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Abstract

Introduction Cost-effectiveness models for infectious disease interventions often require transmission models that
capture the indirect benefits from averted subsequent infections. Compartmental models based on ordinary differential
equations are commonly used in this context. Decision trees are frequently used in cost-effectiveness modelling and are
well suited to describing diagnostic algorithms. However, complex decision trees are laborious to specify as compartmental
models and cumbersome to adapt, limiting the detail of algorithms typically included in transmission models.
Methods We consider an approximation replacing a decision tree with a single holding state for systems where the time
scale of the diagnostic algorithm is shorter than time scales associated with disease progression or transmission. We
describe recursive algorithms for calculating the outcomes and mean costs and delays associated with decision trees,
and design strategies for computational implementation. We assess the performance of the approximation in a simple
model of transmission/diagnosis, and its role in simplifying a model of tuberculosis diagnostics.
Results When diagnostic delays were short relative to recovery rates, our approximation provided a good account of
infection dynamics and the cumulative costs of diagnosis and treatment. Proportional errors were below 5% so long
as the longest delay in our two-step algorithm was under 20% of the recovery time scale. Specifying new diagnostic
algorithms in our tuberculosis model was reduced from several tens to just a few lines of code.
Discussion For conditions characterized by a diagnostic process that is neither instantaneous nor protracted (relative
to transmission dynamics), this novel approach retains the advantages of decision trees while embedding them in
more complex models of disease transmission. Concise specification and code re-use increases transparency and reduces
potential for error.

Keywords
cost-effectiveness, infectious diseases, decision trees, transmission models, diagnostic algorithms, computational
techniques.

Introduction

Interventions to control epidemics of infectious diseases
generally aim to reduce transmission at the population
level, not simply improve outcomes for individual
patients who are infected. For example, vaccination
campaigns often seek not just to prevent disease in
those individuals vaccinated, but also to reduce the
population burden of disease through herd immunity;
vaccination of every individual is generally not required
to eliminate the infection from the population.(Keeling
and Rohani 2011) Similarly, diagnostic tests that allow
detection of an infection at an earlier stage of disease
could not only avert morbidity among individuals who
are diagnosed, but can also avert transmission from
those individuals to others in the population.(Menzies
et al. 2012; Paltiel et al. 2005) As a result, unlike
chronic diseases, impact and health economic evaluation
of interventions for infectious diseases usually require
models that incorporate mechanisms of transmission -
in other words, the risk of infection at any given time
should depend on the number of infectious individuals at
that time. Models that fail to incorporate transmission
risk underestimating the true benefit of infectious

disease interventions at the population level.(Jit and
Brisson 2011; Pitman et al. 2012)

The process of diagnosing infectious diseases often
follows some specified algorithm. For example, one
might perform a screening test that is later confirmed
with a more specific (but more expensive) confirmatory
test (e.g., HIV testing), or one might perform tests
based on screening criteria, or even simply treat
without testing depending on symptom severity (e.g.,
evaluation of respiratory infections in children). When
applied to economic evaluations of diagnostic algorithms
requiring even moderate complexity - and especially
when the algorithm itself is under study - transmission
models face a fundamental dilemma. Specifically, simple
transmission models (often described mathematically as
sets of ordinary differential equations representing rates
of flow between health states) cannot easily manage
the many ‘holding’ states (e.g., completed diagnostic
test 1, awaiting results of test 2) that such algorithms
require. Moreover, including a different algorithm will
often require a fundamental overhaul of model structure.

Individual-based transmission models can incorporate
complexity of this type flexibly, but at a substantial cost
in terms of computational expense and ease of analysis.
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A method for incorporating such algorithms into
transmission models, without requiring separate model
states for each ‘holding’ transition, would therefore be
an important advance.

Here, we describe a method by which algorithmic
diagnostic interventions can be incorporated into trans-
mission models of infectious diseases through use of
decision trees. Decision trees are attractive and widely
used representations of such interventions due to their
conceptual simplicity, flexibility, and the wide avail-
ability of software for their implementation.(Brennan
et al. 2006) However, decision trees do not traditionally
include the time spent at each branch of the tree; this
‘holding’ time is essential to include in infectious disease
models because individuals remain infectious during
this time. We illustrate how simple approximations
can incorporate diagnostic algorithms for which the
‘holding’ times for diagnosis are non-negligible, but
still shorter than the timescale of the overall infectious
disease course - arguably the most common situation
in infectious disease diagnosis. We first describe the
method in a highly simplified model, then we illustrate
the use of this method in a more complex model of
diagnostic algorithms for tuberculosis (TB).

Methods

Case study 1: A simple screen/confirm diagnostic
algorithm

To begin with and to introduce our approximation, we
consider the simple example of a screen/confirm two-
step diagnostic algorithm. This algorithm is represented
by the decision tree in Figure 1a. The first diagnostic
(denoted dx1) is assumed to have sensitivity s1 and and
specificity sp1. The second diagnostic (denoted dx2) is
assumed to have sensitivity s2 and specificity sp2. It is
follows that the overall sensitivity of the algorithm (in
which the tests are applied sequentially, and a positive
overall result requires a positive result on both tests) is
s1 · s2, and the overall specificity is sp1 + (1− sp1) · sp2.

We can summarize this information in a transition
matrix for the test that gives the probabilities for
both true negative or true positive individuals (rows)
to receive a negative or positive diagnosis (columns)
overall:

P =

(
diagnosed -ve diagnosed +ve

true -ve sp 1− sp

true +ve 1− s s

)

.

(1)
Note that the rows sum to one,

∑

j Pij = 1, as the
possibilities represented by the columns are exhaustive.

Compartmental models with constant transition rates
can be thought of in terms of stocks and flows, with the
total outflow from a compartment equal to the inverse of
the mean delay. In this context, language and intuition
is often borrowed from the case of constant-rate
continuous-time Markov processes, where compartment
stocks model probability, and the differential equations
are the associated Kolmogorov forward equations
(master equations). Here, compartment sojourn times

diagnosed
negative

inflow dx1

dx2

diagnosed
positive

(1
−

s1
)/T1

s
1 /T

1

s
2 /T

2

(1 − s2)/T2

(a) Before approximation
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diagnosed
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s1
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s
1 .s
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s1.(1 − s2)/T

(b) After approximation

Figure 1. Approximating a decision tree with a single
compartment. The rates for the arrows are shown for true
positives. Figure 1a shows a simple two-stage screen/confirm
diagnostic algorithm using tests dx1 and dx2. Figure 1b shows
the mean time approximation representing those awaiting
diagnosis by a single compartment. The outflow rates for true
positive individuals label the arrows, with notation explained
in the text.

are exponentially distributed, and the probability of
leaving a state via one flow rather than another is given
by the relative magnitude of the corresponding rates
of flow. Flow rates are therefore often parametrized in
terms of the mean time spent in a given compartment,
multiplied by the relative probabilities of each exit flow.

Given delays T1 and T2 for diagnostics dx1 and dx2
respectively, one can naturally view a decision tree such
as that of Figure 1a as specifying a compartmental
model with each node being a compartment. The
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Diagnostic algorithms in transmission models 3

transition rates for a true positive individual are
indicated on the arrows in Figure 1a.

We will use a superscript i = 0, 1 to denote true
negatives or true positives, respectively, so that the
population count in a state is the sum of those
truly negative and truly positive: X = X(0) + X(1). For
inflow I(t), the differential equations governing the
number in the dx1 and dx2 compartments (D1 and D2,
respectively), and the cumulative number of negative
and positive tests (N and Y , respectively) are

dD
(i)
1

dt
= I(i)(t)−

D
(i)
1

T1

dD
(i)
2

dt
= Ai1 ·

D
(i)
1

T1
−

D
(i)
2

T2

dN (i)

dt
= Ai0

D
(i)
1

T1
+ Bi0 ·

D
(i)
2

T2

dY (i)

dt
= Bi1 ·

D
(i)
2

T2
,

(2)

where A represents the transition matrix associated with
dx1 (with elements Aij), and B the transition matrix
associated with dx2 (with elements Bij). Labelling those
testing negative to dx1 as negative can be represented
by transition matrix C, where Ci0 = 1 and Ci1 = 0.

The overall transition matrix, P for a two-step
decision tree as in Figure 1a can be obtained as

Pij =
∑

k

AikP
(k)
ij , (3)

where A is the transition matrix of the first step
and P (k) is the transition matrix in the second step
associated with the k-th outcome of step one. This
amounts to simply summing the probabilities associated
with independent ways of realising a given outcome for
each possible input. For the case above, it is easy to
verify that with P (0) = C and P (1) = B, Equation 3
yields the expected overall sensitivity and specificity for
the sequential two-step algorithm:

P =

(
sp1 + (1− sp1) · sp2 (1− sp1) · (1− sp2)

(1− s1) + s1 · (1− s2) s1 · s2

)

. (4)

Similar equations could be applied for diagnostic tests
performed in parallel (i.e., where a positive test on either
component test would be considered an overall positive
result).

A mean time-scale approximation

Our approximation will be to replace all compartments
in a decision tree with a single holding state. We want
the proportion of those exiting the holding state via
each route to equal the outcome probabilities computed
for the corresponding terminal nodes in the decision
tree. We furthermore calculate the mean delay incurred
over the entire decision tree (for a patient of given
characteristics) and use that to assign a mean time spent
in the holding state. This approximation is equivalent to
assuming that all individuals with given characteristics
undergoing a diagnostic algorithm will have the same
delay from beginning of diagnosis to the end of the

diagnostic process (e.g., treatment initiation), regardless
of the actual diagnostic test result. We expect this
approximation to work best when the time scales of
the internal dynamics of the decision tree are short
compared with the dynamic time scales of the overall
model - a typical scenario in infectious disease diagnosis.

In our case, this means replacing the compartmental
diagram with that shown in Figure 1b. With the mean
delays T (0) = T1 + (1− sp1).T2 for true negatives and
T (1) = T1 + s1.T2 for true positives, and D representing
the population counts in the single awaiting diagnosis
compartment, this approximation corresponds to the
differential equations

dD(i)

dt
= I(i)(t)−

D(i)

T (i)

dN (i)

dt
= Pi0 ·

D(i)

T (i)

dY (i)

dt
= Pi1 ·

D(i)

T (i)
.

(5)

Here, P is the transition matrix associated with the two-
step algorithm, given above in Equation 4.

In this simple example, the saving in complexity is not
great. However, in more complex algorithms with more
patient characteristics, this can save tens of differential
equations. Moreover, it greatly facilitates incorporation
and comparison of algorithms with differing numbers
of diagnostics, since under this approximation the
model structure remains the same, with only the rates
changing.

This same technique can be extended to handle the
mean costs for patients with given characteristics by
considering the costs of passing through the decision
tree, and associating the cost of passing through
the single holding-state with the decision tree mean,
analogously to the delay.

Case study 2: An epidemic model with treatment

In this section, we consider a more complex example
of embedding our simple diagnostic algorithm into an
infectious disease model. In the Results section, we
evaluate the performance of our approximation in this
dynamic model.

The SIR model is the archetypal infectious disease
model, introduced by Kermack and McKendrick
in 1927. (Kermack and McKendrick 1927) The
population is divided into Susceptible, Infectious and
Recovered compartments, with infectious individuals
spontaneously recovering at a constant rate (which
we will denote ν), and infection occurring at a rate
proportional to the prevalence of infectious individuals
in the population with some coefficient, traditionally
denoted β. While simple, this model exhibits many key
features of real systems, including threshold behaviour
for critical levels of population immunity.

We extend the SIR model to include diagnosis and
treatment (Figure 2). Our simple two-stage screen/con-
firm diagnostic tree appears once for susceptible, infec-
tious, and recovered classes, determining whether these
individuals end up on treatment. Infectious individuals
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are assumed to seek diagnosis at a constant rate, in
addition all individuals have a diagnosis seeking rate
due to symptoms unrelated to the infection of interest.
We assume that infectious individuals remain infectious
while under diagnosis (i.e. in states ID1 and ID2 in
Figure 2), but are not infectious while on treatment or
once treatment is completed (the ‘R past treatment’ box
in Figure 2). We assume that those who have previously
been treated are not eligible for further treatment and
therefore do not re-enter the diagnostic cascade.

Prepared using sagej.cls



Diagnostic algorithms in transmission models 5

S before
treatment

I before
treatment

R before
treatment

SD1 ID1 RD1

SD2 ID2 RD2

S on
treatment

I on
treatment

R on
treatment

S past
treatment

I past
treatment

R past
treatment

Figure 2. A susceptible-infected-recovered (SIR) transmission model with treatment. The diagnostic algorithm is that depicted
in Figure 1a. Dashed lines represent infection and recovery processes, solid lines transitions between treatment and diagnosis
states. Those previously treated are not eligible for diagnosis. Different rates of seeking diagnosis apply for true negatives (S &
R) compared to true positives (I). States in circles correspond to stages in a diagnostic algorithm that will be simplified using
our approximation (see text).
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We will write Sj for susceptibles: j = 0 for treatment-
naive; j = 1 for those on treatment; and j = 2 for
those-post treatment. We use analogous notation for
infectious (Ij) and recovered (Rj). We write SD1 and
SD2 for susceptibles awaiting diagnostic 1 (dx1) and
2 (dx2), respectively, and analogously for infectious
and recovered. If N is the total population, and β

the effective contact rate, the force-of-infection can be
written λ = β

N
(ID1 + ID2 + I0 + I2). (Those infected

on treatment are assumed non-infectious; those infected
after treatment are infections.) Finally, we will denote
the constant rate with which infectious individuals
seek diagnosis by b, the diagnosis-seeking rate for
reasons other than the infection among all individuals
by a (operating in addition to rate b for infectious
individuals), and the duration of treatment by TT

(note the dual role of ‘T’). The differential equations
corresponding to Figure 2 are then:

dSj

dt
= −λ · Sj +

(

−a · S0 + sp1
SD1

T1
+ sp2

SD2

T2

)

δj0

+ (1− sp2) ·
SD2

T2
δj1 + (δj2 − δj1)

S1

TT

dIj

dt
=

(

(1− s1)
ID1

T1
+ (1− s2)

ID2

T2
− (a + b) · I0

)

δj0

+ λ.Sj − ν · Ij + s2
ID2

T2
δj1 − δj1

I1

TT

dRj

dt
= +ν · Ij +

(

sp1
RD1

T1
+ sp2

RD2

T2
− a ·R0

)

δj0

+ (1− sp2) ·
RD2

T2
δj1 + (δj2 − δj1)

R1

TT

+ δj2
I1

TT

d(SD1)

dt
= a · S0 −

SD1

T1
− λ · SD1

d(SD2)

dt
= (1− sp1) ·

SD1

T1
−

SD2

T2
− λ · SD2

d(ID1)

dt
= (a + b) · I0 −

ID1

T1
+ (λ · SD1 − νID1)

d(ID2)

dt
= s1 ·

ID1

T1
−

ID2

T2
+ (λ.SD2 − νID2)

d(RD1)

dt
= a ·R0 −

RD1

T1
+ νID1

d(RD2)

dt
= (1− sp1) ·

RD1

T1
−

RD2

T2
+ νID2 .

(6)

Here, the quantity δij is the standard Kronecker delta:
equal to one when its indices are equal and zero
otherwise.

Our approximation means replacing each of the three
decision trees in Figure 2 with a single ‘in diagnosis’
compartment, which we will denote SD for susceptibles,
ID for infectious, and RD for recovered. This results in
the differential equations

dSj

dt
= −λ · Sj +

(

−a · S0 + sp
SD

Tn

)

δj0

+ (1− sp) ·
SD

Tn

δj1 + (δj2 − δj1)
S1

TT

dIj

dt
= +

(

(1− s)
ID

Tp

− (a + b) · I0

)

δj0

+ λ · Sj − ν · Ij + s
ID

Tp

δj1 − δj1
I1

TT

dRj

dt
= +

(

sp
RD

Tn

− a ·R0

)

δj0 + (1− sp) ·
RD

Tn

δj1

+ ν · Ij + (δj2 − δj1)
R1

TT

+ δj2
I1

TT

d(SD)

dt
= a · S0 −

SD

Tn

− λ · SD

d(ID)

dt
= (a + b) · I0 −

ID

Tp

+ (λ · SD − νID)

d(RD)

dt
= a ·R0 −

RD

Tn

+ νID ,

(7)

where now λ = β
N

(ID + I0 + I2), and Tp = T1 + s1T2 is
the mean time spent in diagnosis for true positives, Tn =
T1 + (1− sp1)T2 is the mean time spent in diagnosis for
true negatives, s = P11 is the sensitivity of the algorithm
from Equation 4, and sp = P00 is the specificity of the
algorithm.

Sensitivity analysis

To quantify the effect of model parameters on
approximation accuracy, we undertook a sensitivity
analysis for the error in the numbers on treatment,
measured as the maximum proportional error over a
30 unit time horizon. Due to the non-linear nature of
the model, we calculated Sobol’ total sensitivity indices
(Sobol’ 2001) using the SAlib Python module.(Herman
and Usher 2017) We used a Saltelli sample and ran the
model on 15,000 distinct parameter sets. The following
13 parameters were included with uniform distributions:
timescales T1, T2, a−1, b−1, TT ; test characteristics s1,
s2, sp1, sp2; and other parameters C1, C2, β, x0. For
timescales we used ranges from 0.01 to 1 (as a fraction
of the infection recovery timescale) in line with our
understanding of when this approximation approach is
valid, except for the treatment duration (TT ) which we
varied from 0.5 to 1.5. Test sensitivities and specificities
ranged from 0.5 to 1.0. Other parameters ranged from
0.5 to 1.5, except for β (1.5 to 3) and x0 (1 to 10
from a total population of 10,000). In other outputs,
our default parameters were 0.7 for sensitivities, 0.9 for
specificities, 0.1 for timescales (except b−1 and TT , taken
as 1.0). Defaults for costs were C1 = 1.0 and C2 = 10.0,
and β = 2 for the transmission parameter.

Generalizable implementation using recursion

While the approximation representing a decision tree
with a single holding state for the mean time may
save coding a number of differential equations, the
outcome probabilities and mean sojourn times for
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Diagnostic algorithms in transmission models 7

the decision tree still need to be calculated, which
could be laborious of not handled efficiently. However,
representing the data associated with a single chance
node in a decision tree by a transition matrix giving the
outcome probabilities (columns) for patients of a given
type (rows), as in Equation 1, together with the tree
structure of an algorithm allows us to use recursion to
powerfully simplify the relevant calculations.

Algorithm 1 Transition matrix for decision tree by
recursion

function GetTransition(root of tree)
Pij ← 0 ∀i, j

Aij ← transition matrix for root of tree
if root has children then

for k ∈ child nodes of tree do

B
(k)
ij ← GetTransition(root of k-th

child)

Pij ← Pij + AikB
(k)
ij

else

Pij ← Aij

return Pij

Algorithm 1 shows a pseudocode definition of a
function that calculates the overall transition matrix
for an arbitrarily complex decision tree. The function
uses Equation 3 to combine each node’s transition
matrix with that of the attached outcome nodes
that immediately follow (i.e. a node’s children). The
algorithm avoids anything more complicated than a for-
loop over a node’s children by being recursively defined
in terms of itself. In this way, calling the function on the
root (first node) of the decision tree will result on the
function being called on all of the root’s children, and so
on, traversing down to the terminal nodes (leaves) of the
tree, whereupon all of the relevant data is returned and
gathered as all the function calls unwind back up the
tree. In this way, the answer returned to the top-level
function call combines the contribution from all routes
through the tree and returns the overall transition
matrix for the tree.

For our example, in Figure 1a, calling GetTransition
on node dx2 results yields P (2) - the transition matrix
of this node - since dx2 has no child nodes. Similarly,
GetTransition called on the terminal node ‘diagnosed
negative’ returns its transition matrix C (defined below
Equation 2). Calling GetTransition on dx1 (the root
of this tree) will initialise P to zero and set A = P (1).
The for-loop will then find the first child: the terminal
node ‘diagnosed negative’ (the k =0-th outcome for dx1)
and obtain B(0) = C as its transition matrix by calling
GetTransition. The rows of C will be multiplied by the
0-th column of P (1) (which we achieve through matrix

multiplication by diag(P
(1)
00 , P

(1)
10 ) in the working below),

and this added to the current P (which is 0). The next
node found is dx2 (the k =1-st outcome of dx1) and
B(1) = P (2) is obtained by the call go GetTransition on
this node. The rows of P (2) will be multiplied by the 1-st
column of P (1) (which again we achieve through matrix

multiplication by diag(P
(1)
01 , P

(1)
11 ) in the working below)

and this added to the current P . The for-loop therefore
calculates

Pij =

initial value
︷︸︸︷

0 +

from ‘diagnosed negative’
︷ ︸︸ ︷

P
(1)
i0 Cij +

from dx2
︷ ︸︸ ︷

P
(1)
i1 P

(2)
ij

=

[(
sp1 0
0 1− s1

) (
1 0
1 0

)]

ij

+

[(
1− sp1 0

0 s1

) (
sp2 1− sp2

1− s2 s2

)]

ij

=

(
sp1 + (1− sp1) · sp2 (1− sp1) · (1− sp2)

(1− s1) + s1 · (1− s2) s1 · s2

)

ij

,

which indeed is then returned as the correct transition
matrix associated with this tree.

Algorithm 2 Mean costs of transitions in a decision
tree by recursion

function GetCosts(root of tree)
Aij ← transition matrix for root of tree
c← cost associated with root of tree
Cij ← c× Pij

if root has children then

for k ∈ child nodes of tree do

B
(k)
ij ← GetCosts(root of k-th child)

Cij ← Cij + AikB
(k)
ij

return Cij

Algorithm 2 shows how this strategy can be modified
to compute mean costs (or analogously, mean times
spent in the decision tree) for each patient type and
outcome by including the cost (or time-scale) associated
with each node. We may only be interested in the mean
time or cost for each patient type (row of the overall
transition matrix) rather than the relative contribution
from each outcome (column of the transition matrix);
these can be computed by simply summing the columns.

To take advantage of this approach requires a
programming language that supports recursively defined
functions, and allows easy definitions of data structures
or classes to represent trees. We use Python here,
(Python Software Foundation 2017) which has a
particularly simple class system, and provide a class
definition for a diagnostic as an Appendix. This
class simply stores the relevant data associated with a
diagnostic node (transition matrix, cost, delay, etc.) and
allows the node to point to subsequent nodes of the same
class, corresponding to the outcomes of the test (the
transition matrix columns, here positive or negative).
If no further nodes are pointed to by the diagnostic,
the positive or negative outcomes are assumed to be
definitive diagnostic outcomes associated with the leaves
(terminal nodes) of the decision tree. The method
getTables(), implements algorithms 1 and 2 to compute
transition probabilities, costs and delays associated of
full diagnostic evaluation. The code for all numerical
experiments is available as a supplementary file, and at
https://github.com/petedodd/homebrewdx.

In this way, diagnostics can be joined together
into arbitrarily complex diagnostic algorithms, and the
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necessary outcome probabilities, mean delays and mean
costs can be obtained by calling these methods at the
root node. The class can be extended (potentially by
inheritance) with simple helper functions that facilitate
merging the decision tree into the specific system of
differential equations defining the dynamic model.

Case study 3: A model of tuberculosis
transmission and diagnosis

In this section, we briefly describe a previously published
dynamic model of tuberculosis (TB) transmission,
diagnosis and treatment (FlexDx), which will serve as a
more complex case study. (Dowdy et al. 2014)

The rationale for this model is to serve as a
generic tool for projecting the epidemic and budgetary
impacts of introducing new diagnostic algorithms for
TB. The original model represents the natural history
and transmission of TB as a series of 100 ordinary
differential equations. As with the SIR model with
treatment in Figure 2, every class in the population
is doubled to record treatment history; HIV infection
status, tuberculosis drug-resistance type also introduce
additional states. TB disease becomes either smear-
positive or negative, which influences infectiousness and
the sensitivity of diagnostic tests.

The outcomes of a test or algorithm are: (a)
TB negative, (b) TB positive and requiring first-line
treatment, or (c) TB positive and requiring second-
line treatment (for drug-resistant TB). We constructed
separate diagnostic trees according to HIV and previous
treatment status (2×2 states). Transition matrices were
structured as arrays with the first index coding smear
status, and the second and third indices specifying
matrices where the rows correspond to the TB types
in the model: no TB, drug-sensitive TB, isoniazid-
resistant TB (INH-R TB), multi-drug resistant TB
(MDR TB, i.e., resistant to both isoniazid and a second
drug, rifampin); and the rows to diagnostic/treatment
outcomes: diagnosed negative, positive for TB, and
positive for multidrug-resistant TB. Note that there is
no attempt, in this model, to diagnose INH resistance
(as the same treatment is recommended for DS-TB
and INH-R TB); this state is included only because it
represents a higher risk of subsequently progressing to
MDR-TB.

These matrices were parametrized as

P =







diagnosed -ve diagnosed +ve (DS) diagnosed +ve (DR)

TB -ve sp (1− sp) 0
DS TB 1− s s× spDR s× (1− spDR)
INH-R TB 1− s s× spDR s× (1− spDR)
MDR TB 1− s s× (1− sDR) s× sDR







, (8)

where (as above) s and sp are the sensitivity and
specificity (respecitvely) of the test for detecting TB;
sDR and spDR are the sensitivity and specificity
(respecitvely) of the test if positive for TB for detecting
multidrug resistance.

Ultimately, this model is intended to be flexible
enough to calibrate to many different settings and
intervention options, and to be accessible online to non-
specialists. The main model allows users to select from

a pre-defined set of diagnostic algorithms, but user-
specified diagnostic algorithms are also possible. When
shown the original model with its pre-defined diagnostic
algorithms, a primary request from users was to have
the ability to specify their own diagnostic algorithm,
including the ability to input the performance and cost
of each test in the customized algorithm. There was
therefore a demand to develop a simple and re-usable
application through which custom algorithms could be
specified.

With classes described above and in the Appendix, a
diagnostic test for patients of a given treatment history
and HIV status could be defined in the model Python
code by specifying the sensitivities for TB in smear-
positive and smear-negative cases as:

Test = D i a g n o s t i c ( [ sens0 , s en s1 ] ,
spec , DRsens , DRspec ,
cos t , de lay , l t f u )

where sens0 and sens1 are the test sensitivities for TB in
smear-positive and smear-negative cases, respectively;
spec is the test specificity for TB (sp); DRsens and
DRspec are the test sensitivity and specificity for drug-
resistant TB, respectively (sDR and spDR); and cost,
delay, and ltfu are respectively the cost, delay and
probability of being lost to follow-up for the test.

Tests could then be combined into a more complex
algorithms by working back from the leaves of the
decision tree and using a method that specifies the test
that follows, e.g. after instantiating Test2, we could set:

Test2 . s e tNex t ( 0 , Test )

to specify use of the diagnostic Test as the outcome 0
for Test2 (the 0 referring to the outcome of the first
column of the transition matrix of Test2, which is of
the form Equation 8, i.e. a negative test). If the same
test is to be used in multiple places in an algorithm, the
defining code need appear only once with copies being
used elsewhere.

In this way, a handful of lines of code can specify
an algorithm, and the relevant probabilities and delays
be computed by a single function call at the root
node. If the decision tree is approximated by a single
holding state in the dynamic compartmental model,
this means that trees with entirely different structures
can be handled in the same way, without re-writing
the code defining the dynamics. The code for this
model is open source available at https://github.com/

JJPennington/FlexDx-Xpert-Scale-Up.

Results

Case studies 1 and 2

At equilibrium, the proportion of the population (true
positive and true negative) that ultimately receives
diagnosis or no diagnosis will correspond to the
probabilities of these events, and the mean delay
incurred during diagnosis (for true positives) will be
given by

T = T1 + s1 · T2 . (9)
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Figure 3. Performance of mean time approximation for
constant inflow to simple screen/confirm diagnostic algorithm.
True positives are solid lines; true negatives are dashed lines;
approximations are in red. Here, s1 = s2 = 0.7,
sp1 = sp2 = 0.9, and T1 = T2 = 0.5.

This mean delay corresponds to undergoing the first
diagnostic procedure with certainty, but only reaching
the second procedure with a certain probability.

Inevitably, by allowing only one time scale, the
approximation cannot represent the complex sub-
dynamics of an algorithm. However, for a decision tree
embedded in a dynamic model the overall numbers
following each route through the tree will be correct,
and the mean time spent undergoing diagnosis a close
approximation. Figure 3 illustrates the faithfulness of
this approximation for our simple two-step algorithm
under constant inflow. The approximation is somewhat
incorrect during the early dynamics as the internal
tree states are populated, but arrives at the correct
equilibrium.

Figure 4 shows the dynamics of the system in the
full model and with the mean time approximation, and
Figure 5 shows the cumulative estimates of infections,
treatments and diagnostic tests (as proxies for health
outcomes and costs). In this example, the mean time
approximation captures all of these quantities with
reasonable accuracy.

We expect this approximation will perform well
when the diagnostic process is fast compared with the
epidemic dynamics. In Figure 4 and Figure 5 this is
the case, as the diagnostic time scales were take to
be 1/10th that of the mean recovery time, which sets
the time scale for the epidemic dynamics. Figure 6
shows the results of our sensitivity analysis, which
confirms diagnostic timescales as the main influence
on approximation accuracy. (Note the Sobol’ total
index measures the sensitivity to a parameter including
influences through interactions with other parameters,
and the fact that the sum of these indices is here greater
than one indicates the existence of interactions.) As the
diagnostic time scales increase relative to the epidemic
time scale, the performance of the approximation for
quantities of interest worsens (Figure 7). This, is
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Figure 4. Dynamics for the SIR and treatment model of
Figure 2 (black) compared with the corresponding dynamics in
the mean time approximation (grey). ‘tx’ denotes treatment.
Diagnostic time scales are taken to be 10 times shorter than
the recovery time scale, ν = 1 and β = 2, s1 = s2 = 0.7, and
sp1 = sp2 = 0.9.
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Figure 5. Cumulative infections and treatments (a) and
diagnostics performed (b) in the SIR and treatment model
(black) and the mean time approximation (grey). Diagnostic
time scales are taken to be 10 times shorter than the recovery
time scale, ν = 1 and β = 2, s1 = s2 = 0.7, and
sp1 = sp2 = 0.9.
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Figure 6. Total Sobol’ sensitivity indices quantifying
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cumulative treatments, infections and diagnostics after 30
recovery time-scales as the diagnostic time-scales increase
relative to the recovery time-scale. Again, β = 2,
s1 = s2 = 0.7, and sp1 = sp2 = 0.9.

particularly true for the estimated cumulative number
of treatments. However, as long as proportional errors
are less than around 5% while the longest delay (i.e.
T1 + T2) is less than 20% of the recovery timescale - in
approximate terms, as long as the time from initiation
of the diagnostic algorithm to initiation of treatment
is less than one-fifth of the total (untreated) infectious
duration, the proportional error in estimates of all
outcomes is less than 15%, which will generally be
adequate for healthcare decision-making.

Case study 3

We used the approach introduced above to facilitate
the introduction of user-defined diagnostic algorithms
for our web-based interface to the FlexDx model, in
response to user demand. In this module, users can
name tests and input those tests’ cost, specificity and
sensitivity for TB in different patient groups (defined by
sputum-smear status, HIV-infection status and history
of previous treatment for TB), as well as their sensitivity
and specificity as a test for multidrug resistance. Once
defined, these tests could then be selected alongside
additional pre-defined options to specify a novel, user-
defined diagnostic tree consisting of a maximum of two
test options. The transmission component of the FlexDx
model can then take this tree and use it to estimate
the comparative cost and epidemiological impact of the
user-defined algorithm, as well as additional pre-defined
algorithms, in a variety of different settings. This is
accomplished by calibrating the transmission model to
user-specified epidemiological targets and simulating the
consequences of each diagnostic algorithm.

Discussion

In summary, we have demonstrated how to integrate
decision trees with arbitrary height and width into
compartmental models for purposes of evaluating the
impact of algorithmic diagnostic interventions for
infectious diseases. Our technique uses a mean-time
approximation that allows the delay associated with an
entire decision tree to be encapsulated in a single holding
state, such that transmissions can still occur during the
diagnostic and treatment initiation process without the
need to break this process into a large number of sub-
states. The decision tree is used to calculate delays and
outcome probabilities, and we have demonstrated how
recursive algorithms can greatly simplify this process,
adding both transparency and simplicity to model
code. Our technique works well in simplified systems
where the mean delay associated with diagnosis is short
relative to the overall dynamics of disease transmission
- which is commonly the case in infectious disease
diagnosis - and has also been effectively employed in a
more complex model of TB dynamics. While we have
demonstrated the use of our technique in evaluating
diagnostic algorithms for TB, we anticipate that it will
be broadly applicable to similar diagnostic interventions
for a variety of infectious diseases and other processes
where it may be desirable to incorporate decision trees
into compartmental models.

Where applicable, this method makes specifying
different algorithms and modifying them much easier.
It allows users to focus attention where they want it:
in describing the details of diagnostic algorithms for
comparison. Algorithms and test characteristics can
depend on the patient groups included in the model,
and the characteristics of later tests in an algorithm
can depend on the results of earlier tests. Code re-
use makes model implementation more concise and
easy to debug, and potentially more efficient. Use
of array structure to implement model layers where
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possible in defining dynamics also has these benefits,
and can facilitate integrating a decision tree state into a
larger model. Changing the algorithms to be compared,
and comparing large numbers of algorithms, is greatly
facilitated.

In contrast to compartmental (differential equation)
models as described here, individual-based transmission
models represent an alternative approach to handling
complex diagnostic algorithms that does not rely
on any mean-time approximation.(Tappenden et al.
2013; Najafzadeh et al. 2012) The primary limitation
of individual-based models is their computational
expense. This may limit the robustness of parameteric
sensitivity analysis important to cost-effectiveness
analyses and decision modelling, and is a particular
problem in infectious disease modelling where models
require calibration to match the unobserved infection
process. For example, widely-used Monte Carlo
inference approaches often require tens of thousands
of likelihood evaluations for moderate dimension
parameter spaces, and since individual-based models
frequently exhibit substantial stochasticity, tens or
hundreds of runs may be required for each parameter set
to approximate a single marginal likelihood evaluation.
Deterministic compartmental models of infectious
disease transmission are computationally less expensive,
but need to make averaging approximations. Ultimately,
our approach is not meant to replace individual-based
models where they are appropriate, but rather to offer
an alternative to incorporating complex algorithms
into compartmental models when a simpler mechanistic
representation of the infectious disease transmission
process is desired.

We envisage approaches such ours being of particular
usefulness in the area of country-level modelling.
Country-level modelling is used to evaluate the
epidemiological and cost consequences of national
policies, usually with a particular focus on HIV(Stover
et al. 2010; Kerr et al. 2015) or TB.(Houben et al.
2016; Trauer et al. 2017) These models are typically
used to support applications by low- and middle-
income countries for support from the Global Fund
to Fight AIDS, Tuberculosis and Malaria, and need
to be sufficiently generic to encompass the wide range
of interventions different countries may be considering.
Modelling work is often carried out by technical
assistant partners, or by country users together with
technical assistance, and so models must also be friendly
enough to be used by non-modellers and without
substantial, or any, additional software development.
Our approach, and similar techniques, may facilitate
incorporation of the implementation details required for
costing and specialising models to relevant contexts.

Our use of this technique in the FlexDx model
simplified the coding of user-specified diagnostic tests
for inclusion in a model of cost and epidemiological
impact. In this example, users were restricted to a two-
step algorithm, primarily because enabling specification
of more complex algorithms requires a more complex
user interface, and we did not have the capacity to train
users in-person on the utilization of such an interface.

However, adopting this approach makes it only a small
step to allowing user-defined topologies for diagnostic
algorithms, e.g. trees with different numbers of levels,
linked together in different ways. Thus, although this
flexibility was not used in the case of the FlexDx model,
the approach described here is inherently generalizable
not only to a wide array of diagnostic test specifications,
but also to an unlimited number of potential diagnostic
algorithm topologies.

We have focused here on the example of decision trees
representing diagnostic algorithms in infectious disease
models. However, our methods have wider applicability,
to any problem that could benefit from embedding a
decision tree into a system of differential equations to
represent greater detail at a specific stage. Decision
trees could, for example, add granularity to Markov
models formulated in terms of differential equations
governing state probabilities (e.g., if transitions from
a given state in the model depended on a detailed
series of decision-like steps). Moreover, system dynamic
modelling(Radzicki and Taylor 1997) is often used
in other contexts where shared resources or other
interactions (besides infectious disease transmission)
requires modelling of feedback loops and state-
dependent event rates. Such models might also utilize
decision trees to more precisely represent interactions
or feedback loops at specific nodes.

The major limitation of this approach is its poor
performance when the delay associated with the
decision tree begins to approach the dynamic time
scales of disease progression and transmission. In our
SIR model, this meant that progression through the
diagnostic algorithm should be faster than recovery from
infection. Fundamentally, this positions our method
as appropriate for ‘meso-time-scale’ processes. On
one hand, if the decision tree delay is very much
shorter than other time-scales (such that progression
through the tree can be reasonably assumed to be
instantaneous), modelling a holding state may not
be necessary at all. It should be noted, however,
that the recursive methodology and class structures
for computing outcome probabilities would still have
application in these cases. On the other hand, if
the delay associated with progression through the
decision tree approaches the overall time scale of disease
dynamics, the mean-time approximation breaks down,
and more complex approaches will likely be necessary.
Importantly, many infectious disease systems do fall into
the ‘meso-time-scale’ category where delays to diagnosis
substantially influence transmission, but where they are
shorter than the progression time scales. TB is a good
example of this - diagnosis may take of the order months,
whereas cases remain prevalent on the order of years.
Other examples include diagnosis of drug resistance in
‘chronic’ infectious diseases such as HIV, and non-rapid
(e.g., microscopic or culture-based) diagnosis of acute
infections (where diagnosis may take hours to days while
the generation time is measured in days to weeks).
Importantly, we were unable to explore the influence of
structural complexity on this approximation; however,
given the results of our sensitivity analysis in Figure 6,
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we expect that relative time scale will remain the key
factor influencing the accuracy of this approximation
under other model structures.

Conclusion

We present a mean time-scale approximation and recur-
sive computational techniques to greatly simplify flexi-
ble inclusion of decision trees in dynamic compartmental
models of infectious disease diagnosis. These methods
may have broader utility in systems where moder-
ately complex algorithmic flows, naturally described
by decision trees, need embedding in dynamic systems
represented by systems of differential equations.
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Diagnostic class in Python

import numpy as np #f o r a r r a y s
from copy import deepcopy as dcpy #f o r copy ing c l a s s e s

c l a s s D i a g n o s t i c :
def i n i t ( s e l f , sens , spec , cos t , de l ay , l t f u ) : #i n i t i a l i z e

s e l f . s en s = sen s ; s e l f . spec = spec ;
s e l f . c o s t = c o s t ; s e l f . d e l a y = d e l a y ;
s e l f . l t f u = l t f u ; # l o s s to f o l l o w−up
s e l f . r o o t = True # by d e f a u l t , t h i s i s a r oo t
s e l f . next = [ 0 , 1 ] # d e f a u l t as t r ea tment s , can be next d i a g n o s t i c s
s e l f . t r a n s i t i o n = np . a r r a y ( [ [ spec ,(1− spec ) ] ,

[1− sens , s en s ] ] )

def s e t n e x t ( s e l f , k , newdx ) : # next t e s t
s e l f . next [ k ] = dcpy ( newdx ) # add to t r e e , as copy
s e l f . next [ k ] . r o o t = F a l s e # r e c o r d tha t t h i s i s no l o n g e r a r oo t

def ge tTab l e s ( s e l f ) : # get m a t r i c e s by r e c u r s i o n
txo = np . z e r o s ( ( 2 , 2 ) ) ; c o s t = np . z e r o s ( ( 2 , 2 ) ) ; d e l a y = np . z e r o s ( ( 2 , 2 ) )
i f s e l f . r o o t :

c o s t += s e l f . c o s t ∗ s e l f . t r a n s i t i o n # add on own c o s t s i f r o o t
f o r k i n [ 0 , 1 ] :

i f i s i n s t a n c e ( s e l f . next [ k ] , D i a g n o s t i c ) :
txon , costn , d e l a yn = s e l f . next [ k ] . g e tTab l e s ( )
f o r j i n [ 0 , 1 ] :

n e x t b i t = s e l f . t r a n s i t i o n [ : , k ] ∗ txon [ : , j ]
t xo [ : , j ] += (1− s e l f . l t f u ) ∗ n e x t b i t
c o s t [ : , j ] += s e l f . next [ k ] . c o s t ∗ (1− s e l f . l t f u ) ∗ n e x t b i t
d e l a y [ : , j ] += s e l f . d e l a y ∗ (1− s e l f . l t f u ) ∗ n e x t b i t

e l i f s e l f . next [ k ] == k :
txo [ : , k ] += (1− s e l f . l t f u ) ∗ s e l f . t r a n s i t i o n [ : , k ]
c o s t [ : , k ] += 0
d e l a y [ : , k ] += s e l f . d e l a y ∗ (1− s e l f . l t f u ) ∗ s e l f . t r a n s i t i o n [ : , k ]

return txo , cos t , d e l a y
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