rich CO2 solvent exits the absorber bottom with the aid of a pump through a heat 

exchanger into the regenerator while the treated gas leaves the absorber top into the atmosphere.  

In the regenerator, CO2 is stripped using heat input from steam extracted from power plants and 

exits from the top of the regenerator through a condenser to a compression train, where CO2 gas is 

compressed and transported via a pipeline for either enhanced oil/gas recovery and, underground 

storage or various CO2 utilisation[7]. The regenerated solvent is recycled to the absorber as it flows 

from the bottom of the regeneration bottom, through the heat exchanger for energy consumption 

efficiency and water make-up tank to maintain a constant concentration of water. Insights gained 

from previous studies on the CO2 capture process was vital in identifying key process variables that 

are sensitive to the dynamic performance of the capture plant for flexible operation mode[7].  

2.2 Selection of Input and Output Variables 

 In various studies, which includes system identification of the solvent-based capture process, the 

input and output variables selection were based on the control objectives of the capture process. 

These objectives are centred on environmental and economic (operational) targets[18].  

Key parameters that are sensitive to the control objectives are CO2 capture level and regeneration 

efficiency. The CO2 capture level (CCL) measures the amount of CO2 captured from the capture 

plant and can be expressed mathematically as follows: 
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Fig 1 Solvent-based PCC process[7]  

 

CCLሺΨሻ ൌ ൭ͳ െ ݊ைమௌೠ  ൈ ைమௌೠ݊ைమௌܨ  ൈ ைమௌܨ ൱ ൈ ͳͲͲΨ          
(1) 

where, ݊ைమௌೠ,ܨைమௌೠ,݊ைమௌ ைమௌܨ,    are CO2 mass fraction at the absorber gas outlet, flue gas 

flowrate at the absorber gas outlet, CO2 mass fraction at the absorber gas inlet and flue gas flowrate 

at the absorber gas inlet respectively. Thus, the key variable that is sensitive to the CO2 capture level 

is the CO2 mass fraction at the absorber gas outlet (݊ைమௌೠ), which can be represented as CO2 mass 

percentage (CO2 -MP). The regeneration efficiency, which accounts for the bulk of the energy 

utilisation, is a measure of energy utilised in the regenerator of the capture process. It is 

acknowledged that the reboiler consumes the most energy and thus dictates the operational cost of 

the capture process. As stated earlier, steam is extracted from power plants as heat input to the 

reboiler. The CO2 lean loading (CO2-LL) at the lean MEA stream to the absorber is a key process 

variable that is sensitive to the energy efficiency of the CO2 capture process. Thus, CO2 –MP and 

CO2-LL were selected as the Output variables.  

Selection of the input variables was based on key variables (manipulated and disturbance variables) 

that have significant effect the output variables. Key input variables selected for this study includes 

flue gas flowrate, lean solvent flowrate and reboiler temperature. Unlike most studies, which used 

the reboiler duty as an input variable, the reboiler temperature was selected for this study. This is 

based on study carried out by Lawal et al.[8], in which the reboiler temperature controls the amount 

of stream drawn off the power plant for regeneration. Thus, the solvent based PCC process was 

represented as a 3-input and 2-output model. 
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3 NARX Model 

The multivariable Nonlinear Auto-Regressive with eXogenous (NARX) input model, which is a 

special form of Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) 

model[30,31], is adopted to represent the solvent –based PCC process. The NARX model of 

Multiple-Input and Single-Output (MISO) systems is described as: 

ሻݐሺݕ ൌ ݂ ሺݕሺݐ െ ͳሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ሻǡݐଵሺݑ ݐଵሺݑ െ ͳሻǡ ǥ ǡ ݐଵሺݑ െ ݊௨ሻǡ ǥ ǡ ሻǡݐሺݑ െݐሺݑ ͳሻǡ ǥ ǡ ݐሺݑ െ ݊௨ሻ ሻ     ݁ሺݐሻ 
         

(2) 

where ݎ is the number of external input signals;ݕሺݐሻ,ݑሺݐሻ, and ݁ሺݐሻ, with ݆ ൌ ͳǡʹǡ ǥ ǡ ݐ and ݎ ൌͳǡʹǡ ǥ ǡ ܰ are measured system output, input and unmeasurable noise sequences, respectively; ݊௬ 

and ݊௨ are the maximum lags in the output and input; ݂ሺήሻ represents  a nonlinear function, which is 

generally unknown but can be approximated using various types of nonlinear forms. Polynomial 

expansion of ݂ ሺήሻ is most commonly used due to its good properties, which include transparency and 

easy interpretation of the model[30]. 

The solvent-based CO2 capture process considered in the present study is a typical MIMO system, 

involving three inputs (namely, flue gas flowrate, lean MEA flowrate and reboiler temperature) and 

two outputs (CO2-MP and CO2-LL). The MIMO system can be represented as two MISO sub-

systems, each of which can be represented using the NARX model (2) as:  

ሻݐଵሺݕ ൌ ݂ ሺݕଵሺݐ െ ͳሻǡ ǥ ǡ ݐଵ൫ݕ െ ݊௬൯ǡ ሻǡݐଵሺݑ ݐଵሺݑ െ ͳሻǡ ǥ ǡ ݐଵሺݑ െ ݊௨ሻǡ ǥ ǡ ݐሺݑሻǡݐሺݑ െ ͳሻǡ ǥ ǡ ݐሺݑ െ ݊௨ሻሻ   ݁ଵሺݐሻ          
(3) 

ሻݐଶሺݕ ൌ ݂ ሺݕଶሺݐ െ ͳሻǡ ǥ ǡ ݐଶ൫ݕ െ ݊௬൯ǡ ሻǡݐଵሺݑ ݐଵሺݑ െ ͳሻǡ ǥ ǡ ݐଵሺݑ െ ݊௨ሻǡ ǥ ǡ ݐሺݑሻǡݐሺݑ െ ͳሻǡ ǥ ǡ ݐሺݑ െ ݊௨ሻሻ  ݁ଶሺݐሻ          
(4) 

where ݑ ,3= ݎଵ = flue gas flowrate (kg/s), ݑଶ = Lean MEA flowrate (kg/s), ݑଷ = Reboiler temperature, 

and  ݁ଵ and ݁ଶ are unmeasurable noise sequences. A graphical illustration of the MISO sub-systems 

is shown in Fig 2. Each MISO model can be re-arranged into a linear-in-the-parameters form as [39]: 

ሻݐሺݕ ൌ   ߮ݔሺݐሻ   ݁ሺݐሻெೝ
ୀଵ           

(5) 

where ݕሺݐሻ, ݔሺݐሻ, ߮ and ܯ, with ሺݎ ൌ ͳǡʹǡ͵Ǣ ݆ ൌ ͳǡʹǡ ǥ ǡ  ,ሻ,  are the response signal (output)ܯ

regressors, model parameter and number of model terms. Note that each ߮ is built using lagged 

input and lagged output variables, such as ݕଶሺݐ െ ͳሻǡ ሺݕଵሺݐ െ ͳሻሻଶ ݑଶሺݐ െ ͳሻݑଷሺݐ െ Ͷሻ, etc. Further 

details can be found in [39].  The forward regression with orthogonal algorithm (FROLS) is used to 

select significant model terms for each MISO sub-system. 
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Fig 2 Multiple input single output (MISO) structure of Amine based PCC model 

3.1 FROLS 

This section discusses the FROLS algorithm and ERR[33,39,40]. Consider the linear in parameters 

model (5), which can be written in a compact form as: 

ܻ ൌ ܲȰ            ߦ
(6) 

where ܻ ൌ ሾݕሺͳሻǡ ሺʹሻǤݕ Ǥ ǡ ܲ ,ሺܰሻሿ் is the measured output vector at N time instantsݕ ൌ ሾ ଵܲǡ ଶܲǡ Ǥ Ǥ ǡ ெܲሿ 
is a matrix whose ݆ th column ܲ  ൌ ሾܲሺͳሻǡ ܲሺʹሻǡ Ǥ Ǥ ǡ ܲሺܰሻሿ் is a vector formed by the ݆ th candidate model 

term ߮ (as defined in (5)), with ݆=1, 2, …, M. Ȱ ൌ ሾߠଵǡ ଶǡߠ Ǥ Ǥ ǡ  is  ߦ ெሿ் is the parameter vector andߠ

the modelling error vector. Note that for convenience of description, the subscript ݎ in (5) is dropped; 

M is the number of candidate model terms (or the number candidate basis vectors).     

The regression matrix ܲ is assumed to be full rank in columns and can be orthogonally decomposed 

as 

ܲ ൌ  (7) ܣܹ

where ܣ is an ܯ ൈ ܹ unit upper triangular matrix and ܯ  is an ܰ  ൈ ଵǡݓ matrix with orthogonal columns ܯ ଶǡݓ Ǥ Ǥ ǡ  :ெ. Equation (6) can be expressed asݓ

ܻ ൌ ሺܲିܣଵሻሺAȰሻ  ߦ ൌ ܩܹ            ߦ
(8) 

where ܩ ൌ ሾ݃ଵǡ ݃ଶǡ ǥ ǡ ݃ெሿ் is an auxiliary parameter vector, which is calculated from ܻ and  ܹ by 

means of orthogonality property as follows; 

݃ ൌ ǡܻۃ ǡݓۃۄݓ         ۄݓ
(9) 
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with ݅=1, 2, …, M .The parameter vector Ȱ is related by the equation ܩ ൌ AȰ. The error reduction 

ratio (ERR), which provides an effective means for seeking in a subset of significant model term, is 

calculated as  

ܴܴܧ ൌ ǡܻۃ ǡܻۃۄݓ ۄܻ ǡݓۃ ۄݓ  ൈ ͳͲͲΨ (10) 

The significant model terms are selected in a forward-regression pattern. Details on FROLS 

algorithm procedure for model structure selection can be found in [30,33,39,40].  

4 Data Collection and Model Identification  

This research obtained dynamic operational data from a dynamically modelled amine- based PCC 

plant by Lawal et al.[1] using gPROMS and dynamically validated by Biliyok et al.[10]. The simulated 

data were generated from the model where the time interval for each sample was 60s. All three input 

variables were simultaneously perturbed for the MISO system representation of the Capture process. 

Data acquired from the simulation is shown in Fig 3. 

 

Fig 3 Input – output data obtained from Amine based PCC model developed in gPROMS; u1: flue gas flowrate; 
u2 = Lean MEA flowrate; u3 = reboiler temperature; y1: CO2 concentration in wt% at the absorber gas outlet; y2 
= CO2 lean loading (LL) at the lean solvent stream to the absorber. 

Data were carefully observed and outliers were removed. Rigorous pre-treatment was not performed 

to avoid losing some nonlinear dynamics of the system[41]. The whole data were split into estimation 

data (75%) and validation (test) data (25%). The estimation (training) data were used for model 

construction, whereas the test data were used to test the model performance in predicting the CO2 

concentration in wt% (CO2 mass percentage)  at the absorber gas outlet, (y1) and CO2 lean loading 
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(LL) at the lean solvent stream to the absorber, (y2). The Input variables used for this model 

development are flue gas flowrate (u1), lean MEA flowrate (u2) and reboiler temperature (u3).   

In this study, for both subsystem 1 and subsystem 2, the maximum time lags for the input and output 

variables were chosen to be  ݊ ௬ ൌ ݊௨ ൌ ͳͲ and ݊ ௬ ൌ ݊௨ ൌ Ͷ  respectively. The degree of nonlinearity 

be ͵. The values of  ݊௬ ܽ݊݀ ݊௨ for both sub-systems are large enough to cover the range of potential 

time lags needed to represent the CO2 capture process dynamics. In addition, our simulation studies 

show that a further increase in time lags did not improve the model prediction performance. To show 

this, following the practice in [33], the values of SERR were calculated from different models with 

different time lags. In the NARMAX model estimation procedure, SERR (sum of the error reduction 

ratio) is a measure to determine the maximum time lags for the input and output variables. SERR is 

an effective index to measure how much (in percentage) of the variance of the output is explained 

by the lagged input and output variables involved in the model. Fig 4 shows the change of SERR 

against time lags in both input and output variables. For Sub-system 1, when the time lags ݊௬  ͳͲ 

and  ݊௨  ͳͲ, SERR does not change with the increase of ݊௬ and  ݊௨. Similar, for sub-system 2, 

SEER becomes unchanged when ݊௬  Ͷ and ݊௨  Ͷ. Therefore, we set the maximum time lag for 

Sub-system 1 as 10 and for Sub-system 2 as 4. 

 

Fig 4 SERR vs Time lags for both input and output variables 

Following Wei and Billings [34], the dictionaries of candidate model terms were define as follows: 

For subsystem 1; For subsystem 2; D୳  ൌ  Dǡଵǡǡଷ ǡ Dଵ  ൌ  Dଵǡଵǡǡଷ Dଵ୳  ൌ  Dǡଵǡଵǡଷ ǡ Dଵଵ  ൌ  Dଵǡଵǡଵǡଷ  D୳  ൌ  Dǡସǡǡଷ ǡ Dଵ  ൌ  Dସǡସǡǡଷ Dଵ୳  ൌ  Dǡସǡଵǡଷ ǡ Dଵଵ  ൌ  Dସǡସǡଵǡଷ  
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where 

 Dǡೠǡೖǡ ൌ ቄݔଵభሺݐሻ ǥ Ǥ Ǥ ሻݐೕሺݔ  ೕݔ א  ܸǡೠǡೖ ǡ ͳ  ݆  ݈ǡ   Ͳ  ݅  ݈ǡ ቅ  

ܸǡೠǡೖ ൌ ሼ ݕሺݐ െ ͳሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐሺݑ െ ݊ሻǡ ǥ ǡ ݐሺݑ െ ݊ െ ݊௨  ͳሻሽ. 
A model term dictionary D is a set consisting of a great number of model building blocks (i.e., 

candidate model terms)[34]. Here, the two dictionaries  D୳  and Dଵ୳  only contain candidate model 

terms formed by all input variables alone (i.e., ݑଵሺݐሻǡ ሻǡݐଶሺݑ ݐଵሺݑ ሻ and their lagged versions such asݐଷሺݑ െ Ͷሻǡ ݐଶሺݑ െ ʹሻ, etc.) but do not include autoregressive model terms such as   ݕሺݐ െ ͳሻǡ ǥ ǡ ݐሺݕ െ݊ሻ with ݊ = 0 and 1 respectively. The other two dictionaries, Dଵ and Dଵଵ, however, contain 

candidate model terms formed by using all the input variables and all the lagged input and output 

variables. The main purpose that we separately treat these two group of model (with and without 

autoregressive variables) is to test whether feedback signals from the system outputs play an 

obviously important role in explaining the system the system’s inherent dynamics. 

Using the above 4 dictionaries, a total of 4 models, different model structures, were identified for 

each sub-system. The model terms were ranked in accordance with their level of significance 

(measured by ERR index) to the response variable in each sub-model.  

The determination of model length (the number of model terms) is important for dynamic modelling 

and various model selection criteria have been proposed in the literature. In this  

study, the Bayesian information criterion (BIC) is used to determine the number of model terms[42]. 

ሺ݊ሻ ܥܫܤ   ൌ ͳ   ݊ lnሺܰሻܰ െ ݊ ൨         ሺ݊ሻܧܵܯ
(11) 

where ܰ is the number of samples in the training data set, ݊ is  the effective number of model terms, ܧܵܯሺ݊ሻ is the mean square error associated with the  ݊ -terms model. BIC is commonly used to avoid 

over-fitting through the penalty factor ݊lnሺܰሻ ሺܰ െ ݊ሻΤ . The minimum BIC (n) is adopted as the basis 

for selecting the model length. Thus, the FROLS algorithm stops its iteration at minimum BIC. 

Each model identified from the different model term dictionaries were compared based on One-step 

ahead (OSA) predictions and multi-step (10) ahead predicted outputs (MPO). The models that best 

predict the system outputs were selected based on the MPO performance criterion.  

5 Performance Evaluation 

5.1 Sub-model 1  

Sub-model 1 represents a MISO system to predict the concentration of CO2 in wt% at the absorber 

gas outlet. Tables 1-4 gives details of various model structures selected for each model term 
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candidate dictionary (Dଵ୳ǡ Dଵଵǡ D୳ǡ Dଵ) using FROLS algorithm along with the parameter estimates 

and BIC. It can deduced from the sum of error reduction ratio (SERR), that the list of model terms 

selected from dictionaries Dଵ gives the best explanation (99.90%) of the response variable variation 

compared to the identified model developed from other dictionaries (see Table 4) .  

Furthermore, comparisons of the identified models obtained from the different model dictionaries 

were carried out to assess the predictive ability of the models. Each of the models was applied to 

the test data for concentration of CO2 in wt% at absorber gas outlet. The associated one-step ahead 

predictions and multi-step (10) ahead predicted outputs are calculated and shown in Figs. 5-8, where 

the solid line represents the original measurements and the dashed blue and red lines are for the 

one-step ahead prediction and multi-step (10) ahead predicted output, respectively.   

 

As shown in Fig 5 and Fig 7, models Mଵ୳ (see Table 1) and model M୳ (see Table 3) gave similar 

MPO and OSA performance, this is because these models only use exogenous inputs (u(t-1),…,ur(t-

1),…,ur(t-n)) and do not use any autoregressive model terms (y(t-1),….,y(t-n)). For models that only 

use exogenous inputs (without using autoregressive terms), their MPO and OSA predictions are 

always the same. Models Mଵଵand Mଵ (see Table 2 and Table 3 respectively), however, involve both 

the autoregressive variables and the exogenous input variables. Comparing Figs 5-8, it can be seen 

that model Mଵ gave the best prediction performance (Fig 8), indicating that Mଵ contains  the 

appropriate model terms that capture the dynamics of the system. For Mଵଵ, there was disparity 

between the MPO and OSA prediction performances, this is because Mଵଵ does  not contain the most 

appropriate model terms  that can well capture the system dynamics. For such a deficient model, its 

MPO performance will usually deteriorates because the accumulative error can be significantly 

augmented through an iterative computation procedure when updating the system output values. 

The OSA performance of such a deficient model, however, normally does not suffer from any error 

accumulation and propagation. The discrepancy between MPO and OSA shown in Fig 6 (formally 

Fig 5) is mainly caused by the error propagation and augmentation due to the deficiency of the 

model. MPO is often used to test the validity of a dynamic model that cannot be easily revealed by 

OSA. 

The variance accounted for (VAF), also called the prediction efficiency (PE), of the identified models 

are shown in Table 5.  VAF (and PE) is calculated as: 

VAF ൌ ቈͳ െ varሺݕ௦௨ െ ௦௨ሻݕௗ௧ሻvar ሺݕ   ൈ ͳͲͲΨ (12) 

where ݕ௦௨ is the measured output of the test data and ݕௗ௧ is the one-step ahead prediction/ 

multi step-ahead prediction output. Among the 4 models, Mଵ୳ǡ Mଵଵǡ M୳Mଵ (obtained based upon 
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the 4 dictionaries,Dଵ୳ǡ Dଵଵǡ D୳ǡ Dଵ), It can be seen from Table 5 that model Mଵ gave the best 

performance compared to the other 3 models with a prediction efficiency of 98.93% and 98.55% in 

terms of  OSA and MPO respectively (see Fig.8). This indicates that the underlying dynamics 

between the inputs and the output (concentration of CO2 in wt% at the absorber gas outlet) is 

captured by model Mଵ [23]. Thus, model Mଵ was selected to represent sub-system 1.  From Table 

4, the system model can be written as: 

yଵሺtሻ ൌ ͵Ǥ ൈ ͳͲଵ  yଵሺt െ ͳሻǤ uଵሺtሻ  ʹǤ ൈ ͳͲିଵ yଵሺt െ ͳሻଶǤ uଵሺt െ ͳሻ  ڮ  ʹǤͳͳൈ ͳͲିଶ  uଵሺt െ ͳሻǤ uଵሺt െ ʹሻǤ uଶሺtሻǤ (13) 

Table 1 Identified model (ۻܝ) structures from ۲ܝ for sub-model 1 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

u1(t-1)2 1.08E+04 8.70E+01 4.04E+00 
u1(t-1).*u2(t-1)2 -6.81E+02 3.97E+00 2.84E+00 
u1(t-1)3 -5.85E+03 1.47E+00 2.40E+00 
u1(t-1)2.*u3(t-10) -2.61E+01 3.55E-01 2.31E+00 
u1(t-10)2 -2.65E+02 1.37E-01 2.28E+00 
u1(t-10)2.*u2(t-1) 1.35E+02 8.97E-02 2.27E+00 
u2(t-1)2.*u2(t-10) -8.58E+00 1.04E-01 2.26E+00 
u1(t-1)2.*u2(t-1) 3.01E+03 2.16E-01 2.21E+00 
u2(t-1)3 4.42E+01 6.92E-01 2.00E+00 
u1(t-1)2.*u1(t-10) -1.49E+02 8.13E-02 1.98E+00 
u1(t-10)2.*u2(t-10) 2.18E+02 4.96E-02 1.98E+00 

 

 

 

Fig 5  A comparison of the model predictions (OSA and MPO) and measurements over the test data for sub-
system 1 using model Mଵ୳ (Table 1). 
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Table 2 Identified model (ۻ) structures from ۲ for sub-model 1 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

y1(t-1) 8.02E-01 9.34E+01 2.05E+00 
y1(t-1).*y1(t-10).*u3(t-10) -1.99E-04 2.87E-01 1.98E+00 
u1(t-1)2 4.99E+03 1.61E-01 1.95E+00 
u1(t-1).*u1(t-2).*u2(t-1) -9.91E+01 2.27E-01 1.89E+00 
u1(t-1)2.*u3(t-10) -1.26E+01 1.01E-01 1.88E+00 
'y1(t-1).*y1(t-10).*u2(t-1) 1.21E-01 4.71E-02 1.88E+00 
y1(t-10).*u1(t-1)2 -4.78E+00 6.24E-02 1.88E+00 

 

Fig 6 A comparison of the model predictions (OSA and MPO) and measurements over the test data for sub-
system 1 using model Mଵଵ(Table 2) 

Table 3 Identified model (ۻܝ) structures from ۲ܝ for sub-model 1 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

u1(t)3 -3.40E+02 9.14E+01 2.68E+00 
u1(t).*u1(t-1) 7.66E+03 8.28E-01 2.44E+00 
u1(t-1).*u2(t)2 -5.27E+02 3.81E+00 1.26E+00 
u1(t)2.*u1(t-1) -2.07E+03 1.51E+00 7.87E-01 
u1(t).*u3(t-10)2 -5.57E-01 2.71E-01 7.07E-01 
u2(t)3 5.27E+01 3.84E-01 5.88E-01 
u1(t).*u3(t-1) -3.80E+02 1.55E-01 5.43E-01 
u1(t).*u1(t-1).*u2(t) 2.11E+03 4.89E-02 5.31E-01 
u1(t).*u2(t).*u3(t-2) -6.17E-01 5.66E-01 3.48E-01 
u1(t)2.*u2(t) 7.95E+02 2.18E-01 2.77E-01 
u1(t-1)3 -1.52E+03 7.86E-02 2.53E-01 
u1(t-1)2.*u2(t) 1.21E+03 2.80E-02 2.46E-01 
u1(t).*u1(t-1).*u3(t-1) -8.04E+01 3.23E-02 2.37E-01 
u2(t-2).*u3(t-6) 1.09E-01 2.63E-02 2.30E-01 
u1(t).*u1(t-1)2 -2.59E+03 2.36E-02 2.23E-01 
u1(t-2).*u2(t-2)2 3.71E+01 2.55E-02 2.16E-01 
u1(t-2).*u2(t).^2 -2.55E+00 1.86E-02 2.11E-01 
u2(t)2.*u3(t-2) 5.41E-03 2.70E-02 2.03E-01 
u1(t).*u3(t-1).*u3(t-10) 1.05E+00 1.13E-02 2.01E-01 



15 

 

Model Terms Parameter Estimates ERR (%) BIC 
u2(t-2).*u3(t-1).*u3(t-6) -3.96E-04 1.46E-02 1.97E-01 
u2(t).*u2(t-2).*u3(t-10) 2.47E+00 1.02E-02 1.95E-01 
u1(t) 7.34E+04 9.19E-03 1.93E-01 
u1(t)2.*u2(t-9) 2.22E+02 8.53E-03 1.91E-01 
u1(t-1).*u2(t).*u2(t-9) 1.50E+02 1.66E-02 1.87E-01 
u1(t).*u2(t-9).*u3(t-5) -5.22E-01 8.11E-03 1.85E-01 
u1(t-2).*u2(t-1).*u3(t-1) -3.96E+00 7.47E-03 1.84E-01 
u1(t-2).*u2(t-1).*u3(t-10) 3.90E+00 1.51E-02 1.79E-01 
u2(t-9)3 3.56E+00 5.97E-03 1.78E-01 
u1(t).*u1(t-1).*u3(t-10) 6.07E+01 4.49E-03 1.78E-01 
u2(t).*u2(t-2).*u3(t-1) -2.45E+00 3.33E-02 1.66E-01 

 

Fig 7  A comparison of the model predictions (OSA and MPO) and measurements over the test data for sub-
system 1 using model M୳ (Table 3) 

Table 4 Identified model (ۻ) structures from ۲ for sub-model 1 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

y1(t-1).*u1(t) 3.66E+01 9.41E+01 1.84E+00 
y1(t-1)2.*u1(t-1) 2.76E-01 2.94E+00 9.38E-01 
u1(t)3 -7.79E+02 6.37E-01 7.45E-01 
y1(t-1).*u1(t).*u2(t) 6.81E+00 1.05E+00 4.18E-01 
u1(t)2.*u1(t-1) 1.01E+03 4.15E-01 2.88E-01 
y1(t-1)2.*u1(t) -8.99E-01 1.41E-01 2.45E-01 
u1(t-1)2.*u2(t) -9.52E+02 1.67E-01 1.93E-01 
y1(t-1).*u1(t).*u3(t-10) -4.17E-02 6.68E-02 1.73E-01 
y1(t-1).*u1(t)2 -4.74E+01 4.43E-02 1.59E-01 
y1(t-1).*u2(t)2 -3.95E+00 4.60E-02 1.45E-01 
u1(t)2.*u2(t) -6.36E+02 2.91E-02 1.37E-01 
u1(t-1).*u2(t).*u2(t-2) 2.10E+02 7.67E-02 1.12E-01 
y1(t-1)3 7.57E-03 3.21E-02 1.02E-01 
u1(t)2 1.28E+04 1.78E-02 9.62E-02 
u1(t).*u2(t-2).*u3(t-4) -4.07E-01 2.27E-02 8.91E-02 
u1(t).*u1(t-1).*u3(t-3) -2.04E+00 1.44E-02 8.48E-02 
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Model Terms Parameter Estimates ERR (%) BIC 
u1(t) 1.68E+01 4.29E-02 7.02E-02 
u2(t-2).*u3(t-7)2 -1.21E-05 2.03E-02 6.35E-02 
y1(t-1)2.*u1(t-2) 1.81E-01 7.35E-03 6.13E-02 
u1(t)2.*u3(t-6) -3.00E+01 6.71E-03 5.94E-02 
u1(t-1).*u1(t-2) -1.15E+04 3.49E-03 5.86E-02 
u1(t-1).*u1(t-2).*u3(t-6) 2.91E+01 1.09E-02 5.50E-02 
u1(t-2).*u2(t-2).*u2(t-3) 1.03E+01 4.29E-03 5.38E-02 
y1(t-1).*u2(t-1) 2.25E+00 6.58E-03 5.18E-02 
y1(t-1).*u1(t-1).*u3(t-2) -5.27E-02 8.61E-03 4.89E-02 
u1(t-1)2.*u2(t-1) -1.61E+02 7.07E-03 4.66E-02 
u1(t).*u1(t-1)2 4.10E+03 5.54E-03 4.49E-02 
y1(t-1).*u1(t-1).*u2(t) 2.41E+01 6.73E-03 4.26E-02 
y1(t-1).*u1(t).*u1(t-1) -4.57E+01 3.67E-03 4.15E-02 
u1(t-1).*u3(t-1)2 3.20E-04 2.73E-03 4.07E-02 
u1(t-1).*u1(t-2).*u2(t) 2.11E+02 3.49E-03 3.97E-02 

 

 

Fig 8  A comparison of the model predictions (OSA and MPO) and measurements over the test data 
for sub-system 1 using model ۻ (Table 4) 

Table 5 VAF (and PE) for the Identified sub-model 1 (OSA and MPO) 
Identified Models OSA (%VAF) MPO (%VAF) ۻۻ 84.8116 84.8116 ܝ 89.0702 26.4270 ۻۻ 90.2407 90.2407 ܝ 98.9329 98.5494 
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5.2 Sub-model 2 

The details of the models for sub-system 2, obtained from each model term dictionary based on 

FROLS algorithm, are summarized in Tables 6-9. OSA predictions and the multi-step (10) prediction 

outputs (MPO) generated by these models, together with the true values (i.e. the system output 

measurements as test data), are shown in Figs. 9-12, respectively. Also, the prediction efficiency for 

each identified model is tabulated in Table 10. 

It was observed from Table 10 that  Mଵଵ (obtained from Dଵଵ) out-performed  the  other 3 models with 

a prediction efficiency of 99.996% and 99.295% based on OSA prediction and MPO (see Fig.10) 

and was selected as a suitable model  to predict the CO2 loading at lean solvent stream to the 

absorber. Thus, from Table 7, the model should be written as: 

ሻ࢚ሺܡ ൌ െૢǤ  ൈ ି ܡሺܜ െ ሻെ Ǥ  ܡሺܜ െ ሻ ૡǤ ૡૡ ܡሺܜ െ ሻ  െڮ ૡǤ ૢ ൈ ି ܝሺܜ െ ሻ 
(14) 

Table 6 Identified model (ۻܝ) structures from ۲ܝ for sub-model 2 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

Constant 2.72E+05 9.998E+01 1.822E-05 

u3(t-4)3 -4.69E-03 9.498E-03 1.110E-05 

u1(t-3).*u2(t-2).*u2(t-3) 8.33E-02 3.316E-03 8.631E-06 

u1(t-3).*u2(t-4) -1.54E+01 1.191E-04 8.614E-06 

u1(t-3).*u2(t-4).*u3(t-4) 3.96E-02 3.994E-04 8.374E-06 

u2(t-2).*u3(t-4)2 -3.92E-06 1.887E-04 8.297E-06 

u2(t-2)2.*u3(t-1) 1.00E-03 8.709E-04 7.671E-06 

U1(t-1).*u1(t-2).*u1(t-4) 9.22E-02 1.741E-04 7.596E-06 

U3(t-4) -2.11E+03 1.290E-04 7.555E-06 

u3(t-4)2 5.45E+00 5.410E-04 7.376E-06 
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Fig 9  A comparison of the model predictions (OSA and MPO) and measurements over the test data 
for sub-system 1 using model ۻܝ (Table 6) 

Table 7 Identified model (ۻ) structures from ۲ for sub-model 2 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

y2(t-1) -9.62619E-01 9.99998E+01 1.81E-07 

y2(t-2) -3.04635E+00 2.11626E-04 2.51E-08 

y2(t-3) 8.08849E+00 2.41450E-05 8.01E-09 

y2(t-4) -3.00770E+00 3.62552E-06 5.21E-09 

y2(t-4).*u3(t-1)2 1.83104E-05 6.11699E-07 4.78E-09 

u3(t-2).*u3(t-3)2 3.43543E-11 9.60331E-07 4.06E-09 

u1(t-1).*u2(t-1)2 2.76765E-02 3.21983E-07 3.83E-09 

u1(t-1).*u2(t-1).*u2(t-2) -4.35975E-02 2.56125E-06 1.79E-09 

u1(t-4).*u2(t-3)2 1.16669E-03 9.25644E-07 1.86957E-07 

u1(t-4).*u2(t-1).*u2(t-4) 9.45817E-03 2.21528E-07 2.64208E-08 

u1(t-1).*u2(t-2)2 1.87578E-02 8.99773E-08 7.98600E-09 

u1(t-4).*u2(t-2)2 -1.41110E-03 5.48114E-08 5.22828E-09 

u1(t-3).*u2(t-4)2 -3.37124E-03 4.27371E-08 4.79243E-09 

y2(t-1).*u3(t-1)2 2.51387E-05 3.99636E-08 4.07181E-09 

u1(t-2).*u2(t-1)2 -4.56392E-05 4.31311E-08 3.84904E-09 

y2(t-3).*u3(t-1)2 -4.39772E-05 1.61118E-08 1.81491E-09 

u1(t-4).*u2(t-2).*u2(t-3) -8.97025E-03 9.24157E-09 1.07697E-09 

u1(t-2).*u1(t-3).*u2(t-4) 1.18365E-02 6.71486E-09 9.04236E-10 

u1(t-1).*u1(t-2).*u2(t-3) -7.73954E-03 1.63813E-07 8.37345E-10 

u1(t-4)3 -8.59219E-03 4.49587E-08 7.98578E-10 
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Fig 10  A comparison of the model predictions (OSA and MPO) and measurements over the test data 
for sub-system 1 using model ۻଵ (Table 7). 

 

 

Table 8 Identified model (ۻܝ) structures from ۲ܝ for sub-model 2 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

Constant 2.69E+05 9.9976E+01 1.82E-05 

u3(t-4)3 -4.64E-03 9.4979E-03 1.11E-05 

u1(t-4).*u2(t-2).*u2(t-3) 1.07E-01 3.3155E-03 8.63E-06 

u1(t-3).*u2(t-3) -1.52E+01 1.1112E-04 8.62E-06 

u2(t-2) -5.96E-01 4.3718E-04 8.35E-06 

u2(t-2)2.*u3(t-1) 1.01E-03 7.1404E-04 7.86E-06 

u1(t-3).*u2(t-3).*u3(t-4) 3.91E-02 3.7740E-04 7.62E-06 

u1(t).*u1(t-2).*u1(t-3) 1.08E-01 1.5916E-04 7.56E-06 

u3(t-4) -2.09E+03 1.2342E-04 7.52E-06 

u3(t-1)2 5.39E+00 5.3801E-04 7.34E-06 
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Fig 11  A comparison of the model predictions (OSA and MPO) and measurements over the test data 
for sub-system 1 using model ۻܝ (Table 8) 

Table 9 Identified model (ۻ) structures from ۲ܗ for sub-model 2 using FROLS algorithm 
Model Terms Parameter Estimates ERR (%) BIC 

y2(t-1) -2.16623E+00 9.99998E+01 1.86957E-07 

y2(t-2) -3.02998E+00 2.11626E-04 2.64208E-08 

y2(t-3) 1.12774E+01 2.41450E-05 7.98600E-09 

y2(t-4) -5.00591E+00 3.62552E-06 5.22828E-09 

y2(t-4).*u3(t-1)2 3.15751E-05 6.11699E-07 4.79243E-09 

u3(t-2)2.*u3(t-3) 3.60624E-11 9.60331E-07 4.07181E-09 

u1(t-1).*u2(t)2 3.31495E-03 3.39815E-07 3.83477E-09 

u1(t-3).*u2(t-3)2 -9.38304E-03 1.19311E-06 2.90460E-09 

u1(t-3).*u2(t-1)2 2.35993E-02 1.27838E-06 1.88882E-09 

u1(t-3).*u2(t-1).*u2(t-2) -2.78876E-02 8.30813E-07 1.22289E-09 

u1(t-3).*u2(t-2).*u2(t-3) 1.00523E-02 9.42003E-08 1.15517E-09 

y2(t-1).*u3(t-1)2 3.30630E-05 4.65104E-08 1.12598E-09 

u1(t-2).*u1(t-3).*u2(t-3) 4.74655E-02 4.29128E-08 1.09919E-09 

u1(t-1).*u1(t-2).*u2(t) 1.67865E-02 1.21565E-07 1.00512E-09 

u1(t-2).*u1(t-3).*u2(t) -3.82933E-02 8.89176E-08 9.37308E-10 

u1(t-1).*u1(t-2).* u2(t-3) -2.29989E-02 4.80071E-08 9.03550E-10 

u1(t-1)3 -4.88360E-03 2.64740E-08 8.87858E-10 

y2(t-3).*u3(t-1)2 -6.51919E-05 2.60335E-08 8.72339E-10 
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Fig 12 . A comparison of the model predictions (OSA and MPO) and measurements over the test data 
for sub-system 1 using model ۻ (Table 9). 

Table 10 VAF (and PE) for the Identified sub-model 2 (OSA and MPO) 

Identified Models OSA (%VAF) MPO (%VAF) Mଵ୳ 42.2227 42.2227 Mଵଵ 99.9971 98.8362 M୳ 42.2227 42.2227 Mଵ 99.9941 98.0601 

5.3 Statistical Analysis  

Statistical analysis was carryout on the suitable NARX models obtained using FROLS algorithm to 

represent the underlying dynamics between key variables in the solvent-based CO2 capture plant. 

Table 11 shows the values of R, R2 and adjusted R2 of the identified models. R, which is the multiple 

correlation coefficient, is a measure of how much the combination of model terms in each identified 

model correlates with the respective output variables. The R2 represents the portion of variance in 

the response variable that is explained by the combination of model terms, while the adjusted R2 is 

a measure of the accuracy of a model across different samples. R, R2 and adjusted R2 are calculated 

as follows: 

ܴ ൌ  ܰ σ ௗ௧ݕ௦௨ݕ െ σ ௦௨ݕ σ ௗ௧ටܰݕ σ ௦௨ଶݕ െ ሺσ ௦௨ሻଶݕ ටܰ σ ௗ௧ଶݕ െ ሺσ  ௗ௧ሻଶݕ
(15) 

ܴଶ ൌ ͳ െ ܶܵܵ ܧܵܵ  (16) 

ܴௗଶ ൌ ͳ െ ൬ܰ െ ͳܰ െ ݊൰  (17) ܶܵܵܧܵܵ
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where ݕ௦௨  is the measured output; ݕௗ௧ is the multi-step ahead prediction;  ܵܵܧ is the sum 

of squares error; ܵܵܶ is the total sum of squares; ܰ is the number of observations and ݊ is the 

number of terms. The R-value for sub-model1 (1.000) and sub-model 2 (1.000) indicates that the 

combination of model terms in each identified model are highly correlated with the response 

variables. The R2 value signifies that model 1 can explain 99.80% of the variation in the concentration 

of CO2 in wt% at the absorber gas outlet and model 2 can explain 99.58% of the variation in CO2 

lean loading at the lean solvent stream to the absorber. The values of adjusted R2 indicates that the 

identified NARX models has high accuracy of prediction even across different samples.  

Table 11 Statistical performance of the identied Narx Model 

Identified Model ܴ ܴଶ ܴௗଶ  

Sub-model 1 1.0000 0.9980 0.9980 
Sub-model 2 1.0000 0.9958 0.9957 

6 Conclusion and Recommendations  

In this study, a parsimonious polynomial NARX model was developed to predict the dynamic 

responses of an amine based PCC plant (3-inputs and 2-outputs) using the FROLS-ERR algorithm. 

The amine based PCC plant was represented as two MISO sub-systems (3-inputs and 2-outputs). 

The FROLS-ERR algorithm proved to be a powerful tool in selecting the most significant model terms 

for representing and predicting the response variables (CO2-MP and CO2–LL). These model terms 

were ranked based on ERR. This gives a simple and transparent mathematical representation of the 

systems where we can clearly know how the system outputs depend on the variables and their 

interactions.  

Identified models obtained from the different model term dictionaries were compared, in which the 

best model was selected based on the performance of multi-step ahead prediction output (MPO) 

and one-step ahead prediction (OSA).  Mଵ and Mଵଵgave the best performances based on the 

prediction efficiency of both OSA and MPO for both subsystem-1 and subsystem-2. Further statistical 

analysis indicated that the identified NARX models captures the underlying dynamics of the sub-

systems. Multivariable control analysis of the capture process using the identified NARX models will 

be studied in the future.   
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