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Purpose: To optimize 19F imaging pulse sequences for perfluoropropane (C3F8) gas 

human lung ventilation MRI considering intrinsic in vivo relaxation parameters at 

both 1.5T and 3T.

Methods: Optimization of the imaging parameters for both 3D spoiled gradient 

(SPGR) and steady-state free precession (SSFP) 19F imaging sequences with in-

haled 79% C3F8% and 21% oxygen was performed. Phantom measurements were 

used to validate simulations of SNR. In vivo parameter mapping and sequence 

optimization and comparison was performed by imaging the lungs of a healthy 

adult volunteer. T1 and T2
* mapping was performed in vivo to optimize sequence 

parameters for in vivo lung MRI. The performance of SSFP and SPGR was then 

evaluated in vivo at 1.5T and 3T.

Results: The in vivo T2
* of C3F8 was shown to be dependent upon lung inflation 

level (2.04 ms ± 36% for residual volume and 3.14 ms ± 28% for total lung capacity 

measured at 3T), with lower T2
* observed near the susceptibility interfaces of the dia-

phragm and around pulmonary blood vessels. Simulation and phantom measure-

ments indicate that a factor of ~2‐3 higher SNR can be achieved with SSFP when 

compared with optimized SPGR. In vivo lung imaging showed a 1.7 factor of im-

provement in SNR achieved at 1.5T, while the theoretical improvement at 3T was 

not attained due to experimental SAR constraints, shorter in vivo T1, and B0 

inhomogeneity.

Conclusion: SSFP imaging provides increased SNR in lung ventilation imaging of 

C3F8 demonstrated at 1.5T with optimized SSFP similar to the SNR that can be ob-

tained at 3T with optimized SPGR.
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1 |  INTRODUCTION

MRI of lung ventilation with inhaled inert hyperpolarized 

(HP) gases has a proven sensitivity for the assessment of 

lung ventilation changes in obstructive airways disease.1 

MRI with fluorinated gases (e.g., SF6, C2F6, and C3F8) shows 

promise as a complementary or alternative method for lung 

ventilation imaging, but in contrast to HP gas MRI, does not 

require additional polarization equipment.2 Additionally, 

fluorinated gases may be mixed with oxygen (O2) and con-

tinuously breathed, possibly allowing simpler investigation 

of dynamic lung physiology, such as the measurement of 

fractional ventilation by multi‐breath washout3-5 without the 

complication of gas depolarization observed with HP gas. 

Efforts to improve the quality of fluorinated gas ventilation 

MRI has been ongoing.1,2,6,7 However, obtaining high‐reso-

lution ventilation images with fluorinated gases at thermal 

equilibrium is challenging because of the low spin density, 

short T2
* and constrained imaging time.7

Past strategies of fluorinated gas MRI have focused on 

the use of short TE spoiled gradient (SPGR) sequences with 

TR relatively close to T1. This is due to two constraints: first, 

the relatively short T2
* of fluorinated gases in the lungs and, 

second, the specific absorption ratio (SAR) considerations 

at 3T (the most common field strength used for imaging of 

fluorinated gases to date). For SPGR imaging with the rep-

etition time TR«T1, and where the acquisition time (Taq) is 

approximately that of T2
*,8,9 the SNR per‐unit‐time is nearly 

constant with TR due to the competing factors of averaging, 

Taq and longitudinal recovery.9,10 For example, TR values of 

20 ms11,12 for SF6 with T1 < 2 ms,13 and 20 ms14 or 13 ms12 

for C3F8 with T1∼12.4 ms14 However, if TR is of the same 

order as T1, the optimization of single‐echo SPGR sequences 

generally requires minimizing TR so that the rate of longitu-

dinal recovery for each TR is maximized.10 

More recently, studies of C3F8 imaging have been per-

formed at 1.5T using a 16‐element receive array.15,16 

However, imaging was still performed with T1∼TR = 12 ms, 

and a Taq of 7.1 ms, which is significantly longer than the T2
*
. 

Therefore, future fluorinated gas imaging can clearly benefit 

from imaging parameter optimization as presented here.

In free‐gas phantoms, C3F8 gas has a longer T2 (~17 ms 17) 

when compared with other fluorinated gases (∼4.2 for SF6
18 

and ∼5.9 for C2F6
2), so improved signal to noise may poten-

tially be achieved with the use of SSFP. The optimization of 

imaging parameters for SPGR8 and SSFP19 1H MRI has been 

detailed previously. Also, the optimization of SSFP imag-

ing parameters20 has been investigated for the imaging con-

straints of HP gas ventilation MRI with both 3He and 129Xe.21 

Sequence optimization for perfluorocarbon emulsions has 

also been performed previously,22,23 but in this instance the 

T2 and T1 relaxation parameters are significantly longer than 

for gas phase perfluorocarbons.

In this work, we demonstrate the application of SSFP se-

quences for 19F lung ventilation imaging using C3F8/O2 gas 

at 1.5T and 3T. Optimization of SSFP and SPGR imaging 

parameters was carried out by simulation with the specific 

relaxation parameters of C3F8/O2 gas as found in phantoms. 

The additional consideration of k‐space filtering24 from T2
* 

decay was explored by simulation of the 1D point spread 

function (PSF).25 Simulations of the SSFP signal were per-

formed and compared experimentally with those achievable 

with a SPGR sequence. Constraints posed by SAR for in vivo 

applications are highlighted and the relaxation parameters T1 

and T2
* were mapped in vivo to verify the parameters used 

in simulation. Finally, in vivo lung imaging was performed 

with both sequences at 1.5T and 3T to test the theoretical/

experimental predictions of SNR improvement. This study is 

to benchmark optimal imaging parameters.

2 |  THEORY

2.1 | Simulations of SPGR and SSFP signal 
for C3F8

The two sequences considered here for 3D lung ventilation 

imaging with 19F perfluoropropane were SPGR and SSFP. 

For the SPGR sequence, transverse magnetization is de‐

phased after each RF pulse by application of spoiling gradi-

ents.26 Conversely, in SSFP the phase of the excitation pulse 

phase alternates by ± π each TR, resulting in recycling of the 

transverse magnetization, while gradients refocus spins after 

acquisition for balanced SSFP (bSSFP).27

In the simulations presented, transverse magnetization 

(Mxy) was evaluated at TE, which correlates with the cen-

ter of k‐space and thus determines image signal intensity. 

Simulations of Mxy with SSFP were performed according 

to Hargreaves et al,20 with an effective transverse decay rate 

term of T
2
.28 The steady state Mxy with SPGR, using the Ernst 

angle for maximum signal,29 was calculated as8,30,31,

where � is the flip angle (FA).

For both SSFP and SPGR, the resulting image SNR is re-

lated to the transverse magnetization by8,

where BW is the bandwidth per‐pixel, Navg is the number of 

averages, ΔV  is the voxel size, Np is the number of phase‐en-

code steps, Taq is the readout gradient acquisition time and T
s
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is the total imaging time. The factor Taq∕TR represents the 

efficiency of the sequence in terms of maximizing the frac-

tion of the TR devoted to sampling the signal. The expected 

optimal Taq with SPGR is close to Taq ≈T∗

2
.9 For the sake of a 

fair SSFP and SPGR comparison, the spatial resolution, im-

aging time, and y and z phase encoding steps remained the 

same. The effects of SSFP signal transient behavior on the 

final SNR were ignored, which was justified by the relatively 

short T1 and T2 when compared with TR, resulting in a steady 

state being reached rapidly.

With HP 3He gas it has been demonstrated that dephas-

ing from the imaging gradients has a significant effect on the 

effective transverse relaxation rate,24 while the effect is less 

significant when imaging with 129Xe because of the much 

lower diffusion coefficient.32 Calculations with the even 

lower diffusion coefficient of C3F8,
17 with its relatively low 

T2, indicate that this effect is small when compared with the 

uncertainty/variability in the T2 and, therefore, the effect of 

diffusion dephasing due to the imaging gradients themselves 

was neglected here.

Imaging timing parameters that impact upon TE and Taq 

include the following: the RF pulse width (Tpw) and imaging 

gradient encoding/refocusing delays before (TD1
) and after 

(TD2
) frequency encoding. Therefore, TE = 

Tpw

2
+TD1

+
Taq

2
 

and Taq =TR−Tpw−TD1
−TD2

. To emulate practical imag-

ing sequence timings, the simulated RF pulse widths were 

matched to the measurement values, while TD1
 and TD2

 were 

selected to be 0.6 ms throughout the comparison to closely 

match those used in measurement.

2.2 | Quantification of T2
* decay induced 

kx filtering

Insight into the reduction in image quality due to T∗

2
 filtering 

during frequency encoding (kx) was attained by comparison 

of the 1D PSF of the different sequences. For SPGR the sig-

nal decays exponentially from the center of the RF excita-

tion pulse with a time constant T2
*. For SSFP the signal is 

modeled as decaying exponentially with time constant T2, as 

well as decaying symmetrically away from TE with the time 

constant T2
*, similar to simulation/measurement performed 

in reference with a spin‐echo sequence,33 as the transverse 

magnetism ideally decays similarly in a bSSFP sequence.28

2.3 | Relaxation parameters of C3F8/O2

For the phantom simulations presented here the T1 and T2 

of C3F8 gas mixed with 21% O2 are assumed to be 17 ms17 

Within the lung the T1 of fluorinated gases is known to de-

pend more upon regional differences in partial‐pressure34,35 

of O2. Consequently, the mean in vivo T1 has been reported 

as 12.4 ms at 3T.14 Additionally, the intrinsic T2 of C3F8 gas 

within the lungs has not been reported, but is expected to 

remain comparable to T1.
17,34 Additionally, the mean in vivo 

T2
* relaxation constant of C3F8 has been reported as ∼2.2 ms 

at 3T.14

3 |  METHODS

3.1 | Simulation of steady‐state 
magnetization with SSFP

The relation between steady‐state magnetization, FA, and 

RF frequency offset from resonance were simulated with 

MATLAB considering the particular relaxation parameters 

of C3F8 for 3D imaging with a TR of 3.4 ms. Additionally, 

to assess whether transient oscillations in the magnetization 

during initial RF excitations are significant, the transverse 

magnetization for successive RF excitations was simulated 

for different values of TR Furthermore, to quantify the ex-

pected 1D PSF arising from transverse magnetization decay 

the PSF was simulated for varying Taq.

3.2 | Validation of simulated magnetization 
with phantom SNR measurements

To compare the simulations of signal for C3F8 for SSFP 

versus SPGR, phantom experiments were carried out with 

a 2‐L glass cylinder (12 cm diameter, 20 cm length) filled 

with 79% C3F8% and 21% O2 at 1.4 bar pressure. Rectangular 

(24 cm × 16 cm) transceive single loop coils were con-

structed from 11 mm width copper strip, tuned and matched 

at the 1.5T (GE Signa HDx) (60 MHz) and 3T (Philips 

Ingenia) (120 MHz) frequencies and centered with the cylin-

ders during imaging. Before the phantom studies at 1.5T and 

3T, FA maps were generated by varying the input power in 

SPGR imaging with TR 100 ms» T1 and fitting the received 

signal according to Equation (1), as in Maunder et al.36 The 

prescribed FA recorded in Table 1 for the imaging performed 

with the glass phantoms was based on the fitted FA at the 

center of the phantom. Furthermore, to ensure that SNR and 

relaxation parameters were not inaccurately calculated due 

to B1 inhomogeneity, voxelwise parameter mapping was cal-

culated using the voxelwise fitted FA map37 rather than a 

prescribed mean value.

The assumed T1 and T2 relaxation parameters were veri-

fied by comparing the variation of image SNR and simulated 

steady‐state transverse magnetization with RF excitation fre-

quency offset. The offset frequency was varied from −1/TR 

to 1/TR (TR = 4.6 ms) in steps of 30 Hz with two FAs (22.5° 

and 75°) and the SNR was evaluated within a central voxel of 

the glass cylinder phantom at 3T. Furthermore, the simulated 

transverse magnetization of SPGR and SSFP sequences were 

compared with measured image SNR with varying FA. The 
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image SNR was averaged within a central 1.2 × 1.2 × 3 cm3 

voxel with either 3D SSFP or SPGR imaging at 1.5T.

The restrictions on FA due to regulatory SAR con-

traints,38 when applying the same imaging sequence in vivo 

with a thoracic vest transceiver coil 36,39 were also consid-

ered in the SPGR and SSFP SNR versus FA comparison. The 

vest transceiver coil is similar in geometry to the one used 

here and should have comparable SAR characteristics. For a 

1 kW RMS input power, the maximum local 10 g averaged 

SAR was simulated within a realistic human body model 

(SIM4LIFE Zurich Med Tech, Duke model40) as 125 W/kg, 

with a 11.8 �T∕
√

kW transmit efficiency at 60 MHz. The 

global SAR was calculated conservatively as the input power 

to the coil being completely deposited into a 70 kg patient. A 

constant 500 �s hard pulse width was assumed, while pulse 

amplitude was varied to match the FA. All simulated FAs 

were, therefore, achievable with the 4 kW peak power am-

plifier used in in vivo imaging at 1.5T. The specific imaging 

parameters for these and the in vivo imaging experiments de-

tailed later are provided in Table 1.

T A B L E  1  Imaging parameters for phantom and in vivo SSFP and SPGR performance verification with C3F8

Measurement Sequence

TE 

(ms)

TR 

(ms)

BW 

(± kHz)

Matrix size 

(pixels
3
)

FOV 

(cm
3
)

Prescribed 

FA (°) Avg.

Tpw 

(µs)

1.5 T

Phantom study

SNR vs. FA 3D SPGR 1.6 4.3 10 50x50x10 20x20x16 13−91 10 468

SNR vs. FA 3D SSFP 1.6 3.9 10 50x50x10 20x20x16 18−120 10 616

FA mapping 3D SPGR 6.8 100 2.0 52x52x12 24x24x12 9−103 1 1600

T1 mapping 3D SPGR 1.4 5 12.5 52x52x12 24x24x12 8.5−52 40 1600

T2
* mapping 2D SPGR 1.5−11 250 31.25 52x52x12 24x24x12 47 2 1600

SNR vs. TR 3D SPGR 6.8−0.7 15.4−3.2 2−62.5 52x52x12 24x24x12 66−34 5 1600

SNR vs. TR 3D SSFP 6.8−0.7 15.4−3.2 2−62.5 52x52x12 24x24x12 89.6 5 1600

In vivo comparison

FA mapping 3D SPGR 2.2 35 3.97 32x26x10 40x32x30 27.5/55/82 1 832

T1 mapping 3D SPGR 2.2 5.7 3.97 32x26x10 40x32x30 27.5/55/82 10 856

Optimal SNR 

comparison

3D SSFP 1.7 4.0 5.21 32x27x18 40x32x36 72 4 616

Optimal SNR 

comparison

3D SPGR 1.7 4.0 5.21 32x27x18 40x32x36 45 4 468

Ventilation image 3D SSFP 1.72 4.0 6.76 40x34x32 40x32x32 72 8 616

3 T

Phantom study

FA mapping 3D SPGR 6.4 100 3.1 52x52x12 24x24x12 10.6−85 1 1600

T1 mapping 3D SPGR 2.1 5 22.6 52x52x12 24x24x12 22−82 10 1600

T2
* mapping 3D SPGR 1−30 80 45.1 52x52x12 24x24x12 42.5 5 1600

SNR vs. TR 3D SPGR 6.9−1.8 13−4.0 3.1−35.3 52x52x12 24x24x12 57.5−35 5 1600

SNR vs. TR 3D SSFP 7.2−2.1 13−4.0 3.1−32.2 52x52x12 24x24x12 85 5 1600

SNR vs. offset 

frequency

3D SSFP 2.1 4.6 12.2 50x50x5 20x20x10 22.5/75 10 1600

In vivo comparison

FA mapping 3D SPGR 1.48* 50 4.3 28x27x12 40x40x24 30/90 2 1350

T1 mapping 3D SPGR ‐ 6.5 4.3 28x27x12 40x40x24 25/37.5/50 5 1350

T2
* mapping 3D SPGR 1.0−6.0 7 46.3 32x29x14 40x35x29.3 26 12 1350

Optimal SNR 

comparison

3D SPGR 1.8 4 9.5 40x32x28 40x32x28 30 4 780

Optimal SNR 

comparison

3D SSFP 1.8 4 9.5 40x32x28 40x32x28 30 4 780

Ventilation image 3D SSFP 1.8 4 9.5 40x32x28 40x32x28 30 8 780
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3.3 | Phantom relaxation parameters

The T2
* of C3F8 within the glass cylinder phantoms is not 

representative of in vivo values measured in the lung where 

tissue‐airspace field inhomogeneity plays a significant role. 

Therefore, a spatially varying T2
* inhomogeneity was intro-

duced by placing a paramagnetic wire in close proximity to 

the glass canister. At 1.5T, T2
* maps were calculated by vary-

ing the TE in multiple image acquisitions, while fixing the 

BW, FA, and TR, then fitting according to Equation (1). The 

range of TE available at 1.5T was not high enough to ac-

curately distinguish between T2
* values > 14 ms. However, 

at 3T, T2
* maps were fit from the signal decay during multi‐

echo SPGR imaging (multiple echoes per TR) with TEs up 

to 30 ms. To determine that the paramagnetic inhomogene-

ity did not alter the T1 relaxation parameter, and that the in‐

phantom T1 agreed with previous literature,17 T1 was mapped 

throughout the cylinder by varying the FA, with a short TR 

(5 ms at 3T and 1.5T) and fitting pixel‐wise according to 

Equation (1).41

3.4 | Simulated and measured optimization  
of SPGR and SSFP imaging parameters

To determine the optimal TR for 3D SPGR and SSFP imag-

ing sequences, measurements were performed at 1.5T and 3T 

with varying TR. The same FA was used for SSFP imaging 

(approximately 90°), while the input RF power was varied 

with SPGR imaging to maintain the optimal Ernst FA at the 

center of the phantom. Three different regions of interest 

covering a range of T2
*values were investigated.

The simulated steady‐state transverse magnetization was 

multiplied by the factor 

√

Taq

TR
 to represent the SNR per‐

unit‐time efficiency due to trade‐off between acquisition 

bandwidth and averaging. The simulated magnetization and 

measured SNR were plotted against TR The previously ac-

quired FA maps were used to verify that within the represen-

tative voxels the difference in SNR due to potential mismatch 

in prescribed FA and optimal FA was less than 5%.

3.5 | In vivo relaxation parameter mapping

In vivo lung ventilation imaging was performed in a 

healthy male adult volunteer (29 years old) following in-

formed consent and adhering to protocols approved by 

UK National research ethics committee. An eight‐ele-

ment in‐house constructed transceive array was used for 

1.5T 19F and 1H in vivo imaging.42 An elliptical birdcage 

coil (Rapid Biomedical, Rimpar, Germany) was used for 
19F and 1H imaging at 3T. The global FA was measured 

before imaging by performing whole‐lungs spectroscopy 

with a varying input power and long TR (268 ms at 1.5T 

and 200 ms at 3T) and then fitting the resulting signal ac-

cording to Equation (1). Saturation of the lungs with the 

C3F8/O2 mixture was achieved by directing the volunteer 

to take three inhalations from a Douglas bag then perform 

a breath‐hold.

To compare the global and regional variation of T1 in vivo 

at 1.5T and 3T with that obtained in phantoms at 3T, T1 and 

FA parameter mapping was performed. In the same breath‐

hold two 3D SPGR imaging sequences were performed with 

a long TR relative to T1 (TR = 50 ms at 3T and TR = 35 ms at 

1.5T) and prescribed mean FAs of ∼90° FA and ∼30° FA (for 

1.5T an additional point of ~60° was included). The resulting 

pixel‐wise FA was calculated based on the signal intensity 

difference according to Equation (1).43 In a second breath‐

hold, three 3D SPGR imaging sequences were performed 

with TR shorter than T1 (TR = 6.5 ms at 3T and TR = 5.7 ms 

at 1.5T) and the resulting pixel intensity variation used to fit 

T1.
44

In addition, at 3T, T2
* mapping was performed to corrob-

orate the presumed values. A multi‐echo SPGR acquisition 

was made with TE in the range of 1‐6 ms in 1‐ms steps, and 

the resulting images were fit on a voxel by voxel basis. T2* 

mapping was performed at the two lung volumes of total lung 

capacity (TLC) and residual volume (RV).

3.6 | In vivo comparison of SPGR and SSFP 
image SNR

At 1.5T, SNR comparisons were made between a SPGR se-

quence with an approximately optimal prescribed FA (∼45° 

with TR = 4 ms), and a 3D SSFP imaging sequence with 

∼70° FA, which was limited due to SAR constraints. At 

3T, SPGR and SSFP imaging were performed with nearly 

identical imaging parameters, because SAR constraints re-

stricted the FA to 30° with a TR of 4 ms The direct com-

parison of SPGR and SSFP sequences at each field strength 

was carried out within the same breath‐hold to avoid in-

consistencies in coregistration or possible differences in 

the PFP: air concentration ratio in the lungs that may arise 

between breath‐holds (20 s at 1.5T and 28 s at 3T plus 

inter‐scan delay of approximately 5 s). Images were ob-

tained with fully optimized sequences using the same reso-

lution at both 1.5T and 3T for final comparison. Finally, 

to accurately compare the imaging methods k‐space was 

filtered with an identical Hamming filter before FFT re-

construction.11 As a final comparison between the two field 

strengths, imaging was performed at 1.5T and 3T with the 

same resolution (10 × 10 × 10 mm3) TR (4 ms) and 8 aver-

ages. To reduce the breath‐hold time, four averages were 

obtained in two separate breath‐holds to total lung capacity 

(20 s at 1.5T and 14 s at 3T which included an elliptical 

shutter).



   | 1135MAUNDER ET AL.

4 |  RESULTS

4.1 | Simulations for Informing 
Experimental Optimization

Simulation of the C3F8 phantom steady state transverse mag-

netization with a TR = 3.4 ms is shown in Figure 1A, with 

varying FA and RF excitation offset frequency. Because T1 is 

approximated as T1 = T2, the transverse decay is equal to the 

longitudinal recovery rate and the optimal FA remains 90° 

for the central (0 Hz) offset frequency in all cases.27

The simulated oscillating transverse magnetization during 

the initial series of excitations is shown in Figure 1B for vary-

ing TR The rapid longitudinal recovery of C3F8 means that a 

steady‐state is reached within a short number of RF pulses for 

the TRs shown, reducing the amount of ky & kz filtering to a 

negligible level when SSFP imaging with C3F8.
24 Therefore, 

the application of 10 stabilization excitations before imaging 

performed in this study reduced the variation in magnetiza-

tion with subsequent RF pulse excitations to less than 10%, 

even for a relatively short TR of 3.2 ms.

The simulation of the 1D PSF during frequency encoding 

readout is shown in Figure 1C for both SPGR and SSFP. The 

resulting amplitudes of the PSFs for the different sequences 

is also shown in Figure 1D, and the FWHM of the PSF in 

Figure 1E. SPGR is deficient in terms of lower PSF ampli-

tude and increased FWHM when compared with the SSFP 

PSF as the Taq is increased. However, if Taq is kept short rela-

tive to the T2
* the FWHM remains low and blurring is mini-

mal. For SPGR and SSFP sequences with C3F8 if Taq < 2 T2
* 

the FWHM of the PSF remains comparable.

4.2 | Simulation investigation and validation

Figure 2A shows the measured SNR of the SSFP signal at 

3T with varying offset excitation frequency. As expected, the 

simulated magnetization displays a similar trend versus offset 

frequency when compared with measurement. Central slices 

are displayed for the varying offset frequency, demonstrat-

ing the introduction of banding artifacts arising from field 

inhomogeneity as the excitation frequency is offset from the 

center. In Figure 2B the relation between SNR and FA for 

both SPGR and SSFP sequences is demonstrated at 1.5T for 

a central region of interest (ROI) of the phantom. Here, a 

close relation between SNR and the simulated steady‐state 

magnetization is demonstrated, further validating the values 

F I G U R E  1  A, Simulated steady state magnetization as a function of FA and offset frequency for TR = 3.4 ms. B, Simulated transverse 

magnetization evolution for successive RF pulses (effective ky/kz filter) for a bSSFP sequence with C3F8. C, The simulated normalized 1D PSF 

in the kx direction from T2
* decay for both SSFP and SPGR sequences with relaxation parameters of C3F8. D, The corresponding simulated PSF 

amplitudes and E, FWHMs of PSFs with increasing Taq 
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of the relaxation parameters used in the simulations. The 

calculated SAR levels are displayed showing that a 90
◦ FA 

could be used within 1st level controlled SAR constraints. 

However, to maintain more conservative local SAR levels, 

FA < 70
◦ should be used for the specific TR and pulse width 

presented in this case.

4.3 | C3F8 phantom SSFP versus SPGR 
SNR comparison

Maps of the FA homogeneity that all subsequent phantom 

parameter mappings are based upon are displayed in Figure 

3A. The T1 map for the phantom at 1.5T and 3T is displayed 

in Figure 3B, and is in agreement with the range reported 

in Chang and Conradi17 at 60 MHz. The T1 is expected to 

increase slightly with Larmor frequency (<1 ms larger at 

176 MHz versus 60 MHz reported in Chang and Conradi17). 

Here, the standard deviation in the measurement was greater 

than the expected increase from 1.5T to 3T. The T1 maps do 

not show any regional variation with proximity to the para-

magnetic wire. In Figure 3C the T2
* maps for a central slice of 

the phantom with the paramagnetic wire added at both 1.5T 

and 3T. The T2
* map measured at 3T when the wire is ex-

cluded is also shown.

The main comparison of image SNR obtained with SPGR 

and SSFP sequences is displayed for varying TR in Figure 

4A (at 1.5T) and Figure 4B (at 3T). The central ROIs were 

chosen to demonstrate the SNR variation with T2
* and are 

displayed on the T2
* maps in Figure 3C. As TR is varied the 

measured SNR remains significantly higher for SSFP when 

compared with SPGR. SPGR optimization is highly depen-

dent on T2
*, with maximal SNR occurring when the Taq is 

slightly greater than T2
*.

The simulated transverse magnetization (normalized for 

the time available time for acquisition and averaging) closely 

matches the measured ROI SNR. However, because the pixel 

ROIs include a range of T2
* the SNR behavior with TR does 

not match exactly. In simulation, the signal was assumed 

to correspond to the transverse magnetization amplitude at 

kx = 0 (center of the frequency encoding gradient), but in 

fact, is also dependent on the PSFs as presented in Figure 1D.

4.4 | In vivo parameter mapping

Mapping of FA is displayed in Figure 5A, and the corre-

sponding colocalized T1 map in Figure 5B. The mean T1 is 

lower than that found in the phantom (Figure 3), which is in 

agreement with previously reported in vivo T1 from whole 

lungs (12.4 ms at 3T14). Regional variation is apparent, with 

the greatest variation observed at the lung‐tissue interfaces.

T2
* maps are shown in Figure 6A and Figure 6B for lung 

inflation levels TLC and RV, respectively. The in vivo T2
* is 

systematically less than in the glass cylinder phantoms (aver-

age of 2.04 ms versus 20 ms in the phantom with undistorted 

field). The average T2
* at 3T is in agreement with previous 

global measurements for the PFP T2
* in the lungs (2.2 ms14), 

F I G U R E  2  A, Simulated SSFP 

transverse magnetization and measured SNR 

versus offset frequency at 3T for a central 

ROI within the C3F8 gas phantom at 3T with 

TR of 4.3 ms SNR maps of a central slice 

are shown (above) as the offset frequency 

is varied for both 22.5º and 75º FAs. B, 

Simulated steady state magnetization and 

measured SNR at 1.5T in a central ROI of 

the PFP cylinder with 3D SPGR and SSFP 

sequences plotted as a function of varying 

FA demonstrating the close relation with 

simulation. Red dotted vertical lines indicate 

the calculated SAR limits based on FA if 

the same sequence were performed in vivo 

at 1.5T
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but the regional variation and dependence on inflation level 

is significant. There does not appear to be a visually observ-

able correlation between regions of varying T2
* and T1, while 

T2
* seems to be lowest in regions near the susceptibility in-

terfaces of the pulmonary blood vessels and at the inferior 

portion of lung where perfusion is highest.

4.5 | In vivo SNR performance: SSFP 
versus SPGR

An average increase in SNR by a factor of 1.7 was found at 

1.5T (Figure 7A compared with Figure 7B). However, there 

are some bands of high versus low increases in SNR (Figure 

7C) demonstrating the possible impact of field inhomogene-

ity. At 3T, no overall increase in SNR was observed with 

SSFP when performed under the SAR conservative settings 

(FA of 30
◦ and TR of 4 ms) when compared with SPGR im-

aging (Figure 7C compared with Figure 7D). The signifi-

cant regional variation in the SNR increase throughout the 

lungs with SSFP versus SPGR is reflective of the local B0 

inhomogeneity.

F I G U R E  3  A, FA maps through a 

central slice at 1.5T and 3T. B, T1 maps 

through a central slice are displayed with 

the placement of a paramagnetic wire at 

1.5T and 3T. C, T2
* maps are also displayed 

for 1.5T and 3T originating from the 

placement of the paramagnetic wire. The 

T2
* map without the variation from the 

paramagnetic wire is shown for 3T as well. 

ROIs where SNR variation is evaluated as 

TR is varied and the corresponding T2
* for 

specific locations are displayed with the 

T2
* maps 

F I G U R E  4  The measured variation (circular markers) of SNR 

with TR for SSFP (black) or SPGR (blue, green and red) sequences 

at A, 1.5T or B, 3T are displayed. For SPGR, labels of A, B, and C 

correspond to the ROIs in T2
* maps labelled similarly in Figure 3C. 

Image SNR is normalized by the time for averaging (
√

TR), while 

the simulated transverse magnetization (solid lines) is normalized 

by the predicted Tacq and TR [Colour figure can be viewed at 

wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4.6 | In vivo ventilation imaging: 1.5T and 
3T comparison

SNR maps of the in vivo ventilation images obtained at 1.5T 

and 3T are shown in Figure 8. Through the use of a transceive 

array and increased SNR with SSFP imaging the mean SNR 

at 1.5T is higher than that of 3T for the same resolution. The 

increase in SNR is dominated by the regions of increased coil 

sensitivity at the anterior and posterior regions of the lung 

and much of the periphery, so the variation is higher at 1.5T 

as well. Due to B1 inhomogeneity in the anterior of the lung 

at 3T, there is significant signal drop‐out.

5 |  DISCUSSION

The close agreement between the simulated and measured 

SSFP versus SPGR signals, with both varying FA and off-

set frequency, indicates that the expected parameters of T2, 

T1, and T2
* within the glass phantom are valid. Additionally, 

the direct measurement of T1 and T2
* matched the expected 

in‐phantom values, with measurably smaller mean values of 

T1 and T2
* measured in vivo. T2 was indirectly validated by 

the close agreement between SSFP simulations and meas-

urements because measuring T2 with established spin echo 

sequences was constrained by the SAR limitations. For 

short sequence TR, variations in the simulated T2 and T1 for 

C3F8 have minimal influence on the simulated steady‐state 

magnetization, because they are expected to remain com-

parable.17 However, lower T1 results in a predicted greater 

steady‐state magnetization with SPGR. This manifests as a 

reduction in the relative improvement of SSFP imaging of 

PFP in the lungs when compared with in a PFP gas phan-

tom, which was observed at both 1.5T and 3T. It was also 

demonstrated that the improved SNR achieved using SSFP 

when compared with SPGR is strongly dependent upon the 

T2
* expected in vivo and the kx filtering effect of T2

* reduces 

the expected image quality when T2
* < Tacq.

The in vivo T1
44 and T2

* mapping results add to the data 

in the literature for C3F8 in lungs. The T1 of fluorinated gases 

has previously been attributed to have a direct correlation 

with ventilation‐perfusion.34,45 Consequently, the differences 

F I G U R E  5  Maps of A, FA for 

a prescribed 30° and B, T1 at 1.5T, for 

images acquired at a lung volume of TLC 

in a healthy volunteer. Parameter mapping 

results where the image SNR was < 20 

were excluded from analysis. Maps 

include the mean and standard deviation of 

parameters throughout the lungs in the top 

left corner 

F I G U R E  6  Maps of T2
* in vivo at 3T for lung volumes of A, 

RV and B, TLC are displayed with the mean and standard deviation of 

parameters throughout the lungs in the top left corner [Colour figure 

can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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in mean values for T1 measured at 1.5T and 3T (Figure 5B) 

may be due to the level of saturation with the C3F8 + O2 mix-

ture. T2
* correlates with lung inflation/filling level and may 

be related to alveolar size,46 which can change in diseases 

such as emphysema. Therefore, the parameter mapping tech-

niques followed here may have direct relevance for future 

study.

Figure 2B demonstrates that at 1.5T using the optimal im-

aging parameters, the conservative SAR limits38 are exceeded 

because the optimal SSFP FA is high due to the near equiv-

alence of T1 and T2 for the gases used in these experiments. 

Nevertheless, the sequence when run with a suboptimal 

FA of 72º still provides significant SNR gains over SPGR. 

However, at the higher field strength of 3T, SAR constraints 

are expected to further limit the potential advantage of SSFP 

for human 19F ventilation imaging. A prescribed FA during 

in vivo imaging at 3T of 30° was shown in phantom exper-

iments (Figure 2A) to result in nearly the same SNR with 

SPGR and SSFP imaging.

There is a likelihood of some off‐resonance banding ar-

tifacts occurring in routine imaging, as may be observed 

near the diaphragm in some of the 1.5T SSFP images in 

Figure 7B and Figure 8A. Even in the geometrically uni-

form and relatively small cylindrical glass phantoms, band-

ing can be observed at the susceptibility interfaces and as 

resonant frequency is offset (Figure 2A). Increased B0 and 

RF inhomogeneity, especially with FOVs as large as the 

human torso (38‐52 cm), increases this likelihood at the 

higher field strength of 3T. Previously, B0 mapping within 

the lungs with inhaled 3He gas at 1.5T and 3T demonstrated 

F I G U R E  7  SNR maps of PFP in the lungs acquired at 1.5T using either A, SPGR or B, SSFP imaging and C, the relative improvement in 

SNR with SSFP imaging. Additionally, SNR maps acquired at 3T using D, SPGR or E, SSFP sequences with (F) maps of the relative ratio of SNR 

of SSFP versus SPGR imaging 

F I G U R E  8  SNR maps for fully optimized imaging at equal 

resolution A, with SSFP imaging at 1.5T and an 8‐element array or B, 

at 3T with SPGR and a quadrature birdcage coil are shown for final 

1.5T and 3T comparison



1140 |   MAUNDER ET AL.

a variation in Larmor frequency at 3T of >120 Hz across 

the lungs.47 Therefore, the B0 inhomogeneity in the lungs 

makes the application less robust at 3T. Future investiga-

tions to test SSFP versus SPGR imaging at higher field 

strengths may show the expected improvement if the same 

imaging methods are reproduced in animal MRI where 

SAR limits are not exceeded and FA and B0 inhomogeneity 

can be reduced.

The expected SNR gains of using SSFP over SPGR im-

aging at 1.5T are comparable to the improvements seen with 

SPGR when going from 1.5T to the higher field strength of 

3T. Therefore, equivalent quality human ventilation images 

may be obtained with the lower field strength without the 

same constraints of SAR. Especially, if at 1.5T a multi‐chan-

nel receive array is used as in this work and others.5 The use 

of a receive array for imaging of the thorax/torso may re-

sult in further SNR increases in the range of 50‐100%,48,49 

with the majority of the increase obtained at the periphery. 

Therefore, a mean SNR of 15‐20 may have been expected at 

1.5T by combining the following factors: a measured SNR 

increase of 70% by use of SSFP, the approximate linear de-

pendence of SNR with field strength,50 and the use of a re-

ceive array. We note that, at 3T k‐space was sampled with the 

use of an elliptical shutter where the corners of k‐space were 

not sampled (22% undersampling). Hence, despite the same 

nominal resolution of 1.5T and 3T for images in Figure 8 the 

SNR was slightly enhanced for the 3T images.

Here, the in vivo imaging at 1.5T was performed with 

a flexible vest coil,42 which typically would have a worse 

transmit homogeneity than rigid volume coils as demon-

strated with direct comparisons with 3He hyperpolarized 

gas imaging at 1.5T in De Zanche et al51 (the variation 

was 7.3% within lungs with an asymmetric birdcage coil). 

Despite the lower frequency of 1.5T the flexible transceive 

array showed lower in vivo transmit homogeneity during in 

vivo imaging, while the transmit homogeneity with the bird-

cage coil at 3T was also not ideal (∼20% variation). The FA 

variation should not affect the in vivo T2
* parameter map-

ping, or the T1 mapping because the colocalized FA maps 

were used in the fitting. The in vivo comparison of SPGR 

and SSFP imaging is confounded by the coil inhomoge-

neity (FA variation of ±22.4% in Figure 5A) and natural 

variation of T1 (24% in Figure 5B) and T2
* (28% in Figure 

6B) throughout the lungs. These three factors lead to the 

range of variations in improvement with SSFP versus SPGR 

shown in Figure 7C and Figure 7F, and in the future may be 

investigated further.

Comparison of the in vivo ventilation image quality 

obtained here to previous studies is difficult due to differ-

ences in the imaging resolutions used and in the method 

of reporting and measuring SNR in images. Often, SNR 

is reported within a ROI with the highest signal. Further 

complicating the comparison, the longer Taq used in pre-

vious studies results in broadened PSF as simulated in 

Figure 1D,E, which imparts a higher image SNR whilst 

degrading image quality due to blurring,25 and may be ad-

ditionally modified by filtering during postprocessing.14 

Additionally, different studies have used different RF 

transmit/receive coils that may contribute to more than a 

factor of 3 in SNR variation. 

Nonetheless, in our study the measured SNR of 13.1 

± 5.7 throughout the lungs at 1.5T (8‐element trans-

ceive array with image resolution of 10 × 10 × 10 mm3 

and Taq =3.3ms) is equivalent to the SNR of ∼30 re-

ported by Gutberlet et al.15 (transmit birdcage and 16‐el-

ement receive array with image resolution of 7.8 × 7.8 

× 20 mm3 and Taq =7.1ms). At 3T, the SNR achieved in 

our study of 11.6 ± 3.2 throughout the lungs (elliptical 

birdcage coil with image resolution of 10 × 10 × 10 mm3 

and Taq =2.1ms) is also comparable to 32 ± 6 in a chosen 

central region reported by Couch et al.14 with a transceive 

vest coil and image resolution of 7.1 × 7.1 × 22 mm3 and 

Taq =7.1ms with half‐fourier echo. Although the in‐plane 

resolution reported here at 3T is lower, visual comparison 

of the images in Figure 8 with those in Couch et al.14 show 

more clearly defined edges and features, similar to those 

obtained by Halaweish et al.12 at 3T, which did not report 

SNR values (with transceiver vest coil and image resolu-

tion of 6.25 × 6.25 × 15 mm3 and Taq =7.7ms).

The benefits shown here for SSFP of C3F8 are less ap-

plicable to the other common fluorinated gases of SF6 or 

C2F6 because of their shorter T1 and T2 values. Therefore, 

the use of C3F8 over other fluorinated gases has an increased 

benefit in terms of SNR achieved with SSFP and longer T2
*. 

Consequently, the use of ultrashort TE (UTE) sequences for 

SF6 or C2F6 is logical,14 while not providing as dramatic an 

improvement for 19F lung imaging with C3F8 because T2
* is 

greater than gradient encoding and RF pulse times that may 

be used. Additionally, T2
* filtering in UTE SPGR imaging 

with fluorinated gases in 3D radial or 1D Cartesian UTE11 is 

another concern somewhat circumvented by the use of C3F8 

with short TR SPGR or SSFP.

6 |  CONCLUSION

With optimized SSFP images we have demonstrated im-

proved lung ventilation images with 19F C3F8 gas at 1.5T. 

We believe the image quality shown here to be equivalent 

or superior to images published previously at 1.5T or 3T and 

this work bodes well for the emergence of 19F gas MRI as a 

complementary modality to 129Xe or 3He MRI for directly 

imaging lung ventilation. However, benefits of SSFP for 19F 

C3F8 lung MRI at 3T are less clear.
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