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Simultaneous reconstruction of the perfusion coefficient and initial

temperature from time-average integral temperature measurements

K. Cao, D. Lesnic∗

Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

Abstract

Inverse coefficient identification formulations give rise to some of the most important mathemat-
ical problems because they tell us how to determine the unknown physical properties of a given
medium under inspection from appropriate extra measurements. Such an example occurs in bio-
heat transfer where the knowledge of the blood perfusion is of critical importance for calculating
the temperature of the blood flowing through the tissue. Furthermore, in many related applications
the initial temperature of the diffusion process is also unknown. Therefore, in this framework the
simultaneous reconstruction of the space-dependent perfusion coefficient and initial temperature
from two linearly independent weighted time-integral observations of temperature is investigated.
The quasi-solution of the inverse problem is obtained by minimizing the least-squares objective
functional, and the Fréchet gradients with respect to both of the two unknown space-dependent
quantities are derived. The stabilisation of the conjugate gradient method (CGM) is established
by regularising the algorithm with the discrepancy principle. Three numerical tests for one- and
two-dimensional examples are illustrated to reveal the accuracy and stability of the numerical
results.

Keywords: Inverse problem; Parabolic equation; Conjugated gradient method; Initial
temperature; Perfusion coefficient

NOMENCLATURE
dnq , d

n
φ search directions δ Dirac delta function

E1, E2 accuracy errors ǫ noise level
f heat source λ adjoint function
J objective functional µ heat flux
J ′
q, J

′
φ gradients of J ν outward unit normal to ∂Ω

k thermal conductivity tensor σ standard deviation
n number of iterations φ initial temperature
q perfusion coefficient φ1, φ2 exact integral observations
T final time φǫ

1, φ
ǫ
2 measured data

u temperature ω1, ω2 weight functions
α surface heat transfer coefficient Ω bounded domain
βn
q , β

n
φ step sizes ∂Ω boundary of Ω

γn
q , γ

n
φ conjugate coefficients
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1. Introduction

The inverse problem of identifying the space-dependent perfusion/radiative coefficient from in-
tegral observation was previously studied in [1, 2, 3]. This unknown coefficient was numerically
determined in the one-dimensional bio-heat equation with heat flux or time-average tempera-
ture measurement by minimising the Tikhonov regularisation functional using the NAG routine
E04FCF together with the finite-difference method (FDM), [4]. Recently, the space-dependent
perfusion coefficient was recovered by the CGM from the final or time-average temperature mea-
surement in [5]. Also, the inverse problem of determining the initial temperature from temperature
measurements at a later time was extensively studied, e.g. [6, 7]. Besides, there are many numeri-
cal techniques that had been developed to reconstruct the unknown initial temperature, including
the iterative CGM [8, 9], the boundary element method (BEM) with regularisation [10], the elliptic
approximation together with the BEM [11], the Tikhonov regularisation approach [12], the Fourier
regularisation method [13] and the self-adaptive Lie-group adaptive method [14].

In [15], the space-dependent radiative coefficient and the initial temperature were simultane-
ously reconstructed from temperature measurements at a fixed time θ > 0 and in ω× (0, T ), where
ω is a subregion of the space domain Ω; the stability of the inverse problem was established, the
existence of the minimizer of Tikhonov’s first-order regularisation functional was proved, and the
numerical results were obtained by using a nonlinear gradient multigrid technique. Similarly, the
determination of the radiative coefficient, the Robin coefficient in a convection boundary condition
and the initial temperature from the final observation of temperature and the prior knowledge of
the radiative coefficient in ω ⊂ Ω, was investigated in [16] where the uniqueness and stability of
the inverse problem were established.

In this paper, we address the inverse heat transfer problem of simultaneously identifying the
unknown space-dependent perfusion coefficient q(x) and the initial temperature φ(x) from the
integral observations φ1(x) and φ2(x) in (7) and (8) below, generated by two linearly independent
weight functions ω1(t) and ω2(t). This formulation generalises some of the previously-posed inverse
models, which can be obtained by particular choices of the weights ω1 and ω2, and it has been
investigated before. For the numerical stable reconstruction, the least-squares objective functional
is minimised to obtain the quasi-solution of the two unknown quantities. The existence of the
minimizer for the objective functional is presented, and the Fréchet gradients are derived. In
addition, we show that these Fréchet gradients are Lipschitz continuous. These gradients and the
adjoint problem are utilized in the CGM to reconstruct the unknown quantities simultaneously.
The global convergence of the CGM with the Fletcher-Reeves formula [17] is established according
to the arguments in [18] obtained from the Lipschitz continuous property of the Fréchet gradients.
Since the inverse problem discussed in our work is nonlinear and unstable, our CGM is regularised
by the discrepancy principle [8].

The paper is organized as follows: Section 2 presents the mathematical formulation of the
inverse heat transfer problem of reconstructing the unknown radiative coefficient and the initial
temperature, together with the objective functional to be minimized, and several properties of this
functional are presented. The CGM is introduced in Section 4 according to the Fréchet gradients
obtained in Section 3, and the global convergence of the algorithm is obtained. Three numerical
examples are discussed in Section 5. Finally, Section 6 highlights the conclusions of this paper.

2. Mathematical formulation

Let Ω ⊂ R
N , N = 1, 2, 3, be a bounded domain with a sufficiently smooth boundary ∂Ω

representing the issue in a biomechanical engineering situation. In the cylinder Q := Ω × (0, T ),
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where T > 0 is a final time of interest, we consider the bio-heat transfer process governed by the
parabolic equation (Pennes’ equation [19])

∂u

∂t
(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x, t), (x, t) ∈ Q, (1)

where u(x, t) is the tissue temperature, k(x) is the thermal conductivity tensor which is symmetric
and positive definite, q(x) ≥ 0 is the space-dependent coefficient denoting the blood perfusion,
and f is a metabolic heat source. For simplicity, the heat capacity was assumed to be constant
and taken to be unity. The above fundamental governing bio-heat equation (1) represents a
balance between the accumulation of energy (in the left-hand side of (1)) and the superposition
of heat conduction (diffusion), heat transfer effect due to the blood flowing through the capillary
network and heat generation due to the cell metabolism. The inverse linear problem of finding the
metabolic heat source f has been considered elsewhere, [20, 21, 22], herein we address the more
difficult nonlinear problem of finding the blood perfusion coefficient q(x). The importance of the
blood perfusion contribution to the heat generation in tissue has been stressed in carcinogenic skin
and brest tumours because of the increased nutrition and oxygen demand [23]. Therefore, knowing
q(x) as it varies through the tissue x ∈ Ω, would be beneficial to explain and understand the heat
transfer through such biological tissues. In another application related to fin heat transfer in heat
exchangers, q denotes the domain heat transfer coefficient, [24].

For the boundary condition we assume that this of Robin convection type

k(x)
∂u

∂ν
(x, t) + α(x)u(x, t) = µ(x, t), (x, t) ∈ S := ∂Ω× (0, T ), (2)

where ν is the outward unit normal to ∂Ω, µ is a given heat flux and α(x) ≥ 0 is the surface
heat transfer coefficient, which also includes the case of a Neumann heat flux boundary condition
obtained when α(x) ≡ 0.

Let
u(x, 0) = φ(x), x ∈ Ω, (3)

denote the initial temperature at t = 0.
Several basic functional spaces [25], which shall be used in this paper, are presented. The space

Lp(Ω), p ∈ [1,∞), consists all p-integrable functions u(x) over Ω, endowed with the norm

‖u‖Lp(Ω) =

(
∫

Ω

|u(x)|pdx

)1/p

.

The space L∞(Ω) comprises all essentially bounded functions u(x) in Ω, equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| := inf{M ≥ 0 : |u(x)| ≤ M, a.e. x ∈ Ω}.

The spaces Lp(Q) and L∞(Q) can be defined similarly. We denote by H1,0(Q) the normed space
of all functions u(x, t) ∈ L2(Q) having weak first-order derivatives with respect to x in L2(Q),
endowed with the norm

‖u‖H1,0(Q) =
(

‖u‖2L2(Q) + ‖∇u‖2L2(Q)

)1/2
.

The space H1,1(Q), defined by H1,1(Q) =
{

u ∈ L2(Q) : ∂u
∂t
,∇u ∈ L2(Q)

}

, is a normed space with

‖u‖H1,1(Q) =

(

‖u‖2L2(Q) + ‖∇u‖2L2(Q) +

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

L2(Q)

)1/2

.
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The space C([0, T ];L2(Ω)) consists of all real-valued functions u(x, t), square integrable with re-
spect to x ∈ Ω for every t ∈ [0, T ], and continuous in t with respect to the norm of L2(Ω), i.e.,
‖u(·, t+∆t)− u(·, t)‖L2(Ω) → 0 for ∆t → 0. The norm of such space is given by

‖u‖C([0,T ],L2(Ω)) = max
t∈[0,T ]

‖u(·, t)‖L2(Ω).

We denote by V 1,0
2 (Q) the space H1,0(Q) ∩ C([0, T ];L2(Ω)), equipped with the norm

‖u‖V 1,0
2 (Q) = max

t∈[0,T ]
‖u(·, t)‖L2(Ω) + ‖∇u‖L2(Q).

Throughout this work, the operator L := ∂
∂t
−∇· (k∇)+qI, where I is the identity, is assumed

to be uniformly parabolic, i.e.,

υ1|ξ|
2 ≤

N
∑

i,j=1

kij(x)ξiξj ≤ υ2|ξ|
2, a.e. x ∈ Ω, ∀ξ = (ξi)i=1,N ∈ R

N , (4)

for some given positive constants υ1 and υ2. We further assume that k is symmetric, i.e., kij = kji.

Definition 1. A function u(x, t) ∈ V 1,0
2 (Q) is called as a weak solution to the direct initial-boundary

value problem (1)–(3) if

∫

Q

(

−u
∂η

∂t
+ (k∇u) · ∇η + quη

)

dxdt+

∫

S

αuηdsdt

=

∫

Q

fηdxdt+

∫

S

µηdsdt+

∫

Ω

φη(·, 0)dx, ∀η ∈ H1,1(Q) with η(·, T ) = 0. (5)

The existence and uniqueness of the weak solution u(x, t) ∈ V 1,0
2 (Q) to the initial-boundary

value direct problem (1)–(3) is presented as follows ([25] p.373):

Lemma 1. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, and suppose that

f ∈ L2(Q), 0 ≤ α ∈ L∞(∂Ω), µ ∈ L2(S) and φ ∈ L2(Ω). Let k satisfy (4) and kij ∈ L∞(Ω),
i, j = 1, N , and q ∈ L∞(Ω), 0 < q− ≤ q(x) ≤ q+, a.e. x ∈ Ω, where, q−, q+ are two positive
constants. Then the initial-boundary value direct problem (1)–(3) has a unique weak solution
u ∈ H1,0(Q) that belongs to V 1,0

2 (Q).

Note that by the direct problem (1)–(3) for a.e., t ∈ [0, T ], we know

1

2

d

dt
‖u(·, t)‖2L2(Ω) +

∫

Ω

(k∇u · ∇u+ qu2)dx+

∫

∂Ω

αu2ds =

∫

Ω

fudx+

∫

∂Ω

µuds.

By (4), q ≥ q− > 0 and α ≥ 0, we have

1

2

d

dt
‖u(·, t)‖2L2(Ω) +min{q−, υ1}‖u(·, t)‖

2
H1(Ω) ≤ c(‖u(·, t)‖2L2(Ω) + ‖f(·, t)‖2L2(Ω) + ‖µ(·, t)‖2L2(∂Ω)),

where c is a positive constant depending on Ω. Using the Gronwall’s inequality, we can obtain

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(Q) ≤ C0

(

‖f‖L2(Q) + ‖µ‖L2(S) + ‖φ‖L2(Ω)

)

(6)
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where C0(q
−, υ1,Ω, T ) is a positive constant.

The inverse problem is to determine the triplet (q(x), φ(x), u(x, t)) satisfying (1) and (2) to-
gether with the time-integral temperature measurements,

∫ T

0

ω1(t)u(x, t)dt = φ1(x), x ∈ Ω, (7)

∫ T

0

ω2(t)u(x, t)dt = φ2(x), x ∈ Ω, (8)

where ω1(t) and ω2(t) ∈ L∞(0, T ) are two given linearly independent weight functions, and φ1(x)
and φ2(x) are given data which may be subjected to noise due to measurement errors. We are
actually recovering the solution to the inverse problem (1), (2), (7) and (8) from the noisy data
(φǫ

1, φ
ǫ
2) satisfying

‖φǫ
1 − φ1‖L2(Ω) ≤ ǫ, ‖φǫ

2 − φ2‖L2(Ω) ≤ ǫ, (9)

where ǫ represents the noise level.
Note that φ1(x) may mimic the temperature measurement at a instant time t1 ∈ (0, T ] if

ω1(t) = δ(t− t1), namely,
u(x, t1) = φ1(x), x ∈ Ω, (10)

and φ2(x) the temperature at another instant time t2 ∈ (0, t1) if ω2(t) = δ(t− t2), namely,

u(x, t2) = φ2(x), x ∈ Ω, (11)

where δ is the Dirac delta function, and the inverse problem of finding the triplet (q(x), φ(x), u(x, t))
satisfying (1), (2), (10) and (11) has recently been investigated by the authors in [26]. The Dirac
delta function δ(t − t1) can be approximated by the function δa(t) = 1

a
√
π
e−(t−t1)2/a2 with small

positive parameter a, e.g., a = 10−3, and so does δ(t − t2), such that the approximated weighted
functions belong to the space L∞(0, T ).

Other cases of potential interest may be obtained by taking the weights as cut-off functions,
e.g.,

ω1(t) = ω̃1(t)X[t1,T ](t), ω2(t) = ω̃2(t)X[0,t1](t), t ∈ [0, T ], (12)

where XD denotes the characteristic function of the domain D and ω̃1(t) and ω̃2(t) ∈ L2(0, T ), in
which case (7) and (8) yield

∫ T

t1

ω̃1(t)u(x, t)dt = φ1(x), x ∈ Ω, (13)

∫ t1

0

ω̃2(t)u(x, t)dt = φ2(x), x ∈ Ω. (14)

The uniqueness of the general inverse problem given by (1), (2) supplemented with (7) and (8)
is still to be established, but under some of the particular cases (10)–(14) the inverse problem can
be split in two separate inverse problem, namely, first identifying q(x) and after that φ(x). For
example, when solving the inverse problem given by (1), (2), (10) and (11), one can first identify
q(x) by solving this in the layer Ω × (t2, t1) followed by retrieving the initial data φ(x) in (3) by
solving the backward heat conduction problem (BHCP) (1), (2) and (11) in the layer Ω× (0, t2).
Similarly, when solving the inverse problem given by (1), (2), (10) and (13), for t1 < T , one can
first identity q(x) by solving this in the layer Ω × (t1, T ) followed by retrieving the initial data
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φ(x) in (3) by solving the BHCP (1), (2) and (10) in the layer Ω× (0, t1). We finally mention that
uniqueness results for the retrieval of the perfusion coefficient q(x) from final time or time-average
temperature measurements can be found in [1, 2, 3, 27, 28, 29] with numerical reconstructions
performed in [4, 30, 31, 32], to mention only a few.

From the above discussion it can be realised that the choice of the weight functions in the extra
conditions (7) and (8) is important in order to extract useful information on the inverse problem
solution. An obvious necessary condition is that ω1(t) and ω2(t) are linearly independent such
that (7) and (8) are non-redundant, but is this enough? We try to gain some insight by taking
ω1(t) = 1 and ω2(t) = t (which will also be numerically investigated in Section 5) such that (7)
and (8) read as

∫ T

0

u(x, t)dt = φ1(x),

∫ T

0

tu(x, t)dt = φ2(x), x ∈ Ω. (15)

For this choice of the weight functions (and also for ω2(t) = et), it is possible to eliminate the
perfusion coefficient from the inverse problem. To see this, assuming that the functions involved
are as differentiable as required by the process of their manipulation, we proceed formally to yield

φ1(x) =tu(x, t)|t=T
t=0 −

∫ T

0

tut(x, t)dt = Tu(x, T )−

∫ T

0

t (∇ · (k(x)∇u)− q(x)u+ f(x, t)) dt

=Tu(x, T )−∇ · (k(x)∇φ2(x)) + q(x)φ2(x)−

∫ T

0

tf(x, t)dt, (16)

u(x, T )− φ(x) = ∇ · (k(x)∇φ1(x))− q(x)φ1(x) +

∫ T

0

f(x, t)dt. (17)

Assuming further that Φ(x) := Tφ1(x)− φ2(x) 6= 0, ∀x ∈ Ω, solving (16) and (17) yields

q(x) =
Tφ(x)− φ1(x) +∇ · (k∇Φ(x)) +

∫ T

0
(T − t)f(x, t)dt

Φ(x)
, (18)

u(x, T ) =
φ1(x)

(

φ1(x) +∇ · (k(x)∇φ2(x)) +
∫ T

0
tf(x, t)dt

)

Φ(x)

−
φ2(x)

(

φ(x) +∇ · (k(x)∇φ1(x)) +
∫ T

0
f(x, t)dt

)

Φ(x)
. (19)

So, q(x) (and also u(x, T )) is expressible in terms of φ(x).
Note that if an extra integral condition with a weight function ω3(t) = t2 would be available in

the form
∫ T

0

t2u(x, t) = φ3(x), x ∈ Ω, (20)

then, (15) and (20) would yield

2φ2(x) = T 2u(x, T )−∇ · (k(x)∇φ3(x)) + q(x)φ3(x)−

∫ T

0

t2f(x, t)dt, (21)

and the system of 3 equations (16), (17) and (21) would uniquely yield a solution (φ(x), u(x, T ), q(x))
provided that the determinant

0 6=

∣

∣

∣

∣

∣

∣

−1 1 φ1(x)
0 T φ2(x)
0 T 2 φ3(x)

∣

∣

∣

∣

∣

∣

= φ2(x)T
2 − Tφ3(x)
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or, φ3(x) − Tφ2(x) 6= 0, ∀x ∈ Ω. However, as only (15) is available, introducing (18) into (1) we
obtain

∂u

∂t
= ∇ · (k(x)∇u) + f(x, t)−

Tφ(x) +A(x)

Φ(x)
u, (22)

where A(x) := −φ1(x) +∇ · (k(x)∇Φ(x)) +
∫ T

0
(T − t)f(x, t)dt. Not that the new problem given

by equations (2), (3), (19) and (22) is simpler than the original one, as it is still nonlinear, but it
only involves finding the pair solution (φ(x), u(x, t)).

For the numerical reconstruction we employ a variation formulation, as described next.

3. Variational formulation

Let u(q, φ) := u(x, t; q, φ) denote the weak solution to the initial-boundary value problem (1)–
(3) subject to a particular pair (q(x), φ(x)) ∈ L∞(Ω) × L2(Ω). Then, given φǫ

1 and φǫ
2 in L2(Ω)

temperature measurements satisfying (9), the quasi-solution of the inverse problem (1), (2), (7)
and (8) can be obtained by minimizing the following least-squares objective functional:

J(q, φ) :=
1

2

∥

∥

∥

∥

∫ T

0

ω1(t)u(q, φ)dt− φǫ
1

∥

∥

∥

∥

2

L2(Ω)

+
1

2

∥

∥

∥

∥

∫ T

0

ω2(t)u(q, φ)dt− φǫ
2

∥

∥

∥

∥

2

L2(Ω)

, (23)

subject to u ∈ V 1,0
2 (Q) satisfying the variational equality (5), over the admissible setA1×A2, where

A1 = {q ∈ L∞(Ω) : 0 < q− ≤ q(x) ≤ q+, a.e. x ∈ Ω}, A2 = {φ ∈ L2(Ω) : |φ(x)| ≤ κ, a.e. x ∈ Ω},
for a positive constant κ.

The existence of a minimizer to the optimization problem (23) over the admissible set A1×A2

is established in the following theorem, according to the approaches utilized in [15, 33].

Theorem 1. There exists at least one minimizer to the optimization problem (23).

In order to numerically obtain the minimizer of the objective functional J(q, φ) (23), the CGM
can be applied together with the Fréchet gradient. Thus the adjoint problem to (1), (2), (7) and
(8) is introduced and given by



























∂λ
∂t

= −∇ · (k∇λ) + qλ− ω1(t)
(

∫ T

0
ω1(τ)u(x, τ)dτ − φǫ

1(x)
)

−ω2(t)
(

∫ T

0
ω2(τ)u(x, τ)dτ − φǫ

2(x)
)

, (x, t) ∈ Q,

k(x)∂λ
∂ν

+ αλ = 0, (x, t) ∈ S,

λ(x, T ) = 0, x ∈ Ω.

(24)

Its weak solution λ ∈ V 1,0
2 (Q) to the adjoint problem (24) is defined as satisfying

∫

Q

(

λ
∂η

∂t
+ (k∇λ) · ∇η + qλη

)

dxdt+

∫

S

αληdsdt

=

∫

Ω

∫ T

0

ω1(t)η(x, t)dt

(
∫ T

0

ω1(τ)u(x, τ)dτ − φǫ
1(x)

)

dx

+

∫

Ω

∫ T

0

ω2(t)η(x, t)dt

(
∫ T

0

ω2(τ)u(x, τ)dτ − φǫ
2(x)

)

dx, ∀η ∈ H1,1(Q) with η(·, 0) = 0. (25)
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Theorem 2. The objective functional J(q, φ) is Fréchet differentiable, and J ′
q(q, φ) and J ′

φ(q, φ)
are given by

J ′
q(q, φ) = −

∫ T

0

u(x, t)λ(x, t)dt, (26)

J ′
φ(q, φ) = λ(x, 0). (27)

Proof. Take ∆q ∈ L∞(Ω) such that q+∆q ∈ A1, and denote by ∆uq := u(q+∆q, φ)− u(q, φ) the
increment of u with respect to q. According to the initial-boundary value problem (1)–(3), this
increment satisfies the sensitivity problem:











∂(∆uq)

∂t
= ∇ · (k∇(∆uq))− q∆uq − u(q +∆q, φ)∆q, (x, t) ∈ Q,

k ∂(∆uq)

∂ν
+ α∆uq = 0, (x, t) ∈ S,

∆uq(x, 0) = 0, x ∈ Ω,

(28)

and using the estimate (6) for the above parabolic problem, we have

‖∆uq‖L2(Q) ≤ C0‖u∆q‖L2(Q) ≤ C0‖∆q‖L∞(Ω)‖u‖L2(Q).

Denote ∆Jq := J(q +∆q, φ)− J(q, φ), then we have

∆Jq =
1

2

∥

∥

∥

∥

∫ T

0

ω1(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

+
1

2

∥

∥

∥

∥

∫ T

0

ω2(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

+

∫

Q

ω1(t)∆uq(x, t)

(
∫ T

0

ω1(τ)u(x, τ)dτ − φǫ
1(x)

)

dxdt

+

∫

Q

ω2(t)∆uq(x, t)

(
∫ T

0

ω2(τ)u(x, τ)dτ − φǫ
2(x)

)

dxdt.

By the adjoint problem (24) and the sensitivity problem (28), we have

∆Jq =
1

2

∥

∥

∥

∥

∫ T

0

ω1(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

+
1

2

∥

∥

∥

∥

∫ T

0

ω2(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

+

∫

Q

∆uq

{

−
∂λ

∂t
−∇ · (k∇λ) + qλ

}

dxdt,

and
∫

Q

∆uq

{

−
∂λ

∂t
−∇ · (k∇λ) + qλ

}

dxdt = −

∫

Ω

∆uqλ|
T
0 dx

+

∫

Q

λ

{

∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}

dxdt+

∫

S

{

k
∂(∆uq)

∂ν
λ− k

∂λ

∂ν
∆uq

}

dsdt

=−

∫

Q

∆qu(q +∆q, φ)λdxdt = −

∫

Q

∆q∆uqλdxdt−

∫

Q

∆quλdxdt,

thus

∆Jq =
1

2

∥

∥

∥

∥

∫ T

0

ω1(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

+
1

2

∥

∥

∥

∥

∫ T

0

ω2(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

−

∫

Q

∆q∆uqλdxdt−

∫

Q

∆quλdxdt.
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We have
∥

∥

∥

∥

∫ T

0

ω1(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

≤ c‖ω1‖
2
L∞(0,T )‖∆uq‖

2
L2(Q) ≤ cC2

0‖ω1‖
2
L∞(0,T )‖u‖

2
L2(Q)‖∆q‖2L∞(Ω),

where c > 0 depends on Ω, and similarly

∥

∥

∥

∥

∫ T

0

ω2(t)∆uq(x, t)dt

∥

∥

∥

∥

2

L2(Ω)

≤ cC2
0‖ω2‖

2
L∞(0,T )‖u‖

2
L2(Q)‖∆q‖2L∞(Ω),

∣

∣

∣

∣

∫

Q

∆q∆uqλdxdt

∣

∣

∣

∣

≤ ‖∆q‖L∞(Ω)‖∆uq‖L2(Q)‖λ‖L2(Q) ≤ C0‖u‖L2(Q)‖λ‖L2(Q)‖∆q‖2L∞(Ω).

Finally,

∆Jq = −

∫

Q

∆quλdxdt+ o
(

‖∆q‖L∞(Ω)

)

, (29)

which means that the Fréchet derivative J ′
q(q, φ) is given by (26).

Similarly, take ∆φ ∈ L2(Ω) such that φ+∆φ ∈ A2, and denote by ∆uφ := u(q, φ+∆φ)−u(q, φ)
the increment of u with respect to φ, then this increment satisfies the sensitivity problem











∂(∆uφ)

∂t
= ∇ · (k∇(∆uφ))− q∆uφ, (x, t) ∈ Q,

k
∂(∆uφ)

∂ν
+ α∆uφ = 0, (x, t) ∈ S,

∆uφ(x, 0) = ∆φ, x ∈ Ω.

(30)

Then, we can obtain that the Fréchet derivative J ′
φ(q, φ) is given by (27) by the same approach.

The theorem is proved.

4. Conjugate gradient method

The following iteration process based on the CGM scheme is applied for the reconstruction of
the two unknown functions q(x) and φ(x) by minimizing the objective functional J(q, φ) in (23):

qn+1(x) = qn(x) + βn
q d

n
q (x), φn+1(x) = φn(x) + βn

φd
n
φ(x), n = 0, 1, 2, · · · (31)

with the search directions dnq and dnφ given by

dnq =

{

−J ′0
q ,

−J ′n
q + γn

q d
n−1
q ,

dnφ =

{

−J ′0
φ ,

−J ′n
φ + γn

φd
n−1
φ ,

n = 1, 2, · · · (32)

where n is the subscript which denotes the number of iterations, J ′n
q = J ′

q(q
n, φn), J ′n

φ = J ′
φ(q

n, φn),
q0 and φ0 are the initial guesses, βn

q and βn
φ are the step sizes for q and φ in passing from iteration

n to the next iteration n + 1. In this work, the Fletcher-Reeves formula in [17] is utilized for the
conjugate coefficients γn

q and γn
φ , and they are given by

γn
q =

‖J ′n
q ‖2L2(Ω)

‖J ′n−1
q ‖2L2(Ω)

, γn
φ =

‖J ′n
φ ‖2L2(Ω)

‖J ′n−1
φ ‖2L2(Ω)

, n = 1, 2, · · · (33)

To determine the step sizes βn
q and βn

φ , the exact line search is utilized, i.e.,

Jn+1 = J(qn + βn
q d

n
q , φ

n + βn
φd

n
φ) = min

βq ,βφ≥0
J(qn + βqd

n
q , φ

n + βφd
n
φ), n = 0, 1, 2 · · · . (34)
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By (29), (31) and the gradient J ′n+1
q (26), we have

∂J

∂βn
q

=
∂J

∂qn+1
·
∂qn+1

∂βn
q

= lim
βn
q →0

J(qn+1, φn+1)− J(qn, φn+1)

βn
q d

n
q

dnq = lim
βn
q →0

J(qn+1, φn+1)− J(qn, φn+1)

βn
q

= lim
βn
q →0

1

βn
q

(

−

∫

Q

u(qn, φn+1)λ(qn, φn+1)βn
q d

n
q dxdt+ o(‖βn

q d
n
q ‖L∞(Ω))

)

=−

∫

Q

u(qn+1, φn+1)λ(qn+1, φn+1)dnq dxdt =

∫

Ω

J ′n+1
q dnq dx,

and similarly, we have
∂J

∂βn
φ

=

∫

Ω

J ′n+1
φ dnφdx.

Thus, condition (34) implies that the step sizes βn
q and βn

φ satisfy the following conditions:

〈J ′n+1
q , dnq 〉 = 0, 〈J ′n+1

φ , dnφ〉 = 0, (35)

where 〈·, ·〉 is the inner product in the space L2(Ω).

4.1. Global convergence

For the exact data (7) and (8), the global convergence of the CGM over the admissible set
A1 ×A2 is established in the following sense:

lim infn→∞‖J ′n
q ‖L2(Ω) = 0, lim infn→∞‖J ′n

φ ‖L2(Ω) = 0. (36)

First, we will prove that the Fréchet gradients J ′
q and J ′

φ are Lipschitz continuous over A1 × A2

under the following stronger assumption on the input data than in Lemma 1.

Assumption 1. Let Ω ⊂ R
N (N ≥ 2) be a bounded domain of class C2,β for some β > 0, i.e. the

boundary ∂Ω is a (N − 1)-dimensional manifold of class C2,β such that Ω lies locally on one side
of ∂Ω, (a function is of class C2,β if it is of class C2 and its partial derivative of second-order are
Hölder continuous of order β). Let p > 1 + N/2 and r > N + 1 and assume that f ∈ Lp(Q) and
µ ∈ Lr(S).

Then we have the following lemma, see Proposition 3.3 of [34].

Lemma 2. Let the Assumption 1 on Ω, f and µ hold. Let also the other assumptions of Lemma 1
on data α, k and q hold, and also let φ ∈ A2 ⊂ L∞(Ω). Then, the weak solution u(x, t) ∈ V 1,0

2 (Q) of
the initial-boundary value direct problem (1)–(3) also belongs to L∞(Q) and there exists a positive
constant C = C(N, p, r, q−,Ω, T ) such that

‖u‖L∞(Q) ≤ C(‖f‖Lp(Q) + ‖µ‖Lr(S) + ‖φ‖L∞(Ω)). (37)

For the adjoint problem we also have the following lemma.

Lemma 3. Let the assumptions of Lemma 2 hold and let ω1 and ω2 be given weights in L∞(0, T ).
Then, there exists a unique weak solution λ(x, t) ∈ V 1,0

2 (Q) ∩ L∞(Q) to the adjoint problem (24)
with ǫ = 0, which satisfies

‖λ‖L∞(Q) ≤ C1‖u‖L∞(Q) (38)

for some positive constant C1 depending on N, p, r, q−,Ω, T, ω1 and ω2.

10



Proof. First, through the change of time variable t 7→ T − t, the adjoint problem (24) can be seen
of the same form as the problem (1)–(3) with µ = φ = 0 and the source

f(x, t) = f̃(x, t) := ω1(t)

(
∫ T

0

ω1(τ)u(x, τ)dτ − φ1(x)

)

+ ω2(t)

(
∫ T

0

ω2(τ)u(x, τ)dτ − φ2(x)

)

.

From Lemma 2 it follows that u ∈ L∞(Q) and since ω1 and ω2 ∈ L∞(0, T ), and using also (7)
and (8), we obtain that f̃ ∈ L∞(Q). Moreover, from (7) and (8), and using the inequality (37) of
Lemma 2 for the function λ satisfying the adjoint problem (24) with ǫ = 0, we obtain

‖λ‖L∞(Q) ≤ C‖f̃‖Lp(Q) ≤ C‖f̃‖L∞(Q) ≤ 2C(‖ω1‖
2
L∞(0,T ) + ‖ω2‖

2
L∞(0,T ))‖u‖L∞(Q),

which implies that (38) holds.

Theorem 3. Under the assumptions of Lemma 3, the gradients J ′
q in (26) and J ′

φ in (27) are
Lipschitz continuous, namely, there exist two positive constants Mq and Mφ such that

‖J ′
q(q

1, φ1)− J ′
q(q

2, φ2)‖L2(Ω) ≤ Mq(‖q
1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)), (39)

‖J ′
φ(q

1, φ1)− J ′
φ(q

2, φ2)‖L2(Ω) ≤ Mφ(‖q
1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)), (40)

for any q1, q2 ∈ A1, φ
1, φ2 ∈ A2.

Proof. By Lemma 2 and using the estimate (37), it is easy to see that

‖u(q, φ)‖L∞(Q) ≤ C(‖f‖Lp(Q) + ‖µ‖Lr(S) + κ) =: K1 (41)

for any q ∈ A1 and φ ∈ A2, and K1 is a positive constant depending on N, p, r, q−, κ,Ω, T, f and
µ (independent of q and φ). Similarly, using Lemma 3, (38) and (41), we have

‖λ(q, φ)‖L∞(Q) ≤ C1K1 =: K2, (42)

where K2 is a positive constant depending on N, p, r, q−, κ,Ω, T, ω1, ω2, f and µ (independent of q
and φ).

Denote uq := u(q1, φ1)− u(q2, φ1) and by the direct problem (1)–(3), we have











∂uq

∂t
= ∇ · (k∇uq)− q1uq − (q1 − q2)u(q2, φ1), (x, t) ∈ Q,

k ∂uq

∂ν
+ αuq = 0, (x, t) ∈ S,

uq(x, 0) = 0, x ∈ Ω.

Since q1, q2 ∈ A1 ⊂ L∞(Ω), then q1−q2 ∈ L∞(Ω) ⊂ L2(Ω), and by using the estimate (6), we have

‖uq‖L2(Q) ≤ C0‖(q
1 − q2)u(q2, φ1)‖L2(Q) ≤ C0K1‖q

1 − q2‖L2(Ω).

Similarly, denoting uφ := u(q2, φ1)− u(q2, φ2), we have











∂uφ

∂t
= ∇ · (k∇uφ)− q2uφ, (x, t) ∈ Q,

k
∂uφ

∂ν
+ αuq = 0, (x, t) ∈ S,

uφ(x, 0) = φ1 − φ2, x ∈ Ω,

and ‖uφ‖L2(Q) ≤ C0‖φ
1 − φ2‖L2(Ω).
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Define λq := λ(q1, φ1)− λ(q2, φ1) and by the adjoint problem (24), we have



















∂λq

∂t
= −∇ · (k∇λq) + q1λq + (q1 − q2)λ(q2, φ1)

−ω1(t)
∫ T

0
ω1(τ)uq(x, τ)dτ − ω2(t)

∫ T

0
ω2(τ)uq(x, τ)dτ, (x, t) ∈ Q,

k ∂λq

∂ν
+ αλq = 0, (x, t) ∈ S,

λq(x, T ) = 0, x ∈ Ω,

and by Lemma 1, we have

‖λq‖L2(Q) ≤C0

∥

∥

∥

∥

(q1 − q2)λ(q2, φ1) + ω1

∫ T

0

ω1(τ)uq(·, τ)dτ + ω2

∫ T

0

ω2(τ)uq(·, τ)dτ

∥

∥

∥

∥

L2(Q)

≤C0K2‖q
1 − q2‖L2(Ω) + C0

(

‖ω1‖
2
L∞(0,T ) + ‖ω2‖

2
L∞(0,T )

)

‖uq‖L2(Q) ≤ K3‖q
1 − q2‖L2(Ω),

where K3 := C0K2 + C2
0K1

(

‖ω1‖
2
L∞(0,T ) + ‖ω2‖

2
L∞(0,T )

)

. Similarly, denoting λφ := λ(q2, φ1) −

λ(q2, φ2), we have



















∂λφ

∂t
= −∇ · (k∇λφ) + q2λφ

−ω1(t)
∫ T

0
ω1(τ)uφ(x, τ)dτ − ω2(t)

∫ T

0
ω2(τ)uφ(x, τ)dτ, (x, t) ∈ Q,

k
∂λφ

∂ν
+ αλφ = 0, (x, t) ∈ S,

λφ(x, T ) = 0, x ∈ Ω,

and

‖λφ‖L2(Q) ≤C0

∥

∥

∥

∥

ω1

∫ T

0

ω1(τ)uφ(·, τ)dτ + ω2

∫ T

0

ω2(τ)uφ(·, τ)dτ

∥

∥

∥

∥

L2(Q)

≤C0

(

‖ω1‖
2
L∞(0,T ) + ‖ω2‖

2
L∞(0,T )

)

‖uφ‖L2(Q) ≤ K4‖φ
1 − φ2‖L2(Ω),

where K4 := C2
0

(

‖ω1‖
2
L∞(0,T ) + ‖ω2‖

2
L∞(0,T )

)

.

Denote ∆J ′
q := J ′

q(q
1, φ1)− J ′

q(q
2, φ2), then we have

‖∆J ′
q‖L2(Ω) =

∥

∥

∥

∥

∫ T

0

[u(q1, φ1)λ(q1, φ1)− u(q2, φ2)λ(q2, φ2)]dt

∥

∥

∥

∥

L2(Ω)

,

and

u(q1, φ1)λ(q1, φ1)− u(q2, φ2)λ(q2, φ2) = [u(q1, φ1)− u(q2, φ1) + u(q2, φ1)− u(q2, φ2)]λ(q1, φ1)

+[λ(q1, φ1)− λ(q2, φ1) + λ(q2, φ1)− λ(q2, φ2)]u(q2, φ2) = (uq + uφ)λ(q
1, φ1) + (λq + λφ)u(q

2, φ2),

thus

‖∆J ′
q‖L2(Ω) ≤

∥

∥

∥

∥

∫ T

0

(uq + uφ)λ(q
1, φ1)dt

∥

∥

∥

∥

L2(Ω)

+

∥

∥

∥

∥

∫ T

0

(λq + λφ)u(q
2, φ2)dt

∥

∥

∥

∥

L2(Ω)

≤c(‖uq‖L2(Q) + ‖uφ‖L2(Q))‖λ(q
1, φ1)‖L∞(Q) + c(‖λq‖L2(Q) + ‖λφ‖L2(Ω))‖u(q

2, φ2)‖L∞(Q)

≤c(C0K1K2 +K1K3)‖q
1 − q2‖L2(Ω) + c(C0K2 +K1K4)‖φ

1 − φ2‖L2(Ω)

≤Mq(‖q
1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)),
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where c is a positive constant depending on Ω and T , and Mq := c×max{C0K1K2+K1K3, C0K2+
K1K4} > 0, which is independent of q1, q2, φ1 and φ2.

Denote ∆J ′
φ = J ′

φ(q
1, φ1)− J ′

φ(q
2, φ2), then by (6) we have

‖∆J ′
φ‖L2(Ω) =‖∆λ(x, 0)(q1, φ1)− λ(x, 0)(q2, φ2)‖L2(Ω) ≤ ‖λq(x, 0)‖L2(Ω) + ‖λφ(x, 0)‖L2(Ω)

≤C0

∥

∥

∥

∥

(q1 − q2)λ(q2, φ1) + ω1

∫ T

0

ω1(τ)uq(·, τ)dτ + ω2

∫ T

0

ω2(τ)uq(·, τ)dτ

∥

∥

∥

∥

L2(Q)

+ C0

∥

∥

∥

∥

ω1

∫ T

0

ω1(τ)uφ(·, τ)dτ + ω2

∫ T

0

ω2(τ)uφ(·, τ)dτ

∥

∥

∥

∥

L2(Q)

≤K3‖q
1 − q2‖L2(Ω) +K4‖φ1 − φ2‖L2(Ω) ≤ Mφ(‖q

1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)),

where Mφ := max{K3, K4} > 0 independent of q1, q2, φ1 and φ2. The theorem is proved.

From the Lipschitz continuity of the gradients J ′
q and J ′

φ, following the arguments of [18, 35,
36, 37], we can obtain that

∑

n≥0

‖J ′n
q ‖4L2(Ω)

‖dnq ‖
2
L2(Ω)

< ∞,
∑

n≥0

‖J ′n
φ ‖4L2(Ω)

‖dnφ‖
2
L2(Ω)

< ∞. (43)

Theorem 4. Under the assumptions of Theorem 3, the CGM either terminates at a stationary
point or converges in the following senses:

lim infn→∞‖J ′n
q ‖L2(Ω) = 0, lim infn→∞‖J ′n

φ ‖L2(Ω) = 0. (44)

Proof. Assume by absurd that lim infn→∞‖J ′n
q ‖L2(Ω) 6= 0. Then, there exists a constant c > 0 and

a natural number n0 > 0 such that ‖J ′n
q ‖L2(Ω) ≥ c for n ≥ n0. Then, (33) and (35) imply that

‖dnq ‖
2
L2(Ω) = ‖J ′n

q ‖2L2(Ω) +
‖J ′n

q ‖4
L2(Ω)

‖J ′n−1
q ‖4

L2(Ω)

‖dn−1
q ‖2L2(Ω) for n > n0. Dividing both sides by ‖J ′n

q ‖4L2(Ω) we

obtain

‖dnq ‖
2
L2(Ω)

‖J ′n
q ‖4L2(Ω)

=
1

‖J ′n
q ‖2L2(Ω)

+
‖dn−1

q ‖2L2(Ω)

‖J ′n−1
q ‖4L2(Ω)

=
n
∑

i=n0

1

‖J ′i
q ‖

2
L2(Ω)

≤
n− n0 + 1

c
, n > n0.

Then,
∑

n≥0

‖J ′n
q ‖4L2(Ω)

‖dnq ‖
2
L2(Ω)

≥
∑

n>n0

‖J ′n
q ‖4L2(Ω)

‖dnq ‖
2
L2(Ω)

≥ c
∑

n≥1

1

n+ 1
= ∞,

which is in contradiction with the first inequality in (43). Thus, the first result in (44) holds, and
the second result in (44) can be obtained by the same method. The proof is complete.

4.2. CGM

Based on the above discussions, all the coefficients of the iteration process (31) and (32) are
expressed in explicit form except for the search step sizes βn

q and βn
φ which satisfy the exact line
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search conditions (35). These can be found by minimizing

J(qn+1, φn+1) =
1

2

∫

Ω

(
∫ T

0

ω1u(q
n + βn

q d
n
q , φ

n + βn
φd

n
φ)dt− φǫ

1

)2

dx

+
1

2

∫

Ω

(
∫ T

0

ω2u(q
n + βn

q d
n
q , φ

n + βn
φd

n
φ)dt− φǫ

2

)2

dx.

Since the above expression shows that the step sizes βn
q and βn

φ are in implicit form, the Taylor
series expression can be applied to approximate J(qn+1, φn+1) such that the step sizes βn

q and
βn
φ become explicit in the new formulation. Therefore, setting ∆qn = dnq and ∆φn = dnφ, the

temperature u(x, t; qn + βn
q d

n
q , φ

n + βn
φd

n
φ) is linearised by a Taylor series expression in the form

u(x, t; qn + βn
q d

n
q , φ

n + βn
φd

n
φ) ≈ u(x, t; qn, φn) + βn

q d
n
q

∂u(x, t; qn, φn)

∂qn
+ βn

φd
n
φ

∂u(x, t; qn, φn)

∂φn

≈ u(x, t; qn, φn) + βn
q ∆uq(x, t; q

n, φn) + βn
φ∆uφ(x, t; q

n, φn).

Here the functions ∆uq(x, t; q
n, φn) and ∆uφ(x, t; q

n, φn) can be obtained by solving the sensitivity
problems (28), and (30). Then, we rewrite

un
1 =

∫ T

0

ω1u(q
n, φn)dt, un

2 =

∫ T

0

ω2u(q
n, φn)dt,

∆un
q,1 =

∫ T

0

ω1∆uq(q
n, φn)dt, ∆un

q,2 =

∫ T

0

ω2∆uq(q
n, φn)dt,

∆un
φ,1 =

∫ T

0

ω1∆uφ(q
n, φn)dt, ∆un

φ,2 =

∫ T

0

ω2∆uφ(q
n, φn)dt,

and then

J(qn+1, φn+1) =
1

2

∫

Ω

{

(

un
1 + βn

q ∆un
q,1 + βn

φ∆un
φ,1 − φǫ

1

)2
+
(

un
2 + βn

q ∆un
q,2 + βn

φ∆un
φ,2 − φǫ

2

)2
}

dx.

The partial derivatives of the objective functional J(qn+1, φn+1) with respect to βn
q and βn

φ are
given by

∂J(qn+1, φn+1)

∂βn
q

= C1β
n
q + C2β

n
φ + C3,

∂J(qn+1, φn+1)

∂βn
φ

= C2β
n
q + C4β

n
φ + C5,

where

C1 =

∫

Ω

[

(∆un
q,1)

2 + (∆un
q,2)

2
]

dx, C2 =

∫

Ω

(

∆un
q,1∆un

φ,1 +∆un
q,2∆un

φ,2

)

dx,

C3 =

∫

Ω

[

(un
1 − φǫ

1)∆un
q,1 + (un

2 − φǫ
2)∆un

q,2

]

dx, C4 =

∫

Ω

[

(∆un
φ,1)

2 + (∆un
φ,2)

2
]

dx,

C5 =

∫

Ω

[

(un
1 − φǫ

1)∆un
φ,1 + un

2 − φǫ
2)∆un

φ,2

]

dx.

According to the conditions (35), we set

∂J(qn+1, φn+1)

∂βn
q

=
∂J(qn+1, φn+1)

∂βn
φ

= 0,

14



and then obtain the search step sizes βn
q and βn

φ as follows:

βn
q =

C3C4 − C2C5

C2
2 − C1C4

, βn
φ =

C1C5 − C2C3

C2
2 − C1C4

. (45)

The iteration process given by (31) does not provide the CGM with the stabilisation necessary
for the minimizing of the objective functional (23) to be classified as well-posed because of the
errors inherent in the time-average temperature measurements (7) and (8). However, the method
may become well-posed if the discrepancy principle is applied to stop the iteration procedure.
According to the discrepancy principle, the iterative procedure is stopped when the following
criterion is satisfied:

J(qn, φn) ≈
1

2

(

‖φǫ
1 − φ1‖

2
L2(Ω) + ‖φǫ

2 − φ2‖
2
L2(Ω)

)

≤ ǫ2, (46)

where φǫ
1 and φǫ

2 are noisy perturbations of the data φ1 and φ2, respectively, satisfying (9). Then,
the CGM for the numerical reconstruction of the perfusion coefficient q(x) and initial temperature
φ(x) is shown as follows:

S1 Set n = 0 and choose initial guesses q0 and φ0 for the unknowns q and φ, respectively.

S2 Solve the initial-boundary value direct problem (1)–(3) numerically by applying the FDM to
compute the temperature u(x, t; qn, φn), and the objective functional J(qn, φn) by (23).

S3 Solve the adjoint problem (24) to get the function λ(x, t; qn, φn), and the gradients J ′
q(q

n, φn)
in (26) and J ′

φ(q
n, φn) in (27). Compute the conjugate coefficients γn

q and γn
φ in (33), and

the search directions (32).

S4 Solve the sensitivity problems given by (28) for ∆uq(x, t; q
n, φn), and (30) for ∆uφ(x, t; q

n, φn)
by taking ∆qn = dnq and ∆φn = dnφ, and compute the step sizes βn

q and βn
φ by (45).

S5 Compute qn+1 and φn+1 by (31).

S6 If the condition (46) is satisfied, then go to S7. Else set n = n+ 1, and go to S2.

S7 End.

5. Numerical results and discussions

In this section, the perfusion coefficient q(x) and the initial temperature φ(x) are reconstructed
numerically and simultaneously by the nonlinear CGM proposed in Section 4. The FDM, based
on the Crank-Nicolson scheme for the one-dimensional (N = 1) case and the alternating direction
implicit (ADI) scheme for the two-dimensional (N = 2) case, are applied to solve the direct,
sensitivity and adjoint problems involved. The Simpson’s rule is utilized to deal with all the
integrals involved. The accuracy errors, as functions of the iteration number n, are defined as

E1(q
n) = ‖qn − q‖L2(Ω), (47)

E2(φ
n) = ‖φn − φ‖L2(Ω), (48)

where qn and φn are the numerical results obtained by the CGM at the iteration number n, and
q and φ are the analytical perfusion coefficient and initial temperature, if available.
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The integral temperature observations φǫ
1 and φǫ

2 are corrupted by Gaussian additive noise as

φǫ
1 = φ1 + σ × random(1), φǫ

2 = φ2 + σ × random(1), (49)

where σ = p
100

maxx∈Ω {|φ1|, |φ2|} is the standard deviation, p% represents the percentage of noise,
and the term random(1) generates random values from the normal distribution with zero mean
and standard deviation equal to unity.

In the following sections, numerical examples are considered in one- and two-dimensions.

5.1. Example 1

In the the one-dimensional (N = 1) case, we take Ω = (0, 1)

k ≡ 1, α ≡ 1, f(x, t) =
(

x2(1 + π + sin(πx)) + π2 sin(πx)
)

e−t, µ(0, t) = µ(1, t) = e−t, (50)

and the analytical solution given by

q(x) = 1 + x2, φ(x) = 1 + π + sin(πx), u(x, t) = (1 + π + sin(πx))e−t. (51)

The initial guesses are chosen arbitrary, say q0(x) = 1.5 and φ0(x) = 1.
We first fix T = 1, ω1(t) = 1 and ω2(t) = 2t such that (7) and (8) become

φ1(x) = (1− e−T )(1 + π + sin(πx)), φ2(x) = 2(1− (1 + T )e−T )(1 + π + sin(πx)), (52)

and investigate, for exact data, the influence of the mesh size of the Crank-Nicolson FDM that is
used to solve the problems (direct, sensitivity and adjoint problems) in the CGM, which is run
for 50 iterations. Then, the obtained errors (47) and (48) were E1(q

50) ∈ {0.0214, 0.0397, 0.0691}
and E2(φ

50) ∈ {0.0344, 0.0478, 0.0529} for the three mesh sizes ∆x = ∆t ∈ {0.01, 0.05, 0.1},
respectively. These results indicate a monotonic decreasing convergence of the numerical solutions
for q(x) and φ(x), as the FDM mesh size decreases.

Next, we investigate the influence of the final time T , as for the classical backward heat con-
duction problem, with final data at t = T , the reconstruction of the initial temperature (3)
becomes more (exponentially) ill-posed with increasing T . For various T ∈ {1, 2, 4}, the ob-
tained errors (47) and (48), with ∆x = ∆t = 0.01, were E1(q

50) ∈ {0.0214, 0.0168, 0.0253} and
E2(φ

50) ∈ {0.0344, 0.0366, 0.0506}. These results indicate only some slight decrease in accuracy
of the initial temperature (3), as T increases, because the imposed extra data (52) represent an
average temperature measurement rather than the temperature measurement at a latter time. In
support to this conclusion, supposing that q(x) has been determined or is known, it is interesting to
comment on solving a new backward average heat conduction problem consisting of reconstructing
the initial temperature (3) from a time integral measurement, e.g. consider solving











∂u
∂t

= ∂2u
∂x2 , (x, t) ∈ (0, 1)× (0, T ),

u|∂Ω×(0,T ) = 0,
∫ T

0
u(x, t)dt = φT (x), x ∈ (0, 1).

(53)

Then, by the semi-group theory, or simply by the method of separating variables, one obtains the
exact solution of the problem (53) in the Fourier sine series form

u(x, t) =
∞
∑

n=1

An sin(nπx)e
−n2π2t,
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where

An =
2n2π2

1− e−n2π2T

∫ 1

0

φT (x) sin(nπx)dx, n ∈ N
∗,

which shows that the problem (53) is only mildly ill-posed, as opposed to the classical backward
heat conduction problem, which is exponentially ill-posed.

Finally, fixing T = 1 and ∆x = ∆t = 0.01, we investigate the influence of the choices
of the weight functions in (7) and (8). The obtained errors (47) and (48) were E1(q

50) ∈
{0.0214, 0.0357, 0.0170} and E2(φ

50) ∈ {0.0344, 0.1093, 0.2216} for the choices (ω1(t), ω2(t)) ∈
{(1, 2t), (1, t2), (2t, t2)}, respectively. These results indicate that lower-order moments (in t) con-
tain more information than the higher-order moments for the recovery of the initial temperature
(3).

In the remainer of this section we fix T = 1, ∆x = ∆t = 0.01 and ω1(t) = 1, ω2(t) = 2t, such
that the measurement information (7) and (8) is given by (52).
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Figure 1: (a) The objective functional (23), the accuracy errors (b) (47) and (c) (48), with p ∈ {0, 1} noise, for
Example 1.
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Figure 2: The norm of gradients (a) ‖J ′

q(q
n, φn)‖L2(Ω) and (b) ‖J ′

φ(q
n, φn)‖L2(Ω), with p ∈ {0, 1} noise, for Example

1.

Figures 1(a)–1(c) show the objective functional J(qn, φn) given by (23) and the accuracy errors
E1(q

n) given by (47) and E2(φ
n) given by (48), for the reconstruction of the two unknown functions,
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simultaneously, in case of no noise, i.e., p = 0, and with p = 1 noise. Figure 1(a) illustrates the
rapid monotonic decreasing convergence of the objective functional, as a function of iteration
number n. The stopping number of the iterative process is 50 for exact data, i.e., for p = 0, whilst
the iteration process is stopped at iteration number 14 according to the discrepancy principle (46)
for p = 1 noise. On comparing Figures 1(a)–1(c) it can be seen that there is some consistency and
agreement between the stopping iteration numbers given by the discrepancy principle (46) and the
optimal iteration numbers given by the minimum of the errors (47) and (48).
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Figure 3: The exact and numerical results for (a) the perfusion coefficient q(x) and (b) the initial temperature φ(x),
with p ∈ {0, 1} noise, for Example 1.

Figure 2 shows the convergence of the norms of gradients ‖J ′
q(q

n, φn)‖L2(Ω), ‖J
′
φ(q

n, φn)‖L2(Ω)

to small positive values with the increasing of the iteration number for p = 0. For p% = 1% noise,
the two norms are decreasing after the stopping iteration number 14, whilst the errors in Figures
1(b) and 1(c) are increasing after this discrepancy principle threshold. Such phenomenon means
that while the CGM is convergent, the numerical solution is unstable, since the inverse problem
is ill-posed. This is why the discrepancy principle (46) is applied to regularise the CGM to attain
the stable solutions.

The numerical solutions of the perfusion coefficient q(x) and the initial temperature φ(x) are
presented in Figures 3(a) and 3(b) for p ∈ {0, 1} noise. As previously inferred from Figure 1(a),
the plotted results are after 30 iterations in the case of no noise, while for noisy data the results
are plotted after 14 iterations. From Figure 3 it can be seen that the accurate and stable results
are obtained for both perfusion coefficient q(x) and the initial temperature φ(x).

5.2. Example 2

We take Ω = (0, 1), T = 1, ω1(t) = 1, ω2(t) = 4t and

k ≡ 1, α ≡ 1, µ(0, t) = µ(1, t) = e−t,

f(x, t) = 2e−t + (2 + x− x2)e−t ×







1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2, x ∈ [0.7, 1],

(54)

φ1(x) = (1− e−1)(2 + x− x2), φ2(x) = (4− 6e−1)(2 + x− x2), (55)

18



with this data the analytical solution of the inverse problem (1), (2), (7) and (8) is given by

q(x) =







2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

φ(x) = 2 + x− x2, u(x, t) = (2 + x− x2)e−t. (56)
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Figure 4: (a) The objective functional (23), and the exact and numerical results for (b) the perfusion coefficient
q(x) and (c) the initial temperature φ(x), with p ∈ {0, 1} noise, for Example 2.

In comparison with the previous Example 1, this example is more severe since the perfusion
coefficient to be retrieved is a discontinuous function. We take the initial guesses q0(x) = 1 and
φ0(x) = 1 and employ the Crank-Nicolson FDM with the mesh sizes ∆x = ∆t = 0.01. Figure 4 (a)
illustrates the convergence of the objective functional (23) with the iterative procedure stopped at
iteration numbers {50, 5} for p ∈ {0, 1}, respectively.

The corresponding numerical solutions for the perfusion coefficient q(x) and initial temperature
φ(x) at these stopping iteration numbers are shown in Figures 4(b) and 4(c), respectively. From
these figures it can be seen that the numerical solutions are stable and reasonably accurate bearing
in mind the severe discontinuous perfusion coefficient that had to be retrieved simultaneously with
the initial temperature.

5.3. Example 3

We now consider a two-dimensional example and take Ω = (0, 1) × (0, 1), T = 1, ω1(t) = 1,
ω2(t) = 3t and

k = I2, α ≡ 1, µ(0, x2, t) = µ(1, x2, t) = µ(x1, 0, t) = µ(x2, 1, t) = e−t,

f(x1, x2, t) = (2π2 + x2
1 + x2

2)(sin
2(πx1) sin

2(πx2) + 1)e−t

− 2π2(cos(2πx1) sin
2(πx2) + sin2(πx1) cos(2πx2))e

−t, (57)

φ1(x1, x2) = (1− e−1)(sin2(πx1) sin
2(πx2) + 1),

φ2(x1, x2) = (3− 5e−1)(sin2(πx1) sin
2(πx2) + 1). (58)

With this data, the analytical solution of the inverse problem (1), (2), (7) and (8) is given by

q(x1, x2) = 1 + 2π2 + x2
1 + x2

2, φ(x1, x2) = sin2(πx1) sin
2(πx2) + 1,

u(x1, x2, t) = (sin2(πx1) sin
2(πx2) + 1)e−t. (59)
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Figure 5: (a) The objective functional (23), the errors (b) (47) and (c) (48), with p ∈ {0, 1} noise, for Example 3.
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Figure 7: (a) The exact perfusion coefficient, and numerical results with (b) p = 0 and (c) p = 1, for Example 3.

The ADI scheme with mesh sizes ∆x1 = ∆x2 = ∆t = 0.01 is used to obtain the numerical
solutions for the direct, sensitivity and adjoint problems in the algorithm for the two-dimensional
(N = 2) case. The initial guesses are chosen as q0(x1, x2) = 20 and φ0(x1, x2) = 1. Figures 5–8
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for Example 3 represent analogous quantities to Figures 1–3 of Example 1 and similar conclusions
can be observed.
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Figure 8: (a) The exact initial temperature, and numerical results with (b) p = 0 and (c) p = 1, for Example 3.

6. Conclusions

In this paper, the simultaneous retrieval of the space-dependent perfusion coefficient and initial
temperature from time-integral weighted temperature observations has been investigated. The two
unknown functions have been identified simultaneously by minimizing the least-squares objective
functional using the CGM based on the newly derived adjoint problem (24), the sensitivity prob-
lems (28) and (30), and the gradient equations (26) and (27). Stability has been achieved by
stopping the iterations according to the discrepancy criterion (46). Three numerical examples in
both one- and two-dimensions have been presented, and discuss showing the accuracy and stabil-
ity of the numerical reconstruction. Future work will consider the simultaneous retrieval of the
space-dependent perfusion coefficient, metabolic heat source and initial temperature.
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