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On convergence of 1D Markov diffusions to heavy-tailed

invariant density

O.A. Manita∗, A.Yu. Veretennikov†

November 9, 2018

Abstract

Rate of convergence is studied for a diffusion process on the half line with a non-
sticky reflection to a heavy-tailed 1D invariant distribution which density on the half
line has a polynomial decay at infinity. Starting from a standard receipt which guaran-
tees some polynomial convergence, it is shown how to construct a new non-degenerate
diffusion process on the half line which converges to the same invariant measure expo-
nentially fast uniformly with respect to the initial data.

Key words: 1D diffusion; invariant distribution; heavy tails; fast convergence
MSC codes: 60H10, 60J60.

1 Introduction

A topical area of Markov Chain Monte Carlo (MCMC) in theoretical statistics is around the
following problem: given a fixed “target” density or distribution known up to a constant
multiplier – a normalizing constant – how to construct a (Markov) process which would have
this density as a (unique) invariant one and which would converge to this invariant one with
a rate that could be theoretically evaluated? In particular, a permanent great interest in
recent decades was about dealing with “heavy-tailed” densities with a polynomial decay at
infinity. With this problem in mind, let us consider a polynomially decreasing probability
density π on the line R

1; in the precise setting it will be restricted to the half-line R
1
+. The

question under consideration in this paper is constructing a Markov diffusion process with
invariant measure π(x)dx such that this measure is invariant for the constructed process and,
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moreover, so that an exponential convergence in total variation to the invariant distribution
holds.

This problem has certain deep relations to ergodicity and to the Perron – Frobenius
theorem for Markov chains with finite state space, to spectral gap for semigroup generators,
to upper and lower bounds for convergence to stationarity; yet, a spectral gap in this paper is
not used. The literature in this area is huge and we only mention a few important references
related to the subject of the paper more or less directly (see [3], [7], [9], [17], [19], [20], [24],
[25], et al.; also, see further references theiren).

The paper consists of four sections, the first one being this Introduction. In the section
2 two known receipts of constructing an SDE with a given stationary measure are shown:
one is an SDE with a unit diffusion coefficient while another one is an SDE with an affine
drift. In the section 3 we state the main result of this paper, and in the section 4 its proof
is provided. The construction is based on the first one of the standard receipts from the
section 2 and on a random time change. The proof uses certain recurrence type hitting time
moment bounds introduced earlier in [28].

2 Quick review: two standard receipts on R
1

2.1 Receipt 1: SDE with a unit diffusion coefficient

Suppose a continuous and differentiable strictly positive probability density π on R
1 decreases

at infinity polynomially, i.e. there exist constants c > 0 and m > 1 such that for any x,

c (1 + |x|)−m ≤ π (x) ≤ c−1 (1 + |x|)−m . (1)

Here m > 1 is required so that the function π were integrable; for further claims a bit more
restrictive condition m > 3 will be assumed in the sequel.

On a probability space (Ω,F ,P) let us fix a standard Wiener process Wt with its natural
filtration Ft = FW

t (as usual, P – completed). On this probability space consider a Langevin
diffusion Yt given by an SDE

dYt = dWt + b (Yt) dt, Y0 = ξ, (2)

with an arbitrary nonrandom initial value ξ, where

b(x) =
1

2
(ln π(x))′. (3)

If there is no explosion then this equation possesses a strong solution [27]. Random initial
values will be mentioned briefly in the section 2.2 and in principle could have been allowed
here, too. It is assumed that two derivatives π′ and π′′ exist and that the drift b is locally
bounded; its global boundedness is not required because, as it turns out [26, 28], a no blow-
up is guaranteed just by the assumption (1) on the function π only (see below the details).
Emphasize that despite the assumed two derivatives, the only quantitative assumption will
be just on π itself given in (1); also there is a hypothesis that the assumption about π′′ could
be dropped, and this is the reason why we refer to [27] instead of more standard results
under a local Lipschitz condition on the drift, while talking on strong solutions in the sequel.
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The receipt (2)–(3) is, actually, a continuous time analogue of (one of) a standard MCMC
receipt(s) in discrete time after a suitable limit. We do not recall it because the paper does
not rely upon this limiting procedure; however, this is likely to signify a possible link to
MCMC algorithms in discrete time. Obviously π(x)dx is the (unique) invariant distribution
of the process Yt; this can be shown explicitly by checking the Kolmogorov equation for the
invariant distribution. The process Yt is ergodic and has a polynomial rate of convergence
to the stationary distribution with density π [26, Theorem 1] (under a bit more restricted
conditions see also [28]), at least, if m is not too small. Note that unlike in most of other
works on convergence or mixing rates, Lyapunov functions are not used here, as they were
not used in [26, 28]. For close results for some particular distributions and for homogeneous
Markov processes under various assumptions (usually more restrictive because of explicit
assumptions about the derivative π′) see also [1, 2, 19]; for discrete time examples – that
is, actually, about MCMC algorithms – see, e.g., [8, 9, 25] and further references therein.
Emphasize that the assumptions in [26, Theorem 1] as well as in [28, Theorem 1] are all
on π and not on π′ except that the latter derivative exists and that b is locally bounded.
It remains to be our goal to avoid any assumptions on π′ beyond its existence and local
boundedness of b in the sequel.

Moreover, it is known that under the additional assumption about π′,

lim inf
|x|→∞

xb(x) = lim inf
|x|→∞

xπ′(x)

2π(x)
= −r < −3/2, (4)

the beta-mixing rate of Yt is no faster than polynomial, ≥ Ct−k with any k > r − 1/2 and
some C > 0 (see the definition and the details in [29]). The notion of beta-mixing – which
is neither defined nor discussed here in detail – is rather close although not identical to the
convergence in total variation. Hence, and also because of close results about lower bounds
for convergence rates in [15, 24], it is likely that convergence of Y to the stationary distri-
bution of Yt under (1) is also no faster than some polynomial. The assumption (4) will not
be used in the sequel but was shown just for information. Recall that our aim is a faster
convergence, and that we want to avoid any conditions on the derivative π′ except for its
existence and local boundedness.

Note that in the case if for large |x| the density equals exaclty c(1+ |x|)−m, it apparently
follows that we need m > 3 in order to have the inequality r > 3/2 in (4). Yet, we will
not use conditions in terms of π′, assuming just (1). Also, emphasize that the requirement
m > 3 is for the quick reference on some existing earlier results. We do not claim that for
m ≤ 3 a similar analysis and asymptotics are not possible, but just that we are not aware
of such asymptotics for m ≤ 3.

Note that for the density on a half-line R
1
+ a natural analogue of (2) is the process

satisfying an SDE with a non-sticky reflection at zero,

dYt = dWt + b (Yt) dt+ dφY
t , Y0 = ξ. (5)

For the process satisfying (5) similar mixing and convergence bounds follow from the bounds
and from the calculus quite similar to those in [28] applied to the situation of the reflected
SDE, or just from a consideration of an SDE (2) with a symmetric (b(−x) = b(x)) drift.
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2.2 Receipt 2: SDE with an affine “mean-reverted” drift

There is another receipt different from (2) offered in [4] (see also the references therein
concerning some other earlier constructions): in a slightly simplified form it suggests to
consider an SDE on the line

dZt = −(Zt − µ) dt+
√

v(Zt) dWt, (6)

with an appropriate initial distribution (e.g., stationary π as in the reference paper), with

v(z) = π(z)−1

ˆ z

−∞

(µ− s) π(s) ds, µ =

ˆ

s π(s) ds. (7)

It is, of course, assumed that µ is finite, and then it is easily proved that v ≥ 0, so that
the SDE (6) is well-defined. (Indeed,

´ µ

−∞
(µ − s) π(s) ds ≥ 0 since µ − s ≥ 0 for s ≤ µ;

and for s > µ the values µ − s are negative but the whole integral
´ +∞

−∞
(µ − s) π(s) ds =

0, so that for any z < +∞, v(z) ≥ 0 as required.) However, of course, “good” ergodic
properties of the solution of this equation depend on some features of the density π. The
solution locally exists due to local Lipschitz property of

√
v combined with the affine drift

assumption, but no-explosion should be derived from other conditions. Some related papers
are, for example, [1, 2, 19] which tackle particular parametric families of target densities π –
Student, reciprocal Gamma, and Fisher-Snedekor diffusions. In all three papers a quadratic
Lyapunov function allows to show an exponential convergence in total variation which is
non-uniform in the initial state Z0. It is interesting that in [4] an exponential character
of the stationary correlation function is established; yet, convergence of a non-stationary
process to a stationary regime was not studied. In fact, the process under investigation in
[4] is stated to be “ergodic”, which ergodicity is understood in the sense of being stationary
without any convergence statements. At the same time, the assumptions on the density in
[4] involve the stationary density π (in our notations) but not on its derivative (possibly
with some additional non-restrictive requirements in some theorems like continuity of the
target density). Recall that in the present paper C2-differentiability of π is assumed, but
convergence rate bounds only depend on the asymptotic assumptions at infinity on the
density π itself. It looks plausible that, in principle, it may be possible to work with “weak”
definitions of the process via Dirichlet forms theory ([10, 21]), but we prefer to have a well-
defined solution trajectory; in particular, we will be working with strong solutions due to
[27]. The receipt 2 naturally rises the question whether it is possible to arrange even a faster
convergence, let theoretically.

3 The setting & main result

Our primary goal is a density π on R
1
+ = [0,∞) satisfying

c (1 + x)−m ≤ π (x) ≤ c−1 (1 + x)−m , x ≥ 0. (8)

Receipts I & II in the previous section can be applied to this setting if we just extend the
density in a symmetric way to the whole line, with a natural normalisation. As was said in
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the Introduction, we aim at constructing a diffusion process on R
1
+ which converges towards

π with an exponential rate uniformly with respect to the initial data. It is likely that a
similar result holds true for a symmetric density π on the whole line R1 satisfying (1), which
we mention as a remark.

In order to achieve yet a better convergence than typically guaranteed by the receipts
(2)–(3) or even by (6)–(7), and for yet a more general class of densities than in [1, 4, 19] and
in quite a few other works, let us consider two diffusion processes Yt and Xt on R+ satisfying,
respectively, SDEs with a non-sticky reflection at zero (5) and

dXt = f (Xt) dWt + f 2 (Xt) b (Xt) dt+ dφX
t , X0 = ξ, (9)

with a local time φX
t at zero and with a special auxiliary function f ,

f(z) :=

(

1 +

ˆ z

0

dy

π(y)

)1/2

, z ≥ 0. (10)

The generator of this process is given by

L = f 2L0,

where L0 is the generator of the reflected diffusion (5):

L0v(x) =
1

2
v′′(x) + b(x)v′(x), ∀ x > 0, & L0v(0) = v′(0+).

Recall the requirements on the non-sticky solution and on its local time: φX is a monotoni-
cally non-decreasing function; for any t > 0,

φX
t =

ˆ t

0

1(Xs = 0)dφX
s ;

ˆ t

0

1(Xs = 0)ds = 0 a.s.

Of course, a question about existence of solution of this equation (9) on the whole half-
line t ≥ 0 arises here, and a positive answer to this question for the first sight may look
doubtful given fast increasing coefficients. However, it will be justified with the help of a
random time change and of the law of large numbers that such a (strong) solution exists on
the whole line and does not explode. The main result is the following Theorem.

Theorem 1. Assume that for a strictly positive probability density π ∈ C2 with two lo-
cally bounded derivatives the bounds (8) hold with some m > 3. Then the SDE (9) has a
strong solution Xt for all t ≥ 0 which is strongly (pathwise) unique and which possesses an
exponential rate of convergence to the stationary distribution π (x) dx,

‖µξ
t − µ‖TV ≤ C exp(−λt), t ≥ 0, (11)

uniformly with respect to ξ, with some constants λ and C which both admit certain evaluation,
where µξ

t is a marginal measure of the process Xt that starts from ξ at t = 0, and µ(dx) =
π(x)dx is the (unique) invariant measure of the process.

The right hand side in (11) does not depend on the initial value ξ. Theoretical evaluations
of both constants in the bound (11) is likely to be not very efficient, yet possible which is
clearly better than pure existence of such constants.
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4 Proof of Theorem 1

The proof will be split into several steps.

Step 1. Random change of time. Define the function f(z) on R
1
+ by (10). Obviously

there exists 0 < a ≤ 1 (namely, any a ∈ [0, c2], with c from (8)) such that

a (1 + z)m+1 ≤ f 2(z) ≤ a−1 (1 + z)m+1 , ∀z ∈ R
1
+. (12)

Let us define a random time change (cf. [11, 23]) by

χt :=

ˆ t

0

f−2 (Ys) ds, & βt := χ−1
t (the inverse function). (13)

In other words,
β ′
t = f 2(Yβt

),

and

t =

ˆ βt

0

f−2 (Ys) ds.

This time change t 7→ βt is non-degenerate, that is, the following two conditions hold:
(i) there is no blow up at finite time:

P(χt|t→T−0 → +∞) = 0 ∀T ∈ (0,+∞). (14)

(ii) χt is unbounded as t→ +∞ (i.e. when ”real” time goes to infinity):

χt ≥ 0, χt|t→∞ → +∞ P− a.s. (15)

To prove (14), it suffices to notice that, due to (12), for any s < t,

0 ≤ χt − χs ≤ a−1

ˆ t

s

(1 + |Yr|)−m−1 dr,

hence
χ

′

t ≤ a−1 · sup
r∈R1

(1 + |r|)−m−1 = a−1, P− a.s.

Then (14) immediately follows.

From here we find,
inf
t≥0

β ′
t ≥ a > 0, P− a.s.,

and
P(lim sup

t→∞
βt <∞) = 0.

The assertion (15) follows from the following Lemma.
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Lemma 1. Let m > 3, and let g be a bounded continuous function on R
1. Assume that the

diffusion process Yt satisfies (2), and let µinv be its unique invariant measure. Then for any
δ > 0 and ε > 0 there exists T0 > 0 such that

P

(
∣

∣

∣

∣

1

t

ˆ t

0

g (Ys) ds−
ˆ

g(x)dµinv(x)

∣

∣

∣

∣

> ε

)

< δ for any t ≥ T0.

The Lemma with g(r) = (1 + |r|)−m−1 yields the assertion (15). Indeed, let us fix any
δ ∈ (0, 1) and ε = ag/2. Naturally, ag > 0. Then with P-probability at least 1 − δ one has
χt ≥ (ag − ε) t = ag t/2 for any t large enough. This means that with probability at least
1 − δ the change of time mapping does not stop up to at least ag t/2. Since δ ∈ (0, 1) is
arbitrary, (15) holds.

Proof of Lemma 1. First of all, we will refer to the mixing results for SDEs on the
whole line; however, in the case of symmetric coefficients (b(−x) = b(x) and similarly for
the diffusion if it is not a constant) such results straightforward imply similar bounds and
convergence rates for (non-sticky) reflected at zero diffusions, too. In other words, The
process (Yt) is Markov ergodic with a finite variance (and, in fact, with any moment m′ <
m − 2; g is bounded) with a polynomial beta-mixing rate as well as convergence in total
variation βξ(t) + |µξ

t − µ∞|TV ≤ Ck(ξ)(1 + t)−k with some C(ξ) for any k < m − 1, to the
stationary regime µ∞, see [28, 26]. Indeed, the assumptions of [28] are met with p = m− 1
where p is the standing parameter in [28]. The assumption m > 3 implies k > 2. Moreover,
the function g is bounded; hence, the process

´ t

0
g(Ys) ds possesses all moments (including

exponential with any constant, although, this is far too much for our goal). The beta-mixing
coefficient dominates the alpha-mixing, while certain convergence rate to zero of the alpha
coefficient is the standing assumption in the Theorem 18.5.4 of [13]. Hence, for the stationary
regime, the assertion of the Lemma – LLN – follows from the Central Limit Theorem [13,

Theorem 18.5.4]. Indeed, splitting the integral from zero to t into a sum
∑[t]

1 plus
´ t

[t]
, the

claim follows. For a nonstationary regime the desired LLN follows again from the CLT for
the stationary case, from the Markov property, and from the polynomial convergence of
Law (Ys) to µinv in total variation, similarly to the proof of “ non-stationary CLT” in [31,
Theorem 4] with the help of the results from [28, Theorem 1] with m > 3. After mixing
bounds have been found, see also [32] for LLN (formally, in [32] mixing is exponential, but
obviously any polynomial would do such that the related sums or integrals converge). This
finishes the proof of the Lemma 1. �

See also [20] for close results under slightly different assumptions. As was already men-
tioned, the statement of the Lemma will be used straight away for our reflected diffusion (5).

Step 2. Constructing the process Xt.

On the probability space (Ω,F , (Ft),P) with a solution Yt to the equation (5), let us
introduce stochastic processes

Xt := Yβt
, φX

t = φY
βt
.

Then due to the time change [11, Theorem 3.15.5] it follows that the process Xt satisfies an
SDE

dXt = f (Xt) dWt + f 2 (Xt) b (Xt) dt+ dφX
t , X0 = ξ, (16)

7



with a new Wiener process W̃t =

ˆ βt

0

f−1(Xs) dWs, and with the local time at zero φX
t ;

recall that f(0) = 1. Indeed, outside zero the “main part” here

1(Xt > 0)dXt = 1(Xt > 0)
[

f (Xt) dW̃t + f 2 (Xt) b (Xt) dt
]

follows straightforward from [11, Theorem 3.15.5], and

1(Xt = 0)dXt = 1(Xt = 0)dφX
t

is a direct consequence of the equation

1(Yt = 0)dYt = 1(Yt = 0)dφY
t .

Also, we have,

ˆ t

0

1(Xs = 0)ds = 0,

ˆ t

0

1(Xs = 0)dφX
s = φX

t .

Finally,

Xt − ξ −
ˆ t

0

f (Xs) dWs +

ˆ t

0

f 2 (Xs) b (Xs) ds− φX
t = 0, a.s.

Thus, X is the solution of the equation (16) with a non-sticky reflection, as required.

The equation (16) can be also derived from the time change for the SDE (2) on the
whole line with a symmetric drift and symmetrically extended f after the application of
Itô–Tanaka’s formula to the modulus,

dX̄t = f̄
(

X̄t

)

dW̃t + f̄ 2
(

X̄t

)

b
(

X̄t

)

dt, X̄0 = ξ, (17)

with
b̄(x) = sign(x)b(|x|), f̄(x) = f(|x|), ∀ x ∈ R

1.

By construction, the processes Xt and φX
t are regular, i.e. are defined for all t ≥ 0,

and adapted to the filtration F̃t ≡ Fβt
, see [11]. Recall the well-known fact that the new

filtration Fβt
is well-defined because of the fact that for any t, the random variable βt is a

stopping time.

Emphasize that the process Xt is well defined on the whole half-line t ≥ 0, it does not
explode, and it neither reaches infinity from zero, nor vice versa (zero from infinity) over a
finite time, all of these because of the construction via the time change.

Step 3. The solution Xt is strong. Indeed, it is well-defined on t ≥ 0, and the diffusion coeffi-
cient is locally continuously differentiable, and locally bounded, and locally non-degenerate,
while the drift coefficient is also locally bounded. Due to the results in [27], this suffices
for strong uniqueness via the stopping time arguments with the help of the strong Markov
property – see [18]. This will be used in the sequel in the coupling procedure (although,
probably could be done with weak solutions, too).
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Step 4. Stationary distribution for Xt.

Let us prove that the process Xt has a unique invariant distribution π(x)dx. The sta-
tionary distribution µ satisfies the stationary Kolmogorov equation L∗(µ) = 0 on R+ – or,
equivalently, L∗π = 0 – where

L =
f 2

2
D2

x + (f 2b)Dx (18)

is the generator of Xt and
∗ is the adjoint with respect to the Lebesgue measure. First of all,

the Kolmogorov equation L∗(µ) = 0 has at most one probability solution due to [6, Example
4.1.1]. Next, the measure µ(dx) = π(x)dx satisfies this equation. Indeed, since

1

2
π

′ − (bπ) = 0, (19)

we have

1

2

(

(f 2)π
)′′

−
(

(f 2)bπ
)′

=
1

2

(

(f 2)
′′

π + 2(f 2)
′

π
′

+ (f 2)π
′′

)

− (f 2)
′

(bπ)− (f 2)(bπ)
′

=

(f 2)

(

1

2
π

′′ − (bπ)
′

)

+(f 2)
′

π
′

+
1

2
(f 2)

′′

π− (f 2)
′

(bπ)
(19)
=

1

2
(f 2)

′′

π+
1

2
(f 2)

′

π
′

=
1

2

(

(f 2)
′

π
)′

.

(20)

But

((f 2)
′

π)(x) =

(

1 +

ˆ x

0

dy

π(y)

)′

· π(x) = π(x)

π(x)
= 1, x ≥ 0, (21)

where at zero derivative is understood as right one. Hence the expression in the right hand
side of (20) equals zero, i.e., π is a stationary measure for the new process X . Note that the
same calculus with f replaced by 1 shows the invariance of π for Yt

As may be expected, (21) implies the equality

Eπh(Xt) =

ˆ

h(y)π(y) dy, (22)

for any t > 0 and h ∈ Cb(R
1
+). By virtue of the Lebesgue dominated convergence theorem we

can take h ∈ C∞
0 (R1

+) (continuous with a compact support), but more than that, it suffices
to consider functions h ∈ C∞

0 (R1
+) with h

′(0+) = 0: indeed, the latter class – denoted in the
sequel as C∞

00 (R
1
+) – is clearly dense in C∞

0 (R1
+). We have, due to h′(0+) = 0,

dh(Xt) = Lh(Xt) dt+ h′(Xt)f(Xt) dWt + 1(Xt = 0)h′(0+)dφX
t

= Lh(Xt) dt+ h′(Xt)f(Xt) dWt.

Moreover, since h has a compact support, Lh and h′f are bounded. So, by rewriting in
integral form and taking expectations we get,

Eπh(Xt)− Eπh(X0) = Eπ

ˆ t

0

Lh(Xs) ds ≡
ˆ t

0

EπLh(Xs) ds,

9



the last equality due to Fubini’s theorem. Denote by ps(y, z) the transition density of the
Markov process X ; its existence follows, e.g., from [5, Corollary 2.9 & Remark 2.17]. In a
“good case” with all appropriate derivatives, the standard formal calculus runs as follows:

EπLh(Xs) =

¨

(Lzh(z))π(y)ps(y, z) dzdy

=

¨

π(y)h(z)L∗
zps(y, z)dzdy =

¨

π(y)h(z)∂sps(y, z)dzdy

= −
¨

π(y)h(z)Lyps(y, z)dzdy = −
ˆ

h(z)

(
ˆ

ps(y, z)L
∗
yπ(y)dy

)

dz = 0,

due to forward and backward Kolmogorov’s equations, and Fubini’s theorem. Therefore, we
conclude that

Eπh(Xt) = Eπh(X0), (23)

which is equivalent to (22). A rigorous justification without additional assumptions follows
from [5].

Note that uniqueness of the invariant measure will follow from the convergence bound
(11) once it is established.

Step 5. Uniform exponential moment bound.

Let us take any K > 0, and define

γξX ≡ γξ,KX ≡ γ := inf (t ≥ 0 : Xt ≤ K, X0 = ξ ≥ 0) . (24)

Let us show that E exp(αγξX) < +∞ for α > 0 small enough, uniformly with respect to the
initial state of the process. Denote vq (ξ) := Eξγ

q, with a convention v0 ≡ 1. Obviously,

Eξe
αγ =

+∞
∑

q=0

αq
Eξγ

q

q!
=

+∞
∑

q=0

αqvq (ξ)

q!
<∞,

provided all quantities vq(ξ) are finite and grow not too fast in q.

Step 6. Auxiliary results for polynomial moments.

In order to guarantee that the values vq, indeed, may not grow too fast, let us find alternative
representations for them. By virtue of the identity

(
ˆ γ

0

1dt

)q

= q

ˆ γ

0

(
ˆ γ

t

1ds

)q−1

dt,

which holds both for finite and infinite γ, we get,

vq(ξ) = qEξ

ˆ γ

0

vq−1(Xt)dt

10



at least, for any q ≥ 1 such that vq (ξ) is finite. Indeed, due to the Fubini’s theorem (iii) and
the Markov property (iv),

vq (ξ) ≡ Eξγ
q = qEξ

ˆ γ

0

(
ˆ γ

t

1ds

)q−1

dt = qEξ

ˆ ∞

0

1 (γ > t)

(
ˆ γ

t

1ds

)q−1

dt =

(iii)
= q

ˆ ∞

0

Eξ1 (γ > t)

(
ˆ γ

t

1ds

)q−1

dt = q

ˆ ∞

0

Eξ1 (γ ≥ t)Eξ

(

(
ˆ γ

t

1ds

)q−1

|FX
t

)

dt =

= q

ˆ ∞

0

Eξ1 (γ > t)Eξ

(

(γ − t)q−1|Xt

)

dt = q

ˆ ∞

0

Eξ1 (γ > t)EXt
γq−1dt =

(iv)
= q

ˆ ∞

0

Eξ1 (γ > t) vq−1(Xt)dt
(iii)
= qEξ

ˆ γ

0

vq−1(Xt)dt.

Hence, if both quantities are finite, then

vq (ξ) = qEξ

ˆ γ

0

vq−1(Xt)dt, v0 = 1.

Note that for each q ≥ 1, if vq is finite, then it satisfies

Lvq(x) = −qvq−1(x), x ≥ K, (25)

by virtue of the probabilistic representation of solutions of the elliptic equation with Dirichlet
boundary condition, or equivalently by Duhamel’s formula. Obviously vq(K) = 0, as well
as vq(x) = 0, 0 ≤ x ≤ K. Also, it is known that if vq(ξ) < ∞ for some ξ then it is finite
for any ξ. However, we are not going to use this equation directly since it lacks the “second
boundary condition” normally required for the second order differential equation. Instead,
we will find solutions to boundary problems that approximate vq. In fact, what we shall
need instead is the following Lemma.

Let L̂ : (L̂u)(x) = a(x)u
′′

(x)+ c(x)u
′

(x) be the generator of the diffusion process (ζt, t ≥
0) with locally bounded coefficients a > 0 (the diffusion) and c (the drift), and such that a is
locally uniformly non-degenerate, and which process is a strong solution of a corresponding
SDE. Let us fix a positive (non-negative) function ψ on R

1. Let

τK := inf (t ≥ 0 : ζt ≤ K, ζ0 = ξ) (ξ > 0),

and

v (ξ) = Eξ

ˆ τK

0

ψ(ζt) dt.

Lemma 2. For any N > K > 0, consider the boundary problem

L̂v+N = −ψ, v+N (K) = 0,
(

v+N
)′

(N) = 0, (26)

Then the function v+N(ξ) ↑ v(ξ) as N ↑ ∞, for every ζ0 = ξ with ξ ≥ K.

11



Proof of Lemma 2. For any 0 ≤ K ≤ ξ ≤ N , let us consider a family of stochastic
processes ζNt , given by the SDE with reflection,

dζNt =
√

2a(ζNt )dwt + c(ζNt )dt+ dφN
t , ζN0 = ξ,

with values on [0, N ], with a non-sticky reflection at N and an absorbtion at zero, where φN
t

is its local time at N . Applying Itô’s formula (or, in fact, more precisely Itô–Krylov’s formula
if continuity of ψ, a, and c is not assumed) to vN (ζ

N
t ), we get the following representations:

vN (x) = Ex

ˆ τK,N

0

ψ(ζNs )ds,

where τK,N = inf
(

t ≥ 0 : |ζNt | ≤ K
)

is the moment when the process ζNt first hits the
interval [0, K]. Note that τK,N monotonically increases as N increases. Also note that if
τK < ∞ then, obviously, τK,N ↑ τK ; and if τK = ∞ then still τK,N ↑ ∞ = τK . These all
follow from the comparison theorem for one-dimensional SDEs possessing strong solutions
with the same coefficients and different initial data. This comparison theorem can be shown
as follows. Consider two SDEs with the same initial value ξ but with two different N1 < N2,
say. Denote the corresponding solutions by ζN1

t and ζN2

t . Assuming that ξ ∈ [K,N1], due to
the strong uniqueness ζN1

t = ζN2

t until τ̂ := inf(t ≥ 0 : ζN1

t = K or N1). If at this moment
– which is a stopping time – ζN1

t = ζN2

t = K, then the claim is justified because K is the
absorbtion point. If, however, ζN1

t = ζN2

t = N1, then the first process ζN1

t will remain less
than or equal to N1 all the time, while the second will exceed this level N1 with probability
one on any right interval of τ̂ . This follows easily from the “reverse” time change which
makes diffusion back equal to one and from the Girsanov theorem about eliminating the
drift via change of measure, because for the standard Wiener process this property is well-
known (e.g., it follows from Khintchin’s iterated logarithm law for WP [14] along with the
strong Markov property. Thus, on any small right neighbourhood of the moment τ̂ we would
have ζN1 ≤ ζN2, with strict inequality at least at infinitely many moments of time arbitrarily
close to τ̂ . Yet, both solutions are strong Markov. So, if we now start two processes with
the same generator a new at two distinct initial value ξ1 < ξ2, then due to continuity the
two solutions will satisfy 1(t > τ̂ )1(ζN1

t < ζN2

t ) = 1(t > τ̂), at least, until they meet again,
i.e., for all t < τ̄ := inf(s ≥ τ̂ : ζN1

s = ζN2

s ) (here, of course, inf(∅) = ∞, and, in fact, they
will never meet again). But then, if we assume that τ̄ < ∞, they will again coincide until
the next moment when they touch the level N1, after which we have again ζN1 ≤ ζN2, and
the cycle can repeated indefinitely. This shows that ζN1

t ≤ ζN2

t for all t ≥ 0. Hence, we have
τK,N ↑ τK , N ↑ ∞, and so, the monotonic convergence Theorem yields the assertion of the
Lemma, as required. �

Similar calculi in similar situations yielding various close claims can be found in [22, 26, 28].

Step 7. Bounds for polynomial moments.

Let us prove that
vq (ξ) ≤ q! · Cq (27)

for all q ≥ 1, with

C =
a−1

m
· Am, Am :=

ˆ ∞

K

(1 + w)−m dw.

12



does not depend on q. We argue by induction. Now our particular generator is L̂ = L
from (18).

Base: Let q = 1. Fix N > 0. Notice that v0 = 1 and consider a boundary value problem,

Lv1N = −1, v1N (K) = 0,
(

v1N
)′

(N) = 0. (28)

Since L = f 2L0, where L0u = 1
2
u

′′

+ 1
2
∇ ln π(x)u

′

, this problem admits a unique solution

v1N (ξ) = 2

ˆ ξ

K

π−1(w1)dw1

ˆ N

w1

π(w2)

f 2 (w2)
dw2, (29)

and due to (1) and (12) we estimate replacing N by infinity in the upper limit of the integral,

v1N(ξ) ≤ 2c

ˆ ξ

K

(1 + w1)
mdw1

ˆ ∞

w1

c−1 · (1 + w2)
−m · a−1 (1 + w2)

−m−1 dw2 ≤

≤ 2a−1

ˆ ξ

K

(1 + w1)
mdw1

ˆ ∞

w1

(1 + w2)
−m (1 + w2)

−m−1 dw2 =

= 2a−1

ˆ ξ

K

(1 + w1)
m (1 + w1)

−2m

2m
dw1 ≤

a−1

m

ˆ ∞

K

(1 + w1)
−mdw1 = Am · a

−1

m
=: C.

By virtue of Lemma 2, this implies v1 (ξ) = limN→∞ v1N (ξ) ≤ C.

Induction Step: Note that if the right hand side in the equation (28) is multiplied by a
constant R > 0, then, given the specific boundary conditions, the bound for the solution
will be also multiplied by this R, so that instead of the upper bound C there will be a new
upper bound RC.

Suppose that for some q and for n = q − 1 we have

vn(ξ) ≤ Cn n!

with the same constant C as above. Then, by the remark in the beginning of the induction
step with R = Cn n!× q ≡ Cq−1 q!, we immediately obtain

vq(ξ) ≤ Cq−1 q!× C = Cq q!,

as required. Hence, the inequality (27) follows. Note that a similar simple argument with a
reference to the induction method and without using explicitly the second barrier N can be
found in [22, Lemma 3.1]; practically the same calculus, yet with unbounded growing in x
moments was used in [28].

Now, take any α ∈ (0, C−1). Then due to (27) one has

Eξe
αγ =

+∞
∑

q=0

αq
Eξγ

q

q!
≤

+∞
∑

q=0

αqCq =
1

1− αC
<∞. (30)

It may be argued now that the desired “exponential coupling” can be arranged via the
exponential moment bound (30) and due to the elliptic Harnack inequality for divergent

13



type equations [12, Theorem 8.20] in the way similar to [28], see the next step. Note that it
is a “common knowledge” that the bound (27) suffices for the Theorem claim. The reader
who knows the exact reference may skip the rest of the proof.

Step 8. Using Harnack inequality. The usage of coupling method assumes that glueing
or meeting of two versions of the process – one stationary and another non-stationary – can
be arranged with a positive probability bounded away from zero on each period of this
construction. Here it suffices to consider a “symmetric” SDE on the whole line. By “period”
in our case any finite interval may be taken; e.g., it is convenient to use [0, 2] which will
be split into two equal parts, [0, 1] and [1, 2] (their intersection at one single point is not
important). On the first half, according to the inequality (30) and Bienaymé – Chebyshev
– Markov’s inequality, both independent versions of the process will attain some (actually,
any) bounded neighbourhood of zero. On the second half we want to glue them with a
probability also bounded away from zero. Note that the standard 1D or finite state space
idea just to wait until the two trajectories intersect here does not work straightforward as
we would like it. Or, rather, it works but the bound obtained in such a way would use some
bounds on the derivative π′, which we want to avoid by all means.

There is a recent rather general tool based on regeneration period moments [33]. Yet, to
verify the mild condition (*) required for this tool is probably no easier than – or, maybe,
equivalent to – what we suggest instead in the next paragraphs.

One more approach which does not involve any properties of π′ uses classical inequalities
for divergence form PDEs. Indeed, this step justifies that it is possible by virtue of Moser’s
Harnack inequality for divergent type elliptic equation (see [12]) (cf., e.g., [30], [31] where a
parabolic Harnack inequality was used for the same goal). Here it is convenient to return to
an SDE on the whole line with symmetric coefficients (17) which solution is denoted by X̄t.
Its modulus satisfies the equation (5) with a new Wiener process.

We argue that an elliptic Harnack inequality

Exg(X̄σ̄) ≤ CEx′g(X̄σ̄) (31)

for any non-negative function g and any |x|, |x′| ≤ 1 with σ̄ := inf (t ≥ 0 : |X̄t| ≥ 2) follows
from [12, Theorem 8.20] due to the equation div(exp(2U(x)∇v(x)) = 0, here v(x) = Exg(X̄σ).
This reasoning should be combined with the bound Px(σ̄ > t) ≤ Ct−1 for t > 0 with some
C > 0 depending on the sup-norms of all coefficients in the ball B := {|x| ≤ 2}. The latter
bound follows from [12, Theorem 8.16] applied and from the Bienaymé – Chebyshev–Markov
inequality Px(σ > t) ≤ t−1

Exσ since the function v(x) := Exσ̄ is a solution to the equation
1
2
exp(−2U)div(exp(2U)∇v)+1 = 0, & v|∂B = 0, or, equivalently, to the (Poisson) equation

div(exp(2U)∇v) + 2 exp(2U) = 0, v|∂B = 0,

to which the Theorem 8.16 [12] is applicable stating that solution v(x) is bounded by a
constant, say, N depending only on sup|x|≤2 |U(x)| (actually, even on some integral norm of

exp(2U)). This immediately implies that by choosing t ≥ 3N we have that Px(σ̄ ≤ t) ≥ 2
3
.

The same estimate holds true for the process Xt, with the stopping time σ = inf (t ≥ 0 :
Xt ≥ 2), and with a non-negative function g on R

1
+, i.e.,

Exg(Xσ) ≤ CEx′g(Xσ).

14



Along with (30), this suffices for a successful exponential coupling for the process Xt

with its stationary version. Although it will not be used here, note that the obtained bound
implies a stronger exponential inequality Px(σ > t) ≤ C exp(−λt) with some C, λ > 0 by
the well-known property of homogeneous Markov processes and their exit times.

Finally, we can change the function U outside the ball |x| ≤ 3 so that it becomes bounded,
– the latter is possible without changing the process until σ.

Step 9. Exponential convergence. Let us return to the half-line R+ and to the process
Xt, and let us fix some K > 0. It is known that – modulo the conclusion of the previous
step – for the proof of the desired exponential convergence in total variation, it sufficies to
show that E exp(αγξX) is finite for some α > 0, and for some – actually, for any – K > 0
where γξX = γξ,KX was defined in (24).

Let Xst
t be the independent stationary version of the Markov process Xt, i.e., X

st
t is the

process with the same generator and initial distribution with the density π, if necessary, on
some extended probability space with another independent Wiener process. (However, we
will not change our notations for P and E.) Naturally, the couple (Xt, X

st
t ) is considered on

some extension of the original probability space. For ξ > K let τ ≡ τ ξ be the moment of
the first intersection of Xt started from X0 = ξ with the stationary version Xst

t , i.e.,

τ := inf
(

t ≥ 0 : Xt = Xst
t

)

.

As the random variable τ is a stopping time and Xt has strong Markov property, we can
define a new strong Markov process

X̂t := Xt1 (t < τ) +Xst
t 1 (t ≥ τ) , (32)

with the property
Law (X̂t) = Law (Xt) .

Obviously on {t > τ}∩{τ <∞} the trajectories of Xst
t and X̂t “after τ” coincide. Then for

any Borel set A one has (we drop the initial value ξ since the final estimate is uniform in it)

∣

∣P (Xt ∈ A)− P
(

Xst
t ∈ A

)
∣

∣

(32)
=
∣

∣

∣
P

(

X̂t ∈ A
)

− P
(

Xst
t ∈ A

)

∣

∣

∣
=

=
∣

∣

∣
E

((

1
(

X̂t ∈ A
)

− 1
(

Xst
t ∈ A

)

)

× (1 (t < τ) + 1 (t ≥ τ))
)
∣

∣

∣
=

=
∣

∣

∣
E

((

1
(

X̂t ∈ A
)

− 1
(

Xst
t ∈ A

)

)

× 1 (t < τ)
)
∣

∣

∣

≤ E

∣

∣

∣

(

1
(

X̂t ∈ A
)

− 1
(

Xst
t ∈ A

)

)
∣

∣

∣
× 1 (t < τ) .

Since
∣

∣

∣

(

1
(

X̂t ∈ A
)

− 1 (Xst
t ∈ A)

)
∣

∣

∣
≤ 1, taking into account the exponential version of

Bienaymé – Chebyshev–Markov’s inequality, we conclude that
∣

∣P (Xt ∈ A)− P
(

Xst
t ∈ A

)
∣

∣ ≤ E1 (t < τ) = P (t < τ) ≤ exp (−αt)E exp(ατ).
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Passing to the supremum over Borel sets A we obtain due to (30),

‖µt − µst‖TV ≤ 2 exp (−αt)E exp(ατ) ≤ 2

1− αC
exp (−αt) ,

where µt = Law (Xt) and µst(dx) = π(x)dx. This bound does not depend on the initial value
ξ which was dropped in the notation Eξ. Hence, the proof of the Theorem is completed. �

Remark 1. It is likely that for the symmetric density π on R
1 and for the equation (2) on

R
1 this method is applicable, too, with the function f(y) ≡ f(|y|), and that it provides a

similar convergence rate bound (11) as in the Theorem 1. We leave it till further papers.

Remark 2. The form of the process Xt is a result of an educated guess. We were looking for
the process Xt whose generator L would be the generator of the Langevin diffusion multiplied
by a positive function F = f 2, which is needed for applying a random time change. At the
same time, we wanted the new process Xt to have the same invariant density π. From this
condition the function F is determined up to two constants c1, c2 > 0

F (x) = c1 +

ˆ x

0

c2dy

π(y)
, x ≥ 0.

It can be checked by an explicit computation that with this choice of the function F , the new
process Xt would still have an exponential rate of convergence to the invariant measure (we
choose c1 = c2 = 1 but in fact any strictly positive c1 and c2 give the same result).

Remark 3. Note that in the Theorem 1 the property of continuity of the state space is
important. If the state space is discrete, the modification we consider (multiplication of the
generator by a function) typically does not affect the rate of convergence. Indeed, let us
consider a birth-death process Yt, t ≥ 0 with birth rates {λn, n ∈ N≥0} and death rates
{µn, n ∈ N}:

P (Yt+h = m|Yt = n) =















λnh+ o(h), m = n+ 1
µnh+ o(h), m = n− 1
1− µnh− λnh+ o(h), m = n
o(h), |m− n| > 1

(33)

The generator A0 of the process Yt is given by

A0ϕ(n) = λn(ϕ(n+ 1)− ϕ(n)) + µn(ϕ(n− 1)− ϕ(n)).

If we want to apply the same transformation as in the continuous case, i.e. to consider a
birth-death process Xt with the generator A = fn ·A0, then the new process Xt will have the
birth and death rates {λ′

n = fn · λn, n ∈ N≥0} and {µ′

n = fn · µn, n ∈ N} respectively.
The invariant distribution π of Yt for the can be computed explicitly and equals

π({n}) ≡ πn = π0
λ0 . . . λn−1

µ1 . . . µn
, π0 =

(

1 +
∑

n≥1

λ0 . . . λn−1

µ1 . . . µn

)−1

.

16



Hence
λn−1

µn
=
πn−1

πn
for each n ∈ N.

The assumption that Xt has the same invariant distribution as Yt yields

λ
′

n−1

µ′

n

=
fn−1 · λn−1

fn · µn
=
πn−1

πn
for each n ∈ N,

hence fn = f0 = const for all values of n. So, such a transformation is just changing the time
scale by multiplying it by a positive constant which doesn’t influence the rate of convergence
qualitatively.
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