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System Identification and Data-Driven Forecasting

of AE Index and Prediction Uncertainty Analysis
Using a New Cloud-NARX Model

Y. Gu1 , Hua-Liang Wei1 , Richard J. Boynton1 , Simon N. Walker1 , and

Michael A. Balikhin1

1Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK

Abstract Severe geomagnetic storms caused by the solar wind disturbances have harmful influences on

the operation of modern equipment and systems. The modeling and forecasting of AE index are

extremely useful to understand the geomagnetic substorms. This study presents a novel cloud-nonlinear

autoregressive with exogenous input (NARX)model to predict AE index 1 hr ahead. The cloud-NARXmodel

provides AE index forecasting results, with a correlation coefficient of 0.87 on the data of whole year 2015.

The benchmarks on the data of the two interested periods of 17–21 March 2015 and 22–26 June 2015

are presented. The presented model uses uncertainty “cloud” model and cloud transformation to quantify

the uncertainty throughout the structure detection, parameter estimation, and model prediction. The

new predicted band can be generated to forecast AE index with confidence interval. The proposed method

provides a new way to evaluate the model based on uncertainty analysis, revealing the reliability

of model, and visualize the bias of model prediction.

1. Introduction

Many modern technological systems are sensitive to space weather disturbances, such as geomagnetic

storms and substorms and ionosphere variability (Knipp, 2012; MacAlester & Murtagh, 2014; Schrijver,

2015). The severe situations of space weather can have harmful effect on power grid, navigation systems,

and satellite system. Thus, it is extremely important to forecast the space weather disturbances to avoid

damages and losses. In addition to the traditional first principle and statistical approaches for understanding

the interactions between the solar wind and magnetosphere (e.g., Ala-Lahti et al., 2018, and the references

therein), application of data-based methods and in particular techniques based on machine learning to the

prediction of various geomagnetic indices resulted in many innovative forecasting models (e.g., Camporeale

et al., 2018; Chandorkar et al., 2017; Wintoft & Cander, 2000).

The AE index, along with the Al and AU indices, was introduced by Davis and Sugiura (1966) as a

measurement of global auroral electrojet activity (Mayaud, 1980). Changes in AE are driven by variations

in the solar wind convection electric field produced by fluctuations in the solar wind velocity and

interplanetary magnetic field (IMF). These two factors govern the efficiency of the coupling between the

solar wind and terrestrial magnetosphere with the dominant role being played by a southward directed

IMF. In this coupling process, the energy associated with the solar wind flow is converted into magnetic

energy, which is transferred into the magnetosphere via reconnection processes on the dayside and is stored

in the magnetotail. This energy is eventually released, energizing the plasma sheet, ring current,

and ionosphere.

Three classes of interactions have been identified, depending upon the southward turnings of the IMF (see,

e.g., Gonzalez et al., 1994). Short-lived southward turnings of the IMF with modest (Bz ≃ 3nT) give rise to

minor intensifications of the ring current, yielding substorm events. Repeated southward turnings, referred

to as high intensity, long duration, continuous AE activity events arise due to the occurrence of

interplanetary Alfven wave train embedded within the solar wind flow (Tsurutani & Gonzalez, 1987).

These events result in a continued period of AE activity. Finally, coronal mass ejections (CMEs) or magnetic

clouds exhibit extended periods in which a strong Bz is observed. This coupling, between the CME and

terrestrial magnetosphere, results in a major intensification of the ring current, and large deviations in both

AE and Dst, and is referred to as an intense magnetic storm.
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Previous studies of substorm using AE index have provided accumulated evidence that the magnetosphere

behaves as a nonlinear dynamic system, and it can be described by a small number of variables (Kamide

et al., 1998). There are plenty of studies aiming to forecast AE index from solar wind measurements.

Among the many approaches of modeling and forecast, neural network (NN) is a commonly used method.

Early in 1997, NN models were constructed to study prediction of the AE index (Takalo & Timonen, 1997).

Later, an ANN algorithm based at IMF measured on Lagrangian point L1 and plasma measurements was

introduced in 2008 to predict AE index from 5 to 60 min ahead (Pallocchia et al., 2008). The ANN models

were further improved to achieve a correlation coefficient of 0.83 for 1-hr-ahead forecast and 0.80 for

3-hr-ahead forecast (Bala & Reiff, 2012). In addition, some other approaches are also applied for the analysis;

for example, a correlation analysis with a technique of wavelet decomposition and selective reconstruction

was applied to analyze the relationship between AE index and solar wind variables (Guarnieri et al., 2018).

The advantage of NNs and its variants is that it can provide an efficient nonlinear representation to generate

good model predictions. However, the identification process of NNs often involves a large number of vari-

ables, so that the model structure of NNs can be very complicated. From such model structure, it is quite dif-

ficult to further understand the nonlinear dynamic of the system, for example, which model term/variables

are superior for describing the index and which model terms/variables are redundant. Nevertheless, it is

obvious that such a model cannot provide a model structure that is simple and easy for understanding.

Another widely used approach for the modeling and forecast of magnetosphere is the nonlinear

autoregressive with exogenous input (NARX) model. The NARX model is developed for the nonlinear

system identification and can detect an appropriate model structure by selecting the most important model

terms from a dictionary consisting of a huge number of candidate model terms (Billings, 2013). Thus, it is

very efficient method for the space weather forecast due to the fact that the magnetosphere is a nonlinear

process (Kamide et al., 1998). The NARX model have successfully solved the modeling and prediction of

many magnetic indices, for example, the Dst index (Balikhin et al., 2011; Boynton et al., 2011; Wei et al.,

2004) and the Kp index (Ayala Solares et al., 2016). Comparing to the NNs, the NARX method only uses a

small number of effective model terms to describe the system, so that the system can be represented a

linear-in-the-parameter form, which is parsimonious and transparent. It is achieved by a model selection

algorithm called orthogonal forward regression (OFR), which was initially developed as subset selection

method for nonlinear modeling problemwith unknown structure (Chen et al., 1989). In recent years, several

variants have been introduced to improve the performance of NARX model and OFR algorithm, for

example, the wavelet NARX model (Billings & Wei, 2005; Wei & Billings, 2004), the iterative search

algorithm with mutual information (Wei & Billings, 2008), and the common/robust model structure

selection (RMSS) method (Gu & Wei, 2018; Li et al., 2016).

Under the assumption that the identified individual model structure elements can perfectly describe the true

system components, most of the models are capable to provide accurate representations of the system.

However, in many practical scenarios, this assumption is usually invalid due to the existence of uncertainty.

Generally speaking, there are several types of uncertainty that may cause deleterious effect on the system

modeling process. First, the uncertainty in data collection, for example, the experimental uncertainty and

epistemic uncertainty, may lead to incomplete and inaccurate information in the data set. If the data samples

are insufficient or some important variables are missing in the data set, it would be extremely difficult to find

a model. Second, model type or model structure uncertainty directly affects the model performance. It is

known that models are usually designed to represent some specific system features; that is, there are no sin-

gle model type or structure that can perfectly describe all the true systems. Thus, it is essential to choose a

correct model type to represent the system, and an inappropriate model type can largely reduce the model

performance. Third, noise/disturbance is one of the main sources of uncertainty. The noise can be brought

to the data through many ways, for example, measurement error from physical equipment, and external

disturbances. The existence of noise could lead to biased parameter estimation and incorrected selected

model terms. Therefore, quantifying uncertainty is essential for establishing the significance of findings

and making predictions with known confidence.

From the literature, it is known that estimating the true uncertainty remains as an exclusive goal for AE

index forecast. Under the effect of uncertainty, the identified model usually cannot perfectly represent the

system but only approximately describe the system behaviors. In these situations, a single model may not

always work well on future new data, as there might be a risk on trusting and relying on a single model
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for future system behavior forecasting. Thus, the model robustness becomes extremely important. Given the

above concerns, this study focuses on the modeling and forecasting of AE index using NARX model struc-

ture with new uncertainty analysis method. In this study, a novel cloud-NARXmodel is presented to predict

AE index 1 hr ahead and to quantify the uncertainty in the system modeling process. The reliability of the

model can be quantified by the proposed uncertainty analysis, which makes the cloud-NARX model more

robust than the conventional NARX model.

In summary, the main contribution of this work lies in the cloud-NARX model for (a) describing model

structure and parameter uncertainty using a new uncertainty concept “cloud” model; (b) generating a

new predicted band, which provides the confidence interval of predicted AE index; and (c) providing a

new way to evaluate the model reliability based on uncertainty analysis.

The remainder of this paper is organized as follows. In section 2, the NARX model and cloud model are

briefly reviewed. In section 3, the proposed cloud-NARX model is introduced. The AE and solar wind data

are described in section 4. Section 5 presents the identified cloud-NARX model with model evaluation and

uncertainty analysis. The study is summarized in section 6.

2. Review of NARX Model and Cloud Model

2.1. Construction of the NARX Model

The nonlinear autoregressive moving average with exogenous input (NARMAX) model structure can be

described as (Chen & Billings, 1989)

y tð Þ ¼ F y t � 1ð Þ;…; y t � ny
� �

;u t � 1ð Þ;…;u t � nuð Þ; e t � 1ð Þ;…; e t � neð Þ
� �

þ e tð Þ; (1)

where y(t) and u(t) are systems output and input signals; e(t) is a noise component that can be assumed to be

white Gaussian (but such an assumption is not always necessary) in many applications. ny, nu, and ne are the

maximum lags for the system output, input, and noise, respectively. F[ ] is some nonlinear function. A poly-

nomial NARX model can be written as the following linear-in-the-parameters form:

y tð Þ ¼ ∑M
m¼1θmφm tð Þ þ e tð Þ; (2)

where φm(t) = φm(ϑ(t)) are themodel terms generated from the regressor vectorϑ(t) = [y(t� 1),…, y(t� ny),

u(t � 1),…, u(t � nu)]
T (T indicates the transpose of the vector), θm are the unknown parameters, and M is

the number of candidate model terms.

The OFR algorithm is briefly introduced as follows (Chen et al., 1989). First, the regression model and pre-

diction error can be written in a compact matrix form:

y ¼ ∑M
m¼1θm φm þ e; (3)

where y = [y(1),…, y(N)]T, θ = [θ(1),…, θ(N)]T, φm = [ φm(1),…, φm(N)]
T, and e = [e(1),…, e(N)]T. Let

D = { φi : 1 ≤ i ≤M} be the initial dictionary of all the candidate model terms, the objective of OFR algorithm

is to select a number of significant model terms to form a subset, which can be described as Dn

¼ φl1 ;…;φln

� �
. The output can then be described with the selected terms as follows:

y ¼ ∑n
i¼1θli φli þ e (4)

At first step of the term selection, the ERR index of each candidate model term of the initial dictionary can be

calculated by

ERR 1ð Þ i½ � ¼ r0
T φið Þ2

r0Tr0ð Þ φTi φið Þ ; (5)

where i = 1, 2, …,M. The first selected model term is the candidate model term with highest ERR value, as

l1 ¼ argmax1≤i≤M ERR 1ð Þ i½ �
n o

: (6)

The first selected model term is φl1 , and its associated orthogonal variable can be defined as q1 ¼ φl1 . The

selected term φl1 is then removed from the initial dictionary, and the dictionary D is then reduced to a
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subdictionary DM � 1, which consists of M � 1 model candidates. The residual sum of squares can be

calculated as

r1k k2 ¼ yk k2 � r0
Tq1ð Þ2

qT1 q1
: (7)

At step s (s ≥ 2), the M � s + 1 bases are first transformed into new group of orthogonalized base

q
sð Þ
1 ; q

sð Þ
2 ;…; q

sð Þ
M�sþ1

h i
with an orthogonal transformation as below:

q
sð Þ
j ¼ δj � ∑s�1

r¼1

φTj qr

qTr qr
qr; (8)

where qr(r = 1, 2,…, s � 1) are orthogonal vectors, φj(j = 1, 2, …, M � s + 1) are the basis of unselected

model terms of subset DM � s + 1, andq
sð Þ
j j ¼ 1; 2;…;M � sþ 1ð Þ are the new orthogonalized bases. The rest

of the model terms can then be identified step by step using the ERR index of orthogonalized subsets

DM � s + 1:

ERR sð Þ j½ � ¼
yTq

sð Þ
j

� 	2

yTyð Þ q
sð ÞT
j q

sð Þ
j

� 	 ; (9)

ls ¼ argmax1≤j≤M�sþ1 ERR 1ð Þ j½ �
n o

: (10)

The sth significant model term of the subset is φls, and its associated orthogonal variable can be defined as qs
¼ q sð Þ

ls
. The residual sum of squares can be updated by (Wei et al., 2006; Wei & Billings, 2006):

rsk k2 ¼ rs�1k k2 � rs�1
Tqsð Þ2

qTs qs
: (11)

Recursively, the model terms of the subset φl1 ;…;φln

� �
can be identified step by step, each at one step. By

summing (11) for s from 1 to n yields

rnk k2 ¼ yk k2 � ∑n
s¼1

rs�1
Tqsð Þ2

qTs qs
: (12)

The ‖rn‖
2 is called residual sum of squares, or sum squared error of the final model. Themean square error of

themodel can be calculated as ‖rn‖
2/n. The number of themodel terms that should be included in the NARX

model can be decided by a modified generalized cross-validation criterion, also known as adjusted predicted

sum of squares (APRESS). The APRESS is calculated as (Billings & Wei, 2008; Wei & Billings, 2008)

APRESS kð Þ ¼ p kð ÞMSE kð Þ ¼ 1

1� C k;αð Þ
N

 !2

MSE kð Þ; (13)

where p(k) is a penalty function defined in terms of the cost function C(k, α) = k × α with α being an tuning

parameter.

2.2. Cloud Model and Cloud Transformation

Cloud model is a cognitive model that provides a way of bidirectional transformation between a qualitative

concept “cloud” and the quantitative data “cloud drops” (Wang et al., 2014). The concept cloud is described

by three numerical characteristics, namely, ex (expectation), en (entropy), and he (hyper entropy). Similar to

normal distribution, ex is the expectation of all the elements in the set, and en is the variance of the distribu-

tion. he depicts the degree of departure from normal distribution of cloud model (Wang et al., 2014). Based

on the theorem that any distribution can be represented by the sum of several normal distributions, the

cloud model can be seen as an extension of normal distribution: When he equals to 0, the cloud model
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becomes actually a normal distribution. he is often regarded as an extra variable in practical situation, such

as psychological quality of an athlete.

The bridges between cloud model and cloud drops is cloud transformation. The commonly used cloud trans-

formation is the generic forward cloud transformation (GFCT) and generic backward cloud transformation

(GBCT). The forward transformation is used to generate cloud drops from a known cloud model. The back-

ward transformation is used to identify the cloud model from a sequence of cloud drops. In previous

research, an ideal cloud backward transformation is also studied (Zhang et al., 2016). However, it is not fea-

sible in real life as the groups of cloud drops could hardly be obtained in advance. The representation of

GFCT and GBCT can be illustrated in Figure 1 and as follows:

where the notation cloud (ex, en, he) represents a cloud concept of characteristics modeled from r samples

numerical data cloud drops [x1, x2,…xr]. The parameter ex, en, and he of the associated cloud model can

be calculated from these samples. The GBCT can be described as follows (Wang et al., 2014). First, ex can

be calculated by

ex ¼ 1

z
∑z

i¼1xi: (15)

Next, sampling v groups of data [xi1, xi2,…, xiu] (i = 1, 2,…, v) with replacement randomly from [x1, x2,…, xr],

where u and v are the number of resampling folds parameters for GBCT u × v= r. Then calculate the sample

variance of each group (i = 1, 2,…, v):

γi ¼
1

u� 1
∑u

j¼1 xij � ex
� �2

: (16)

Finally, en and he can be calculated as

en2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EY 2 � 2DY

p
; he2 ¼ EY � en2

; (17)

where EY ¼ 1
v
∑v

i¼1γi and DY ¼ 1
v�1
∑v

i¼1 γi � EYð Þ2 are the sample mean and variance of γi.

With an identified cloud model, a series of cloud drops can be generated with GFCT. Let ex, en, and he be the

numerical characteristics and n be the number of cloud drops; let a and b be the parameters of number of

folds of GFCT (a × b = z). The generated cloud drops xij with certainty degrees μ(xij) (i = 1, 2,…, a,

j = 1, 2,…, b) can be generated by several steps: First, generate a series of normally distributed random num-

bers γi with expectation en and variance he2; next, for each γi, generate b normally distributed random num-

bers xij with expectation ex and variance γi
2 and calculate the certainty degree as

μ xij
� �

¼ exp � xij � ex
� �2

2γ2i

( )

: (18)

The generic cloud transformation achieves the transformation between intension and extension of the cloud

concept. The advantage of cloud model is that it provides a way to describe a distribution with only three

parameters that cannot be characterized by traditional normal distribution. The cloud transformation is bet-

ter and more powerful than normal distribution in that (i) it includes normal distribution as a special case

and (ii) many data in real life do not follow a normal distribution.

Figure 1. Cloud model and generic forward cloud transformation (GFCT)/generic backward cloud transformation

(GBCT).
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3. The Cloud-NARX Model

3.1. The Cloud-NARX Model Structure

Based on cloud model and cloud transformation, a cloud-NARX model is proposed. The idea behind the

metrics is to use a new uncertainty “concept” (cloud model) to replace the traditional model parameters.

A series of predicted points can be calculated by performing a transformation (generic cloud transformation)

to generate a series of model parameters (cloud drops) from the concept. These predicted points form a pre-

dicted distribution (surface/band) with confidence intervals, describing the uncertainty and risk brought by

model uncertainty. The cloud-NARX model can be described as:

y ¼ ∑n
i¼1Cloudli ex; en; heð Þ φli ; (19)

whereCloudli ex; en; heð Þ i ¼ 1; 2;…; nð Þ are the cloud models, which represent the estimated parameters and

the uncertainty of these parameters. The parameters ex, en, and he are the characteristics of each cloud

model.

3.2. Estimation of the Cloud-NARX Model

The estimation of cloud-NARX model consists of three steps, which are data resampling, submodel identi-

fication, and cloud parameter estimation. The general process of estimating the cloud-NARX model is

shown in Figure 2.

First, the original data set can be regrouped to form K subdata sets through some resampling methods, for

example, random sampling or bootstrap (Wei & Billings, 2009). Assume that the input and output sequence

for the kth data set is u kð Þ tð Þ
� �Nk

t¼1
and y kð Þ tð Þ

� �Nk

t¼1
, respectively, for k = 1, 2, …, K. The model terms

φ
kð Þ
1 tð Þ;…; φ kð Þ

M tð Þ
h i

of the kth data set can be generated from the associated regressor vector relating to the

kth data set [y(k)(t � 1),…, y(k)(t � ny), u
(k)(t � 1),…, u(k)(t � nu)]

T. The submodel for the kth subdata set

can be written in the compact matrix form

y kð Þ ¼ ∑n
i¼1θli

kð Þ φli
kð Þ
: (20)

Second, for each subdata set, the OFR algorithm can be applied to select a number of significant model terms

to establish an individual NARX model. A common model structure can be formed by model terms selected

in and important for all the subdata sets. In addition, a RMSS method is developed as an alternative method,

Figure 2. The process of estimation and evaluation of the cloud-nonlinear autoregressive with exogenous input (NARX)

model.
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for small-size data modeling problem (Gu & Wei, 2018). With the OFR algorithm and the RMSS method, a

common model structure φl1 ;…; φln

� �
can be identified, and the associated model parameters for each

subdata set can be estimated as θli
1ð Þ
; θli

2ð Þ
;…θli

Kð Þ
h i

.

Finally, the cloud models for each model term can be identified from the K groups of model parameters

using GBCT.

θli
1ð Þ
; θli

2ð Þ
;…θli

Kð Þ
h i

→

GBCT
Cloudli ex; en; heð Þ; (21)

where i = 1, 2, …, n; in this way, the cloud-NARX model can be identified.

It is known that when the model structure is perfect, and the data are not corrupted with noises, any of the

subdata sets will lead to exact the same model. However, the model structures of the submodels might be

different when there is model uncertainty brought by the noises/disturbances/insufficient information. In

these situations, any single model might be unreliable. By removing or adding some data points in the K sub-

data sets, the uncertainty can be quantified by the submodels with different structures and parameters.

3.3. Model Predicted Band and Averaged Prediction

With the identified cloud model of each parameter, K’ groups of cloud drops are generated using cloud

forward transformation, as follows:

Cloudli ex; en; heð Þ→GFCT ba 1ð Þ
li
;ba 2ð Þ

li
;…;ba Kð Þ

li

h i
; (22)

where ba k’ð Þ
li

is the generated parameters for the model term θli with k’ = 1, 2, …, K’. A number of K’ predicted

time series of output y can then be calculated as

by k’ð Þ ¼ ba k’ð Þ
l1

φl1 þ ba
k’
l2
φl2 þ …þ ba k’ð Þ

ln
φln ; (23)

where k’ is the index of predicted time series (k’ = 1, 2, …, K’). The K’ model prediction can then form a pre-

dicted band with density. The upper and lower boundaries of the predicted band can be determined as

bylower ¼ min by 1ð Þ
;by 2ð Þ

;…;by K ’ð Þ� 	
; (24)

byupper ¼ max by 1ð Þ
;by 2ð Þ

;…;by K ’ð Þ� 	
: (25)

The averaged model prediction can also be calculated as

byaveraged ¼
1

K ’
∑K ’

i¼1by
ið Þ
: (26)

3.4. Model Performance Evaluation

To evaluate the averaged prediction of the model, the correlation coefficient (ρ), prediction efficiency (PE),

and normalized root-mean square error (NRMSE) are calculated. The PE is defined as

PE ¼ 1� σ2error
σ2observed

; (27)

where σ2observed is the variance of the observed AE values and σ2error is the variance of the error between the

predicted AE values and observed AE values. The accuracy of the predicted band can be defined as

γ ¼ N t
’

N t

; (28)

where Nt is the total number of observed data points in test data set and Nt
’ is number of the observed data

points within the predicted band.
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4. Data

A full description of the solar wind variables and the magnetic indices is

given in Table 1. The AE index is one of the most widely used indices

for researchers in geomagnetism, aeronomy, and solar-terrestrial physics,

to understand the geomagnetic activity. The AE index is the maximum

deviation of the horizontal components of geomagnetic field variations

from a set of globally distributed ground-based magnetometers located

in and near the auroral zone in the Northern Hemisphere (Guarnieri

et al., 2018). It increases when a substorm event is happening and repre-

sents the overall disturbance in both eastward and westward ionospheric electrojets located at around

100-km altitude (Davis & Sugiura, 1966).

The AE index and solar wind variables used in this study were all sampled hourly. The AE index and solar

wind variables are used as the output and input of the systems modeling, respectively. The amplitude of the

solar wind velocity is around 250–1,000 km/s, which is much larger than those of the other input signals. To

avoid producing extreme parameter estimations, the solar wind speed/velocity variable is first normalized by

V→ V’/1, 000, where V’ is the original signal and V is the normalized signal. Two derived variables,
ffiffiffi
p

p
and

VBst= V × BTsin
6(θ/2) (Boynton et al., 2011), which are effective in describing the magnetic indices, are also

used as input variables for the system model.

5. The Cloud-NARX Model for One-Hour Ahead AE Index Forecasting

5.1. The Cloud-NARX Model

The AE and solar wind data from 2011 to 2013 (around 26,000 sampled data points) were used for training

the model, and the data of 2015 (around 9,000 sampled data points) were used for model validation. In the

test data set, two time periods of strong magnetic storm, 17–21 March 2015 and 22–26 June 2015 (120

sampled data points for each period) were used as special cases to evaluate the model. The time series of

the AE index and solar wind variables of the two interested periods are shown in Figure 3. The figure shows

that there were two significant storms on 17 March 2015 and 22 June 2015. Both periods match

Interplanetary Coronal Mass Ejections (ICMEs). The first period 17–21 March corresponds to St Patrick

storm caused by the CME on 15 March [https://www.swpc.noaa.gov/sites/default/files/images/u33/

StPatrick%27sDay_Geomagnetic_Storm.pdf] whereas the second period 22–26 June 2015 corresponds to

the ICME registered by Wind [https://wind.nasa.gov/cycle24.php].

In order to determine the maximum time lags for both the input and output variables, we have carried out

premodeling experiments and simulations; the results suggest that the maximum time lags of the input and

output were chosen to be nu = 2 and ny = 2. The initial full model was chosen to be a polynomial form with

nonlinear degree of 2. The input-output data points of training data set were first resampled 100 times with

replacement, to form 100 subdata sets. For each subdata set, a NARX model with six model terms is identi-

fied. For convenience of description, these single NARX models are referred to as “individual NARX mod-

els.” Thus, there are a total number of 100 different individual NARX models, and each has its own

parameters. A total of 12 different model terms are selected during the 100 runs, and these terms are used

for cloud-NARXmodel construction. The cloud parameters of each of these selected model terms are shown

in Table 2.

It is noteworthy that the cloud-NARXmodel consists of 12model terms, rather than six terms; this is because

that each individual NARXmodel has its own structure. There are some common terms that are included in

nearly all the individual NARXmodels, for example, VBst(t� 02) and y(t� 01). Also, some terms, for exam-

ple, VBst(t � 02) × y(t � 01), are selected and included in a relatively small number of times out of the 100

runs. These rarely selected model terms are usually ignored in conventional NARX model because they

make small contributions to the whole data set. However, in some of the subdata sets, they might be effective

in some rare situations, for example, the peak times of the AE index.

Figure 4 shows the normal cloud membership functions of the 12 selected model terms. The estimated para-

meters of the some model terms are normally distributed, for example, Bst(t � 02), V(t � 01) * Bst(t � 01),

V(t� 01) × Bst(t� 02),V t � 01ð Þ� ffiffiffi
p

p
t � 01ð Þ, and V(t� 02) × p(t� 01). The distributions of the parameters

Table 1

Descriptions of the Solar Wind Variables and AE Index

Variable Description

y AE index

V solar wind speed/velocity (flow speed; (km/s)

Bst Interplanetary magnetic field factor (nT)

n solar wind density (proton density; (cm
�3

)

p solar wind pressure (flow pressure; nPa)

Note. Bst = BTsin
6
(θ/2) (nT; Boynton et al., 2011).
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of some other model terms (e.g., VBs(t� 1), y(t� 1), VBst(t� 1) × y(t� 1)) are beyond normal distributions.

Note that the normal distributions are not always sufficient to describe the distribution of the estimated

parameters of these model terms due to the existence of uncertainty, which do not necessarily follow a nor-

mal distribution law. The three characteristics ex, en, and he are used to analyze the uncertainty of each

model term. As discussed earlier, ex is the mean of estimated parameters of each model term, which is con-

sistent with the conventional model parameter; en is the variance of the parameter estimation; and he is the

hype-parameter to describe the degree of departure of the distribution to normal distribution. The values of

en of some model terms (e.g., y(t � 1)) are quite small, which indicates that the parameters of these model

terms in the individual models are very close. In other words, the contributions of these model terms are con-

sistent in each individual model. On the contrary, the values of en of some model terms (e.g., VBs(t� 1)) are

quite large, which means that uncertainty of the estimated parameters of these model terms are strong. In

Figure 3. Observation of hourly sampled AE index and solar wind variables of two interested periods of 2015. Note that in

the last two panel, the variable sqrt(p) sqrt pð Þ ¼ ffiffiffi
p

p
.
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the disturbed periods, the contributions of these model terms are different

in each individual model, and the width of the predicted band increases

due to the prediction uncertainty. The cloud parameter he describes

how much the distribution is beyond normal distribution. If the value of

he is much smaller than that of en, it means the estimated parameters of

the model term are normally distributed. With the hyper cloud parameter

he, the cloud model can better describe the estimated model parameters

that are not normally distributed.

5.2. One-Hour-Ahead Prediction of AE Cloud-NARX Model

As mentioned earlier, the cloud-NARX model is built on hourly

sampled data, so the model can be directly used to generate 1-hr-ahead

(i.e., one-step-ahead) predictions of AE index. With the cloud para-

meters, the generic cloud forward transformation was applied to gener-

ate 100 sets of model parameters (that is called cloud drops in the

transformation) for all the selected terms. A total number of 100 time

series of the AE index prediction were calculated. The average predic-

tion and predicted band are presented in Figure 5. The predicted band

Table 2

Cloud-NARX Model With Cloud Parameters

Model terms

Cloud parameter

ex en he

Bst(t � 02) �9.7009 8.9120 0.0615

VBs(t � 1) 6.0214 24.8546 16.3577

y(t � 01) 0.6252 0.0108 0.0037

V(t � 01) × Bst(t � 01) 143.6189 33.5311 0.0614

V(t � 01) × Bst(t � 02) �19.7937 22.3581 0.6368

V t � 01ð Þ� ffiffiffi
p

p
t � 01ð Þ 14.3895 15.9883 0.1581

V(t � 02) × p(t � 01) 7.8305 9.0816 0.1808

V t � 02ð Þ� ffiffiffi
p

p
t � 01ð Þ 2.7969 7.8950 2.9935

Bst t � 2ð Þ� ffiffiffi
p

p
t � 02ð Þ �0.0807 0.5708 0.9887

p(t � 2) × VBst(t � 1) �0.0795 0.2808 0.4866

VBs(t � 01) × VBst (t � 01) �5.6495 0.4665 0.7133

VBst (t � 02) × y(t � 01) �0.0195 0.0029 0.0008

Note. NARX=nonlinear autoregressivewith exogenous input; ex=expec-
tation; en = entropy; ℎe = hyper entropy. Bst = BTsin

6
(θ/2) (nT),

VBst = V × Bst (Boynton et al., 2011).

Figure 4. The normal cloud membership functions of the 12 selected model terms.
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is the quantification of uncertainty throughout the structure detection, parameter estimation, and model

prediction. If the model structure is perfect and the parameters are estimated unbiased, the predicted

band will be narrow. Otherwise, if there are strong uncertainty in the data itself or the model structure

and parameter, the uncertainty will be propagated to model prediction, and the width of predicted band

will be increased.

From Figure 5, the predicted band is very wide over the period from 17 Mar 2015 to 22 Jun 2015. This can

be explained or understood as follows. First, from the input signals shown in Figure 3, we know that there

were interplanetary disturbances over the two periods. It is known that in general most storms last quite a

short period in the long-term evolution of the process. As a consequence, most of the training data were

sampled at “quiet” times, and only a very small fraction of the training data is for the storm period. This

results in that the training data are severely “imbalanced” (Ayala Solares et al., 2016). Therefore, while a

single model may well capture the features and dynamics of the system at quiet times, it may not suffi-

ciently capture the system dynamics at the severe situation times. That is why the prediction band is so

wide for these stormy periods. Second, the wide prediction band over the period of 17 March 2015 and

22 June 2015 implies that no single model would produce reliable prediction of AE over stormy periods,

no matter what/which method is used to build the model. That is why we propose to carry out uncertainty

analysis in this study.

Note that the predicted band in Figure 5 provides only rough quantification of the uncertainty. In many

situations, the detailed information of the predicted AE index at a specific time point is often needed.

Figures 6 and 7 are the predicted bands with density over an 8-hr period on 17 March 2015 and 23 June

2015, respectively. These figures show the probability of the predicted AE index being in each interval. As

shown in the two figures, the interval of the predicted band for each time point is divided into 100 bins.

The histogram shows the probability (frequency) of a single predicted AE value occurs in each bin. The

boundaries of the predicted band are also displayed with the histogram, to visualize the prediction uncer-

tainty and make it easier to understand. In addition, it is straightforward to compare the observation (green

line) and averaged prediction (blue line) of AE index in the figure. The overall accuracy of the predicted band

on the test data set is 65%. The accuracy of high AE period (AE > 1000) is 70%.

The only way to reduce the width of the predicted band is to find a model structure that can better describe

the true system. However, it is very hard, if not impossible, to obtain a perfect model structure for real-world

system identification data modeling problem in the presence of strong uncertainty. Nevertheless, it should

be noted that the performance of the model given by Table 2 outperforms previous models, for example,

Figure 5. One-hour-ahead predicted band (consists of 80% of generated model predictions) and averaged prediction of AE

index over 17–21 March and 22–26 June of 2015 (black line = observation; blue line = averaged prediction; green sha-

dow = predicted band; red line = prediction of conventional nonlinear autoregressive with exogenous input model).
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the NNmodel (Bala & Reiff, 2012; as shown in Table 3). Therefore, a wide predicted bandmight indicate that

a severe situation (interplanetary disturbances) is likely to happen. The property of the predicted band could

potentially be used to forecast the arrival of the interplanetary disturbances.

5.3. Performance and Advantage of the Cloud-NARX Model

The performance of the averaged prediction of cloud-NARX model is comparable to the best NARX model

with very similar structure but fixed model parameters, as shown in Table 3. Figure 8 presents the scatter

plot of the averaged prediction and observation. The correlation coefficient, PE, and NRMSE of the averaged

prediction are 0.872, 75.97%, and 0.0589 (for data of year 2015), respectively, which are consistent with the

best NARX model. The NARX model outperform the NN model for 1-hr-ahead prediction, as the previous

NNmodel achieves the correlation of 0.83 (Bala & Reiff, 2012). More importantly, the cloud-NARX provides

a transparent and parsimonious representation. As shown in Table 2, the NARX model reveals which of the

variables/model terms are significant and which are not, for example, the model terms

V(t � 02) × Bst(t � 01) indicates that the dayside reconnection 20–40 min prior (Balikhin et al., 2010) is

an important component of the system, and the model terms y(t � 1) suggests that the autoregressive term

has a significant effect on the AE index. On the contrary, the NN models are usually very complicated, and

the training process involves a huge number of model terms and takes a lot of time.

The cloud-NARX model holds all the good properties of conventional NARX model and possesses an extra

advantage. It provides a tool for understanding and analyzing uncertainty in the model structure and fore-

casting. For example, the uncertainty band in Figure 5 indicates that the model performs well for the period

of 18–21 March 2015 and 24–26 June 2015, but the model is insufficient to characterize the dynamics of the

process for the period 17 March 2015 and 22–23 June 2015 (i.e., when a sharp change occurs in solar wind

Figure 6. Predicted band with density over an 8-hr period on 17 March 2015 (FRE = the frequency of predicted AE occurrences in each divided bin of the predicted

band).
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variables, e.g., Bst/ VBst). As discussed earlier, this property could potentially be used to forecast the arrival

of a solar wind storm.

Note that the model also works well and even better in nondisturbed periods. This is because that the model

was trained on the data set where most of the data were sampled at nondisturbed period. Therefore, the sys-

tem behaviors in nondisturbed periods are well captured by the identified model. A comparison between the

observed and predicted AE index in two selected nondisturbed periods (23 April to 5May and 19 October to 1

November) is given in Figure 9. According to the figure, the predicted band is narrow, which means that the

uncertainty of the model is not strong. From these results, the cloud-NARX model also generates good pre-

diction results in the nondisturbed times.

The model prediction of the cloud-NARX model and the conventional NARX model are consistent in non-

disturbed periods. In some disturbed periods, the prediction performance of the cloud-NARXmodel is better

than that of the NARX model. The correlation coefficient and NRMSE of

cloud-NARX model in disturbed periods (AE ˃ 1,000) are 0.3422 and

0.4454, while the conventional NARX model achieves correlation coeffi-

cient and NRMSE of 0.3226 and 0.4518 in the same periods. As discussed

earlier, the inclusion of some extra selected model terms in the cloud-

NARX model can help improve the model robustness in some severe

situations. Therefore, compared to the conventional NARX model, the

cloud-NARX model can better describe the nonlinear effect in the

disturbed periods.

In addition, it is easy to generate long-term prediction using the cloud-

NARX model. For example, the 3-hr-ahead AE index forecast can be

Figure 7. Predicted band with density over an 8-hr period on 23 June 2015 (FRE = the frequency of predicted AE occurrences in each divided bin of the predicted

band).

Table 3

Comparison of the Performances of the Best NARX Model and Cloud-NARX

Model on Test Data of Year 2015

Model Correlation PE NRMSE

Best NARX model 0.8728 0.7611 0.0588

cloud-NARX model 0.8723 0.7597 0.0589

NN model 0.83 / /

Note. Slash (/) means not available. NARX = nonlinear autoregressive
with exogenous input; NN = neural network; PE = prediction efficiency;
NRMSE = normalized root-mean square error.
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achieved by generating three-step-ahead model predicted output with the cloud-NARX model. The

correlation coefficient, prediction efficiency, and NRMSE of the three-step-ahead model predicted output

of the cloud-NARX model are 0.8167, 0.6667, and 0.0694, respectively. It is reasonable that the

performance of 3-hr-ahead prediction is lower than that of the 1-hr-ahead prediction. It is because that at

each step of the multiple-step-ahead prediction, the predicted AE index at previous step is used as the

model input (as autoregressive variable). Thus, the prediction uncertainty of long-term prediction is

increased due to the propagation of the error.

Figure 8. Scatter plot of the averaged prediction and observation of the cloud-nonlinear autoregressive with exogenous

input (NARX) model and the best NARX model on two test data sets.

Figure 9. One-hour-ahead predicted band and averaged prediction of AE index over 23 April to 5 May and 19 October to 1 of 2015 (black line = observation; blue

line = averaged prediction; green shadow = predicted band; red line = prediction of convention NARX model).
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6. Conclusion

In this paper, a new cloud-NARX model was applied to the modeling and forecasting of AE index. Good

forecasting results were obtained for 1-hr-ahead AE index prediction. The correlation coefficient between

averaged prediction and observation is 0.87 and prediction efficiency of 0.81 when benchmarked for the

period of 17–21 March 2015 and 22–26 June 2015, which is nearly identical to that produced by the best

NARX model. The cloud-NARX model outperforms the previous models, for example, NNs. More

importantly, the cloud-NARX model is capable to quantify the uncertainty of model structure, model

parameter, and model prediction. The advantages of this new model can be summarized as follows. First,

the model structure of cloud-NARX model is more robust than that of the conventional NARX model, as

the model terms of cloud-NARX model are selected from resampled subdata sets. Second, the estimated

parameters (ex, en, and he) of cloud-NARX model can provide more comprehensive information on the

model parameter uncertainty. Third, based on cloud forward transformation, the cloud-NARX model can

generate the predicted band, which clearly indicates the confidence interval of each predicted AE index. It

is extremely important for space weather forecast, because when model becomes unreliable under some

severe situations, the biased prediction could cause damages and losses. With the predicted band, the bias

of model prediction can be identified, and the reliability of model can be evaluated.

One of the limitations of the paper is that there is still room for improvement for the accuracy of predicted

band. Because for magnetic storm period and quiet times, the uncertainty is at different levels. Thus, it is

highly desirable to further improve the cloud-NARX model to make it more adaptive for the high and low

AE data.
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