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Abstract—We consider Bernoulli nonadaptive group testing
with k = Θ(nθ) defectives, for θ ∈ (0, 1). The practical definite
defectives (DD) detection algorithm is known to be optimal for
θ ≥ 1/2. We give a new upper bound on the rate of DD, showing
that DD is strictly suboptimal for θ < 0.41. We also show that the
SCOMP algorithm and algorithms based on linear programming
achieve a rate at least as high as DD, so in particular are also
optimal for θ ≥ 1/2.

I. INTRODUCTION

Group testing is a sparse inference problem that involves

detecting the defective items in a population through the means

of pooled tests. By testing a ‘pool’ – that is, a subset – of

items, we discover whether that pool is free of defective items

or whether it contains at least one defective item. After a

sequence of such tests, we must infer (or ‘detect’) the true

set of defective items. The goal is to find the defective set

with low probability of error using as few tests as possible.

This naturally splits into two problems: first, designing the

testing strategy, and second, detecting the defective items,

given the test design and the results of the test.

For the design, here we consider Bernoulli nonadaptive

testing. In nonadaptive testing, the test pools are all defined in

advance, so the tests can be carried out in parallel. Bernoulli

nonadaptive testing is the simplest form of nonadaptive testing,

where each item is placed in each test independently with some

fixed probability p. Bernoulli nonadaptive testing is simple,

order optimal for all θ ∈ [0, 1) (see [1]–[4]), even has optimal

constants for θ ∈ [0, 1/3) (see [4]–[6]), and has been studied

by many authors (see [1]–[11] for just a few examples).

For the detection problem, we consider three detection

algorithms: one called DD (for ‘definite defectives’), one

called SCOMP (which can be seen as a Sequential version

of the earlier COMP algorithm), and approaches based on

linear programming. In contrast to the theoretical algorithms

often used to prove achievability results, these three algorithms

are practical, in that they are computationally efficient and

do not require knowledge of the true number of defectives.

It is important to know when these practical algorithms are

as good as the theoretically optimal but impractical detection

algorithms. Here, we study this question in the context of

Bernoulli nonadaptive testing. It is known that DD is optimal

for denser cases, where we have more defectives. Our first

result here is that DD is strictly suboptimal for sparser cases.

Our second result is that SCOMP and linear programming

approaches are also optimal in denser cases.

We begin with some notation. There are n items, of which k
are defective, and we use T tests. We assume that defectivity

is rare, in that k = o(n), and concentrate on the case where k
scales like k = Θ(nθ) for some sparsity parameter θ ∈ (0, 1).
(The θ = 0 case behaves much the same, but one has to be a

little careful over limiting arguments, as k does not tend to ∞
as n grows. We omit this case for brevity, although the results

of this paper do carry over.) We assume that the true defective

set K is chosen uniformly at random for all subsets of size k.

A useful way to keep track of the design of the test pools

is to write xti = 1 to denote that item i ∈ {1, 2, . . . , n} is in

the pool for test t ∈ {1, 2, . . . , T}, and xti = 0 to denote that

item i is not in the pool for test t.
Definition 1: In Bernoulli nonadaptive group testing we set

xti = 1 with probability p and xti = 0 with probability 1− p,

independently over t ∈ {1, 2, . . . , T} and i ∈ {1, 2, . . . , n},

for some fixed p ∈ [0, 1].
Recall that in standard group testing, a test outcome is

positive if at least one item from K is in the test, and negative

if no items from K are in the test. That is, writing yt for the

outcome of test t, we have

yt =

{

1 if there exists i ∈ K with xti = 1,

0 if for all i ∈ K we have xti = 0.

In general, since there are
(

n

k

)

possible defective sets and

2T possible outcomes from T tests, we see that we have a

lower bound on the number of tests required to reconstruct

the defective set of

T ≥ log2

(

n

k

)

∼ k log2
n

k
∼ (1− θ)k log2 n.

One way of interpreting this is to say that specifying the

defective set requires log2
(

n

k

)

bits of information, and each

test, with a yes–no answer, can impart at most 1 bit of

information. (From now on, log always means log2.) Given

this, for a scheme that uses T tests, we can regard the ‘bits

learned per test’ log
(

n

k

)

/T as the rate of group testing. (This

terminology follows that of Baldassini, Johnson, and Aldridge

[12].)
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Definition 2: The average error probability is defined as

follows: if our estimate of the defective set K is K̂, then the

error probability is

1
(

n

k

)

∑

K⊂{1,...,n}
|K|=k

P(K̂ 6= K),

where the probability is over the random choice of test design.

Definition 3: Given a detection algorithm, we say a rate R
is achievable if, for any ǫ > 0, then for n sufficiently large

and k = k(n) = Θ(nθ), there exists a Bernoulli parameter

p = p(n) and a number of tests T = T (n) with rate

log
(

n

k

)

T
> R

and Bernoulli nonadaptive testing having error probability less

than ǫ.
The capacity of Bernoulli nonadaptive group testing (that

is, the maximum achievable rate for any detection algorithm)

is

C = max
ν>0

min

{

h(e−ν),
ν

eν ln 2

1− θ

θ

}

. (1)

Achievability was shown by Scarlett and Cevher [4] and the

converse by Aldridge [6]. It is easy to check that for most θ
this can be simplified to

C =







1 for θ ≤ 1
3 ,

0.531
1− θ

θ
for θ > 0.359,

so the max-min is only needed in the small interval θ ∈
(1/3, 0.359).

However, the achievability result of Scarlett and Cevher [4]

does not give a practical decoding algorithm to achieve the

rate (1).

Aldridge, Baldassini and Johnson [2] showed that a simple

algorithm called DD (for ‘definite defectives’) is optimal for

θ ≥ 1/2. We define the DD algorithm in Section II. Also, here

‘optimal’ is used throughout to mean ‘achieves the capacity

(1).’ One might wonder if DD is also optimal for θ < 1/2.

Our first main result mostly answers this in the negative: we

give a new upper bound for the rate of DD, showing that for

θ < 0.407 DD is strictly suboptimal (Theorem 4).

Two decoding algorithms seem to perform better than DD in

practice – thus far without theoretical justification. These are

the SCOMP algorithm of Aldridge, Baldassini, and Johnson

[2], and approaches based on linear programming (see, for

example, [7], [10]). We define these algorithms in Section

III-B and III-C. Figure 1 shows a simulation of all three

algorithms, demonstrating the superiority of SCOMP and

linear programming. This theoretical performance suggests

that the rate of these algorithms should be at least as high as

DD, so in particular they should also be optimal for θ > 1/2.

Our second main result proves this (Theorems 8 and 9).

The rate bounds implied by our main results are illustrated

in Figure 2.

Fig. 1. Performance of Bernoulli nonadaptive group testing algorithms. The
parameters were n = 500, k = 10, and p = 1/(k + 1) ≈ 0.0909. Linear

programming uses the ‘Malioutov rule’ K̂ = {i : zi > 0} (see Subsection
III-C). Note that performance of LP and SCOMP is so similar that the SCOMP
line can be difficult to see. Each point represents 1000 simulated runs.

Fig. 2. Graph showing rates for Bernoulli nonadaptive group testing: capacity
(1); maximum achievable rate for DD, SCOMP and LP ((3), Theorem 8 and
Theorem 9); lower bound for DD, SCOMP and LP ((2), Theorem 8 and
Theorem 9); and upper bound for DD (Theorem 4).

II. DD IS SUBOPTIMAL FOR θ < 0.42

The DD algorithm of Aldridge, Baldassini, and Johnson [2]

works as follows:

1) Any item in a negative test is definitely nondefective.

The remaining items we call ‘possible defectives’.

2) If a (necessarily positive) test contains exactly one

possible defective, then that item is in fact definitely

defective (‘DD’).

3) The definitely defective items are declared to be defec-

tive. All other items – the definitely nondefective items

and any remaining possible defectives – are declared to

be nondefective.



DD is ‘practical’ in the sense that it requires only O(nT ) =
O(kn log n) = O(n1+θ log n) work and storage – which is

what is required just to store and read the test design. In

comparison, the decoder of Scarlett and Cevher [4] involves

solving the maximum likelihood problem, which is in NP in

general. Further, DD does not require the detector to know k
exactly or even approximately, while the maximum likelihood

decoder requires the exact value of k.

It was shown in [2] that, with Bernoulli tests, the DD

algorithm can achieve a rate of

R∗
DD ≥

1

e ln 2
min

{

1,
1− θ

θ

}

, (2)

where 1/e ln 2 ≈ 0.531.

This can be compared with the capacity for Bernoulli testing

(1). Since (1) gives an upper bound of (1/e ln 2)(1− θ)/θ for

θ > 0.359, and (2) gives the same rate for θ ≥ 1/2, we see

that for θ ≥ 1/2 we have the equality

R∗
DD =

1

e ln 2

1− θ

θ
= 0.531

1− θ

θ
for θ ≥

1

2
, (3)

and DD is optimal in this region. (This was first noted in [6].)

Here we give an upper bound for DD, which shows that it

is strictly suboptimal for some smaller values of θ.

Theorem 4: The rate of DD for Bernoulli nonadaptive group

testing is bounded above by

R∗
DD ≤ max

ν>0
min

{

e−ν log eν + νe−ν log
1

1− e−ν
,

ν

eν ln 2

1− θ

θ

}

.

(4)

In particular, DD is strictly suboptimal for θ < θ∗, where

θ∗ =
1

2− ln(1− e−1)
= 0.407.

Although the bound (4) appears complicated, it is easy to

check that for θ > θ∗ the second minimand dominates and

gives the same bound 0.531(1− θ)/θ as the standard capacity

bound (1). Further, one can check numerically that for θ <
0.357 the first minimand of (4) dominates and gives a bound

of 0.853. It is only for θ ∈ (0.357, 0.407) that the complicated

expression (4) is necessary. Whether or not DD is optimal in

the range θ ∈ (0.407, 1/2) remains an open question.

The above bounds are illustrated in Figure 2.

Proof: The key point is that DD can make use of tests

with no defectives (to eliminate ‘possible defectives’), and

tests with one defective (if there are no other possible defec-

tives in the test, the defective is ‘definitely defective’), but does

not make use of any tests containing two or more defectives

(they necessarily contain at least two possible defectives).

Suppose we use independent tests (as we do with a Bernoulli

design). Write qd for the probability a test contains exactly d
defectives and qd+ for the probability a test contains at least

d defectives. Then a standard information argument gives a

bound in terms of the entropy

R ≤ h(q0)

= q0 log
1

q0
+ q1+ log

1

q1+

= q0 log
1

q0
+ (q1 + q2+) log

1

q1+
.

(Note that when q0 = q1+ = 1/2, this gives the standard

counting bound R ≤ 1.) While it is helpful to think of this in

terms of ‘bits learned per tests’, it can be made rigorous using

the concept of typical sets – see, for example, [6, Lemma 1] –

which tells us that with high probability we see one of 2Th(q0)

‘typical’ outcomes.

Since DD does make use of those tests containing 2 or more

defectives, we get a tighter bound

R∗
DD ≤ q0 log

1

q0
+ q1 log

1

q1+
. (5)

This is because we learn at most log 1/q0 bits with probability

q0 from the negative tests, and from positive tests we learn

log 1/q1+ bits only with probability q1, since DD gets no

information from a (positive) test with probability q2+.

Now recall we are using a Bernoulli test design. Setting the

parameter as p ∼ ν/k (as we must to get a nonzero rate [6]),

we have

q0 = (1− p)k ∼
(

1−
ν

k

)k

→ e−ν ,

q1 = kp(1− p)k−1 ∼ k
ν

k

(

1−
ν

k

)k−1

→ νe−ν ,

q1+ = 1− q0 ∼ 1− e−ν .

as k → ∞. Hence the bound (5) becomes

R∗
DD ≤ e−ν log eν + νe−ν log

1

1− e−ν
.

Combined with the capacity bound (1), this gives

R∗
DD ≤ max

ν>0
min

{

e−ν log eν + νe−ν log
1

1− e−ν
,

h(e−ν) ,
ν

eν ln 2

1− θ

θ

}

.

Note, however, that the second minimand

h(e−ν) = q0 log
1

q0
+ q1+ log

1

q1+

is always dominated by the first minimand, so the second

minimand can be deleted.

For the final part of the theorem, we note that second

minimand in (4) is maximised at ν = 1, and this dominates

until

e−1 log e + e−1 log
1

1− e−1
<

1

e ln 2

1− θ

θ
.

By rearranging, and noting that log e = 1/ ln 2, we see that

this is precisely when θ < θ∗.



We remark that a similar proof technique could be used

to bound the rate of the COMP algorithm of Chan et al [1].

This algorithm makes no use of of any positive tests, so the

equivalent to the bound (5) would be

R∗
COMP ≤ q0 log

1

q0
.

Taking q0 ∼ e−ν as above, and optimising at ν = 1 gives the

bound

R∗
COMP ≤ e−1 log e =

1

e ln 2
.

Compared to the actual maximum achievable rate of COMP

[1], [6], which is

R∗
COMP =

1

e ln 2
(1− θ),

we see that such a bound is tight for θ = 0 but loose for

θ > 0.

III. ALGORITHMS THAT ARE OPTIMAL FOR θ ≥ 1/2

We have seen that the DD algorithm with Bernoulli testing

achieves the rate (2). Together with the capacity bound (1),

we see that DD is optimal for Bernoulli testing for θ ≥ 1/2.

As we saw in Figure 1, the SCOMP algorithm [2] and

approaches based on linear programming [7], [10] outperform

DD in simulations. In this section, we prove that the SCOMP

algorithm and LP approaches achieve at least as high a rate as

DD, so in particular satisfy the bound (2) and are also optimal

for θ ≥ 1/2.

A. Property P

The crucial step to showing an algorithm outperforms DD is

the a property we call ‘Property P ’. First recall the following

definition.

Definition 5: A set L ⊂ {1, 2, . . . , n} is satisfying if no

negative test contains any item from L and every positive test

contains at least one item from L.

So a satisfying set is one that ‘fits’ the observations. In

particular, the true defective set K is always a satisfying set,

although their may be others.

Definition 6: A detection algorithm A has Property P if,

whenever the DD algorithm outputs a satisfying set, then A

also outputs that same satisfying set.

Lemma 7: Suppose the detection algorithm A satisfies Prop-

erty P . Then A succeeds whenever DD succeeds. In particular,

with Bernoulli nonadaptive group testing, we have

R∗
A
≥ R∗

DD ≥ min

{

1

e ln 2
,

1

e ln 2

1− θ

θ

}

,

and A is optimal for θ ≥ 1/2.

Proof: Note that DD is not guaranteed to output a

satisfying set. If the output of DD is not satisfying, then clearly

the algorithm is in error. If the output of DD is satisfying, then

it is necessarily the unique smallest satisfying set (since each

definite defective appears uniquely in some test, so must be in

the true defective set), and the algorithm may be successful.

Since algorithm A has Property P , in this latter case, A also

outputs this unique smallest satisfying set. Hence, whenever

DD succeeds, A will succeed also.

The second part of the lemma then follows immediately

from (2).

B. SCOMP

SCOMP is an algorithm due to Aldridge, Baldassini, and

Johnson [2] that builds a satisfying set by starting from the

DD set of definite defectives and sequentially adding new

items until a satisfying set is reached. (The name comes from

‘Sequential COMP’, as it can be viewed as a sequential version

of the COMP algorithm of Chan et al [1].)

Although recalling the precise details of how SCOMP

extends from DD to a satisfying set is not required for the

proof of following result, we define it here for completeness.

1) Any item in a negative test is definitely nondefective.

The remaining items we call ‘possible defectives’.

2) If a (necessarily positive) test contains exactly one

possible defective, then that item is in fact definitely

defective (‘DD’).

3) The definitely defective items are declared to be de-

fective, we call these K̂, and definitely nondefective

items are declared to be nondefective. The other possible

defectives are not yet declared either way.

4) Any positive test is called ‘unexplained’ if it does not

contain any items from K̂. Add to K̂ the possible

defective not in K̂ that is in the most unexplained

tests, marking the corresponding tests as no longer

unexplained. (Ties may be broken arbitrarily.)

5) Repeat step 4 until no tests remain unexplained. The

estimate of the defective set is K̂.

Note that a satisfying set leaves no unexplained tests, and

that any set containing no definite nondefectives and leaving

no unexplained tests is satisfying. Note also that the set of

all possible defectives is satisfying, so the SCOMP algorithm

does indeed terminate.

Theorem 8: SCOMP with Bernoulli tests can achieve the

rate

R∗
SCOMP ≥ R∗

DD ≥ min

{

1

e ln 2
,

1

e ln 2

1− θ

θ

}

.

In particular, SCOMP is optimal for θ ≥ 1/2.

Proof: Following Lemma 7, we have wo show that

SCOMP satisfies Property P .

As explained above, the SCOMP algorithm begins with the

DD algorithm, then takes further steps to ensure a satisfying

set is reached. However, if DD already provides a satisfying

set, no further steps are taken, and SCOMP halts and outputs

the DD set. Hence Property P is satisfied.

C. Linear programming approaches

LP algorithms are based on the fact choosing the smallest

satisfying set as an estimate is known to be optimal [6], but is

likely to be impractical, as it requires solving an instance of the



NP-hard set cover problem. Specifically, the smallest satisfying

set is related to the solution to the 0–1 linear program

minimize

n
∑

i=1

zi

subject to

n
∑

i=1

xtizi ≥ 1 when yt = 1,

n
∑

i=1

xtizi = 0 when yt = 0,

zi ∈ {0, 1}.

(Recall that xti indicates if item i is in test t, and yt is the

outcome of test t.) The set K̂ = {i : zi = 1} is the smallest

satisfying set.

LP approaches attempt to estimate the defective set via the

relaxed version of the 0–1 problem, where the zis can be any

non-negative real numbers. Linear programs like this can be

solved quickly using, for example, the simplex algorithm.

There are various heuristics for how to turn the optimal

solution (zi) to the relaxed program into an estimate of the

defective set. For the purposes of Theorem 9, it suffices that

in the event that all zis are 0 or 1 then the heuristic chooses

K̂ = {i : zi = 1} (as any sensible heuristic must).

For example, one could consider the following very crude

method: if there is any i with zi 6= 0, 1, declare a global

error; else estimate K̂ = {i : zi = 1} to be the defective

set. Malioutov and Malyutov [10] suggest using the estimate

K̂ = {i : zi > 0}, and show strong performance on

simulated problems. (This was the ‘Malioutov rule’ used for

the simulations in Figure 1.) Another suggestion could be to

estimate K̂ = {i : zi ≥ 1/2}, or to place each item i in K̂
independently with probability zi.

Along these lines, the ‘LiPo’ algorithm of Chan et al [7]

assumes the detector knows k exactly, so the LP relaxation can

be instead phrased as a feasibility problem. They show that

LiPo achieves a nonzero rate for all α ∈ (0, 1), and specifically

R∗
LiPo ≥

1
8
3 e2 ln 2

1− θ

1 + θ
≈ 0.0732

1− θ

1 + θ
.

However, by using Property P , we can show a higher rate,

which is optimal for θ > 1/2.

Theorem 9: Any LP approach as described above with

Bernoulli tests can achieve the rate

R∗
LP ≥ R∗

DD ≥ min

{

1

e ln 2
,

1

e ln 2

1− θ

θ

}

.

In particular, LP approaches are optimal for θ ≥ 1/2.

Proof: Following Lemma 7, we must show that Property

P is satisfied.

Note that any item i in a negative test (a definite nonde-

fective) will have zi = 0 to satisfy the second constraint

of the linear program. Further, if a test t contains only one

possible (and thus definite) defective i, the LP solution must

have zi ≥ 1 to satisfy the corresponding constraint, and will

choose zi = 1 to minimise
∑

i zi. Finally, if these definite

defectives form a satisfying set, all constraints are satisfied,

and the LP will set all other zis to 0, to minimise
∑

i zi.
Hence Property P holds, and we are done.
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