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ABSTRACT

We study, analytically and numerically, the energy input into dark matter mini-haloes by

interactions with stars. We find that the fractional energy input in simulations of Plummer

spheres agrees well with the impulse approximation for small and large impact parameters,

with a rapid transition between these two regimes. Using the impulse approximation, the

fractional energy input at large impact parameters is fairly independent of the mass and density

profiles of the mini-halo; however, low-mass mini-haloes experience a greater fractional energy

input in close encounters. We formulate a fitting function which encodes these results and

use it to estimate the disruption time-scales of mini-haloes, taking into account the stellar

velocity dispersion and mass distribution. For mini-haloes with mass M < O(10−7 M⊙) on

typical orbits which pass through the disc, we find that the estimated disruption time-scales

are independent of mini-halo mass, and are of the order of the age of the Milky Way. For more

massive mini-haloes, the estimated disruption time-scales increase rapidly with increasing

mass.

Key words: Galaxy: structure – dark matter.

1 I N T RO D U C T I O N

In cold dark matter (CDM) cosmologies, structure forms hierarchi-

cally; small haloes form first, with larger haloes forming via mergers

and accretion. The internal structure of haloes is determined by the

dynamical processes, for instance, tidal stripping and dynamical

friction, which act on the component subhaloes. Numerical simu-

lations find that substantial amounts of substructure survive within

larger haloes (Klypin et al. 1999; Moore et al. 1999) with the num-

ber density of subhaloes increasing with decreasing mass, down to

the resolution limit of the simulations. Natural questions to ask are:

what are the properties of the first dark matter (DM) haloes to form

in the Universe, and do significant numbers survive to the present

day?

Weakly interacting massive particles (WIMPs) are one of the

best-motivated DM candidates. They generically have roughly the

required present-day density, and supersymmetry (an extension of

the standard model of particle physics) provides a well-motivated

WIMP candidate, the lightest neutralino (see e.g. Bertone, Hooper

& Silk 2005). Numerous experiments are underway attempting to

detect WIMPs either directly (via elastic scattering off target nuclei

in the laboratory) or indirectly (via the products of their annihila-

tion). In both cases, the expected signals depend critically on the

DM distribution on small scales; direct detection probes the DM

on submilliparsec (au) scales, while clumping may enhance the in-

⋆E-mail: anne.green@nottingham.ac.uk (AMG); s.goodwin@sheffield.ac.

uk (SPG)

direct signals. Therefore, the fate of the first DM haloes, and the

resulting DM distribution on small (subparsec) scales, is important

for practical reasons too.

Studies of the microphysics of WIMPs show that kinetic de-

coupling and free-streaming combine to produce a cut-off in the

density perturbation spectrum for generic WIMPs at a comoving

wavenumber k ∼ O(1 pc−1) (Hofmann, Schwarz & Stöcker 2001;

Schwarz, Hofmann & Stöcker 2001; Berezinsky, Dokuchaev &

Eroshenko. 2003; Green, Hofmann & Schwarz 2004, 2005; Loeb &

Zaldarriaga 2005; Berezinsky, Dokuchaev & Eroshenko 2006)

which corresponds to a mass of the order of 10−6 M⊙. Analytic

calculations, using linear theory and the spherical collapse model,

find that the first typical (i.e. forming from 1σ fluctuations) haloes

form at z ∼ 60 and have radius R ∼ O(0.01 pc) (Green et al. 2004,

2005).

Diemand, Moore & Stadel (2005) carried out numerical simula-

tions using as input the linear power spectrum for a generic WIMP

with mass mχ = 100 GeV (Green et al. 2004, 2005). They used

a multiscale technique, twice re-simulating at higher resolution an

‘average’ region selected from a larger simulation. These simula-

tions confirmed the analytic estimates of the mass and formation

redshift of the first mini-haloes and also provided further infor-

mation about their properties, in particular, the density profiles of

sample mini-haloes. The simulations were stopped at z ≈ 26 when

the high-resolution region began to merge with the lower-resolution

surroundings, and so the subsequent evolution of the mini-haloes

has to be studied separately.

Extensive work has been done on the dynamical evolution of

more-massive (M > 106 M⊙) substructure (e.g. Zenter & Bullock

C© 2007 The Authors. Journal compilation C© 2007 RAS
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1112 A. M. Green and S. P. Goodwin

2003; Oguri & Lee 2004; Taylor & Babul 2004; Peñarrubia &

Benson 2005). The physics of mini-haloes is significantly differ-

ent from that of these more-massive haloes, however. First, the first

generation of mini-haloes form monolithically, rather than hierarchi-

cally. Secondly, the amplitude of the density perturbations on these

scales is a very weak function of scale, so that haloes with a range

of masses form at the same time. Finally, as well as being subject to

the same dynamical processes as larger subhaloes (e.g. tidal strip-

ping, interactions between subhaloes1) mini-haloes can lose energy,

and possibly be completely disrupted, via interactions with com-

pact objects such as stars. Various authors have used the impulse

approximation to investigate the disruption of M ∼ 10−6 M⊙ mini-

haloes due to encounters with stars (Diemand et al. 2005; Moore

et al. 2005; Zhao et al. 2005, 2007; Angus & Zhao 2006; Berezinsky

et al. 2006; Goerdt et al. 2006). The results of these studies range

from most of the mini-haloes surviving disruption (Diemand et al.

2005; Moore et al. 2005) to most of the mini-haloes whose orbits

pass through the solar neighbourhood being destroyed (Zhao et al.

2005). A definitive study will have to combine accurate calcula-

tions of the response of mini-haloes to individual interactions with

simulations of mini-halo orbits in a realistic Galactic potential (see

Moore 1993; Zhao et al. 2007, for work in this direction).

In this paper, we use N-body simulations to investigate the accu-

racy of the impulse approximation for calculating the energy input

into a mini-halo by an interaction with a star. We formulate a fitting

function which matches the results of the simulations and use it

to estimate the time-scales for one-off and multiple disruption as a

function of mini-halo mass. We caution, and discuss in more detail

below, that it is actually the mass loss which is key to determin-

ing the extent to which a mini-halo is disrupted. The relationship

between the energy input and the mass lost in an interaction is a

complex, and to some extent unresolved, problem (see e.g. Aguilar

& White 1985; Goerdt et al. 2006).

2 P R E V I O U S C A L C U L AT I O N S

The duration of a typical star–mini-halo encounter is far shorter than

the dynamical time-scale of the mini-halo; therefore, the impulse ap-

proximation holds and the interaction can be treated as instantaneous

(Spitzer 1958). More specifically, the validity of the impulse approx-

imation can be parametrized by the adiabatic parameter (Gnedin &

Ostriker 1999) x = ωτ where ω = σ (b)/b is the orbital frequency

of particles at a distance b from the centre of the mini-halo and τ =

2R/v is the duration of the encounter. The impulse approximation is

valid if x ≪ 1, or equivalently R/b ≪ v/σ (b). As the typical relative

velocity of encounters [v ∼ O(10–100 km s−1)] is far larger than

the mini-halo velocity dispersion [σ (R) ∼ O(1 m s−1)], then only

for very rare, slow interactions at very small impact parameters will

the impulse approximation be violated. The change in the velocity

of a particle within an extended body of radius R at position r rela-

tive to the centre of the body due to an impulsive interaction with a

perturber of mass M⋆, moving with relative velocity v at an impact

parameter b, such that b ≫ R, is given by (Spitzer 1958):

δv ≈
2G M⋆

vb2
[2(r · eb)eb + (r · ev)ev − r ] , (1)

where ev and eb are unit vectors perpendicular to v and b, respec-

tively. The energy input, per unit mass, for an individual particle is

1 See Berezinsky et al. (2003) and Berezinsky et al. (2006) for analytic

studies of the effects of interactions between mini-haloes.

δE =v · (δv) + 0.5(δv)2, and the total energy input into the body is

then found by integrating over the density distribution. For a spher-

ically symmetric body, the first term averages to zero and, using the

approximation that (r · ev)2 = (r · eb)2 ≈ r2/3, the total energy input

is given by

�E(b) ≈
4α2

3

G2 M2
⋆ M R2

v2b4
, (2)

where

α2 =
〈r 2〉

R2
≡

1

R2

[

∫ R

0
d3

r r 2ρ(r )

M

]

, (3)

is the rms radius.

For small impact parameter interactions, b/R → 0 (e.g. Gerhard

& Fall 1983; Carr & Sakellariadou 1999):

δv ≈
2G M⋆

v

[

(r · ev)ev − r

r 2 − (r · ev)2

]

, (4)

so that the energy input is given by

�E(b = 0) ≈ 3β2 G2 M2
⋆ M

v2 R2
, (5)

where

β2 = 〈r−2〉R2 ≡ R2

[

∫ R

0
d3

r r−2ρ(r )

M

]

, (6)

is the rms inverse radius. Carr & Sakellariadou (1999) (drawing on

Gerhard & Fall 1983) interpolated between the b ≫ R and b ≪ R

regimes using

δv =
2G M⋆

v

1

b2 + (2r 2/3)

×

[

2b2

b2 + (2r 2/3)
(r · eb)eb + (r · ev)ev − r

]

, (7)

so that

�E(b) ≈
4

3

(

G M⋆

vb2

)2

×

∫ R

0

d3
r r 2ρ(r )

(

1 +
4r 4

9b4

)(

1 +
2r 2

3b2

)−4

. (8)

Moore (1993) simulated encounters between globular clusters,

modelled with King profiles, and massive (∼104 M⊙) black holes.

He found that the energy input was well fitted by

�E(b) =
�E(b = 0)

[1 + (b/R)]4
. (9)

This fitting function will, however, only reproduce the asymptotic

limits, equations (2) and (5), if α2 ≈ 9β2/4, which need not be (and

we will see is not) the case in general. A simple modification to

equation (9),

�E(b) =
�E(b = 0)

[

1 + (bA−1/4/R)
]4

, (10)

with A = 4α2/9β2, produces a function with the correct asymptotic

limits in general.

For later convenience, we write the fractional energy input, which

is simply �E(b) divided by the total energy of the mini-halo E =

γ GM2/R, where γ is a constant of the order of 1 which depends on

the density profile (and cut-off radius if one is imposed), as

�E(b)

E
=

(

�E(b)

E

)

fid

[(

M⋆

M⊙

)(

300 km s−1

v

) ]2

, (11)
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Mini-halo–star encounters 1113

Table 1. Structure parameters, binding energy per unit mass and mass of the best-fitting profiles for the

three sample haloes (using only the data at radii greater than the force softening). For the energy and mass

calculations, a sharp cut-off is taken at R = r200(z = 26) = 0.03 and 0.008 pc for halo 1 and haloes 2 and 3,

respectively. The final column is the Plummer, core or scale radius for the Plummer, CIS or NFW profile,

respectively.

Halo Profile α2R2 (pc2) β2/R2 (pc−2) E/M (erg M−1
⊙ ) M (M⊙) rp/c/s (pc)

1 Plummer 2.6 × 10−4 1.5 × 104 −1.5 × 1038 1.0 × 10−4 0.013

1 CIS 3.2 × 10−4 3.2 × 104 −7.2 × 1037 6.0 × 10−5 0.0032

1 NFW 3.2 × 10−4 – −7.8 × 1037 6.7 × 10−5 0.0014

2 Plummer 3.2 × 10−5 7.0 × 104 −2.1 × 1037 2.1 × 10−6 0.0092

2 CIS 2.7 × 10−5 1.2 × 105 −1.1 × 1037 1.6 × 10−6 0.0032

2 NFW 2.7 × 10−5 – −5.1 × 1037 1.4 × 10−6 0.011

3 Plummer 3.0 × 10−5 8.1 × 104 −1.0 × 1037 1.3 × 10−6 0.0076

3 CIS 2.4 × 10−5 2.0 × 105 −1.0 × 1037 1.2 × 10−6 0.0019

3 NFW 2.6 × 10−5 – −5.2 × 1037 1.4 × 10−6 0.0076

where (�E(b)/E)fid is the fractional energy input in an interaction

with a fiducial star with mass M⋆ = 1 M⊙ and relative velocity

v = 300 km s−1.

3 A P P L I C AT I O N TO M I N I - H A L O E S

3.1 Density profiles

We use the following three benchmark density profiles.

(i) Plummer sphere

ρ(r ) =
ρ0

[

1 + (r/rp)2
]5/2

. (12)

This profile (Plummer 1915), which has a central core and asymp-

totes to r−5 at large radii, is commonly used to model star clusters.

It is not a good fit to simulated CDM haloes or subhaloes; how-

ever, it is a convenient choice for testing the impulse approximation

against numerical simulations as it has a simple form for the density

and velocity distributions (see Aarseth, Hénon & Wielan 1974).

In addition, the rapid fall-off of the density at large radii means

that there are no subtleties involved in imposing a truncation radius

(see e.g. Kazantzidis, Magorrian & Moore 2004), and the Plummer

sphere is also stable when isolated.

(ii) Cored isothermal sphere (CIS)

ρ(r ) = ρ0

r 2 + 3r 2
c

(

r 2 + r 2
c

)2
. (13)

The cored isothermal sphere is a better (although still not good) ap-

proximation to the mini-haloes, is amenable to analytic calculations

and allows us to investigate the impact of a central core and more

gradual fall-off at large radii to the fractional energy input.

(iii) Navarro, Frenk & White (NFW)

ρ(r ) =
ρ0

(r/rs)[1 + (r/rs)]2
. (14)

The NFW profile (Navarro, Frenk & White 1996, 1997) fits the den-

sity distribution, outside the very central regions, of simulated galac-

tic scale and larger DM haloes well and is often used to model mas-

sive DM haloes. However, mini-haloes form monolithically, rather

than by hierarchical mergers like ‘standard’ DM haloes, and it is not

clear that they will have the same density profile. The NFW profile

does, however, provide a reasonably good fit to the density profiles

of the mini-haloes from Diemand et al.’s simulations.

We find the best fit for each of these profiles for the three typical

haloes in fig. 2 of Diemand et al. (2005) using only the data points

(density averaged within radial bins) at radii greater than the force

resolution (using all the data points does not significantly change

the best-fitting parameters). We refer to the haloes denoted by the

squares, stars and circles in their figure as haloes 1, 2 and 3, respec-

tively.

The CIS and NFW profiles have infinite mass and energy unless

a cut-off radius is imposed by hand. For definiteness, and to allow

comparison with previous work on mini-halo disruption, we use

the radius at which the halo density is 200 times the cosmic mean

density at z = 26 when Diemand et al.’s simulations are stopped and

the sample haloes studied. For halo 1r200(z = 26) = 0.03 pc while

for haloes 2 and 3r200(z = 26) = 0.008 pc. For the Plummer profile,

a cut-off is not in principle needed; however, we use the same values

for the radii for consistency.

In Table 1, we give the values of the Plummer, core and scale

radii (as appropriate), the mass (M), initial energy per unit mass

(E/M) and the structure parameters, α2R2 and β2/R2. Our values

of the structure parameters are slightly different from those of Carr

& Sakellariadou (1999) as they defined the cluster radii differently.

Haloes 2 and 3 have roughly the same mass ∼10−6 M⊙ depend-

ing at the tens of per cent level on the profile used. Halo 1 is a

factor of ∼50 more massive.2 We calculate the total energy by cal-

culating the potential, and hence the velocity dispersion and ki-

netic and potential energy densities, from the density profiles. The

truncation at finite radii means that the resulting haloes are not in

virial equilibrium. For all three profiles for halo 1 and the CIS

and NFW profiles for haloes 2 and 3, the deviation is relatively

small. The best-fitting Plummer spheres for haloes 2 and 3 have

rs ∼ O(r200(z = 26)) and the resulting systems are far from virial

equilibrium.

The values of α2, which parametrizes the energy input for large

impact parameter encounters, only vary by a factor of ∼2 between

different haloes and density profiles reflecting the fact that the

sample haloes have similar mean densities. However, β2, which

parametrizes the energy input in the b → 0 limit varies significantly

and is in fact infinite for the NFW profile. It can be seen from the

definition of β2, equation (6), that β2 is formally infinite for any

profile with a central cusp ρ(r) ∼ r−γ with γ � 1. The WIMP

2 It appears that 5.1 × 10−6 M⊙ for halo 1 in the caption of fig. 2 of Diemand

et al. (2005) is a typo and should be 5.1 × 10−5 M⊙.
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1114 A. M. Green and S. P. Goodwin

density cannot in fact become arbitrarily high in the central regions

of a mini-halo; if the density becomes sufficiently high, the WIMPs

will annihilate, reducing the density to some maximum value ρmax

so that the halo has a (small) core: ρ(r) = ρmax for r < rcore. The

density and size of the core can be estimated by calculating the den-

sity for which the annihilation time-scale is less than the Hubble

time (cf. Berezinsky, Gurevich & Zybin 1992):

ρmax〈σχχv〉

2mχ

<
1

1010 yr
. (15)

Using ‘typical’ values for the WIMP mass and velocity averaged

cross-section, mχ = 100 GeV, 〈σ χχv〉 = 3 × 10−32 m3 s−1, we find

ρmax = 4 × 10−13 kg m−3 = 4 × 1013ρc(z = 0). For the best-fitting

NFW profiles, rcore ∼ 10−10 pc. Taking this effect into account leads

to finite values for β2, but they are still large (∼107). The energy

input only reaches its asymptotic value, however, for tiny (∼rcore),

and hence extremely rare, impact parameters.

3.2 Simulations of star–mini-halo encounters

We use the DRAGON smooth particle hydrodynamics code

(e.g. Goodwin, Whitworth & Ward-Thompson 2004a,b; Hubber,

Goodwin & Whitworth 2006) with hydrodynamics turned-off as an

N-body code. DRAGON uses a Barnes-Hut (1986)-type tree and we

set the opening angle to be small to increase the accuracy of the

force calculations between DM particles. The forces between DM

particles and the star are all computed by direct summation. This

physical situation, interaction of an extended body with a far more

massive compact object, has, to our knowledge, not been studied

numerically before and we carried out extensive testing to ensure

the reliability of the results. In particular, the masses of the DM

particles are a factor of ∼O(109) less massive than the perturbing

star, requiring numerical care to be taken.

We generate the initial conditions for the Plummer sphere mini-

haloes using the prescription of Aarseth et al. (1974), assuming that

the haloes are initially in virial equilibrium. Left isolated, the mini-

haloes remain in equilibrium, and the energy conservation of the

code is ∼10−5 over time-scales far in excess of a typical mini-halo–

star interaction time-scale (∼50 kyr). A star of mass M⋆ is then

placed 1 pc away from the halo approaching it at velocity v, with an

impact parameter b.

We conduct simulations with N = 5000 DM particles with a

Plummer force softening between DM particles of ǫ = 10−3 pc.

The forces due to the star are softened with a significantly smaller

softening length of 10−4 pc. The softening between DM parti-

cles is rather large, but we wish to subdue any two-body inter-

actions between DM particles. Tests conducted with ǫ = 10−4 and

10−2 pc show no difference in the results. Similarly, increasing the

particle numbers to N = 10 000 and 20 000, we found no signifi-

cant (or systematic) changes. This convergence is not surprising as

the energy input is entirely due to the encounter with the star whose

force is accurately calculated with a low softening length, and we

are only concerned with the energy input to the halo, and not in

the details of relaxation and/or mass loss after the impulse has

occurred (which will involve interactions between the halo parti-

cles and may require a larger number of particles for convergence

e.g. Goerdt et al. 2006).

We ran a large ensemble of simulations covering a wide range

of M⋆ –v–b parameter space: 0.215 < M⋆/M⊙ < 30, 1 < v/

Figure 1. The fractional energy input, (�E(b)/E)fid, in an interaction with

a fiducial star with mass M⋆ = 1 M⊙ and relative speed v = 300 km s−1 for

the best-fitting Plummer profile for halo 1. The solid line from numerically

integrating equation (8), the dotted lines asymptotic limits, equations (2) and

(5), the short-dashed line using the original fitting function, equation (9), and

the long-dashed line the modified fitting function, equation (10). The stars

from numerical simulations. The dot–dashed line is the radius of the mini-

halo.

Figure 2. The fractional energy input, �E/E, from simulations of the best-

fitting Plummer profile for halo 1 as a function of relative velocity for en-

counters with a perturber of mass M⋆ = 1 M⊙. The open circles have an

impact parameter of b = 10−2 pc, while the filled circles have b = 10−5 pc.

The fractional energy input scales as v−2 as expected (lines of gradient −2

have been added to aid the eye).

(1 km s−1) < 4003 and −5 < log 10(b/1 pc) < 1. With N = 5000,

each simulation took an average of 20 min on a desktop PC.

3.3 Fractional energy input

The fractional energy input, (�E(b)/E)fid, in an interaction with

a fiducial star with mass M⋆ = 1 M⊙ and relative velocity v =

300 km s−1 is plotted in Fig. 1 for the best-fitting Plummer sphere

for halo 1. This fiducial velocity, chosen as an isothermal sphere with

circular velocity vc = 220 km s−1 [i.e. representing the Milky Way

(MW)], has an rms speed of 270 km s−1. In reality, interactions will

have a range of velocities and perturber masses. In Figs 2 and 3, we

3 Although interactions with relative speeds at the lower end of this range are

extremely rare, we consider them in order to test the validity of the impulse

approximation.
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Mini-halo–star encounters 1115

Figure 3. The fractional energy input, �E/E, from simulations of the best-

fitting Plummer profile for halo 1 as a function of perturber mass for en-

counters with a relative velocity v = 100 km s−1 at an impact parameter of

b = 10−2 pc. The fractional energy input scales as M2
⋆ as expected (a line

of gradient 2 has been added to aid the eye).

plot the fractional energy input as a function of relative velocity and

perturber mass, showing that it scales as v−2 and M2
⋆, respectively,

as expected from equation (2). In Fig. 2, we also show that the v−2

proportionality is independent of the impact parameter and holds

down to very small [O(1 km s−1)] relative velocities.

For a given perturber mass and relative velocity, we see from

Fig. 1 that the large and small b asymptotic limits are in excellent

agreement with the full analytic calculation using equation (8). As

expected, the original fitting function significantly overestimates the

energy input at large b. The modified fitting function, designed to

reproduce the asymptotic limits, matches well the calculation using

equation (8) for all b. In the simulations, however, the transition

between the b ≪ R and b ≫ R regimes happens very rapidly and

the energy input is well approximated, for all b, by the minimum of

the asymptotic limits:

�E(b) =
G2 M2

⋆ M

v2
× min

(

4α2 R2

3b4
,

3β2

R2

)

. (16)

In the b ∼ R regime, the energy input in the simulations is sig-

nificantly larger than that from the analytic impulse approximation

calculation. This may be indicating that in this regime, due to the

asymmetry of the interaction, the (δv) · v term in the total energy

input does not average to zero. It would be interesting to examine

whether the energy input for b ∼ R depends on the mini-halo density

profile.

In Fig. 4, we plot the fractional energy input from an interaction

with a fiducial star with mass M⋆ = 1 M⊙ and relative speed v =

300 km s−1 for the best-fitting profiles for all three haloes calculated

using equation (8). The fractional energy input for close interac-

tions, which is proportional to β2M/ER, varies by a factor of ∼3 for

a given halo and is ∼100 times larger for the lighter haloes 2 and 3.

This indicates that smaller, lighter mini-haloes are far more suscep-

tible to disruption by close encounters. For large impact parameter

interactions (b ≫ R), the fractional energy input, which is propor-

tional to α2MR2/E varies only weakly (by a factor of ∼3) between

haloes and profiles, with the spread in values for different profiles

for a given halo being comparable to that for different haloes for a

fixed profile.

This behaviour can be qualitatively understood by considering

the asymptotic fractional energy input for a uniform density sphere

Figure 4. The fractional energy input in an interaction with a fiducial star

with mass M⋆ = 1 M⊙ and relative speed v = 300 km s−1, (�E(b)/E)fid,

calculated using equation (8) for the best-fitting Plummer (solid line), CIS

(dotted line) and NFW (dashed line) profiles for (from bottom to top panel)

haloes 1, 2 and 3. The dot–dashed lines are the radii of the mini-haloes

(0.03 pc for halo 1, and 0.008 pc for haloes 2 and 3).

(with ρ = ρ0 for r < R and ρ = 0 otherwise):

�E(b)

E
∝

{

1

ρ0
(b ≫ R),

1

ρ0 R4 (b ≪ R).

On galactic scales, the redshift at which a given scale goes non-

linear, and hence the characteristic density of typical haloes, is

strongly scale-dependent. The comoving scales corresponding to

the mini-haloes [k > O(0.1 pc−1)] entered the horizon during

the radiation-dominated epoch, where CDM density perturbations

grow only logarithmically. The size of the density perturbations, at

a fixed redshift, on these scales is therefore only logarithmically

dependent on the comoving wavenumber. Consequently, the red-

shift at which a given physical scale goes non-linear, and hence

the characteristic density of the resulting haloes, is only weakly

(roughly logarithmically) dependent on the scale (see e.g. Green

et al. 2005). Neglecting this weak scale dependence and mak-

ing the approximation that ρ0 ∼ constant, �E/E ∼ constant for

b ≫ R and �E/E ∼ M−4/3 for b ≪ R. These scalings are in

broad agreement with the trends found for the three sample haloes.

The weak scale dependence of the redshift of non-linearity will

lead to more-massive haloes typically having lower characteristic

densities and hence being slightly more susceptible to disruption.

This scale dependence is relatively small, however, and is com-

parable in magnitude to the dependence on the mini-halo density

profile.

This behaviour, along with the results from the numerical simu-

lations for the Plummer sphere, indicates that a reasonable approxi-

mation to the fractional energy input is given by a sudden transition

between the asymptotic b〈〈/〉〉R regimes:

(

�E

E

)

fid

=

{(

�E

E

)

fid,s

(

1pc

b

)4
b > bs,

(

�E

E

)

fid,0

(

1pc

bs

)4
b < bs,

where

(

�E

E

)

fid,s

=
4α2

3

G2 M2

⊙M R2

(300 km s−1)2(1 pc)4
≈ 1 × 10−8 (17)
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1116 A. M. Green and S. P. Goodwin

is the asymptotic large-b slope, and the transition between the two

regimes occurs, for the three sample haloes, at

bs =

(

4α2

9β2

)1/4

R = A1/4 R ≈ (0.3–0.45)R. (18)

The large variation in the value of β2 for the different haloes/profiles

has a relatively small (less than a factor of 2) effect on the value of

A; however, taking this R–M dependence into account is crucial

for obtaining the correct b ≪ R asymptotic behaviour. The NFW

profile, however, is slightly problematic. As discussed above, its

(very large) asymptotic value of β2 is only reached for tiny impact

parameters. A reasonable prescription for this profile is to use the

asymptotic fractional energy input at b = 0.1R to calculate the value

of β2.

It should be emphasized that the representative sample haloes

studied in detail by Diemand et al. presumably form from ‘typical’,

∼1–2σ , fluctuations. Similarly, our discussion (above) of the scaling

of the energy input with the halo mass implicitly assumed that the

haloes form from similar-sized overdensities. Mini-haloes which

form from rarer large overdensities will be denser and hence more

resilient to disruption (Berezinsky et al. 2003, 2006; Green et al.

2004, 2005). More specifically, in the spherical collapse model, a

halo forming on a given comoving scale from an Nσ fluctuation

will have R ∝ 1/N, M ∼ constant, and characteristic density ρ ∝ N3

(Green et al. 2005). We therefore expect that the fractional energy

input in close encounters will be far smaller for haloes formed from

rarer, larger, fluctuations. The quantitative effect on the fractional

energy input will depend on exactly how the characteristic density

and density profile scale with the size of the overdensity from which

the mini-halo forms.

3.4 One-off disruption

We now use the criterion �E(bc)/E = 1 and the sudden transition

approximation developed in Section 3.3 above, to estimate the crit-

ical impact parameter bc, below which the energy input in a single

encounter is larger than the binding energy. Taken at face value, an

energy input �E(b)/E > 1 might appear to imply that the mini-

halo is completely disrupted. In reality, however, the reaction of

a system to a sudden change in energy, and in particular the rela-

tionship between the energy input and the mass lost, is non-trivial

(see e.g. Aguilar & White 1985; Goodwin 1997; Gnedin & Ostriker

1999; and, for the specific case of mini-halo interactions with stars,

Goerdt et al. 2006). The system will expand and attempt to reviri-

alize, and during this process two-body encounters will redistribute

energy between particles. The simple criterion �E(bc)/E = 1 al-

lows us to make an estimate of the impact parameter below which a

mini-halo will lose a substantial fraction of its mass in a single en-

counter (which for compactness we refer to as ‘one-off disruption’).

A detailed calculation of the mass loss, however, requires numerical

simulations of the revirialization and energy redistribution processes

(cf. Goerdt et al. 2006).

One-off disruption cannot occur if the asymptotic fractional en-

ergy input as b tends to zero is less than 1. This is the case if

(

M⋆

M⊙

300 km s−1

v

)

<

(

�E

E

)−1/2

fid,s

(

bs

1 pc

)2

. (19)

Otherwise,

bc

1 pc
=

(

�E

E

)1/4

fid,s

(

M⋆

M⊙

300 km s−1

v

)1/2

. (20)

Figure 5. The maximum impact parameter for which one-off disruption

can occur, bc, for the best-fitting Plummer profile for halo 1 (which has

R = 0.03 pc and rp = 0.013 pc). The solid line shows the analytic calculation

using the sudden transition approximation, equation (20). The symbols are

the results of numerical simulations: the open circles for (�E(b)/E) < 0.05,

the filled circles for (�E(b)/E) > 1 (potential one-off disruption) and the

size of crosses is proportional to (�E(b)/E) in the intermediate regime.

In Fig. 5, we plot bc as a function of M⋆/v for the best-fitting

Plummer profile for halo 1 calculated using the analytic expressions

derived from the sudden transition approximation (equations 19

and 20). We also plot the energy input in numerical simulations,

demonstrating that the sudden transition approximation provides a

good fit to the transition between the [�E(b)/E] > 1 and [�E(b)/

E] < 1 regimes. The critical impact parameter is quite sensitive to

the properties of the perturbing star. Thus, a full calculation of mini-

halo disruption will have to take into account the stellar mass and

velocity distributions.

4 I M P L I C AT I O N S A N D O P E N I S S U E S

4.1 Disruption time-scales

As discussed in the Introduction section (see also Zhao et al. 2007;

Angus & Zhao 2006; Goerdt et al. 2006), an accurate calculation

of the mini-halo survival probability distribution will require the

combination of simulations of mass loss with orbits in a realistic

Galactic potential. In this section though, we use the results of our

energy input studies in Section 3, in particular the sudden transition

approximation, to estimate the disruption time-scales for typical

mini-haloes as a function of mass for some benchmark orbits.

4.1.1 One-off disruption

For the simplified situation where all perturbers have the same ve-

locity and mass, the rate at which encounters with impact parameter

smaller than bc, the critical value for which the energy input is larger

than the binding energy, occur is

dN

dt
= πnvb2

c , (21)

where n is the perturber number density. Taking the stellar mass and

relative speed to be fixed at M⋆ = 0.5 M⊙ and v = 270 km s−1,

respectively, halo 1 will never undergo one-off disruption, while

for haloes 2 and 3, using the sudden transition approximation, the

critical impact parameter for one-off disruption is 0.0075 pc. Taking
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Mini-halo–star encounters 1117

a disc mass density of 0.023 M⊙ pc−3,4 we find a one-off disrup-

tion time-scale, tdis ≈ 1/(dN/dt), for haloes 2 and 3 of 0.5 Gyr for

(rare) halo orbits which lie entirely within the Galactic disc for bc =

0.0075 pc. This indicates that a 10−6-M⊙ mini-halo which spends

most of its time in the disc will undergo a change in its energy

which is large compared to its binding energy and hence lose a sig-

nificant fraction of its mass. The density of stars in the spheroid

is significantly smaller, ∼10−5 M⊙ pc−3, and declines rapidly with

increasing Galactocentric radius; therefore, mini-haloes on orbits

which never pass through the disc are extremely unlikely to expe-

rience a close encounter which removes most of their mass. Most

mini-haloes will, however, be on intermediate orbits and spend some

fraction of their time passing through the disc. For instance, a mini-

halo on a circular polar orbit at the solar radius with speed v =

270 km s−1 would spend a fraction ∼0.08 of its time within the disc,

giving a disruption time-scale of 6 Gyr. Therefore, in the inner re-

gions of the MW where orbits pass through the disc, the time-scale

on which 10−6 M⊙ haloes which experience significant mass loss

in a single interaction is of order the age of the MW and a more

sophisticated calculation is required.

Generalizing to the more realistic case of a population of per-

turbers with a range of speeds and masses, the rate at which in-

teractions with impact parameters smaller than the critical impact

parameter for potential one-off disruption to occur becomes

dN

dt
=

∫ ∫

d2n

dM⋆dv
πvb2

c

(

M⋆

v

)

dM⋆dv, (22)

where d2n/dM⋆ dv is the number density of stars with mass between

M⋆ and M⋆ + d M⋆ and relative speed between v and v + dv. We

assume that mass and speed distributions are independent so that

d2n

dM⋆dv
=

dn1

dM⋆

dn2

dv
. (23)

For the mass distribution, we use the Kroupa (2002) stellar mass

function (MF)

dn1

dM⋆

∝

{

M−1.3
⋆ 0.08 < M⋆/M⊙ < 0.5,

M−2.3
⋆ 0.5 < M⋆/M⊙ < 50,

which is a good fit to the local field population (see also Chabrier

2001). We ignore the contribution from brown dwarfs as, due to the

M2
⋆ factor, this population – whilst numerous – makes only a small

contribution to the disruption rate. We normalize the MF so that the

total mass density is 0.023 M⊙ pc−3. We take the speed distribution

to be Gaussian about the mini-halo speed, V = 270 km s−1:

dn2

dv
=

1

(2π)1/2σ⋆

exp

[

−
(v − V )2

2σ 2
⋆

]

, (24)

with stellar speed dispersion σ⋆ = 25 km s−1.

The resulting one-off disruption time-scales are 0.8 Gyr for halo

1 and 0.5 Gyr for haloes 2and 3. For haloes 2 and 3, the disruption

time is similar to that calculated assuming delta-function mass and

speed distributions. The main result though is that, once the spread

in stellar masses is taken into account, the more-massive halo 1 can

undergo one-off disruption on a time-scale smaller than the age of

the MW. Taking into account the spread of masses and velocities

is therefore crucial for calculating the mass threshold above which

mini-haloes will not lose a significant fraction of their mass in a

single encounter.

4 This corresponds to a surface density of 46 M⊙ pc−2 (Kuijken & Gilmore

1989) over a height of 2 kpc.

4.1.2 Disruption through multiple encounters

The time-scale on which a mini-halo will lose a significant fraction

of its mass as a result of the cumulative effects of encounters with

�E(b)/E < 1 (which, for compactness, we refer to a ‘disruption

through multiple encounters’) can be estimated as

tdis =
E

(dE/dt)tot

. (25)

This is likely to be an overestimate; the mini-halo density profile

changes in response to interactions and this appears to reduce the

effect of cumulative interactions (Goerdt et al. 2006).

Starting, once again, with the simplifying assumption that all stars

have the same mass and relative velocity,

(dE/dt)tot

E
= 2π

∫ ∞

bc

nv
�E(b)

E
b db, (26)

and taking the same parameter values as above we find, for orbits

which lie entirely within the disc, tdis = 0.4 Gyr for halo 1 and

tdis = 0.5 Gyr for haloes 2 and 3. The shorter time-scale for multiple

disruption for halo 1 reflects the fact that it cannot undergo one-

off disruption and hence bc = 0, whereas for haloes 2 and 3 bc =

0.0075 pc.

Generalizing to a distribution of masses and relative velocities,

the fractional energy input rate becomes

(dE/dt)tot

E
= 2π

∫ ∫

[
∫ ∞

bc(M⋆/v)

d2n

dM⋆dv
vb

�E(b)

E
db

]

dv dM⋆. (27)

We now find tdis = 0.6 Gyr for halo 1 and tdis = 0.5 Gyr for haloes

2 and 3.

The net energy input rate is the sum of the energy input rates from

‘one-off’ and ‘multiple disruption’, and the net disruption time-scale

will be shorter than the characteristic time-scales for ‘one-off’ and

‘multiple disruption’ individually.

We have assumed that the stellar density within the disc is uni-

form. In general, clustering will increase the spread in disruption

time-scales for mini-haloes of a given mass. In addition, most stars

(certainly those with M⋆ > 0.5 M⊙) are in fact in binary systems

(e.g. Goodwin et al. 2006) and will cause a greater disruptive effect

than a single star. Systems whose separations are significantly less

than the mini-halo radius (<1000 au) will effectively combine the

primary and secondary masses and, due to the M2
⋆ dependence of

the energy input, even fairly low-mass secondaries may play an im-

portant role. We estimate that ∼30–40 per cent of stars with M⋆ >

1 M⊙ may have a large enough companion to increase the energy

input by a factor >2.5 Even very low mass stars (<0.5 M⊙) have

a binary frequency of ∼30 per cent (Fischer & Marcy 1992), and

so the fraction of M dwarfs with a companion that could very sig-

nificantly increase the energy input is ∼15–20 per cent. Thus, an

accurate calculation of mini-halo disruption will have to combine

simulations of mini-halo orbits in a realistic potential with an accu-

rate model of the stellar distribution, including the binary fraction,

within the disc.

5 A companion with a mass ratio greater than 0.4 will increase the en-

ergy input by more than (1.4)2 ∼ 2, and we assume a binary fraction of

∼60 per cent (see Duquennoy & Mayor 1991).
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1118 A. M. Green and S. P. Goodwin

4.2 Mass dependence

We have seen that more-massive mini-haloes are less susceptible to

disruption. It is therefore interesting to investigate the mass depen-

dence of the disruption time-scales. Furthermore, the WIMP damp-

ing scale, and hence the mass of the smallest mini-haloes, depends

on the properties (elastic scattering cross-section and mass) of the

WIMPs. For generic WIMPs, Green et al. (2005) found a spread in

the minimum mass of several orders of magnitude, while Profumo,

Sigurdson & Kamionkowski (2006) have recently found that in the

Minimal Supersymmetric Standard Model the minimum mass may

vary between 10−12 and 10−4 M⊙.

The correct mass dependence of the small-b energy input, and

hence the transition radius, bs, is not known. We consider two scal-

ings which should give an indication of the trend, and also the un-

certainties. First, motivated by the qualitative understanding of the

mass dependence of the asymptotic limits of the fractional energy

input found in Section 3.3, we once more consider a uniform den-

sity sphere. For uniform density spheres (with constant density), the

profile parameter A(=4α2/9β2) is independent of the radius/mass

and hence bs ∝ R ∝ M1/3. For the three sample haloes, A decreases

slightly with increasing mass (albeit with significant scatter between

profiles and between haloes 2 and 3), and bs ∝ M0.2. We use both

these scalings, normalizing in both cases to bs = 0.004 pc at M =

10−6 M⊙. The correct variation might be significantly different from

either of these scalings, however, and needs to be determined from

the profiles of simulated haloes with a range of masses. In Fig. 6,

we plot the resulting disruption times for an orbit entirely within

the disc (for other orbits the disruption time-scales scale roughly as

the fraction of time spent within the disc) as a function of mini-halo

mass, using the sudden transition approximation with (�E/E)fid,s =

10−8.

For very small mini-haloes, M < 10−7 M⊙, the one-off and

multiple-encounter disruption time-scales are independent of mass,

and are roughly equal. The mass independence is because for these

small mini-haloes the transition impact parameter is smaller than

the critical impact parameter for the range of M⋆ and v values

considered, bs < bc(M⋆/v), so that bc(M⋆/v) lies in the �E(b)/E

∝ b−4 regime and is independent of the mini-halo mass. The ap-

proximate equality of the one-off and multiple disruption time-

scales can be understood by considering the simplified case of

Figure 6. The disruption time-scales for an orbit entirely within the disc as

a function of mini-halo mass. The solid line: one-off disruption assuming

bs ∝ M0.33, the dotted line: one-off disruption assuming bs ∝ M0.2, the short-

dashed line: multiple disruption assuming bs ∝ M0.33, and the long-dashed

line: multiple disruption assuming bs ∝ M0.2.

a delta-function mass/velocity distribution once more. Using the

sudden-transition approximation, both disruption time-scales are

then equal to [πnv (M⋆/M⊙)(300 km s−1/v) (�E/E)
1/2

fid,s(1 pc)2]−1

if bs < bc.The more rapid scaling of bs, with M (M0.33 versus M0.2)

also leads to larger values of tdis. The size of these differences in-

creases with increasing mini-halo mass. The exact disruption time-

scales of more-massive mini-haloes will depend on the mass depen-

dence of the impact parameter at which the transition between close

and distant encounters occurs and also how rapidly this transition

occurs.

4.3 Mini-halo radius

In common with other studies (Moore et al. 2005; Zhao et al. 2005,

2007), we have taken the mini-halo radii to be the radius at which

the density is 200 times the critical density at z = 26 [the redshift

at which Diemand et al. (2005) stopped their simulations and plot-

ted the profiles of their sample haloes], r200(z = 26). The densities

of simulated haloes do not decline sharply to zero beyond a given

radius, however, and, if the mini-haloes remained isolated beyond

this redshift their nominal radii (and hence masses and binding en-

ergies) would increase as the background density decreases. As an

extreme example, if halo 1 remained isolated to z = 0 then, assuming

a NFW density profile, its present-day radius would be ∼0.7 pc, its

mass would a factor of ∼3 larger and, using equations (2) and (5), the

fractional energy input in small (large) b encounters would be sub-

stantially decreased (increased). The value used for the mini-halo

radius therefore has a potentially significant effect on calculations

of the fractional energy input.

Once a mini-halo is accreted on to a larger halo, it no longer

accretes further mass on to itself and it is also subject to the tidal

field of the parent halo. For a mini-halo orbiting within a MW-like

parent halo, the tidal radius is only comparable to r200(z = 26) for

very small, of the order of a few kpc, Galactocentric radii. The ra-

dius of a mini-halo which does not pass through the very central

regions of the MW will be the smaller of the tidal radius and the

radius at the time of accretion [both of which are larger than r200(z =

26)]. The redshift at which accretion occurs will, however, be dif-

ferent for different mini-haloes with the same initial properties. A

detailed calculation of mini-halo evolution will therefore have to in-

clude the mini-halo merger histories. The majority of mini-haloes,

in particular those which pass close to the solar radius and are hence

most relevant for WIMP direct and indirect searches, will be ac-

creted on to larger haloes not long after z = 26 and hence r200(z =

26) should be a reasonable estimate of their radii.

5 D I S C U S S I O N

We have studied the energy input into earth-mass mini-haloes in in-

teractions with stars. Using the impulse approximation (see Spitzer

1958; Gerhard & Fall 1983; Carr & Sakellariadou 1999), we have

calculated the energy input as a function of impact parameter for a

range of mini-halo density profiles. We also used the DRAGON code

(e.g. Goodwin et al. 2004a,b; Hubber et al. 2006) to simulate inter-

actions with Plummer sphere haloes. We found excellent agreement

with the impulse approximation in the asymptotic limits b 〈〈/〉〉R

(where b is the impact parameter and R is the mini-halo radius) with

a rapid transition at b ∼ 0.1 R between these regimes. We also veri-

fied the scaling of the fractional energy input with stellar mass and

relative velocity.
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Mini-halo–star encounters 1119

Using analytic calculations, we find that the fractional energy

input for large impact parameters, b ≫ R, appears to be fairly inde-

pendent of the mini-halo mass, varying by a factor of ∼2 for haloes

with masses which differ by a factor of ∼50 with a similar varia-

tion for different density profiles. This behaviour probably reflects

the fact that the haloes form at roughly the same time and hence

have similar characteristic densities. The fractional energy input in

the b → 0 limit depends quite strongly on the mini-halo mass (be-

ing larger for lighter haloes) and is also dependent on the central

density profile. For the NFW profile, which has asymptotic inner

density profile ρ ∝ r−1, the fractional energy input only becomes

significantly larger than that for the cored density profiles at tiny, and

hence extremely rare, impact parameters, that is, b ≪ 10−3R. This

divergence is therefore essentially unimportant for our calculations;

however, the central regions of haloes with cuspy density profiles

may be able to survive even after substantial energy input/mass loss

(e.g. Moore et al. 2005; Goerdt et al. 2006). Motivated by the results

of our analytic and numerical calculations, we formulate a fitting

function for the fractional energy input as a function of impact pa-

rameter, which we refer to as the ‘sudden transition’ approximation.

The slope of the fractional energy input at large impact parameters is

constant, while the impact parameter which characterizes the tran-

sition between the limits is mini-halo mass-dependent.

We also investigated the dependence of the critical impact pa-

rameter, bc, for which the energy input is larger than the mini-halo

binding energy on the mini-halo mass and also the relative speed and

mass of the interacting star. As expected from the fractional energy

input calculations, for slow encounters with massive stars, bc is in-

dependent of the mini-halo mass. There is a critical value of (M⋆/v),

which increases with increasing halo mass, below which the energy

input is always smaller than the binding energy. For all values of

(M⋆/ M⊙)(300 km s−1/v), the results of our Plummer sphere sim-

ulations are in good agreement with the analytic expressions for bc

from the sudden transition approximation.

We then use the sudden transition approximation to estimate the

time-scales for one-off and multiple disruption for mini-haloes in the

MW as a function of mini-halo mass, using the approximate destruc-

tion criterion �E/E = 1. We take into account the stellar and veloc-

ity distribution and note that binary stars can cause a significantly

greater energy input than single stars, due to their greater effective

mass. For light mini-haloes with M < O(10−7 M⊙), the disruption

time-scales are independent of mini-halo mass and, for a mini-halo

in the inner regions of the MW on a typical orbit which spends a few

per cent of its time passing through the disc, are comparable to the

age of the MW. For more-massive mini-haloes, M > O(10−4 M⊙),

the disruption time-scale estimates increase rapidly with increasing

mass, suggesting that the majority of these mini-haloes will not be

disrupted by stellar encounters. It is important to caution, however,

that the relationship between the energy input and the change in

the bound mass is not straightforward. In particular, the mini-halo

density profile evolves so that successive multiple encounters are

less effective than would naively be expected and even if the energy

input in a single encounter is much larger than the binding energy

a small fraction of the mass can remain bound (Goerdt et al. 2006).

Therefore, these simple estimates are likely to be overestimates of

the actual disruption time-scales.

Finally, we discussed the dependence of the fractional energy

input on the mini-halo radius assumed. To be consistent with other

studies (Moore et al. 2005; Zhao et al. 2005, 2007), we took the

radius to be the radius at which the density is 200 times the critical

density at z = 26, the redshift at which Diemand et al. (2005) stopped

their simulations and plotted the profiles of their sample haloes.

This is a somewhat arbitrary definition, however; the densities of

simulated haloes do not decline to zero beyond this radius and as

the background density decreases the nominal radius increases. The

physical extent/radius will in fact be that at the time of accretion on

to a larger halo, or the tidal radius if this is smaller. The tidal radius

within a MW-like parent halo is only smaller than r200(z = 26),

at small Galactocentric radii, however, the majority of mini-haloes

will be accreted on to larger haloes shortly after this redshift, so in

practice r200(z = 26) should be a reasonable estimate of the radius

of most mini-haloes.

A complete calculation of the disruption of mini-haloes will

need to take into account their merger histories, simultaneously

and consistently incorporate disruption due to encounters with

stars and tidal stripping. Mini-haloes formed from rare, large-

density fluctuations, will be denser, and hence more resilient to

disruption, than typical mini-haloes and this will also need to be

included.
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