
This is a repository copy of Ruin problems of a two-dimensional fractional Brownian 
motion risk process.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/138929/

Version: Accepted Version

Article:

Ji, L and Robert, S (2018) Ruin problems of a two-dimensional fractional Brownian motion 
risk process. Stochastic Models, 34 (1). pp. 73-97. ISSN 1532-6349 

https://doi.org/10.1080/15326349.2017.1389284

© 2018 Taylor & Francis. This is an author produced version of a paper published in 
Stochastic Models. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


RUIN PROBLEM OF A TWO-DIMENSIONAL FRACTIONAL BROWNIAN MOTION

RISK PROCESS

LANPENG JI AND STEPHAN ROBERT

Abstract: This paper investigates ruin probability and ruin time of a two-dimensional fractional Brownian

motion risk process. The net loss process of an insurance company is modeled by a fractional Brownian motion.

The two-dimensional fractional Brownian motion risk process models the surplus processes of an insurance

and a reinsurance company, where the net loss are divided between them in some specified proportions. The

ruin problem considered is that of the two-dimensional risk process first entering the negative quadrant, that

is, the simultaneous ruin problem. We derive both asymptotics of the ruin probability and approximations of

the scaled conditional ruin time as the initial capital tends to infinity.

Key Words: Ruin probability; ruin time; asymptotics; two-dimensional risk process; fractional Brownian

motion; reinsurance

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Let {BH(t), t ∈ R} be a standard fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1), i.e., an

H-self-similar centered Gaussian process with stationary increments and covariance function given by

Cov(BH(t), BH(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

Particularly, if H = 1/2, then B1/2 is the standard Brownian motion (Bm).

In classical risk theory, the surplus process of an insurance company is modeled by the compound Poisson or

the general compound renewal risk process. For both applied and theoretical investigations, calculation of the

ruin probabilities for such models is of particular interest. In order to avoid technical issues and to allow for

dependence among the claim sizes, these risk models are often approximated by the Bm (also called diffusion)

(e.g., [1, 2, 3, 4]) or the fBm risk model (e.g., [5, 6]). The basic premise for the approximation is to let the

number of claims grow in a unit time interval and to make the claim sizes smaller in such a way that the risk

process converges to a self-similar process with drift. Calculations of ruin probabilities and related quantities

for Bm, fBm and more general Gaussian risk models have been the subject of study of numerous contributions;

see, e.g., [3, 4, 7, 8, 9, 10, 11, 12, 13].
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Consider the fBm risk process defined by

R(t) = x+ pt−BH(t), t ≥ 0,

where x > 0 is the initial capital, p > 0 is the net profit rate, and BH models the net loss process. Roughly

speaking, BH(t) is an approximation of the total claim amount process by time t minus its expectation, the

latter is usually called the pure premium amount and calculated to cover the average payments of claims. The

net profit, also called safety loading, is the component which protects the company from large deviations of

claims from the average and also allows an accumulation of capital.

Motivated by [14, 15, 16] we shall consider in this paper a particular two-dimensional fBm risk model. In this

model two insurance companies split the net loss in proportions δ1, δ2 > 0, with δ1 + δ2 = 1, and receive net

profit at rates p1, p2 > 0, respectively. Let Ri denote the risk process of the ith company

Ri(t) = xi + pit− δiBH(t), t ≥ 0, i = 1, 2,

where xi > 0 denotes the initial capital. Note that in the above two-dimensional model both claims and pure

premiums (i.e., the net loss) are split between the two companies, which corresponds to proportional reinsurance

dependence of the companies as discussed in the aforementioned contributions. We refer to [17, 18, 19, 20]

and references therein for more motivations and discussions on multi-dimensional risk models.

As ruin time and ruin probability of the two-dimensional risk process that we are going to discuss do not

change under a scaling of (R1, R2), we shall consider in the sequel the following scaled risk processes

Ui(t) = Ri(t)/δi = ui + cit−BH(t), t ≥ 0, i = 1, 2,

where ui := xi/δi and ci := pi/δi.

We are interested in the simultaneous ruin time and the simultaneous ruin probability defined by

τ(u1, u2) = inf{t ≥ 0 : U1(t) < 0, U2(t) < 0}

and, respectively,

ψ(u1, u2) = P {τ(u1, u2) <∞} .

We shall obtain sharp approximations of the above quantities, as u1, u2 tend to infinity along a ray (i.e., u1/u2

is constant). For this purpose, we shall simply assume that

ui = qiu(1)

with qi > 0, i = 1, 2 fixed constants, and finally allow u to tend to infinity.

As indicated in [21], the consideration of large initial capitals is not just a mathematical assumption but

also an economic necessity, which is reinforced by the supervisory authorities. In any civilized country it is

not possible to start up an insurance business without a sufficiently large initial capital, which prevents the
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business from bankruptcy due to too many small or a few large claim sizes in the first period of its existence,

before the premium income can balance the losses and the gains.

Notice that under the assumption (1) the quantities τ(u1, u2) and ψ(u1, u2) are functions of a single variable

u > 0, and thus we shall denote for any u

τ(u) = τ(u1, u2), ψ(u) = ψ(u1, u2).

We shall give full analysis of approximations for the above simultaneous ruin time and the simultaneous ruin

probability for large u. We point out that other different types of ruin can also be defined for the two-

dimensional fBm risk process as in [14]. However, full analysis of the corresponding ruin problems is more

complex and thus will be considered elsewhere.

Observe that under the assumption (1) the ruin time can be rewritten as

τ(u) = inf{t ≥ 0 : BH(t) > max(q1u+ c1t, q2u+ c2t)}.

Thus, the two-dimensional problem may also be viewed as a one-dimensional crossing problem over a piece-wise

linear barrier. If the two lines q1u+ c1t, q2u+ c2t do not intersect over [0,∞), then the problems degenerate

to the classical problems of one-dimensional fBm risk process, which has been discussed in the aforementioned

contributions and thus will not be the focus of this paper. In consideration of that, we shall assume that

c1 > c2, q2 > q1.(2)

In Theorem 3.1 we derive exact asymptotics of ψ(u) as u tends to infinity. Five different scenarios will

be discussed; for two of them we show that the asymptotics are the same as those of the degenerated one-

dimensional cases, for other two of them we show that the asymptotics are simply equivalent to the asymptotics

of the one-dimensional cases multiplied by 1/2, whereas for the remaining scenario we obtain quite different

asymptotics.

A related, interesting and vastly analyzed quantity of risk processes is the conditional ruin time, which in our

setup is τ(u)|τ(u) <∞. Approximation of this quantity will give us some idea of when ruin occurred knowing

that it has occurred. We refer to [4, 10, 13, 22, 23, 24, 25] for related discussions on ruin time. In Theorem 3.2

we derive some approximation results for the scaled conditional simultaneous ruin time. Again five different

scenarios will be discussed, and different approximations are obtained. Our results show that approximations

rather than exponential and (truncated) normal are also possible.

Organization of the rest of the paper: In Section 2 we introduce some notation and present some results for

the one-dimensional fBm risk process. The main results are displayed in Section 3, whereas the proofs are

relegated to Section 4. Finally, we conclude with an Appendix containing some known results as well as some

other technical results.
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2. Preliminaries

We shall use the standard notation for asymptotic equivalence of two functions f(·) and h(·). Specifically, we

write f(x) = h(x)(1 + o(1)) or simply f(x) ∼ h(x), if limx→a f(x)/h(x) = 1 (a ∈ R ∪ {∞}). Further, write

f(x) = o(h(x)), if limx→a f(x)/h(x) = 0.

Next we introduce the Pickands constant

H2H = lim
T→∞

1

T
H2H [0, T ] ∈ (0,∞),

where

H2H [0, T ] = E

(
exp

(
sup

t∈[0,T ]

(√
2BH(t)− t2H

)))
, T ∈ (0,∞).

It is known that H1 = 1 and H2 = 1/
√
π, see, e.g., [11, 26, 27, 28, 29, 30, 31, 32].

We define below another constant that will also appear in our main results, see Theorem 3.1 and Theorem

3.2. Recall that {B1/2(t), t ∈ R} is a standard Brownian motion defined on R. For any continuous function

d(·) satisfying d(0) = 0, define

Hd
1[S, T ] = E

(
exp

(
sup

t∈[S,T ]

(
√
2B1/2(t)− |t| − d(t))

))
∈ (0,∞), −∞ < S < T <∞.

It is known (see, e.g., [29, 33]) that for any a > 0 and d(t) = a |t| , t ∈ R

lim
T→∞

Hd
1[0, T ] = lim

T→∞
Hd

1[−T, 0] = 1 +
1

a
.(3)

Furthermore, we define

H̃d
1 = lim

T→∞
E

(
exp

(
sup

t∈[−T,T ]

(
√
2B1/2(t)− |t| − d(t))

))

whenever the limit exists. As shown in Theorem 3.1 for special function d(·) the above constant is well-defined,

positive and finite.

Moreover, let Ψ(x) denote the tail distribution function of a standard normal random variable, and denote by

Φ(x) = 1−Ψ(x) the corresponding distribution function.

We conclude this section with some results on the one-dimensional fBm risk process

U(t) = qu+ ct−BH(t), t ≥ 0,

with q, c, u > 0. Define the corresponding ruin time and ruin probability by

τq,c(u) = inf{t ≥ 0 : U(t) < 0}, ψq,c(u) = P {τq,c(u) <∞} .

The following result, concerning the ruin probability and scaled conditional ruin time of the above one-

dimensional fBm risk process, follows directly from [9, 10] or [29, 34]. For the sake of completeness, we present

a sketch of the proof in Appendix.
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Proposition 2.1. We have, as u→ ∞

ψq,c(u) ∼ 2
1
2− 1

2H

√
π√

H(1−H)
H2H

(
cHq1−Hu1−H

HH(1−H)1−H

)1/H−1

Ψ

(
cHq1−Hu1−H

HH(1−H)1−H

)
,(4)

and with

A(u) =
HH+1/2

(1−H)H+1/2cH+1
uH , t0 =

H

c(1−H)
,

it holds that

lim
u→∞

P

{
τq,c(u)− t0qu

A(qu)
≤ x

∣∣∣τq,c(u) <∞
}

= Φ(x), x ∈ R.(5)

3. Main Results

By the self-similarity of fBm, we can rewrite the ruin probability as

ψ(u) = P {∃t≥0 (BH(t)− c1t > q1u,BH(t)− c2t > q2u)}

= P
{
∃t≥0

(
X1(t) > u1−H , X2(t) > u1−H

)}
,

where

Xi(t) =
BH(t)

qi + cit
, t ≥ 0, i = 1, 2.(6)

Define

σi(t) =
√
V ar(Xi(t)) =

tH

qi + cit
, t ≥ 0, i = 1, 2.

Elementary calculations show that for any i = 1, 2

ti =
Hqi

ci(1−H)

is the unique maximum point of the function σi(t), t ≥ 0. Additionally, by the assumption (2) it holds that

t1 < t2.

Consider two lines yi(t) = qi + cit, t ≥ 0, i = 1, 2. It turns out that the unique intersection point of these two

lines

t∗ =
q2 − q1
c1 − c2

> 0

shall play a crucial rule in our analysis.

Denote

ai =
|H(qi + cit

∗)− cit
∗|

t∗(qi + cit∗)
, i = 1, 2,(7)

and denote by I(·) the indicator function.



6 LANPENG JI AND STEPHAN ROBERT

Below we present our results for the simultaneous ruin probability. Recall that the ruin probability of the

one-dimensional fBm risk process has been given in Proposition 2.1.

Theorem 3.1. Assume that (2) is satisfied. We have, as u→ ∞

1) if t1 > t∗, then

ψ(u) ∼ ψq1,c1(u).

2) if t2 < t∗, then

ψ(u) ∼ ψq2,c2(u).

3) if t1 < t∗ < t2, then

ψ(u) ∼ Ψ

(
(q1 + c1t

∗)u1−H

t∗H

)
×





a1+a2

21/(2H)t∗a1a2
H2H

(
(q1+c1t

∗)u1−H

t∗H

)1/H−2

, H < 1/2

H̃d
1, H = 1/2

1, H > 1/2,

with d(t) = 2t∗a2 |t| I(t<0) + 2t∗a1 |t| I(t≥0), t ∈ R, and

H̃d
1 ∈ (0,∞).

4) if t∗ = t1, then

ψ(u) ∼ 1

2
ψq1,c1(u).

5) if t∗ = t2, then

ψ(u) ∼ 1

2
ψq2,c2(u).

Define

D(u) =
t∗2H

(q1 + c1t∗)2
u2H−1,

and recall A(u) given in Proposition 2.1 and ai, i = 1, 2 given in (7).

The approximations for the scaled conditional simultaneous ruin times are given in the following theorem.

Theorem 3.2. Assume that (2) is satisfied. For any x ∈ R, we have, as u→ ∞

1) if t1 > t∗, then

lim
u→∞

P

{
τ(u)− t1u

A(q1u)
≤ x

∣∣∣τ(u) <∞
}

= Φ(x).

2) if t2 < t∗, then

lim
u→∞

P

{
τ(u)− t2u

A(q2u)
≤ x

∣∣∣τ(u) <∞
}

= Φ(x).
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3) if t1 < t∗ < t2, then

lim
u→∞

P

{
τ(u)− t∗u

D(u)
≤ x

∣∣∣τ(u) <∞
}

=





a1

a1+a2
ea2xI(x<0) +

(
1− a2

a1+a2
e−a1x

)
I(x≥0), H < 1/2

Hd
1 [−∞,1/(2t∗)x]

H̃d
1

, H = 1/2

ea2xI(x<0) + I(x≥0), H > 1/2,

with d(·) the same as in Theorem 3.1, and for any x ∈ R

Hd
1[−∞, 1/(2t∗)x] := lim

S→∞
Hd

1[−S, 1/(2t∗)x] ∈ (0,∞).

4) if t∗ = t1, then

lim
u→∞

P

{
τ(u)− t1u

A(q1u)
≤ x

∣∣∣τ(u) <∞
}

= (1− 2Ψ(x)) I(x≥0).

5) if t∗ = t2, then

lim
u→∞

P

{
τ(u)− t2u

A(q2u)
≤ x

∣∣∣τ(u) <∞
}

= 2Φ(x) I(x<0) + I(x≥0).

Remark 3.3. We observe that, as u→ ∞, when t1 < t∗ < t2 and H > 1/2, or when t∗ = t2 it holds that

τ(u) ≤ t∗u
∣∣∣τ(u) <∞ almost surely,

and when t∗ = t1 it holds that

τ(u) ≥ t∗u
∣∣∣τ(u) <∞ almost surely.

4. Proofs of Main Results

This section consists of the proofs of Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1: The five different scenarios will be treated separately.

Proof for Case 1). First observe that

ψ(u) = P {∃t≥0 (BH(t)− c1t > q1u,BH(t)− c2t > q2u)}

≤ P {∃t≥0 BH(t)− c1t > q1u} = ψq1,c1(u).

Furthermore, for any ε > 0 such that t1 − ε > t∗ we have

ψ(u) ≥ P
{
∃t∈[t1−ε,t1+ε] (X1(t) > u1−H , X2(t) > u1−H)

}

= P
{
∃t∈[t1−ε,t1+ε] X1(t) > u1−H

}

∼ ψq1,c1(u)

as u → ∞, where the last asymptotic equivalence follows from the classical Piterbarg theorem (see Theorem

5.5 in Appendix). Consequently, the claim of Case 1) follows.

Proof for Case 2). The proof is similar as in Case 1). We have the upper bound

ψ(u) ≤ ψq2,c2(u).
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For the lower bound, we have for any ε > 0 such that t2 + ε < t∗

ψ(u) ≥ P
{
∃t∈[t2−ε,t2+ε] (X1(t) > u1−H , X2(t) > u1−H)

}

= P
{
∃t∈[t2−ε,t2+ε] X2(t) > u1−H

}

∼ ψq2,c2(u)

holds as u→ ∞. Thus, the claim of Case 2) is established.

Below, we continue with Cases 3), 4), 5). Denote

Z(t) =
BH(t)

g(t)
, t ≥ 0, with g(t) = max(q1 + c1t, q2 + c2t), t ≥ 0,(8)

and let σZ(t) =
√
V ar(Z(t)) = tH/g(t), t ≥ 0. We have

ψ(u) = P

{
sup
t≥0

Z(t) > u1−H

}
.

We first analyze the standard deviation function σZ(t), t ≥ 0. Elementary calculations show that, for all the

three cases, the maxima of σZ(t) over [0,∞) is attained uniquely at t∗. Furthermore, for Case 3) we have

σZ(t)− σZ(t
∗) = (σ′

2(t
∗)(t− t∗)I(t<t∗) + σ′

1(t
∗)(t− t∗)I(t≥t∗))(1 + o(1)), t→ t∗,(9)

for Case 4) we have

σZ(t)− σZ(t
∗) = (σ′

2(t
∗)(t− t∗)I(t<t∗) +

1

2
σ′′
1 (t

∗)(t− t∗)2I(t≥t∗))(1 + o(1)), t→ t∗,(10)

and for Case 5) we have

σZ(t)− σZ(t
∗) = (

1

2
σ′′
2 (t

∗)(t− t∗)2I(t<t∗) + σ′
1(t

∗)(t− t∗)I(t≥t∗))(1 + o(1)), t→ t∗.

Moreover, for the correlation function rZ(s, t) = Corr(Z(s), Z(t)) we have

rZ(s, t) = 1− 1

2t∗2H
|t− s|2H (1 + o(1)), s, t→ t∗(11)

holds for all the Cases 3), 4), 5).

Next, for any sufficiently small ρ > 0 denote Dρ = [t∗ − ρ, t∗ + ρ]. We have

πρ(u) := P

{
sup
t∈Dρ

Z(t) > u1−H

}
≤ ψ(u) ≤ πρ(u) + P

{
sup

t∈[0,∞)\Dρ

Z(t) > u1−H

}
.

Since limt→∞ Z(t) = 0, the process {Z(t), t ≥ 0} has bounded sample paths, and thus by the Borell-TIS

inequality (see Lemma 5.3 in Appendix) we have

P

{
sup

t∈[0,∞)\Dρ

Z(t) > u1−H

}
≤ exp

(
− 1

2 supt∈[0,∞)\Dρ
σ2
Z(t)

(u1−H − C0)
2

)
(12)

holds for all sufficiently large u, where C0 = E

(
supt∈[0,∞)\Dρ

Z(t)
)
< ∞. Note that supt∈[0,∞)\Dρ

σ2
Z(t) <

σ2
Z(t

∗) since t∗ is the unique maximum point of σZ(t), t ≥ 0.
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Hereafter, we shall focus on the asymptotics of πρ(u) as u→ ∞ for all the three Cases 3), 4), 5). For simplicity,

we denote û = u1−H/σZ(t
∗) = u1−H/σi(t

∗), i = 1, 2.

Proof for Case 3). It follows from (9) that for the small chosen ρ there exists some small ε > 0 such that

1 + (a2 − ε) |t− t∗| I(t<t∗) + (a1 − ε) |t− t∗| I(t≥t∗)

≤ σZ(t
∗)

σZ(t)
≤(13)

1 + (a2 + ε) |t− t∗| I(t<t∗) + (a1 + ε) |t− t∗| I(t≥t∗)

holds for all t ∈ Dρ, where ai =
|σ′

i(t
∗)|

σZ(t∗) = |H(qi+cit
∗)−cit

∗|
t∗(qi+cit∗)

, i = 1, 2. Set δu =
(

log(û)
û

)2
. We have

p(u) := P

{
sup

t∈[t∗−δu,t∗+δu]

Z(t) > u1−H

}

≤ πρ(u)

≤ p(u) + P

{
sup

t∈[t∗−ρ,t∗−δu]∪[t∗+δu,t∗+ρ]

Z(t) > u1−H

}
=: p(u) + r(u).

It follows from (13) that for all t ∈ [t∗ − ρ, t∗ − δu] ∪ [t∗ + δu, t
∗ + ρ]

σZ(t
∗)

σZ(t)
≥ 1 + a−δu

with a− = min(a1, a2)− ε > 0 for the chosen sufficiently small ε. Thus, denoting Z(t) = Z(t)/σZ(t) we have

r(u) ≤ P

{
sup

t∈[t∗−ρ,t∗−δu]∪[t∗+δu,t∗+ρ]

Z(t) > û(1 + a−δu)

}
.

Next we have from (11) that for the small chosen ρ

E
(
(Z(t)− Z(s))2

)
≤ Q |t− s|2H

holds for all t ∈ Dρ, with some positive constant Q. Thus, by the Piterbarg inequality (see Lemma 5.4 in

Appendix) we conclude that

r(u) ≤ Cu1/H−1 exp

(
− û

2

2
(1 + a−δu)

2

)
(14)

holds for all large u, with some positive constant C which does not depend on u.

In the following, we shall derive the asymptotics of p(u) as u→ ∞ which will imply that

P

{
sup

t∈[0,∞)\Dρ

Z(t) > u1−H

}
= o(p(u)), r(u) = o(p(u)), u→ ∞,(15)

and thus

ψ(u) ∼ p(u), u→ ∞.

Note that from (11) we have for the small chosen ρ, ε

b− |t− s|2H ≤ 1− rZ(s, t) ≤ b+ |t− s|2H
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for all s, t ∈ Dρ, where b± = 1±ε
2t∗2H . Let {Y±(t), t ∈ R} be two continuous centered stationary Gaussian

processes with unit variance and correlation functions rY±
(·) given by

rY±
(t) = e−b±|t|2H , t ∈ R.

Consequently, by (13) and the Slepian inequality (see Lemma 5.2 in Appendix) we have

P

{
sup

t∈[−δu,δu]

W2(t) > û

}
≤ p(u) ≤ P

{
sup

t∈[−δu,δu]

W1(t) > û

}
,(16)

where

W1(t) =
Y+(t)

1 + (a2 − ε) |t| I(t<0) + (a1 − ε) |t| I(t≥0)
, t ∈ R,

W2(t) =
Y−(t)

1 + (a2 + ε) |t| I(t<0) + (a1 + ε) |t| I(t≥0)
, t ∈ R.

In order to estimate the above bounds, we introduce the following notation. Let q = q(u) = û−1/H and set for

any T > 0

∆i = [iT q, (i+ 1)Tq] , i ∈ Z, and Nu =
⌊
T−1δuq

−1
⌋
,

where ⌊·⌋ is the ceiling function. We shall investigate separately the following three cases:

Case 3.i) H < 1/2, Case 3.ii) H = 1/2, Case 3.iii) H > 1/2.

Case 3.i) H < 1/2. We have by the Bonferroni inequality (see Lemma 5.1 in Appendix)

P

{
sup

t∈[−δu,δu]

W1(t) > û

}
≤

Nu∑

i=−Nu−1

P

{
sup
t∈∆i

W1(t) > û

}
,(17)

P

{
sup

t∈[−δu,δu]

W2(t) > û

}
≥

Nu−1∑

i=−Nu

P

{
sup
t∈∆i

W2(t) > û

}
−Θ(u),(18)

where

Θ(u) =
∑

−Nu≤i<j≤Nu

P

{
sup
t∈∆i

W2(t) > û, sup
t∈∆j

W2(t) > û

}
.

Continuing (17) we have

Nu∑

i=−Nu−1

P

{
sup
t∈∆i

W1(t) > û

}
≤

Nu∑

i=−Nu−1

P

{
sup
t∈∆i

Y+(t) > ûB(i, T, u)

}

=

Nu∑

i=−Nu−1

P

{
sup
t∈∆0

Y+(t) > ûB(i, T, u)

}

with

B(i, T, u) = 1 + (a2 − ε)I(i<0) |(i+ 1)Tq|+ (a1 − ε)I(i≥0) |iT q| .

Next, by Lemma 5.6 (see Appendix) we have

P

{
sup
t∈∆0

Y+(t) > ûB(i, T, u)

}
= H2H [0, b

1
2H
+ T ]Ψ(ûB(i, T, u))(1 + o(1)), u→ ∞,
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where o(1) is chosen uniformly for i such that −Nu ≤ i ≤ Nu. Noting that Ψ(u) ∼ 1√
2πu

e−
u2

2 , we have as

u→ ∞
Nu∑

i=−Nu−1

P

{
sup
t∈∆0

Y+(t) > ûB(i, T, u)

}

=
H2H [0, b

1
2H
+ T ]√

2πû

( −1∑

i=−Nu−1

e−
û2

2 (1+(a2−ε)|(i+1)Tq|)2 +
Nu∑

i=0

e−
û2

2 (1+(a1−ε)|iTq|)2
)
(1 + o(1))

=
H2H [0, b

1
2H
+ T ]

T
û

1
H −2Ψ(û)

( −1∑

i=−Nu−1

e(a2−ε)((i+1)T û2− 1
H ) +

Nu∑

i=0

e−(a1−ε)(iT û2− 1
H )

)
(T û2−

1
H )(1 + o(1))

=
H2H [0, b

1
2H
+ T ]

T
û

1
H −2Ψ(û)

(∫ 0

−∞
e(a2−ε)xdx+

∫ ∞

0

e−(a1−ε)xdx

)
(1 + o(1))

=
H2H [0, b

1
2H
+ T ]

T

a1 + a2 − 2ε

(a1 − ε)(a2 − ε)
û

1
H −2Ψ(û)(1 + o(1)).

Consequently, as u→ ∞
Nu∑

i=−Nu−1

P

{
sup
t∈∆i

W1(t) > û

}
≤ H2H [0, b

1
2H
+ T ]

T

a1 + a2 − 2ε

(a1 − ε)(a2 − ε)
û

1
H −2Ψ(û)(1 + o(1)).(19)

Similarly, we can show as u→ ∞
Nu−1∑

i=−Nu

P

{
sup
t∈∆i

W2(t) > û

}
≥ H2H [0, b

1
2H
− T ]

T

a1 + a2 + 2ε

(a1 + ε)(a2 + ε)
û

1
H −2Ψ(û)(1 + o(1)).(20)

Next we consider Θ(u). Set a+ = min(a1, a2) + ε. It follows that

Θ(u) ≤
∑

−Nu≤i<j≤Nu

P

{
sup
t∈∆i

Y−(t)

1 + a+ |t| > û, sup
t∈∆j

Y−(t)

1 + a+ |t| > û

}
=: Θ1(u)

We split the above sum into two by distinguishing j = i+1 and j > i+1, i.e., Θ1(u) = Θ11(u)+Θ12(u), with

Θ11(u) being the sum over indexes j = i+ 1 and Θ12(u) being the sum over indexes j > i+ 1. For Θ11(u) we

have

Θ11(u) =
∑

−Nu≤i≤Nu

(
P

{
sup
t∈∆i

Y−(t)

1 + a+ |t| > û

}
+ P

{
sup

t∈∆i+1

Y−(t)

1 + a+ |t| > û

}
− P

{
sup

t∈∆i∪∆i+1

Y−(t)

1 + a+ |t| > û

})

=: S1(u) + S2(u)− S3(u).

Then using similar arguments as the derivation of (19) and (20) for Si(u), i = 1, 2, 3, we have

lim
T→∞

lim
ε→0

lim
u→∞

Θ11(u)

û
1
H −2Ψ(û)

= lim
T→∞

lim
ε→0

2

a+

(
2
H2H [0, b

1
2H
− T ]

T
− H2H(2b

1
2H
− T )

T

)
(21)

= 0,

where the last equation follows since limT→∞ H2H [0, T ]/T = H2H ∈ (0,∞). Next, we consider Θ12(u). It

follows that

Θ12(u) ≤
∑

−Nu≤i≤Nu

∑

−Nu≤j≤Nu

j>i+1

P

{
sup
t∈∆i

Y−(t) > û
(
1 + a+

∣∣∣̂iT q
∣∣∣
)
, sup
t∈∆j

Y−(t) > û

}
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where î = (i+ 1)I(i<0) + iI(i≥0). Furthermore, by Lemma 5.7 (see Appendix)

Θ12(u) ≤ CT 2
∑

k≥1

e−G(kT )2H
∑

−Nu≤i≤Nu

Ψ
(
û(1 +

a+
2

∣∣∣̂iT q
∣∣∣)
)

for all u large, with some positive constants C,G independent of i, k, T, u. Using again similar arguments as

the derivation of (19) we obtain

∑

−Nu≤i≤Nu

Ψ
(
û(1 +

a+
2

∣∣∣̂iT q
∣∣∣)
)
=

4

a+T
û

1
H −2Ψ(û)(1 + o(1)), u→ ∞.

Thus,

lim
T→∞

lim
ε→0

lim
u→∞

Θ12(u)

û
1
H −2Ψ(û)

≤ lim
T→∞

lim
ε→0

4

a+
CT

∑

k≥1

e−G(kT )2H = 0.(22)

Consequently, by letting ε→ 0, T → ∞ (in this order) we conclude from (16)-(22) that as u→ ∞

p(u) ∼ 1

2
1

2H t∗
H2H

a1 + a2
a1a2

û
1
H −2Ψ(û)

∼ a1 + a2

2
1

2H t∗a1a2
H2H

(
(q1 + c1t

∗)u1−H

t∗H

)1/H−2

Ψ

(
(q1 + c1t

∗)u1−H

t∗H

)
.

Case 3.ii) H = 1/2. We have

P

{
sup

t∈[−δu,δu]

W1(t) > û

}
≤ P

{
sup

t∈∆−1∪∆0

W1(t) > û

}
+

∑

−Nu−1≤i≤Nu

i 6=−1,0

P

{
sup
t∈∆i

W1(t) > û

}
,

P

{
sup

t∈[−δu,δu]

W2(t) > û

}
≥ P

{
sup

t∈∆−1∪∆0

W2(t) > û

}
.

It follows from Corollary 2.2 in [35] that

P

{
sup

t∈∆−1∪∆0

W1(t) > û

}
= P

{
sup

t∈[−b+Tq,b+Tq]

W1(b
−1
+ t) > û

}

∼ Hd1
1 [−b+T, b+T ]Ψ(û), u→ ∞,

where d1(t) = (a2 − ε)b−1
+ |t| I(t<0) + (a1 − ε)b−1

+ |t| I(t≥0). Similarly,

P

{
sup

t∈∆−1∪∆0

W2(t) > û

}
∼ Hd2

1 [−b−T, b−T ]Ψ(û), u→ ∞,
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where d2(t) = (a2 + ε)b−1
− |t| I(t<0) + (a1 + ε)b−1

− |t| I(t≥0). Next, we have by Lemma 5.6

∑

−Nu−1≤i≤Nu

i 6=−1,0

P

{
sup
t∈∆i

W1(t) > û

}
≤

∑

−Nu−1≤i≤Nu

i 6=−1,0

P

{
sup
t∈∆0

Y+(t) > ûB(i, T, u)

}

=
H1[0, b+T ]√

2πû

( −2∑

i=−Nu

e−
û2

2 (1+(a2−ε)|(i+1)Tq|)2 +
Nu∑

i=1

e−
û2

2 (1+(a1−ε)|iTq|)2
)
(1 + o(1))

≤ H1[0, b+T ]Ψ(û)

( −1∑

i=−∞
e−(a2−ε)|iT | +

∞∑

i=1

e−(a1−ε)|iT |
)
(1 + o(1))

≤ 2b+T

∞∑

i=1

e−a−|iT |Ψ(û)(1 + o(1)),

where the last inequality follows since H2H [0, T ] is sub-additive for any H ∈ (0, 1) (see, e.g., [26] or [35]).

Consequently, we have from the above formulas and (16) that, for any S, T > 0

Hd
1[−bS, bS]

≤ lim
ε→0

lim inf
u→∞

p(u)

Ψ(û)
≤ lim

ε→0
lim sup
u→∞

p(u)

Ψ(û)
(23)

≤ Hd
1[−bT, bT ] + 2bT

∞∑

i=1

e−a|iT |,

where b = 1
2t∗ , a = min(a1, a2) and

d(t) = a2b
−1 |t| I(t<0) + a1b

−1 |t| I(t≥0), t ∈ R.

Letting S → ∞ in (23) we get H̃d
1 <∞ and letting T → ∞ we obtain H̃d

1 > 0. Therefore, we conclude that

p(u) ∼ H̃d
1Ψ(û), u→ ∞.

Case 3.iii) H > 1/2. We have

P

{
sup

t∈[−δu,δu]

W1(t) > û

}
≤ P

{
sup

t∈∆−1∪∆0

Y+(t) > û

}

P

{
sup

t∈[−δu,δu]

W2(t) > û

}
≥ P {Y−(0) > û} .

Further, since

P

{
sup

t∈∆−1∪∆0

Y+(t) > û

}
∼ H2H [0, 2b

1
2H
+ T ]Ψ(û), u→ ∞,

and

P {Y−(0) > û} = Ψ(û),

by letting T → 0 we conclude that

p(u) ∼ Ψ(û), u→ ∞.
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Consequently, a comparison of the above asymptotics for Cases 3.i)-3.iii) with the formulas in (12) and (14)

shows that (15) holds, and thus the the claim for Case 3) follows.

Proof for Case 4). It follows from (10) that for the sufficiently small ρ there exists some small ε > 0 such that

1 + (a2 − ε) |t− t∗| I(t<t∗) + (â1 − ε)(t− t∗)2I(t≥t∗)

≤ σZ(t
∗)

σZ(t)
≤(24)

1 + (a2 + ε) |t− t∗| I(t<t∗) + (â1 + ε)(t− t∗)2I(t≥t∗)

holds for all t ∈ Dρ, where â1 =

∣∣∣σ
′′

1 (t∗)
∣∣∣

2σZ(t∗) = H(1−H)
2t21

and a2 =
|σ′

2(t
∗)|

σZ(t∗) . Set δ1,u = log(û)
û and δ2,u =

(
log(û)

û

)2
.

Then for all t ∈ [t∗ − ρ, t∗ − δ2,u] ∪ [t∗ + δ1,u, t
∗ + ρ] we have

σZ(t
∗)

σZ(t)
≥ 1 + a−δ2,u

with a− = min(â1, a2)− ε. Thus, similarly to (14) we have

P

{
sup

t∈[t∗−ρ,t∗−δ2,u]∪[t∗+δ1,u,t∗+ρ]

Z(t) > û

}
≤ Cu1/H−1 exp

(
− û

2

2
(1 + a−δ2,u)

2

)
(25)

holds for all large enough u, with some constant C > 0 which does not depend on u.

Now we consider

p(u) = P

{
sup

t∈[t∗−δ2,u,t∗+δ1,u]

Z(t) > u1−H

}
.

Let {Y±(t), t ≥ 0} be two continuous centered stationary Gaussian processes defined the same as in Case 3).

By the Slepian inequality and (24) we have

P

{
sup

t∈[−δ2,u,δ1,u]

W2(t) > û

}
≤ p(u) ≤ P

{
sup

t∈[−δ2,u,δ1,u]

W1(t) > û

}
,

where

W1(t) =
Y+(t)

1 + (a2 − ε) |t| I(t<0) + (â1 − ε)t2I(t≥0)
, t ∈ R,

W2(t) =
Y−(t)

1 + (a2 + ε) |t| I(t<0) + (â1 + ε)t2I(t≥0)
, t ∈ R.

Similar to Case 3) we introduce the following notation. Recall q = q(u) = û−1/H , and set for any T > 0

∆i = [iT q, (i+ 1)Tq] , i ∈ Z, and Nk,u =
⌊
T−1δk,uq

−1
⌋
, k = 1, 2.

We shall investigate separately the following two cases:

Case 4.i) H < 1/2, Case 4.ii) H ≥ 1/2.
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Case 4.i) H < 1/2. We have by the Bonferroni inequality

P

{
sup

t∈[−δ2,u,δ1,u]

W1(t) > û

}
≤

N1,u∑

i=−N2,u−1

P

{
sup
t∈∆i

W1(t) > û

}
,

P

{
sup

t∈[−δ2,u,δ1,u]

W2(t) > û

}
≥ P

{
sup

t∈[0,δ1,u]

W2(t) > û

}

≥
N1,u−1∑

i=0

P

{
sup
t∈∆i

W2(t) > û

}
−Θ(u),

where

Θ(u) =
∑

0≤i<j≤N1,u

P

{
sup
t∈∆i

W2(t) > û, sup
t∈∆j

W2(t) > û

}
.

For the upper bound, we have

N1,u∑

i=−N2,u−1

P

{
sup
t∈∆i

W1(t) > û

}
≤

N1,u∑

i=0

P

{
sup
t∈∆0

Y+(t) > ûB1(i, T, u)

}

+
−1∑

i=−N2,u−1

P

{
sup
t∈∆0

Y+(t) > ûB2(i, T, u)

}

with

B1(i, T, u) = 1 + (â1 − ε)(iT q)2, i ≥ 0,

B2(i, T, u) = 1 + (a2 − ε) |(i+ 1)Tq| , i < 0.

Similar arguments as in (19) yield that, as u→ ∞

N1,u∑

i=−N2,u−1

P

{
sup
t∈∆i

W1(t) > û

}
≤ H2H [0, b

1
2H
+ T ]

T

( √
π

2
√
â1 − ε

û
1
H −1 +

1

a2 − ε
û

1
H −2

)
Ψ(û)(1 + o(1))

=
H2H [0, b

1
2H
+ T ]

T

√
π

2
√
â1 − ε

û
1
H −1Ψ(û)(1 + o(1))

and

N1,u−1∑

i=0

P

{
sup
t∈∆i

W2(t) > û

}
≥ H2H [0, b

1
2H
− T ]

T

√
π

2
√
â1 + ε

û
1
H −1Ψ(û)(1 + o(1)).

For Θ(u), we can use the same arguments as for Case 3.i) and show that

lim
T→∞

lim
ε→0

lim
u→∞

Θ(u)

û
1
H −1Ψ(û)

= 0.

Consequently, we conclude that

p(u) ∼ 1

2
1

2H t∗

√
π

2
√
â1

H2H û
1
H −1Ψ(û) ∼ 1

2
ψq1,c1(u), u→ ∞.
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Case 4.ii) H ≥ 1/2. We have

P

{
sup

t∈[−δ2,u,δ1,u]

W1(t) > û

}
≤ P

{
sup

t∈[−δ2,u,0]

W1(t) > û

}
+ P

{
sup

t∈[0,δ1,u]

W1(t) > û

}

P

{
sup

t∈[−δ2,u,δ1,u]

W2(t) > û

}
≥ P

{
sup

t∈[0,δ1,u]

W2(t) > û

}
.

Similarly to Case 3.ii) and Case 3.iii) we have

lim
T→∞

lim
ε→0

lim
u→∞

P

{
supt∈[−δ2,u,0]W1(t) > û

}

Ψ(û)
=

(
1 +

1

2t∗a2

)
I(H=1/2) + I(H>1/2),

where we used (3) for H = 1/2. Furthermore, we have from Case 4.i) that

lim
T→∞

lim
ε→0

lim
u→∞

P

{
supt∈[0,δ1,u]W1(t) > û

}

û
1
H −1Ψ(û)

= lim
T→∞

lim
ε→0

lim
u→∞

P

{
supt∈[0,δ1,u]W2(t) > û

}

û
1
H −1Ψ(û)

=
1

2
1

2H t∗

√
π

2
√
â1

H2H .

Thus,

p(u) ∼ 1

2
1

2H t∗

√
π

2
√
â1

H2H û
1
H −1Ψ(û) ∼ 1

2
ψq1,c1(u), u→ ∞.

Consequently, the claim for Case 4) follows from a comparison of the above asymptotics for Cases 4.i)-4.ii)

with (12) and (25).

Proof for Case 5). The proof is the same as for Case 4) and thus omitted. �

Proof of Theorem 3.2: Define the following passage time

τ̂(u) := inf{t ≥ 0 : Z(t) > u1−H},

with Z defined in (8). Clearly, we have τ(u) = uτ̂(u) for any u > 0.

In the following, we discuss the five difference scenarios, separately.

Proof for Case 1). It follows that

P

{
τ(u)− t1u

A(q1u)
≤ x

∣∣∣τ(u) <∞
}

=
P
{
τ̂(u) ≤ t1 + u−1A(q1u)x

}

P {τ(u) <∞} ,(26)

where

P
{
τ̂(u) ≤ t1 + u−1A(q1u)x

}
= P

{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}
.

For any fixed x ∈ R we have t1+u
−1A(q1u)x > t1− log(u)uH−1 > t∗ when u is sufficiently large. Thus, (recall

X1 defined in (6))

P
{
∃t∈[t1−log(u)uH−1,t1+u−1A(q1u)x]X1(t) > u1−H

}
≤ P

{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}

≤ P
{
∃t∈[0,t1+u−1A(q1u)x]X1(t) > u1−H

}
.
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It is known from the proof of Proposition 2.1 that the above upper and lower bounds are asyptotically equivalent

when q1 = 1. For general q1 > 0 we can also establish, as in the proof of Theorem 1.1 of [34] (let γ = 0 therein),

the same equivalence result, and further

P
{
τ̂(u) ≤ t1 + u−1A(q1u)x

}
∼ ψq1,c1(u)Φ(x), u→ ∞.

Consequently, the claim follows from the above combined with (26) and Case 1) of Theorem 3.1.

Proof for Case 2). The proof follows similarly as in Case 1), and thus omitted here.

Proof for Case 3). Recall û = u1−H/σZ(t
∗). Similarly as above we have

P

{
τ(u)− t∗u

D(u)
≤ x

∣∣∣τ(u) <∞
}

=
P
{
∃t∈[0,t∗+xû−2]Z(t) > u1−H

}

P {τ(u) <∞} .

Note that the asymptotics of P {τ(u) <∞} as u→ ∞ have been obtained in Case 3) of Theorem 3.1. Next we

shall derive the asymptotics for the numerator. Finally, the claims follow by comparing these two asymptotics.

Consider first Case 3.i) where H < 1/2. Using similar arguments as in the proof of Case 3.i) in Theorem 3.1,

we can conclude that

P
{
∃t∈[0,t∗+xû−2]Z(t) > u1−H

}
∼ 1

2
1

2H t∗
H2H

∫ x

−∞

(
ea2yI(y<0) + e−a1yI(y≥0)

)
dy û

1
H −2Ψ(û)

holds as u→ ∞. The key difference comes out by checking the formula before (19).

Next, we consider Case 3.ii) where H = 1/2. Again similar arguments as in the proof of Case 3.ii) in Theorem

3.1 yield that

P
{
∃t∈[0,t∗+xû−2]Z(t) > u1−H

}
∼ Hd

1[−∞, 1/(2t∗)x]Ψ(û)

holds as u→ ∞, and additionally Hd
1[−∞, 1/(2t∗)x] ∈ (0,∞) for any x ∈ R.

Now we consider Case 3.iii) where H > 1/2. If x ≥ 0, then similarly as in the proof of Case 3.iii) in Theorem

3.1 we have

P
{
∃t∈[0,t∗+xû−2]Z(t) > u1−H

}
∼ Ψ(û), u→ ∞.

For x < 0, letting Tx(u) = t∗ + xû−2 we have

P
{
∃t∈[0,Tx(u)]Z(t) > u1−H

}
= P

{
∃t∈[0,Tx(u)]X2(t) > u1−H

}

= P
{
∃t∈[0,1]X2(Tx(u)t) > u1−H

}
.

Then the same arguments as in the proof of Theorem 2.4 in [22] yield that

P
{
∃t∈[0,Tx(u)]Z(t) > u1−H

}
∼ Ψ

(
u1−H

σ2(Tx(u))

)
, u→ ∞.

Since further

lim
u→∞

Ψ
(

u1−H

σ2(Tx(u))

)

Ψ(û)
= ea2x
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we conclude that the claim follows.

Proof for Case 4). We see from the proof of Case 1) that it is sufficient to derive the asymptotics of

P
{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}
as u → ∞. If x > 0, then using similar ideas as in Case 4.i) of Theorem

3.1 we can show that, as u→ ∞

P
{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}
∼ P

{
∃t∈[t1−(log(û)/û)2,t1+u−1A(q1u)x]Z(t) > u1−H

}

∼ ψq1,c1(u)
1√
2π

∫ x

0

e−
y2

2 dy(27)

= ψq1,c1(u)(
1

2
−Ψ(x)).

If x ≤ 0, then we have

P
{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}
≤ P

{
∃t∈[0,t1]Z(t) > u1−H

}

Again similar arguments as in the proof of Case 4) in Theorem 3.1 yields that

P
{
∃t∈[0,t1]Z(t) > u1−H

}
∼ Ψ(û)×





1

2
1

2H t∗a2

H2H û
1/H−2, H < 1/2

1 + 1
2t∗a2

, H = 1/2

1, H > 1/2,

implying that

P
{
∃t∈[0,t1+u−1A(q1u)x]Z(t) > u1−H

}
= o(ψq1,c1(u)), u→ ∞.(28)

Consequently, the claim follows from a comparison of (27) and (28) with Case 4) of Theorem 3.1.

Proof for Case 5). Similarly, it is sufficient to derive the asymptotics of P
{
∃t∈[0,t2+u−1A(q2u)x]Z(t) > u1−H

}

as u→ ∞. If x < 0, then using similar ideas as in Case 4.i) of Theorem 3.1 we can show that, as u→ ∞

P
{
∃t∈[0,t2+u−1A(q2u)x]Z(t) > u1−H

}
∼ P

{
∃t∈[t2−log(û)/û,t2+u−1A(q2u)x]Z(t) > u1−H

}

∼ ψq2,c2(u)
1√
2π

∫ x

−∞
e−

y2

2 dy(29)

If x ≥ 0, then we have

P
{
∃t∈[0,t2]Z(t) > u1−H

}
≤ P

{
∃t∈[0,t2+u−1A(q2u)x]Z(t) > u1−H

}

≤ P
{
∃t∈[0,t2]Z(t) > u1−H

}
+ P

{
∃t∈[t2,t2+u−1A(q2u)x]Z(t) > u1−H

}

Again similar arguments as in the proof of Case 4) in Theorem 3.1 yields that, as u→ ∞

P
{
∃t∈[0,t2]Z(t) > u1−H

}
∼ 1

2
ψq2,c2(u)
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and

P
{
∃t∈[t2,t2+u−1A(q2u)x]Z(t) > u1−H

}
≤ P

{
∃t∈[t2,∞)Z(t) > u1−H

}

∼ Ψ(û)×





1

2
1

2H t∗a1

H2H û
1/H−2, H < 1/2

1 + 1
2t∗a1

, H = 1/2

1, H > 1/2,

implying that

P
{
∃t∈[0,t2+u−1A(q2u)x]Z(t) > u1−H

}
∼ 1

2
ψq2,c2(u), u→ ∞.(30)

Consequently, the claim follows from a comparison of (29) and (30) with Case 5) of Theorem 3.1. �

5. Appendix

This appendix consists of some known results, a skeleton of proof of Proposition 2.1, and some technical results

which were used in Section 4.

Lemma 5.1. (Bonferroni inequality) Let (Ω,S,P) be a probability space and A1, A2, · · · , An ∈ S for n ≥ 2.

Then

n∑

i=1

P {Ai} −
∑

1≤i<j≤n

P {Ai ∩Aj} ≤ P {∪n
i=1Ai} ≤

n∑

i=1

P {Ai} .

A complete proof of the Bonferroni inequality can be found, e.g., in [36].

We write below T for a subinterval of R.

Lemma 5.2. (Slepian inequality) Let {Y (t), t ∈ T } and {Z(t), t ∈ T } be two centered almost surely continuous

Gaussian processes, almost surely bounded on T . If for all t, s ∈ T

E
(
Y 2(t)

)
= E

(
Z2(t)

)
, E (Y (t)Y (s)) ≥ E (Z(t)Z(s)) ,

then for any u ∈ R we have

P

{
sup
t∈T

Y (t) > u

}
≤ P

{
sup
t∈T

Z(t) > u

}
.

Lemma 5.3. (Borell-TIS inequality) Let {X(t), t ∈ T } be a centered almost surely continuous Gaussian

process, almost surely bounded on T , with variance function σ2(·), 1 ≤ i ≤ n. Then

µ := E

(
sup
t∈T

X(t)

)
<∞.

Furthermore, if σT := supt∈T σ(t) > 0, then for all u > µ

P

{
sup
t∈T

X(t) > u

}
≤ exp

(
− (u− µ)2

2σ2
T

)
.

Complete proofs of the Slepian inequality and the Borell-TIS inequality can be found in [37].
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Lemma 5.4. (Piterbarg inequality) Under the conditions of Lemma 5.3, if further mes(T ) <∞ and

E
(
(X(t)−X(s))2

)
≤ G |t− s|γ

holds for all s, t ∈ T with some constants γ,G > 0, then, for all u large

P

{
sup
t∈T

X(t) > u

}
≤ Cmes(T )u

2
γ −1 exp

(
− u2

2σ2
T

)
,

where C is some positive constant not depending on u.

We refer to Lemma 8.1 of [26] for a proof of the Piterbarg inequality.

Next, let {X(t), t ∈ T } be a centered Gaussian process with almost surely continuous sample paths, standard

deviation function σ(·) and correlation function r(·, ·) satisfying the following assumptions:

A1: The function σ(t), t ∈ T attains its maximum at a unique point t0 which is an inner point of T , with

σ(t0) = 1, and further

σ(t0 + t) = 1− a |t|β (1 + o(1)), t→ 0

holds for some a, β > 0.

A2: It holds that

1− r(s, t) = b |t− s|α (1 + o(1)), s, t→ t0

for some b > 0 and α ∈ (0, 2).

A3: For all s, t ∈ T there exist some constants γ,G > 0 such that

E
(
(X(t)−X(s))2

)
≤ G |t− s|γ .

Now we present a result of Piterbarg, see, e.g., Theorem 8.2 or Theorem D.3 of [26].

Theorem 5.5. (Piterbarg theorem) Let {X(t), t ∈ T } be defined as above which satisfies A1–A3 with

mes(T ) <∞. Then, as u→ ∞,

P

{
sup
t∈T

X(t) > u

}
∼ Ψ(u)×





2b
1
α a−

1
β Γ
(

1
β + 1

)
Hαu

2
α− 2

β , α < β

H̃a/b
α , α = β

1, α > β,

where Γ(·) is the gamma function and, for any d > 0,

H̃d
α = lim

T→∞
E

(
exp

(
sup

t∈[−T,T ]

(
√
2Bα/2(t)− (1 + d) |t|α)

))
∈ (0,∞).

In the literature, the constant H̃d
α defined above is called Piterbarg constant. We refer to [33] for the study of

Piterbarg and related constants.

Proof of Proposition 2.1: We give a skeleton of the proof; we refer to [9, 10] or [29, 34] for more details.
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By the self-similarity of fBm, we can rewrite the ruin probability as

ψq,c(u) = P

{
sup
t≥0

(BH(t)− ct) > qu

}

= P

{
sup
t≥0

X(t) > u1−H

}
,

where

X(t) =
BH(t)

q + ct
, t ≥ 0.

Define

σ(t) =
√
V ar(X(t)) =

tH

q + ct
, t ≥ 0.

Elementary calculations show that

t0 =
Hq

c(1−H)

is the unique maximum point of the function σ(t), t ≥ 0. Let θ > 0 be a small constant. We have

π(u) := P

{
sup

t∈[t0−θ,t0+θ]

X(t) > u1−H

}
≤ ψq,c(u)

≤ π(u) + P

{
sup

t∈[0,t0−θ]∪[t0+θ,∞)

X(t) > u1−H

}
.(31)

It can be shown that for fixed θ small enough, assumptions A1–A3 are satisfied by {X(t), t ∈ [t0 − θ, t0 + θ]}

with β = 2 > α = 2H. Thus, by Theorem 5.5

π(u) ∼ 2
1
2− 1

2H

√
π√

H(1−H)
H2H

(
cHq1−Hu1−H

HH(1−H)1−H

)1/H−1

Ψ

(
cHq1−Hu1−H

HH(1−H)1−H

)
.(32)

Furthermore, since limt→∞X(t) = 0, by Lemma 5.3 we have for u large enough

P

{
sup

t∈[0,t0−θ]∪[t0+θ,∞)

X(t) > u1−H

}
≤ exp

(
− (u1−H − µ)2

2σ2
m

)
,(33)

where µ = E

(
supt∈[0,t0−θ]∪[t0+θ,∞)X(t)

)
<∞ and σ2

m = supt∈[0,t0−θ]∪[t0+θ,∞) σ
2(t) < σ2(t0).

Consequently, we conclude from (31)–(33) that

ψq,c(u) ∼ π(u), u→ ∞

implying thus (4).

Now we consider (5). Without loss of generality, we assume that q = 1. It follows that for any x ∈ R

P

{
τ1,c(u)− t0u

A(u)
≤ x

∣∣∣τ1,c(u) <∞
}

=
P

{
supt∈[0,t0u+A(u)x](BH(t)− ct) > u

}

ψ1,c(u)
.
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Furthermore, we have, as u→ ∞,

P

{
sup

t∈[0,t0u+A(u)x]

(BH(t)− ct) > u

}
= P

{
sup

t∈[0,t0+u−1A(u)x]

BH(t)

1 + ct
> u1−H

}

∼ ψ1,c(u)Φ(x),

where the last asymptotic equivalence follows similarly as the proof of Theorem 1 in [34] (where we take γ = 0),

see also the proof of Theorem 2 in [10]. This completes the proof. �

Next, let {X(t), t ≥ 0} be a centered stationary Gaussian process with almost surely continuous sample paths,

unit variance and correlation function r(·) satisfying

1− r(t) = b |t|α (1 + o(1)), t→ 0

for some b > 0 and α ∈ (0, 2).

The following lemma shows the uniformity of the tail asymptotics of the supremum taking over the Pickands’

interval, which is crucial for the derivation of the single sum in the proof of Theorem 3.1. A general result has

been shown in Theorem 2.1 of [38].

Lemma 5.6. Let {X(t), t ≥ 0} be defined as above, and let fi(u), i ∈ Ku, be a family of functions. If

lim
u→∞

sup
i∈Ku

∣∣∣∣
fi(u)

u
− 1

∣∣∣∣ = 0

then for any T > 0

lim
u→∞

sup
i∈Ku

∣∣∣∣∣∣

P

{
supt∈[0,Tu−2/α]X(t) > fi(u)

}

Ψ(fi(u))
−Hα[0, b

1
αT ]

∣∣∣∣∣∣
= 0.

Let fi(u), i ∈ Ku, gi(u), i ∈ Ku be two families of functions. Denote, for any T > 0 and k ∈ N

pi,j(k, u) = P

{
sup

t∈[0,Tu−2/α]

X(t) > fi(u), sup
t∈[(k+1)Tu−2/α,(k+2)Tu−2/α]

X(t) > gj(u)

}
, i, j ∈ Ku.

For the approximation of the double sum term in the proof of Theorem 3.1, the following lemma concerning

uniform bounds of pi,j(k, u) is crucial. We refer to Theorem 3.1 and Remarks 3.4 in [38] for more general

versions of this result.

Lemma 5.7. Let {X(t), t ≥ 0} and fi(u), i ∈ Ku, gi(u), i ∈ Ku, be defined as above. If

lim
u→∞

sup
i∈Ku

∣∣∣∣
fi(u)

u
− 1

∣∣∣∣ = 0, lim
u→∞

sup
i∈Ku

∣∣∣∣
gi(u)

u
− 1

∣∣∣∣ = 0

then, for any k ∈ N such that k = o(u2/α), u→ ∞ we have

sup
j∈Ku

sup
i∈Ku

pi,j(k, u)

T 2e−G(kT )αΨ((fi(u) + gj(u))/2)
≤ C

holds for all large u, with some positive constants G,C which are independent of i, j, k, T and u.
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